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DOMINIONS AND PRIMITIVE POSITIVE FUNCTIONS

MIGUEL CAMPERCHOLI

Abstract. Let A ≤ B be structures, and K a class of structures. An element b ∈ B is dominated by
A relative to K if for all C ∈ K and all homomorphisms g, g′ : B → C such that g and g′ agree on A,
we have gb = g′b. Our main theorem states that if K is closed under ultraproducts, then A dominates b
relative toK if and only if there is a partial function F definable by a primitive positive formula inK such
that F B(a1, . . . , an) = b for some a1, . . . , an ∈ A. Applying this result we show that a quasivariety of
algebrasQwith an n-ary near-unanimity term has surjective epimorphisms if and only if SPnPu(QRSI) has
surjective epimorphisms. It follows that ifF is a finite set of finite algebras with a common near-unanimity
term, then it is decidable whether the (quasi)variety generated by F has surjective epimorphisms.

§1. Introduction. Let be L a first order language. Given L-structures A ≤ B and
K a class of L-structures, an element b ∈ B is dominated [13] by A relative to K
provided that for every C ∈ K and all homomorphisms g, g ′ : B → C such that
g|A = g ′|A, we have gb = g ′b. That is, if g and g ′ agree on A, then they must agree
on b. The dominion of A in B relative to K, denoted by domK

B A, is the set of all
elements in B that are dominated by A. At first glance the definition may suggest
that A generates domK

B A, but on closer inspection this does not make sense. As A
is a substructure of B, generating with A will yield exactly A. However, as the main
result of this article shows, the intuition thatA acts as a set of generators of domK

B A
is not far off. In fact, if K is closed under ultraproducts, we prove that A actually
“generates” domK

B A, only that the generation is not through the fundamental oper-
ations but rather through primitive positive definable partial functions. Let us take
a look at an example. Write D01 for the class of bounded distributive lattices, let
B := 2× 2, and let A be the sublattice of B with universe {〈0, 0〉 , 〈0, 1〉 , 〈1, 1〉}. As
01-lattice homomorphisms map pairs of complemented elements to pairs of com-
plemented elements, and complements are unique in distributive lattices, it follows
that 〈1, 0〉 ∈ domK

B A. The key fact to take away from this argument is that 〈1, 0〉 is
generated by A if we add the complementation operation to B. Since this (partial)
operation is defined in every member of D01 by the existential positive formula

ϕ(x, y) := x ∧ y = 0&x ∨ y = 1,
it is preserved by all relevant maps. This situation can be generalized as follows.
Suppose K is any class, and ϕ(x̄, y) is an existential positive formula such that
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for every C ∈ K and all c1, . . . , cn ∈ C there is at most one d ∈ C such that
ϕ(c̄ , d ) holds in C. Now if A ≤ B and b ∈ B is such that B � ϕ(ā, b) for some
elements ā from A, then b ∈ domK

B A. Theorem 3.2 below says that for K closed
under ultraproducts the converse is also true; that is, dominions relative to K are
generated by existential positive definable partial operations.
Since their introduction in [13], there has been vigorous work on dominions; a
well written survey on the subject is [8]. Results on dominions range from charac-
terizations for specific classes of structures (e.g., semigroups [11, 13], lattices [19],
etc.), to more general results such as [3], where dominions are characterized in
quasivarieties of algebras in terms of amalgamated free products.
The notion of dominion was introduced by Isbell to study epimorphisms. Recall
that a homomorphism h : A→ B is aK-epimorphism if for every C ∈ K and homo-
morphisms g, g′ : B→ C, if gh = g ′h then g = g ′. That is, h is right-cancellable in
compositions with K-morphisms. Of course every surjective homomorphism is an
epimorphism, but the converse is not true. Revisiting the example above, the inclu-
sion of the three-element chain A into 2× 2 is a D01-epimorphism. The connection
between epimorphisms and dominions is that h : A→ B is aK-epimorphism if and
only if domK

