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Abstract
This paper aims at identifying whether and how sustainable landmanagement practices and
livelihood diversification strategies have contributed to moderating the impacts of the El
Niño-related drought in Zambia. This is done using a specifically designed survey called the
El Niño Impact Assessment Survey, which is combined with the Rural Agricultural Liveli-
hoods Surveys, as well as high resolution rainfall data at the ward level over 34 years. This
unique panel data set allows us to control for the time-invariant unobserved heterogeneity
to understand the impacts of shocks like El Niño, which are expected to become more fre-
quent and severe as a result of climate change. We find that maize yields were substantially
reduced and that household incomes were only partially protected from the shock thanks to
diversification strategies. Mechanical erosion control measures and livestock diversification
emerge as the only strategies that provided yield and income benefits under weather shock.

Keywords: climate shocks; crop productivity; income; sustainable land management; Zambia

JEL classification: Q12; O13; R11

1. Introduction
Southern Africa experienced one of its driest cropping seasons in 2015, which coincided
with the most intense period of the El Niño Southern Oscillation (El Niño). Most of the
region received only 50–70 per cent rain compared to regular rainfall between October
2015 and February 2016, which caused crops to fail shortly after planting and resulted
in region-wide food deficit warnings (Rembold et al., 2016). In Zambia, the effects of El
Niño were classified as the most severe in the last fifty years (ZVAC, 2016).

There is emerging consensus among climate scientists that extreme weather events
such as El Niño are expected to become more frequent and intense, especially in Africa
and South-East Asia (IPCC, 2014, table 21.7). There is, therefore, urgent need to identify
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agricultural practices and livelihood strategies that build the resilience of food produc-
tion systems and farmers’ livelihoods to these events. As such, improving the agricultural
productivity and incomes of the rural poor in the context of climate change is a national
policy priority in Zambia. This includes many initiatives to support the adoption of agri-
cultural practices and livelihood diversification strategies designed to reduce climate
vulnerability among smallholders, which we analyse in this paper. Understanding the
impact of climate related shocks on smallholder systems, and relative effectiveness of
climate adaption practices, is therefore critical for guiding agricultural policy in Zambia
and elsewhere in the region.

The main objective of this paper is to analyse the impacts of the 2015/16 El Niño
induced drought on maize productivity and incomes in rural Zambia. More specially,
this paper examines the extent towhich key types of sustainable landmanagement (SLM)
practices (i.e., minimum soil disturbance (MSD), crop rotation, residue retention and
agroforestry),1 soil erosion control measures, and livelihood diversification strategies
influenced the productivity of maize and the effects on welfare from the El Niño-related
drought. The present analysis provides insights that can help guide policies to increase
smallholder resilience to climatic shocks in Zambia.

Data in this paper come from a unique and dedicated household survey called the El
Niño Impact Assessment Survey (ENIAS), which is a follow up to the 2015 wave of the
Rural Agricultural Livelihoods Surveys (RALS) that covers the 2013/14 season specifi-
cally conducted to assess the effects of El Niño. To this purpose ENIAS was designed
to cover a sub-sample of RALS households distinguishing among two groups of house-
holds: those representative of residents in areas severely affected by El Niño and those
representative of residents in not affected areas. The two groups of households were
selected through a propensity score matching (PSM) procedure using observable socio-
economic, agro-ecological and infrastructure variables. The data set so constructed was
thereafter combined with the RALS 2015, as well as high resolution rainfall data from
the Africa Rainfall Climatology version 2 (ARC2). The data set represents an opportu-
nity to analyse the impacts of shocks like El Niño, and to provide evidence on the extent
towhich agricultural practices and livelihood strategies can buffer household production
and welfare, attenuating the negative impacts of severe climatic conditions.

Our paper contributes to the expanding literature on climate change and vulnerability
for smallholder households in two differentways, setting it apart fromother analyses that
make use of existing cross-sectional and panel data. First, we analyse whether selected
SLM practices and diversification strategies can provide higher benefits to maize yield
and household income of farmers living in areas hit by the El Niño shock. Our analysis
adds to the recent literature testing the response of households to adverse weather con-
ditions in a panel setting (Taraz, 2018; Michler et al., 2019). Second, the availability of
a panel data set allows us to control for time-invariant unobserved heterogeneity using
correlated random effects models, and identify risk management and coping mecha-
nisms that help households to respond to and deal with weather shocks. The use of fixed
effects models as robustness checks bring our study in line with recent articles that con-
sider panel data approach with fixed effects as the preferred method to analyse the effect
of climate events on agricultural production and household income (Burke et al., 2015;
Blanc and Schlenker, 2017).

1Minimum soil disturbance refers to practicing zero tillage, planting basis (potholes) or ripping on the
same cultivated plot. The residue retention indicator refers to the use of crop residue as surfacemulch rather
than removing or burning it. Agroforestry has been defined based on whether there are trees on each plot.
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The rest of the article is organized as follows. In section 2, we provide a brief review of
two strands of literature relevant for our paper: climate change and vulnerability litera-
ture, and the literature on SLM practices and diversification strategies. We introduce
our conceptual framework and empirical methodology in section 3, provide detailed
descriptive statistics in section 4 and present our results in section 5.We offer concluding
remarks and policy recommendations in section 6.

2. Literature review
2.1 Climate change and vulnerability
Farm households throughout Sub-Saharan Africa are particularly exposed to weather
induced risks, due to the preponderance of rain-fed production and imperfect mar-
ket conditions. Climate change exacerbates these risks by increasing the probability
and severity of adverse weather conditions. Furthermore, severe climatic events such as
droughts, floods, and heat waves are expected to increase in frequency and intensity over
time (Nelson and van der Mensbrugghe, 2013; IPCC, 2014). In the absence of measures
to reduce the vulnerability of farmers to these events, significant negative impacts on
food security are expected (Roy et al., 2018). Hence, climate change not only represents
a threat to incomes today, but also makes them less predictable by changing the proba-
bility distributions in ways that are difficult for households to incorporate into decision
making (Thornton and Lipper, 2014).

