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Abstract

In some metazoans, the body surface is entirely or partly covered with an array of nipples
about 100 nm or less in height. This structure, a nipple array, is sometimes called the
moth-eye structure because it serves as an anti-reflection property on the compound eyes
of a night moth. The nipple array is supposed to be a multifunctional structure since this
structure occurs in various species across different taxa. Here, we hypothesize that the nipple
array may prevent the settlement of epibionts that are often a nuisance and potentially cause
serious problems for the host. Using a synthetic film that imitates the nipple array, we tested
the substrate selection within ascidian larval settlement. The results indicate that the nipple
array has anti-fouling properties, since more larvae settled on the flat surface than the nipple
array (P <0.01, paired t-test). The present results demonstrated that the nipple array poten-
tially serves an anti-fouling function on the body surface, which should be important espe-
cially for sessile organisms.

Introduction

The nipple array is a nano-scale structure found on the surface of some metazoans, and is usu-
ally comprised of protuberances of about 100 nm or less in height. This structure was origin-
ally described as nipples on the compound eyes of a night moth (Bernhard, 1967) and known
to form a gradient of refractivity, resulting in a reduction of light reflectance (moth-eye effect)
(Bernhard, 1967; Wilson & Hutley, 1982). The presence of the nipple array has been reported
in marine invertebrates across various taxa, such as tunicates (Hirose et al., 1990, 1992, 1997,
1999), echinoderms (Holland, 1984), annelids (Hausen, 2005), parasitic copepods (Hirose &
Uyeno, 2014, 2016; Uyeno & Hirose, 2018) and entoprocts (Iseto & Hirose, 2010). Because
of the histological differences in integumentary tissues among the taxa, the nipple arrays of
phylogenetically distant taxa would have convergently evolved in each lineage. Moreover,
the comprehensive survey in ascidians showed that the nipple array usually occurs in many
stolidobranchs and the species of Polyclinidae, Clavelinidae, Agneziidae with some exceptions
that have a very thick cuticular layer (Hirose ef al., 1997). It is absent in other ascidian families
such as Cionidae and Ascidiidae, but Ueki et al. (2018) found the protrusions in juveniles (but
not adults) of Ascidia sydneiensis samea (Ascidiidae). In salps, the protrusions were found in
the species occurring in the shallow layers of the water column throughout the day but not
in the species performing diel vertical migration and distributing in deeper and darker layers
in the daytime (Hirose et al, 2015). These findings indicate that considerable function(s) of
the nipple array exist in an aquatic environment.

Reduction in reflectance should be an important function to camouflage the body from
predators. According to our simulation in some tunicates (salps and ascidians), the moth-eye
effect can be expected on a nipple array under water, but the effect is much smaller than that in
an aerial environment because of the small difference in refractive indices between seawater
and the body surface (Hirose et al, 2015; Kakiuchida et al, 2017; Sakai et al, 2018).
Moreover, anti-reflection properties would rarely be needed for meso- and endoparasites
whose bodies are always covered with host tissues (Hirose & Uyeno, 2014, 2016; Uyeno &
Hirose, 2018), and thus, the nipple array is expected to have additional functions, such as bubble
repellency (Hirose et al., 2013) and suppression of the activities of phagocytic haemocytes
(Ballarin et al., 2015). In this study, we hypothesize that the nipple array may prevent the settle-
ment of epibionts that are often a nuisance and can potentially cause serious problems for the
host. We tested substrate selection during ascidian larval settlement using MOSMITE™,
which is a biomimetic, anti-reflective film that mimics the moth-eye structure (https:/www.m-
chemical.co.jp/en/products/departments/mcc/hp-films-pl/product/1201267_7568.html).

Materials and methods

MOSMITE™ (E075M2N) and flat film were generously provided by Mitsubishi Chemical
(Tokyo, Japan). The base material of both films was polyethylene terephthalate coated with
acrylic resin. On one side of the film was the moth-eye structure, an array of nipples about
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Fig. 1. Scanning electron micrographs of the moth-eye structures on MOSMITE™ (A), the flat surface on the flat film (B), and the nipple arrays on the tunic cuticle of
the colonial ascidian Botryllus delicatus (Stolidobranchia: Botryllidae) (C). Scale bars = 1 pm.