B h(A) = B.
A classK is said to have surjective epimorphisms if everyK-epimorphism between
members of K is surjective. Although this property is of a categorical nature it has
an interesting connection with logic. When K is the algebraic counterpart of an
algebraizable logic 	 then: K has surjective epimorphisms if and only if 	 has the
(infinite) Beth property [2, Theorem 3.17]. For a thorough account on the Beth
property in algebraic logic see [2].
Another work we want to mention in regard to the interplay between dominions
and the Beth definability property is [4]. In this article the author introduces a family
of interpolation properties for a quasivarietyQ, in analogy with the Projective Beth
Property of propositional logics (see Definition 5.1 below). The properties defined
amount to certain p.p. definable functions being interpolated by terms inQ. Budkin
establishes equivalences between these properties and the fact that dominions of
certain algebras in Q are trivial.
Thepaper is organized as follows. In the next sectionwe establish our notation and
present the basic definitions. Section 3 contains our characterization of dominions
(Theorem 3.2), the main result of this article. In Section 4 we show howwell-known
characterizations of dominions, e.g., Isbell’s Zizag Theorem, can be restated in
terms of primitive positive definable functions. In Section 5 we introduce Budkin’s
algebraic Beth Properties, and provide a short proof of the equivalence linking them
to dominions. In Section 6 we study the problem of checking a quasivariety for non-
surjective epimorphisms. We prove that under certain assumptions it suffices to
check in a subclass of the quasivariety. An interesting application of these results is
that if F is a finite set of finite algebras with a common near-unanimity term, then
it is decidable whether the quasivariety generated by F has surjective epimorphisms
(see Corollary 6.6).

§2. Preliminaries and notation. Let L be a first order language and K a class
of L-structures. We write I,S,H,P, and Pu to denote the class operators for
isomorphisms, substructures, homomorphic images, products, and ultraproducts,
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respectively. We write V(K) for the variety generated by K, that is HSP(K); and
with Q(K) we denote the quasivariety generated by K, i.e., ISPPu(K). If A is
a structure and S ⊆ A, let 〈S〉A denote the substructure of A generated by S.
Weusually abbreviate a sequencea1, . . . , an as ā, whenever the length of the sequence
is understood or is not relevant. We write ā ∈ A to indicate that each member of
the sequence is in A.

Definition 2.1 ([3,13]1). Let A ≤ B be structures, andK a class of structures.
• We say thatA dominates an element b ∈ B relative toK if for all C ∈ K and all
homomorphisms g, g ′ : B→ C such that g|A = g ′|A, we have gb = g ′b.

• The dominion of A in B relative to K is the set
domK

B A := {b ∈ B | A dominates b relative to K}.
Observe that if A dominates b relative to K, then A dominates b relative to
the classes I(K), S(K) and P(K). Thus, if K is closed under ultraproducts and A
dominates b relative to K, then A dominates b relative to Q(K).

§3. Main theorem. Recall that a primitive positive (p.p. for brevity) formula is
one of the form ∃ȳ α(x̄, ȳ) with α(x̄, ȳ) a finite conjunction of atomic formulas.
We shall need the following fact.

Lemma 3.1 ([10, Theorem 6.5.7]). Let A,B be L-structures. The following are
equivalent:
1. Every primitive positive L-sentence that holds in A holds in B.
2. There is a homomorphism from A into an ultrapower of B.
Let K be a class of L-structures. We say that the L-formula

ϕ(x1, . . . , xn, y1, . . . , ym) defines a function in K if

K � ∀x̄, ȳ, z̄ ϕ (x̄, ȳ) ∧ ϕ (x̄, z̄)→
m∧
j=1

yj = zj .

In that case, for each A ∈ K we write [ϕ]A to denote the n-ary partial function
defined by ϕ in A. The reader should be aware that throughout this note definable
functions are partial functions unless otherwise stated.
If X is a set disjoint with L, we write LX to denote the language obtained by
adding the elements in X as new constant symbols to L. If B is an L-structure and
A is a subset of B, let BA be the expansion of B to LA where each new constant
names itself. If L ⊆ L+ and A is an L+-model, let A|L denote the reduct of A to L.
Next we present the main result of this article.

Theorem 3.2. LetL be a first order language andKa class ofL-models closed under
ultraproducts. Let A ≤ B be L-structures and b ∈ B. The following are equivalent:
1. b ∈ domK

B A.
2. There are a primitive positive formula ϕ (x̄, y) and ā ∈ A such that:
(a) ϕ (x̄, y) defines a function in K,
(b) [ϕ]B(ā) = b.