In most cases, extreme weather events increase vulnerability of rural households
through their effects on crop production and income (Banerjee, 2007; Dercon andChris-
tiaensen, 2007; Mueller and Quisumbing, 2010; Wineman et al., 2017; Hill and Fuje,
2018; McCarthy et al., 2018; Michler et al., 2019). Although limited, empirical evidence
suggests that households subject to severe climate events often experience increasing
levels of vulnerability related to large losses in agricultural income.

Households can adopt risk management practices – such as SLM practices that mod-
erate negative impacts of weather extremes on crop yields (FAO, 2001, 2007). They
can also implement risk-coping strategies ex post, such as labour reallocation, sales of
durables and livestock, and access to transfers from friends and relatives. Yet, despite
adoption of risk management and coping strategies, the empirical evidence suggests that
these mechanisms are never more than partial, and that consumption shortfalls remain
high when rural households face extreme shocks (Alderman and Paxson, 1994; Dercon,
2005; Baez and Mason, 2008).

2.2 Sustainable landmanagement practices and diversification strategies
In Zambia, maize is both the primary crop grown by small-scale producers and the
national staple food. As both a cause and a consequence, agricultural policy in the recent
past has focused predominantly on the maize sector. This includes significant public
expenditure on output market and input subsidies, as well as frequent use of maize trade
restrictions to affect prices (Sitko et al., 2017).

Large efforts, advocacy and investments have been made in the country to pro-
mote the adoption of farming practices such as conservation farming,2 which is a set
of SLM practices, agroforestry and improved fallows in order to improve and stabilize

2Conservation Agriculture techniques promoted in Zambia are known as Conservation Farming (CF)
and include: reduced tillage, precise digging of permanent planting basins or ripping of soil with a Mogoye
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maize yield while offering income benefits through diversification (Chidumayo, 1987;
Umar et al., 2011; Arslan et al., 2014). SLM practices incorporating MSD, crop rotation,
intercropping, residuemanagement, agroforestry, and soil andwater conservation struc-
tures, are meant to generate climate adaptation benefits through impacts on improved
water retention capacity and soil nutrients, and reduce erosion. For instance, the Zam-
bia National Farmers Union started promoting Conservation Agriculture (CA) in 1995
through the Conservation FarmingUnit. In 2004, CA became a national priority and this
focus was echoed by a number of initiatives and projects supported and implemented by
various NGOs, as well as international agencies and organizations including the Food
and Agriculture Organization (FAO) and the World Bank, among others (Arslan et al.,
2014).

Several studies show that CF, when implemented fully on experimental plots, has the
potential to mitigate the negative effects of climatic shocks by increasing water produc-
tivity, water infiltration and soilmoisture buffering capacity (Giller et al., 2009; Chikowo,
2011). Despite these benefits, disadoption of these practices at the household level is
common (Arslan et al., 2014), although aggregate adoption levels are reportedly increas-
ing over time (Baudron et al., 2007; Umar et al., 2011). The stubbornly low, partial and
volatile adoption levels are related to multiple constraints, including the time it takes
until positive returns are obtained in low productivity settings (up to 10 years), compe-
tition from livestock, labour constraints as well as cessation of other incentives (input
support) provided by some promoters (Giller et al., 2009; Nkala et al., 2011).

In addition to these practices, diversification strategies in terms of crop, income and
livestock are considered important measures to diversify and manage risks on income.
Diversification can be adopted by agricultural households ex ante as a risk-management
and income smoothing strategy (Smit and Wandel, 2006), as well as after a shock (i.e.,
ex post) to cope with the negative effects it generates (Davies, 1993; Murdoch, 1995).
Climate change not only decreases incomes when weather shocks occur, but also makes
them less predictable in ways that are difficult for households to incorporate into their
decision making (Thornton and Lipper, 2014). Empirical evidence shows that diversi-
fication may help farmers deal with droughts and other weather shocks (Di Falco and
Chavas, 2009; Cavatassi et al., 2011; Macours et al., 2012; Arslan et al., 2018). Analyses
to test the effects of diversification under extreme weather events such as El Niño, how-
ever, are rare, with the exception of Maggio and Sitko (2019), who use the ENIAS data
to assess the adoption of adaptive cropping strategies in response to seasonal forecast
information.

3. Sampling frame and empirical strategy
3.1 Sampling frame
This study was conceived while Zambia was in the midst of the El Niño crisis, and the
sampling frame and the empirical strategy were designed to assess the direct impacts of
El Niño on smallholders’ maize yields and total incomes, as well as to identify relevant
interventions to guide policy in thewake of such crises. These features set this study apart
from others in the literature that rely on pre-existing data to identify shocks, which are
hard to predict and hence difficult to mobilize in the midst of an unfolding crisis to
establish panel data.

ripper, keeping of crop residues, rotation of cereals with legume, dry season land preparation (Arslan et al.,
2014).
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The starting point for this analysis is the nationally representative household data
from the 2015 wave of the RALS collected by the Central Statistics Office (CSO, 2015)
in collaboration with Michigan State University and the Indaba Agricultural Policy
Research Institute (IAPRI). The survey is designed to be representative of rural farm
households at national and province levels and covers a sample of 7,934 households.3
RALS includes detailed information on agricultural (crop and livestock) production and
sales, off-farm activities and other income sources, along with household demographic
characteristics and social capital indicators.4

RALS 2015 provided a rich background for the design of the ENIAS sample and ques-
tionnaire, which was initiated in response to the delayed onset of the rainy season due to
the El Niño at the beginning of the 2015–2016 rainy season. The FAO-EPIC programme
of work, in collaboration with FAO Zambia office and IAPRI, implemented the ENIAS
to analyse the impacts of El Niño on maize yields, and to identify agricultural and liveli-
hood strategies that successfully improve farmers’ resilience to droughts, as well as to
investigate the types of policies and institutions needed to improve resilience to such
shocks.