Table 1. Contact angles (°) of water, air and mineral oil on MOSMITE™ and flat film

In air In seawater
Water Air Mineral oil
Film type N Average SD Average SD Average sSD
MOSMITE™ 10 13.13 1.18 161.14 1.76 159.08 2.7
Flat film 10 48.94 0.9 140.99 6.19 134.8 2.68

100 nm in height, but there were no structures on the flat film
(Figure 1). The surface image of MOSMITE™ was closely similar
in size and density to the nipple array on stolidobranch ascidians
(Figure 1C). Because the surface wettability affects the larval
settlement rate in ascidians (Cloney, 1990; Gerhart et al., 1992;
Rittschof et al, 1998), we measured the wettability of
MOSMITE™ and the flat film. Wettability was determined on
the contact angles of water in the air and those of air and mineral
oil in artificial seawater (Marine Art SF-1; Osakayakken, Osaka,
Japan) with a contact angle meter, LSE-ME2 (NiCK,
Kawaguchi, Japan). Regarding the measurements in seawater,
we suspended the films, test side down, in the artificial seawater
and measured the contact angles of the air bubbles or oil droplets.
We measured the contact angles 10 times at different points on
the films in each of the measurements.

The solitary ascidian Phallusia philippinensis Millar, 1975 is
commonly found in the tropical Indo-Pacific (Vandepas et al,
2015). This ascidiid species does not have nipple array, while its
body is usually clean of epibionts (Hirose, 1999). The ascidians
were collected at Ginowan Port Marina (Okinawa, Japan) and
mature gametes were obtained from gonoducts by dissection.
Eggs were inseminated with sperm from another individual in
the artificial seawater. Following artificial fertilization, the
embryos were incubated at 25-26°C for 23-24 h until the larvae
hatched. One MOSMITE™ and one flat film (18 x 36 mm for
each) were floated on top of the artificial seawater (pH 8.2),
with the test side down, in a plastic dish (60 mm diameter) of
which the inner surface was coated with 1.5% agar in order to
avoid the attachment of the ascidian larvae on the dish wall
(e.g. Matsunobu & Sasakura, 2015). Then, 500-2000 larvae were
added to the dish. After incubation for 48 h at 25-26°C in con-
tinuous darkness, we counted the settled larva on the
MOSMITE™ and the flat film. Because the edges of the films
may have unexpected effects on larval settlement, we did not
count the settled larvae on the 0.5 mm margin of the films. The
area for counting was 17 x 35 mm for each film. Eight sets of test-
ing were carried out and the numbers of settled larva were com-
pared between the MOSMITE™ and the flat film by the paired
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t-test, following the Shapiro-Wilk test for normality using R
(R Core Team, 2018).

Some of the larvae which had settled on the films were photo-
graphed under a light microscope 5, 12 and 24 h after hatching.
To increase the depth of field, we combined 15-20 micrographs
for each image using the post-processing image software
Helicon Focus Pro 6.72 (Helicon Soft, Ltd, Kharkov, Ukraine).

Some settled larvae after 5h from hatching were fixed with
2.5% glutaraldehyde in 0.45 M sucrose-0.1 M cacodylate buffer
(pH 7.5) at 4°C for 2 h. They were rinsed with 0.45 M sucrose
and 0.1 M cacodylate buffer (pH 7.5) and post-fixed with 1%
osmium tetroxide in 0.1 M cacodylate buffer (pH 7.5) at 4°C
for 1.5 h. The specimens were dehydrated through an ethanol
series and embedded in an epoxy resin (Epon 812, TAAB
Laboratories). Thin sections were stained with uranyl acetate
and lead citrate, and examined in a transmission electron micro-
scope (JEM-1011; JEOL, Tokyo, Japan) at 80 kV.

Results

The wettability of the films, represented by the contact angle, is
summarized in Table 1. While both films are hydrophilic in the
air (small contact angle of water) and seawater (large contact
angle of air) and have high oil-repellency in the seawater (large
contact angle of oil) (Figure 2), the MOSMITE™ is more hydro-
philic and oil repellent than the flat film.

In the substrate selection test, larvae settled on both films
(Figure 3A, B), but the number of settled larvae on the flat film
was consistently higher than on the MOSMITE™ in the eight
sets of testing (Figure 3C, Table 2). The numbers were signifi-
cantly different between the film types (paired t-test, P <0.01).
In the whole-mount specimens, we could not find significant
morphological differences between settled larvae on the
MOSMITE™ and the flat film within 24 h (Figure 4).

During settlement, the larvae firstly adhere to the substrate
with adhesive papillae, and then the integumentary matrix
(tunic) of the body directly adheres to the substrate surface. On
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Fig. 2. Water droplets, air bubbles and oil droplets on the MOSMITE™ and on the flat

Fig. 3. Larval settlement in the substrate selection test. (A) Settled larvae on the
MOSMITE™. The open circle indicates one larva settled on the film. (B) Settled larvae
on the flat film. (C) Comparison of the settled larvae on the 17 x 35 mm areas of the
MOSMITE™ and flat film. Dotted line indicates equal numbers on both films. Scale

bars=1mm.