1Isbell’s original definition of dominion was for the case where A,B ∈ K. Budkin dropped this
requirement.
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Proof. (1)⇒(2). We can assume that K is axiomatizable (replacing K by IS(K)
if necessary). Suppose b ∈ domK

B A. Define

Σ (x) := {ϕ (x) | ϕ (x) is a p.p. formula of LA and BA � ϕ (b)},
Let c, d be two new constant symbols and take

K∗ := {M |M is an LA ∪ {c, d}-model andM|L ∈ K}.
Let C be a model of K∗ such that C � Σ(c) ∪ Σ(d ). By Lemma 3.1, there are
elementary extensions E,E′ of C and homomorphisms

h : BA → E|LA ,
h′ : BA → E′|LA

such that h(b) = cC and h′(b) = dC. The elementary amalgamation theorem
[10, Theorem 6.4.1] provides us with a model D and elementary embeddings
g : E→ D, g′ : E′ → D such that g and g ′ agree on C . Next, observe that

gh : B→ D|L,
g ′h′ : B→ D|L

are homomorphisms that agree on A, and since D|L ∈ K we must have
gh(b) = g ′h′(b).

That is g(cC) = g ′(dC). So, as g is 1-1, and g and g ′ are the same on C we have
cC = dC.
Thus we have shown

K∗ �
∧
(Σ (c) ∪ Σ (d ))→ c = d .

By compactness (and using that the conjunction of p.p. formulas is equivalent to a
p.p. formula), there is single p.p. L-formula ϕ (x̄, y) such that

K∗ � ϕ(ā, c) ∧ ϕ(ā, d )→ c = d ,
and hence

K � ∀x̄, y, z ϕ(x̄, z) ∧ ϕ(x̄, z)→ y = z.
This completes the proof of (1)⇒(2).
(2)⇒(1). Suppose (2) holds. Let C ∈ K and h, h′ : B → C homomorphisms
agreeing on A. Since B � ϕ(ā, b), and p.p. formulas are preserved under
homomorphisms, we have

C � ϕ(hā, hb) ∧ ϕ(h′ā, h′b).
Now, ϕ (x̄, y) defines a function in K, so hā = h′ā implies hb = h′b. �
As an immediate application of Theorem 3.2 we obtain a bound on the size of
dominions.

Corollary 3.3. Let K be a class of L-structures closed under ultraproducts.
For any pair of L-structures A ≤ B we have

|domK
B A| ≤ |A|+ |L|+ ℵ0.
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AssumeK is closed under isomorphisms. A structureA ∈ K is algebraically closed
in K if for every B ∈ K such that A ≤ B, every p.p. formula ϕ (x̄) and all ā ∈ A
we have

B � ϕ (ā) =⇒ A � ϕ (ā) .
Replacing primitive positive by existential we obtain the definition of existentially
closed. Here is another direct consequence of Theorem 3.2.
Corollary 3.4. If A is algebraically closed in K, then domK

B A = A for every
B ∈ K such that A ≤ B.
It is worth noting that (2)⇒(1) in Theorem 3.2 always holds, i.e., it does not
require K to be closed under ultraproducts. On the other hand, as the upcom-
ing example shows, the implication (1)⇒(2) may fail if K is not closed under
ultraproducts.

Example 3.5. Let L = {s, 0} where s is a binary function symbol and 0 a
constant. Let B be the L-structure with universe � ∪ {�} such that 0B = 0 and

sB(a, b) =

{
0 if b = a + 1,
1 otherwise,

and set K := {B}. Take A as the submodel of B with universe �. It is easy to see
that the identity is the only endomorphism of B. Thus, in particular, we have that
dom{B}

B A = B. We prove next that there is no p.p. formula with parameters from
A defining the element � in B. Take L+ := LB ∪ {�′}, where �′ is a new constant,
and let Γ be the L+-theory obtained by adding to the elementary diagram of B the
following sentences:

{s(n,�′) = 1 | n ∈ �} ∪ {s(�′, n) = 1 | n ∈ �} ∪ {� �= �′}.
It is a routine task to show that Γ is consistent. Fix a model C of Γ and define
h, h′ : B → C by h(n) = h′(n) = nC for all n ∈ �, h(�) = �C and h′(�) = �′C.
Again, it is easy to see that h and h′ are homomorphisms from B to C|L. Since
they agree on A and h(�) �= h′(�), we conclude that there is no p.p. formula with
parameters from A defining � in B.
For some well-known classes K, it turns out that given any pair of structures
A ≤ B, the domain of A in B relative toK is generated by functions which are defin-
able by conjunctions of atomic formulas (rather than by p.p. formulas). This is the
case, for instance, whenK is the class of distributive lattices (see Section 4.1 below).
It is thus natural to ask whether Theorem 3.2 still holds if the formula in (2) is a
conjunction of atomic formulas instead of p.p. Consider the following condition.
(3) There is a finite conjunction of atomic formulas α(x̄, ȳ), and there are
elements a1, . . . , an ∈ A and b2, . . . , bm ∈ B, with m ≥ 1, such that
(a) α(x̄, ȳ) defines a function in K,
(b) [α]B(ā) = (b, b2, . . . , bm).