The sampling frame for ENIAS was defined by using PSM at the Standard Enumer-
ation Area (SEA) level in order to match severely affected areas in the RALS 2015 data
with those that were not severely affected to ensure that the sample has enough house-
holds in both areas for analysis. The definition of ‘severely affected areas’ was based on
the most recent Zambia Vulnerability Assessment Committee (ZVAC) Situation Report
at the time, which was released in January 2016.

Given the fact that the northern parts of the country were experiencing normal or
above normal rainfall, all of Luapula, Northern and North-Western and most of Cop-
perbelt and Muchinga provinces were excluded from the sampling frame. This choice
was also driven by the significant differences between the agro-ecological and cropping
systems of the excluded areas and the severely affected areas, meaning they provide lim-
ited opportunities for matching. Out of the 35 severely affected districts, 22 that were
covered in the RALS 2015 surveys were used to create a sampling frame for ENIAS using
PSM. From these districts, 149 SEAs were selected comprised of 60 severely affected
(treatment) and 89 not severely affected (control) SEAs, and a random sample of 9–10
households from the RALS 2015 roster was interviewed in each SEA, yielding a final
sample of 1,311 households.5 Figure 1 shows the 35 severely affected districts (in red) as

3The first round of RALS was undertaken in 2012 using a new sampling frame derived from the 2010
Census. One of themost important design features is that RALS allows the tracking, to themaximum extent
possible, of the same households over time, providing a statistically valid and comprehensivemeans to assess
trends in rural livelihoods and welfare within a consistent panel framework (CSO, 2012). Statistics for the
Eastern province are representative at the district level due to the oversampling in the survey.

4RALS surveys traditionally cover the cropping seasons that go back two seasons in order to capture
total value of crop production and sales that are from one particular season completely. This is especially
useful as there is no detailed information on household expenditure and total income is used instead as a
welfare outcome. Therefore 2015 RALS covers the 2013/14 season, whereas ENIAS covers the 2015/2016
agricultural season.

5Data collection was done by IAPRI’s established and experienced team of surveyors and supervisors
using CAPI technology with Survey B software, in collaboration with the CSO.
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Figure 1. Severely affected districts as reported in the ZVAC (2016) report and sampled districts.
Note: The 35 severely affected districts as reported in the ZVAC Report are coloured in red, whereas the blue
squares indicate the 28 districts included in the ENIAS sample.
Source: ZVAC, 2016.

reported in the ZVAC (2016) report together with the 28 districts included in the ENIAS
sample, which are marked with blue squares.6

The distribution of the households in the final sample across provinces is provided in
table 1.

The resulting household panel data are merged with rainfall information at the ward
level using geo-referenced ward boundaries (there are 136 wards in the final sample).7
Rainfall data are fromARC2 of the National Oceanic andAtmospheric Administration’s
Climate Prediction Center for the period of 1983–2016. ARC2 data are available on a
daily basis and have a spatial resolution of 0.1 degrees (∼10 km).8 We use these data to
construct our shock variable, which is defined as a dummy variable that identifies wards

6Given that the ENIAS sample is selected through matching of severely affected SEAs with those that
were not severely affected as described, the final sample is not nationally representative. It is however
representative of severely affected areas and how they would have looked in the absence of El Niño.

7Wards are administrative units below the district and above the village levels.
8See http://www.cpc.ncep.noaa.gov/products/fews/AFR_CLIM/AMS_ARC2a.pdf formore information

on ARC2.
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Table 1. Distribution of interviewed households by province and sample type

Number of interviews by selected sample type

Province Selected Replacement Total

Central 210 23 233

Copperbelt 96 5 101

Eastern 590 66 656

Lusaka 75 12 87

Muchinga 16 1 17

Southern 150 4 154

Western 56 7 63

Total 1,193 118 1,311

Note: Given that the RALS sample wasmuch larger than the ENIAS sample, a randomly selected list of replacement house-
holds were provided to enumerators for each selected SEAs. In cases of no response/contact after three trials, households
from this list were interviewed.
Source: Authors’ elaboration.

in which rainfall between November 2015 and February 2016 fell below the minimum
of long-run average rainfall of this period.9

We created other rainfall variables to trace historical trends in rainfall variation that
are closely linkedwith agricultural production aswell as the adoption of livelihood strate-
gies with implications for vulnerability and welfare of small farmers. This novel dataset
provides a unique opportunity to understand the impacts of shocks like El Niño that
are expected to become more frequent and severe in Zambia using a robust empirical
methodology detailed in the next section. It also facilitates a thorough understanding of
the agricultural practices and livelihood strategies that can buffer household production
and welfare from the impacts of such shocks to drive policy recommendations.

3.2 Empirical strategy
In order to identify direct impacts of El Niño on smallholders, we define two estimating
equations, one for maize yield and one for total gross income per capita, as follows:

Yit = α + βENi16 + γRkt + δXit + ϕPit + ϑPit ∗ ENi16 + εit , (1)

whereYit is the outcome variable (maize yield in kg/ha, or the value of total gross income
per capita, both in logarithms) for the ith household (i = 1, . . . , n) at time t (t= 2015,
2016); EN represents the El Niño drought shockwhich is equal to 1 if betweenNovember
2015 and February 2016, total rainfall in each ward was below the minimum of long-run
average rainfall; Rkt are the rainfall variables at the ward level10 (k= 1,. . . ,136); Xit is a
vector of household level variables including socio-demographic characteristics, wealth
and social capital indicators at time t; Pit are practice, diversification and policy variables

9Note that we do not use the total seasonal rainfall as most of the affected regions of Zambia received a
lot of rainfall after February, hence the cumulative seasonal rainfall levels in 2015/2016 season approached
normal levels. The very late onset after February therefore is used to define the shock.