Table 2. Number of settled larvae on MOSMITE™ and flat film

Set MOSMITE™ Flat film
1 138 251
2 99 157
8 494 727
4 233 595
5 190 382
6 310 508
7 647 663
8 258 805

the MOSMITE™, the adhesive material secreted from the papillae
penetrates into the nipple array layer and fills the space among the
nipples, while the tunic cuticle of the metamorphosing larvae only
adheres to the nipple tips but does not penetrate into the space
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among the nipples (Figure 5). The metamorphosing larvae do
not have the nipple arrays on the tunic cuticle.

Discussion

Epibionts are often nuisances for the host organisms, unless there
are any mutualists, as they cause resistance against motility,
inhibit the translocation of molecules via the body surface, and
are potential competitors for food resources. The hosts are occa-
sionally killed by the epibionts that cover the host’s mouth and/or
cloaca. Anti-fouling should be an important function for many
organisms, and various types of bioinspired surfaces have been
investigated to control biofouling (Scardino & de Nys, 2011).
The present study demonstrates that a larger number of ascidian
larvae settled on the flat film than the MOSMITE™. This indi-
cates that the nipple array on the surface of some marine inverte-
brates may protect their body surface from the settlement of
epibionts. The nipple array cannot serve as absolute protection
against settlers because the ascidian larvae settled on both films.
The nipple array could accomplish the prevention of settlers in
combination with other countermeasures, such as chemical
defences (e.g. Stoecker, 1980; Slattery et al, 1995; Teo &
Ryland, 1995; Qian et al., 2009). In this case, the host organism
may be able to deter the settlers with a smaller amount of repel-
lent molecules on the nipple array than that on the flat surface.

The test films used here are made of a hydrophilic material,
which is suitable for this test since the body surface of many mar-
ine organisms does not repel water. The MOSMITE™ is more
hydrophilic and oil-repellent than the flat film, probably because
the water among the nipples makes another hydrophilic surface.
In seawater, the bubbles and oil droplets apparently adhere to
the nipple tips but do not penetrate into the space among the nip-
ples, i.e. Cassie-Baxter state (Hirose et al, 2013). The single
choice substrate test showed that the settlement rate of ascidian
larvae is negatively correlated with the water-wettability of the
substrate surface (Gerhart et al, 1992; Rittschof et al, 1998).
Hence, the higher wettability on the MOSMITE™ should be
one of the reasons for the fewer settlers on the MOSMITE™
than the flat sheet.

At the beginning of larval settlement in ascidians, material is
secreted from the adhesion papillae and adheres to the substra-
tum. On the MOSMITE™, adhesive material fills the space
among the nipples, increasing the effective area for adhesion com-
pared with the flat surface. Accordingly, the larvae can adhere to
the nipple array more tightly than the flat film, although this may
be inconsistent with the larval preference of substrates. Thereafter,
the juvenile ascidian directly adheres to the substratum with the
tunic that is an integumentary matrix of ascidians. The ascidians
on the MOSMITE™ have a smaller effective area for adhesion
than the flat surface, because the tunic adheres only to the nipple
tips. Therefore, the ascidians would adhere to the nipple array less
tightly than the flat surface, and this may be a possible reason why
the larvae prefer the flat surface to the nipple array.

The nano-scale nipple array has been found on various
metazoans. While this structure is expected to be multifunctional,
the major function may be different depending upon the species.
The present study demonstrated the anti-fouling property of the
nipple array, which is an important function especially for sessile
organisms. In aquatic environments, adsorbed organic matter and
microorganisms may easily cover up the nano-structures and alter
the surface properties (Mihm et al., 1981), but the body surface of
many organisms is often free from epibionts and debris.
Biological activities, such as chemical defences, would help to
maintain the clean surface and functional properties. It would
also be possible that the nano-structure may affect the biofilm


https://doi.org/10.1017/S0025315419000213

1396

Euichi Hirose and Noburu Sensui

Fig. 5. Transmission electron micrographs of larval settlement on the MOSMITE™. (A) An adhesive papilla adheres onto the MOSMITE™ (mo). (B) Adhesive material
(am) secreted from the papilla penetrates among the nipples. (C) The attachment of the tunic (tu) of metamorphosing larva on the nipple array. Two-way arrows,
nipple array (moth-eye structure) on the MOSMITE™; facing arrows, cuticular layer of the tunic. Scale bars: A=2 pm; B, C=0.1 um.

formation on the body surface and this should be evaluated in
future studies.
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