It is easily seen that (3) implies (2) of Theorem 3.2. Our next example shows
that (2) does not necessarily imply (3). Hence, we conclude that the statement of
Theorem 3.2 cannot be improved in regard to the kind of formulas involved.

Example 3.6. Let B be the Browerian algebra whose lattice reduct is depicted
in Figure 3.1, and let A be the subalgebra of B with universe {a0, a1, . . . } ∪ {�}.
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Figure 3.1. The Browerian algebra B.

It is proved in [1, Theorem 6.1] that domV(B)
B A = B. Fix d1 ∈ B \ A, and suppose

there are a conjunction of equations α(x1, . . . , xn, y1, . . . , ym), c1, . . . , cn ∈ A and
d2, . . . , dm ∈ B such that
• α(x̄, ȳ) defines a function in V(B),
• B � α(c̄ , d̄ ).
Let C and D be the subalgebras of B generated by c̄ and c̄, d̄ respectively. Note
that D is finite and C < D. Also note that α(x̄, ȳ) defines a function in V(D), and
D � α(c̄, d̄ ), because α is quantifier-free. So we have domV(D)

D C = D; but this is
not possible, as Corollary 5.5 in [1] says that epimorphisms are surjective in finitely
generated varieties of Browerian algebras.

§4. Generating sets. Theorem 3.2 suggests that a way to characterize dominions
in a given class K is to find a concise set of p.p. formulas that suffices to generate
dominions in K. This motivates the following definition. We say that a set Γ of
formulas generates dominions inKprovided that each formula in Γdefines a function
in K, and for each A ≤ B from K we have

domK
B A = 〈A〉〈B,[ϕ]B〉ϕ∈Γ .

That is, domK
B A is the smallest subset of B including A, closed under the funda-

mental operations of B and closed under the functions defined in B by formulas
from Γ.
Below we take a look at two classes whose dominions are well understood, and
recast their characterization results in terms of generating sets.

4.1. Distributive lattices. Let D be the variety of distributive lattices, and let B
in D. Given elements a ≤ b ≤ c in B, recall that a relative complement of b in
the interval [a, c] is an element d ∈ B such that b ∧ d = a and b ∨ d = c. It is
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well known that in a distributive lattice every element has at most one complement
in each interval it belongs to. A subset A of B is said to be closed under relative
complementation provided that for any a ≤ b ≤ c in A, if d ∈ B is the relative
complement of b in the interval [a, c], then d ∈ A. Dominions inD are characterized
by the following.

Theorem 4.1 ([19, Theorem 2.4]). Let A ≤ B be distributive lattices. Then
domD

B A is the smallest sublattice of B that contains A and is closed under relative
complementation.
Define

ϕrc(x1, x2, x3, y) := (x2 ∧ y = x1)& (x2 ∨ y = x3).
Note that for B in D and a, b, c, d ∈ B we have B � ϕrc(a, b, c, d ) iff a ≤ b ≤ c
and d is the relative complement of b in the interval [a, c]. The fact that relative
complements are unique in distributive lattices ensures that ϕrc defines a function
in D. Thus we have:
Corollary 4.2. The set {ϕrc} generates dominions in D.
4.2. Semigroups. Let S denote the variety of semigroups. One of the most
influential results on dominions is the following.

Theorem 4.3 (Isbell’s Zigzag Theorem [13, Theorem 2.3]). Let A ≤ B be
semigroups, and let b ∈ B. Then, b ∈ domS

BA iff there are an integer m ≥ 1,
a0, . . . , a2m ∈ A and b1, . . . , bm, c1, . . . , cm ∈ B such that the following equalities
hold :

b = a0c1,

b = bma2m,

a0 = b1a1,

a2i−1ci = a2i ci+1 for 1 ≤ i ≤ m − 1,
bia2i = bi+1a2i+1 for 1 ≤ i ≤ m − 1,

a2m−1cm = a2m.

This theorem has received quite some attention in the literature (see e.g., [9, 11,
12, 15–17]). We shall restate it as result on generating sets. For each integer m ≥ 1
let αm(x0, . . . , x2m, y, z1, . . . , zm,w1, . . . , wm) be the conjunction of the following
atomic formulas

y = x0w1,

y = zmx2m,

x0 = z1x1,

x2i−1wi = x2iwi+1 for 1 ≤ i ≤ m − 1,
zix2i = zi+1x2i+1 for 1 ≤ i ≤ m − 1,

x2m−1wm = x2m.