10Climatic variables were processed at the ward level using the boundaries to extract information from
ARC2 data to be merged with RALS data.
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that capture the potential ex ante measures, diversification strategies and relevant poli-
cies that are expected to ameliorate the impact of the shock on the outcomes; and the
Pit∗ENi16 are interaction terms between these variables and the shock indicator.11 The
error term εit is composed of a normally distributed term independent of the regressors
(uit), and time-invariant unobserved effects νi.

We use the Hausman test to assess whether fixed effects (FE) or random effects (RE)
should be used to model time-invariant heterogeneity (Wooldridge, 2002, 2009). We
reject the hypothesis that RE models, which consider unobservables as a random vari-
able (uncorrelated with covariates) whose probability distribution can be estimated from
data, are consistent. Because FEmodels prevent the use of time-invariant variables, some
of which are critical for our model, we use the correlated random effects (CRE) model,
also referred to as the quasi-FEmodel. The CRE controls for possible additional correla-
tions between time-varying explanatory variables and RE by including the means of the
time-varying characteristics as regressors in the analysis, parameterizing the distribution
of νi and allowing the Xit and Pit to be correlated with νi (Mundlak, 1978; Chamberlain,
1984; Wooldridge, 2002, ch. 16; Wooldridge, 2009).12

In addition to analysing the average impact of the El Niño shock on yields and
incomes, we test the following hypotheses to guide future policies:

(i) Agricultural practices adopted have no effect on maize productivity under aver-
age shock exposure conditions (ϕ̂ = 0).

(ii) These practices do not have a different effect on productivity under extreme
shock conditions posed by El Niño (ϑ̂ = 0).

Mathematically, the same hypotheses are tested in incomemodels, where themain focus
is on the average effect of diversification and policy variables, and their interactions with
the El Niño shock. We cluster the error terms at the ward level for all models to control
for potential correlation across households in the same ward.

4. Descriptive analysis
Given the central importance of the delayed onset of rainfall that occurred in most of
the regions of Zambia in 2016 for our analysis, we first present the distribution of the
observed amount of rainfall in our data. The seasonal forecast provided by the Govern-
ment for the 2015/2016 season projected that, after a period of below normal rainfall, the
seasonal rainfall would reach normal levels in most of the country except in the south,
however low rainfall conditions persisted until late into the season particularly within
the ‘shocked’ areas in our data (Maggio and Sitko, 2019). Figure 2 shows a compari-
son of total rainfall registered between November and February during the 2013/14 and
2015/16 cropping seasons.13 There is a clear and dramatic decrease in the amount of

11The interaction variables are selected based on long-standing policies to promote agricultural practices
and diversification strategies to decrease vulnerability. We also use maize sales to the government’s food
reserve agency and the existence of safety net programmes (though very low in rural Zambia) to test their
effectiveness in decreasing household vulnerability.

12We present the FE models in the online appendix for robustness checks.
13The main maize growing season in Zambia starts in November and continues until late May. Recom-

mended planting season is until the end of November or at latest early December, and the disastrously late
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Figure 2. Distribution of total rainfall between November and February during the 2013/2014 and 2015/2016
seasons.
Source: Authors’ elaboration.

rainfall during these critical months, underlining the severity of the shock identified by
our indicator.

Figure 3 plots the distributions ofmaize yields and household incomes in 2013/14 ver-
sus 2015/16.We observe thatmaize yields were consistently lower in the El Niño affected
season, however, the shift in the yield distribution is much less pronounced than that for
total rainfall. The latter is consistent with the observation that maize yields are relatively
robust to small deviations in rainfall, so that yield losses are experienced only after rel-
atively large deviations. The right panel in figure 3 shows a similar shift towards lower
incomes across all income levels in 2015/2016 season, but the shift in income distribu-
tions is even less pronounced than maize yields, indicating that households were able to
partially absorb lost maize crop income.

Descriptive statistics of control variables used in the analyses are presented in table 2
for ENIAS and RALS. Forty-eight per cent of farmers are in our shocked group, which
experienced a total rainfall between November 2015 and February 2016 that was below
the long-term minimum of the same period in their ward. No households received such
a damaging shock during the 2013/14 season. While the shock variable controls for
potential non-linear impacts of rainfall on yields and income, we also include the per-
centage deviation of total rainfall in the season from the long-term (1983–2016) average
to capture linear impacts of rainfall deviations. We expect that deviations from expected
rainfall will have a negative impact on yields and incomes, and that the drought shockwill
also have negative impacts. Finally, we include the coefficient of variation of long-term
rainfall (CoV). Many empirical studies have shown that climate variability significantly
influences farmers’ choices, including choosing crops and varieties that provide lower,

onset during the year of El Niño caused many farmers to lose their seeds (for those that planted early) or
completely fail to plant.
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Figure 3. Distributions of maize productivity and household income (RALS 2015 – ENIAS 2016).

but more stable yields and making fewer investments in land improvements with the
potential exception of risk-reducing investments (e.g., Mano and Nhemachena, 2006;
Seo andMendelsohn, 2007; Benhin, 2008; Arslan et al., 2015).We thus expect that higher
CoV will have a negative impact on yields and incomes.

The variables on household demographics include characteristics of the household
head such as age, educational level, and gender as well as number of adult household
members and the dependency ratio. The average age of the head, capturing farming
experience, is 49 years in 2014 and 51 years in 2016, whereas the number of years of
schooling is 8.1 and 8.6 in 2014 and 2016, respectively. Regarding education, some stud-
ies have shown that schooling has positive effects on agricultural productivity due to the
skills that more educated farmers acquire to gather and analyse information relevant to
farm decisions (Feder et al., 1985; Appleton and Balihuta, 1996; Asadullah and Rahman,
2005; Reimers and Klasen, 2012). However, other studies have found limited impacts on
agricultural productivity, as more educated rural people tend to allocate more time to
more remunerative off-farm activities (Moock, 1981; Appleton and Balihuta, 1996; Has-
nah andCoelli, 2004). Around 20 per cent of households are female headed in both years.
A fair amount of empirical evidence suggests that female-headed households have lower
yields because women face more constraints than men, such as less education, inade-
quate access to land, difference in access to inputs such as improved seeds, fertilizer and
productive assets, as well as limited access to information and extension services (Udry
et al., 1995; Udry, 1996; De Groote and Coulibaly, 1998; Akresh, 2008).

We include the number of adult household members and the dependency ratio to
control for time constraints. In our sample, the average number of adult members per
household are 3.7 and 4.3 in 2014/15 and 2015/16 respectively, while the dependency
ratio is 1.13 and 1.07, respectively. We expect the households with more adults and a
lower dependency ratio to have greater labour available for both on- and off-farm work,
and thus higher yields and income (Croppenstedt et al., 2003; Deressa et al., 2009). On
the other hand, other researchers have argued that large households may be more likely
to have members who engage in off-farm activities (Yirga, 2007). A larger number of
adults may allow for greater income diversification, and it can also paradoxically lead
to reduced farm labour availability and thus lower yields if diversification is purely an
insurance mechanism and off-farm income sources are relatively stable (Yirga, 2007).
We expect that income per capita will be negatively related to the number of adults,
reflecting diminishing returns, and also to the dependency ratio as this should tighten
the labour constraint. Finally, in the income per capita equation, we include a dummy for
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Table 2. Descriptive statistics of selected control variables

2015 RALS 2016 ENIAS

Variable N Mean Min Max N Mean Min Max

Climate

El Niño shock (1= yes) – – – – 1,257 0.47 0 1

Absolute rainfall deviationa (%) 1,242 9.57 0.05 33.84 1,257 18.45 0.08 43.93

CoV rainfall 1,242 0.2 0.15 0.26 1,257 0.2 0.15 0.26

Household demographics

Adult household members (Nr.) 1,242 3.67 1 14 1,257 4.31 1 15

Dependency ratio 1,242 1.13 0 6 1,257 1.07 0 8

Age of household head (years) 1,242 49 21 94 1,257 51 9 96

Education of household head (years) 1,242 8.14 0 19 1,257 8.55 0 19

Head is female (1= yes) 1,242 0.2 0 1 1,257 0.21 0 1

Household wealth

Wealth index 1,242 0.29 −0.97 6.87 1,257 0.14 −1.12 5.48

Ag wealth index 1,242 0.14 −0.59 5.03 1,257 −0.04 −0.71 4.53

Total land (ha) 1,242 4.8 0.008 50 1,257 4.73 0.005 49.63

HH has no land title (1= yes) 1,003 0.91 0 1 1,003 0.91 0 1

Diversification

Crops planted (count index) 1,242 2.71 0 7 1,257 2.75 0 8

Livestock diversity (count index) 1,242 1.84 0 7 1,257 1.72 0 6

Income sources (count index) 1,242 2.75 1 5 1,257 2.61 0 6

Continued.
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Table 2. Continued

2015 RALS 2016 ENIAS

Variable N Mean Min Max N Mean Min Max

Traditional inputs/Practices

Land under maize (ha) 1,003 2.17 0.06 45 1,240 1.72 0.01 28

Maize seeds used (Kg) 1,003 49.6 2.32 580 1,240 39.6 0 627

HH uses hybrid maize seeds (1= yes) 1,003 0.80 0 1 1,240 0.65 0 1

Inorg fertilizer applied onmaize plots (1= yes) 1,003 0.92 0 1 1,240 0.73 0 1

Fertilizer received on time (1= yes) 1,003 0.92 0 1 1,240 0.72 0 1

HH uses mechanical erosion control (1= yes) 1,003 0.30 0 1 1,240 0.22 0 1

HH uses animal/mechan tillage power (1= yes) 1,003 0.66 0 1 1,240 0.64 0 1

SLM practices

Adoption of MSD (1= yes) 1,003 0.16 0 1 1,240 0.18 0 1

Crop rotation (1= yes) 1,003 0.71 0 1 1,240 0.70 0 1

Crop residue cut & spread on field (1= yes) 1,003 0.03 0 1 1,240 0.04 0 1

HH grows trees/shrubs on plots (1= yes) 1,003 0.36 0 1 1,240 0.39 0 1

Market access and social capital

Maize sold to FRA (share in SEA) 1,242 0.11 0 0.44 1,257 0.02 0 0.375

Cash from Safety Net Program (share in SEA) 1,242 0.01 0 0.19 1,257 0.01 0 0.15

Groupmembership (share in SEA) 1,242 0.63 0.11 0.95 1,257 0.65 0.11 1

HHs receiving credit (share in Ward) 1,242 0.02 0 0.07 1,257 0.01 0 0.07

Adults permmoved to urban area (1= yes) 1,242 0.14 0 1 1,257 0.03 0 1
aRainfall deviation is calculated as the absolute value of the total rainfall deviation between November and February from the long-term average (in percentage terms). Descriptive statistics are
based on the maize productivity and income sample used for the analyses.
Source: Authors’ elaboration.
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whether an adult member has moved to an urban area in the past 12 months. Migration
is an income diversification strategy, hence this variable should proxy for the ability to
secure remittances from family members in times of need.

The average wealth index decreased between the two waves from 0.29 in 2015 to 0.19
in 2016, as did the agriculture implement index,14 which declined from 0.14 to −0.04.
Wealthier farmers are expected to be more capable of coping with shocks, hence have
lower livelihood vulnerability (De Janvry et al., 1991; Kinsey et al., 1998), as well as to be
more able to afford the purchase of agricultural inputs, such as chemical fertilizer and
improved seeds (Arslan et al., 2014). Higher ownership ofmajor agricultural implements
should increase land productivity and thus lead to higher yields and overall incomes
through crop production.We also include the size of landholdings. In rural Zambia, very
few households have shifted from predominantly labour-based farming to even moder-
atelymechanized farming, and fewer still to highlymechanized farming. Thus, we expect
landholdings to be negatively correlated with maize yields, consistent with diminishing
returns to land, and positively correlated with income per capita.

For the maize yield equations, we include whether the maize seed used is hybrid, as
well as the use of inorganic fertilizers. We capture the adoption of SLM practices using a
set of dummy variables. The percentage of farmers adopting MSD defined as practicing
zero tillage, planting basins (potholes) or ripping on at least one plot is quite stable over
time, although figures show a slight increase (from 16 to 18 per cent) between the two
waves.15 The crop rotation variable exhibits a slight decrease from 71 to 70 per cent
of households. Residue retention, defined as the use of crop residues as surface mulch
rather than removing or burning them, is relatively low, at 3 and 4 per cent in 2015 and
2016, respectively. Finally, we also include a dummy for whether the household had any
type of erosion control structures on their fields, such as bunds and drainage ditches.
We expect higher amounts (or use of) traditional inputs and SLM practices to increase
maize production. Furthermore, we hypothesize that the SLM practices will give higher
relative benefits in areas subject to weather shocks. In other words, we expect a positive
coefficient on the interaction between SLM adoption and the weather shock.

Market access and social capital may positively affect agricultural production and
overall incomes due to the opportunity that households have of sharing information and
knowledge in groups or in markets that act as main information hubs (Cavatassi et al.,
2012). Access to markets is also found to be positively correlated with the adoption of
drought tolerant crops in the ENIAS sample (Maggio and Sitko, 2019). In this study, we
use the share of households selling maize to the Food Reserve Agency (FRA) within the
SEA as a proxy for market access. In particular, the FRA buys maize from farmers at
above market prices, aiming to take some of the price risk away from farmers. By mak-
ing maize incomes less risky, it increases incentives to grow maize, and hence may be
expected to increase maize production. Figures show that 11 and 2 per cent (in 2015 and
2016, respectively) of households in the SEA have sold maize to the FRA. As the office
of Zambia’s Auditor General reported, the enormous decrease in the amount of maize

14The wealth index is constructed using principal component analysis based on dwelling conditions and
asset ownership, while the agriculture implements index is based onmajor implements owned by the house-
hold. Summary statistics of asset variables and scoring factors for the first principal component are presented
in table A3 in the online appendix.

15A separate analysis using transition matrices shows that although average SLM adoption rates are
stable, adoption and disadoption is very common (see Arslan et al., 2014) indicating that time-invariant
unobservables (such as ability or soil quality) do not significantly determine adoption.
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sold was due to the fact that in 2016, although considerable funding (corresponding to
US$100 million) was allocated to the FRA for maize purchases in the national budget,
only half of it was used for that purpose. We use the share of households that participate
in groups such as farmer cooperatives, women’s groups or savings and loan societies
within a SEA as a proxy for social capital. In our sample, around 63 per cent (65 per
cent) of households participate in any of the groups mentioned above in an average SEA
in 2015 (2016). We also include access to credit which should also facilitate participa-
tion in markets, while noting that the level of households that have access to credit from
formal sources in the country is extremely low.

Finally, for the income per capita equations, we include three variables to capture
crop, livestock and income diversification. We chose to use a simple count for each of
these variables, noting here that more sophisticated, weighted indices did not perform
as well in terms of explanatory power and significance as the simple count. We expect
diversification to be particularly beneficial for incomes under the drought shock.

5. Results
We present the results of the empirical analysis first for maize yields and then for
household income per capita in what follows.

5.1 Determinants of maize productivity
Results on the determinants of maize productivity are presented in table 3. We report
results from the CRE model obtained through the Mundlak (1978) correction.16

Results of the CRE model show that having suffered the El Niño shock significantly
affects maize productivity in a negative way, resulting in a 46 per cent decrease in yield.17
The absolute rainfall deviation variable which captures the continuous effect of the devi-
ations from the long-run average is not significant, consistent with the hypothesis that
only more extreme shocks reduce yields. Long-term exposure to shocks, measured by
the coefficient of variation, has the expected negative impact on maize yields. This sug-
gests that farmers in areas with highly variable seasonal rainfall are not able to shield
their production from extreme weather events, as they may be less likely to innovate, try
riskier cropping patterns or invest on farm.

In terms of traditional inputs, both quantity of maize seeds and use of inorganic fer-
tilizer have a positive effect on yields. The indicator of having used hybrid maize seeds is
not significant, which agrees with previous literature establishing that hybrid seeds are
complementary with water availability and are likely to fail to provide significant yield
benefits under various climatic shocks (Arslan et al., 2015).

With respect to SLM practices, we note that only residue retention has a positive
impact on maize productivity with an average rise in yields of 37 per cent when farm-
ers decide to adopt this specific practice. This is in line with several studies on SLM
suggesting that such management practices help farmers achieve agronomic benefits in
water-limited and/or water-stressed regions (Pittelkow et al., 2015). Other agricultural

16Results from the FE model, which are generally robust to specification, are reported in the online
appendix.

17To calculate the percentage decrease in maize yields for farmers exposed to the El Niño shock, we con-
vert the coefficient of the El Niño shock dummy (−0.614) to percentage, given that the yield variable is in
logarithms: (exp(−0.614)− 1)× 100=−45.88.With a change from 0 to 1 in the shock indicator, the maize
yield decreases by about 46 per cent.
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Table 3. Determinants of maize productivity (correlated random effects model)

Log (Maize Yield, kg/ha)

Coeff SE

Climate

El Niño shock (1= yes) −0.614* 0.320

Absolute rainfall deviation (%) 0.002 3.422

CoV of rainfall −4.962 0.004

Household socio-demographics

Age of HH head (years) −0.002 0.002

Edu of HH head (years) 0.001 0.011

Head is female (1= yes) −0.121 0.105

Nr. of adult members −0.038 0.037

Dependency ratio 0.019 0.043

Agricultural practices

(log) Land under maize (ha) −0.805*** 0.078

Minimum soil disturbance (1= yes) 0.012 0.069

Crop rotation (1= yes) 0.033 0.068

Residue retention (1= yes) 0.292** 0.120

Trees/shrubs grown (1= yes) 0.022 0.054

(log) Maize seeds used (Kg) 0.522*** 0.074

Hybrid maize seeds (1= yes) 0.094 0.076

Inorganic fertilizer applied (1= yes) 0.509*** 0.113

Fertilizer received on time (1= yes) −0.051 0.092

Mech. erosion contr. (1= yes) −0.031 0.065

Animal/mech. tillage (1= yes) 0.127 0.083

Household wealth, market access and social capital

No title on land (1= yes) −0.272** 0.116

Ag asset wealth index 0.034 0.034

Wealth index 0.097 0.067

Groupmembers (% in SEA) 0.410** 0.184

Credit received (% in Ward) −1.233 1.074

Agricultural practice interactions with El Niño shock

MSD× shock 0.068 0.137

Crop rotation× shock 0.272 0.289

Crop residue× shock 0.031 0.227

Trees/shrubs× shock −0.051 0.111

Mech. Erosion contr.× shock 0.221* 0.126

Continued.
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Table 3. Continued

Log (Maize Yield, kg/ha)

Coeff SE

Dummy year (1= 2016) −0.190*** 0.064

Constant 6.146*** 0.576

Number of observations 2,243

R2 within 0.189

R2 between 0.254

R2 overall 0.246

Notes: Standard errors are clustered at the ward level. Significance level: *p< 0.10; **p< 0.05; ***p< 0.01.
Source: Authors’ elaboration.

practices, such asMSD, crop rotation, agroforestry and erosion control measures do not
have statistically significant effects on maize yields on average in our sample.

The interaction terms between shock and SLM indicators help investigate whether
the impacts of these practices are mediated by shock exposure, hence non-linear and
cannot be picked up by the shock variable alone. Results show that having erosion con-
trol structures is the only practice providing positive benefits to farmers even under bad
rainfall conditions as indicated by the coefficient of the interaction term. Soil and water
conservation measures have been shown to have significant yield benefits under various
climatic shocks in a similar setting in Tanzania by Arslan et al. (2017).

Among other indicators, higher wealth is correlated with higher yields, whereas not
holding a land title is correlated with 24 per cent lower maize yields. As an indicator
of social capital, the group membership (in cooperatives, farmers’, women’s or savings
and loan groups in the SEA) variable shows significant coefficients in both specifica-
tions, suggesting that belonging to these groups helps to achieve better results potentially
due to better access to information, informal credit and input as well as risk sharing
mechanisms and coping strategy opportunities.

Overall, households facing drought conditions suffered large maize yield declines,
and the long-term measure of rainfall variability indicates that these households are
not able to adopt practices or make investments that enable them to realize higher
and more stable yields. This means that rural households in Zambia remain critically
exposed to even greater frequency of extreme weather events arising from climate
change. Additionally, while among the SLM practices considered, crop residue reten-
tion had positive impacts on average maize yields, only the adoption of erosion control
structures provided some protection during the drought. Much more work remains to
be done to understand what specific types of practices, or their combination, and what
type and amount of investments would actually protect farmers from large crop losses
under similar extreme weather events, and whether such practices and investments are
cost-effective for farmers.

Results for maize productivity using the FE model are robust in terms of direction
and magnitude of coefficients for variables related to household demographics, agricul-
tural practices and household wealth. Differently from CRE results, the coefficients of
the El Niño shock variable and its interaction with erosion control structures are not
significant, although they have the same directions.
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5.2 Determinants of household income
Table 4 presents the results from the CRE estimates of the determinants of household
income per capita (in logarithms), specifically focusing on the role of livelihood diver-
sification strategies, among other control variables. Results show that being exposed to
the El Niño shock negatively and significantly affected the level of welfare, resulting in a
decrease in income per capita of around 28 per cent. This finding is consistent with the
expectations based on rainfall, maize yield and income per capita (figures 2 and 3), where
the downward shift in the distribution of maize yields was greater than that for income
per capita. At the same time, an almost one-third reduction for already relatively poor
households in rural Zambia can have severe and long-lasting impacts, through negative
nutritional impacts on children, and through distress sales of assets.18

Nevertheless, farmers who have adopted income diversification have been able to
compensate for part of the loss. The average impact of crop diversification on incomes
is positive, while the livestock diversification coefficient is not statistically significant.
The coefficient on income diversification is positive and statistically larger than crop
diversification. Looking next at the interaction terms between the El Niño shock and
indicators of diversification,wenote that only the coefficient on livestock diversity is pos-
itive and significant, indicating that livestock diversification is successful at minimizing
income losses due to drought shocks. This finding gets even stronger in the FE specifica-
tion, underlining its robustness. On the other hand, the crop and income diversification
interaction coefficients are not significant, indicating that households were not able to
increase diversification of crop and income in response to the drought shock ex post.
Rather these diversification strategies are a more important ex ante strategy to increase
incomes and manage income risks.

In linewith other findings from the literature, socio-demographic characteristics such
as household composition and education of the head tend to significantly explain the
variation in welfare measured by income. In particular, larger households with a higher
number of adult members and more dependents tend to have lower incomes per capita,
whereas households with more educated heads have significantly higher incomes. Fur-
thermore, as expected, household wealth indicators, such as land owned and wealth
indices, have a significant effect on income per capita.

Social capital and market access variables have very limited impacts on income per
capita. Interaction terms between drought shock and the FRA and cash from safety net
programmes are both insignificant. We note here that selling to the FRA was very low
in 2016, as was access to cash safety nets. Limited variability in these variables suggests
caution in interpretation.

6. Conclusions and policy recommendations
Rural households in Zambia are very vulnerable to extreme weather events, which are
expected to increase in frequency and intensity due to the effects of climate change.
Households adopt various ex ante risk management strategies to prevent and mitigate
the negative impacts of climatic and other shocks including the adoption of SLM prac-
tices as well as diversification of their crops, livestock and income sources. Although
the SLM practices mostly adopted in Zambia and the focus of the present analysis are
intended to increase water retention capacity and soil nutrients to help protect yields

18Results using FE (see table A2, online appendix) are robust for the whole specification except for the El
Niño shock coefficient, which is not significant, although still negative.
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Table 4. Determinants of household income per capita (correlated random effects model)

Log(Gross income per capita)

Coeff SE

Climate

El Niño shock (1= yes) −0.327* 0.168

Absolute rainfall deviation (%) 0.005* 0.003

CoV of rainfall 2.618 1.853

Diversification*

Crop diversity (count index) 0.070*** 0.020

Livestock diversity (count index) 0.013 0.017

Income source diversity (count index) 0.196*** 0.019

Household socio-demographics

Age of HH head (years) −0.001 0.001

Edu of HH head (years) 0.036*** 0.008

Head is female (1= yes) −0.051 0.052

Nr. of adult members −0.148*** 0.034

Dependency ratio −0.204*** 0.023

Household Wealth

(log) Land owned (ha) 0.200*** 0.026

Ag asset wealth index 0.046* 0.028

Wealth index 0.159*** 0.041

Market access and social capital

Maize sold to FRA (% in SEA) 0.459 0.334

Cash received from safety net programmes (% in SEA) 0.070 1.083

Groupmembers (% in SEA) −0.210 0.130

Credit received (% in Ward) 1.150 0.996

Adults permmoved to urban area (1= yes) −0.105 0.069

Interactions with El Niño shock

Crops diversity× shock −0.050 0.040

Livestock diversity× shock 0.045* 0.025

Income source diversity× shock 0.046 0.036

Maize sold to FRA× shock 0.949 0.840

Cash from safety net prog× shock 0.635 1.683

Dummy year (1= 2016) −0.059 0.062

Constant 4.335*** 0.382

Number of observations 2,499

R2 within 0.251

R2 between 0.479

R2 overall 0.428

Notes: Standard errors are clustered at the ward level. Significance levels: *p< 0.10; ***p< 0.01.
Source: Authors’ elaboration.
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from shocks, their positive average yield impacts mostly disappear when households are
exposed to a severe shock like El Niño. The one exception is that related to mechanical
erosion control measures, whose direct impact onmaize yields is not significant on aver-
age, but its role in mitigating impact under shock conditions is positive and significant.
These measures are soil and water conservation techniques, which have been shown to
have similar shock buffering impacts in rural Tanzania (Arslan et al., 2017).

Among the practices that do not provide such mitigating impacts (based on non-
significant interaction terms) are the components of CF. The agronomy literature
stresses the fact that to improve soil quality and water retention capacity, most prac-
tices need to be implemented continuously for a number of years before benefits can be
gathered. As highlighted in the literature (Nkala et al., 2011; Arslan et al., 2014), many
households are only partial adopters of these practices and frequently disadopt through
time, because adoption is often related to projects promoting these kinds of agricultural
practices. Thus, our results may reflect that households have not practiced these mea-
sures long enough to realize expected benefits. Overall, however, our findings suggest
that currently available and promoted SLM practices are not widely adopted, and when
adopted, are not able to provide resilience benefits – especially when faced with extreme
weather events like El Niño.

On the other hand, results reported here show that diversification strategies can help
households deal with such shocks. Results indicated that incomes decreased to a lower
extent than maize yields as households were partially able to cover losses to income
per capita using such strategies. We have evidence to suggest that crop diversification
reduces the risk of income decrease under average climatic conditions, but in the case of
households located in drought areas, this strategy does not seem to provide additional
protection for incomes. Social capital andmarket access as captured in our data also play
a limited role in helping households respond to weather shocks. We find that livestock
diversification has a positive and significant effect on income for households located in
areas that were exposed to the shock.

The analysis conducted and reported here suggests three main policy recommenda-
tions. The first is that mechanical erosion control measures and livestock-crop integra-
tion strategies need to be better promoted as part of climate resilience initiatives in rural
Zambia, as they are the only measures found to shield maize yields and reduce income
losses under severe rainfall shocks.

Second, households need access to better risk-coping mechanisms. Evidence from
other countries suggests that being able to re-allocate labour off-farm is an effective
mechanism to help households cope with risk. Our results suggest that there is wide
scope to increase the ability of households to shift labour off-farm in response to weather
shocks. While livestock diversification is an effective risk-coping mechanism, it was not
enough to protect incomes from the shock experienced during the El Niño season. We
find group membership to be an ineffective coping mechanism in this study, but partic-
ipation in farmers’ groups and savings and loan societies has been found to be effective
in other contexts. The development of innovative group-based initiatives, potentially
combined with interventions to promote crop-livestock integration, might represent a
viable policy option, especially in rural areas of the country. These efforts might be com-
plemented with efforts to expand access to financial institutions, which remains very low
(Subakanya et al., 2018) – including the potentially important role of mobile banking –
to enable household investments in resilient livelihoods.

Third, in addition to household-based risk coping mechanisms, there is clearly a role
for social safety nets to play.We documented the very scant (and ineffective) existence of
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social safety nets in our analysis. Safety net programmes can be designed to operate flex-
ibly and be harmonized with disaster risk management activities, so that more resources
can be made available to households in response to severe weather shocks to prevent the
significant negative effects documented in this paper. Along these lines, future analy-
ses should examine whether the implementation of multi-sectoral approaches aimed at
identifying and prioritizing key policy actions, investments and knowledge gaps in the
country, really contributed to support farmers in coping with and adapting to extreme
weather events.

We identified the impacts of the El Niño drought using a dummy variable that cannot
take into account potential variations in impact by intensity, which can be especially
severe in themost affected areas.Our research framework does not allow an investigation
of such effects, which is an area of research for future studies with a specific focus on
intensity of such shocks.

Finally, potential future research might explore the implementation of spatial auto-
correlation models to assess whether and how main outcome variables can be affected
by the characteristics of the same places in the more or less distant past (Kelly, 2019).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X21000097
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