Now define
�m(x0, . . . , x2m, y) := ∃z̄w̄ αm(x̄, y, z̄ , w̄).

Lemma 4.4. For each integer m ≥ 1 the formula �m(x0, . . . , x2m, y) defines a
function in S.
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Proof. Let A ∈ S and suppose there are ā, b, b′ ∈ A such that A �
�m(ā, b) ∧ �m(ā, b′); we prove that b = b′. There are b̄, c̄, b̄′, c̄′ ∈ A such that
A � αm(ā, b, b̄, c̄) ∧ αm(ā, b′, b̄′, c̄′). So we have

b = a0c1
= b′1a1c1
= b′1a2c2
= b′2a3c2
...

= b′ma2m−1cm
= b′ma2m
= b′. �

Corollary 4.5. The set {�m | m ≥ 1} generates dominions in S.

§5. Dominions and projectiveBeth properties. In the article [4]A.Budkin defines a
family of interpolation properties for a quasivarietyQ, in analogywith theProjective
Beth Property of propositional logics. The properties introduced amount to certain
p.p. definable functions being interpolated by terms in Q. The main point of [4]
is to establish equivalences between the interpolation properties and the fact that
dominions of certain algebras in Q are trivial. In this section we show how these
equivalences are obtained as direct applications of Theorem 3.2. First we need some
definitions.

Definition 5.1 ([4]). Let L be an algebraic language, and letQ be a quasivariety
of L-algebras. Let x̄ be a possibly infinite sequence of pairwise distinct variables, let
Δ(x̄) be a set of term-equalities in x̄, and let n ≥ 1 be an integer.
• Q has the projective property PBPn(Δ) if for every set of atomic formulas
Γ(x̄, q1, . . . , qn, y) and every term f(x̄, q̄) such that
(i) Q � Δ(x̄) ∪ Γ(x̄, q1, . . . , qn, y) ∪ Γ(x̄, q′1, . . . , q′n, z)→ y = z,
(ii) Q � Δ(x̄) ∪ Γ(x̄, q̄, y)→ y = f(x̄, q̄),

there is an L-term t(x̄) satisfying
Q � Δ(x̄) ∪ Γ(x̄, q̄, y)→ y = t(x̄).

• A ∈ Q is n-closed in Q provided that for all B ∈ Q such that A ≤ B and
B = 〈A ∪ {b1, . . . , bn}〉 for some b1, . . . , bn ∈ B, we have domQ

B A = A.
• A ∈ Q is Hn-closed in Q if every homomorphic image of A in Q is n-closed
in Q.
Let FQ(x̄) be the Q-free algebra, freely generated by x̄. We write
FQ(x̄)/Δ(x̄) to denote the quotient of FQ(x̄) by the Q-congruence generated by
{(t, s) | t = s ∈ Δ(x̄)}.
Theorem 5.2 ([4, Theorem 3]). A quasivariety Q has the projective property
PBPn(Δ) if and only if FQ(x̄)/Δ(x̄) is Hn-closed in Q.
Proof. For the right-to-left direction see [4, Theorem 3]. Suppose Q has the
PBPn(Δ). Let A ≤ B = 〈A ∪ {b1, . . . , bn}〉 ∈ Q with A a homomorphic image
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of FQ(x̄)/Δ(x̄), and take b ∈ domQ
B A. We prove that b ∈ A. Let ā ∈ A

such that ā generates A and A � Δ(ā). By Theorem 3.2 there are a p.p. for-
mula ϕ(v̄, y) = ∃w1, . . . , wm

∧l
i=1 �i(v1, . . . , vk, w̄, y) defining a function in Q,

and terms t1(x̄), . . . , tk(x̄) such that [ϕ]B(tA1 (ā), . . . , t
A
k (ā)) = b. Take terms

s1(x̄, q̄), . . . , sm(x̄, q̄), f(x̄, q̄) such that

B �
l∧
i=1

�i(t1(ā), . . . , tk(ā), s1(ā, b̄), . . . , sm(ā, b̄), f(ā, b̄)),

where b̄ is b1, . . . , bn. Now define Γ(x̄, q1, . . . , qn, y) as the set

{�i(t1(x̄), . . . , tk(x̄), s1(x̄, q̄), . . . , sm(x̄, q̄), y) | i ∈ {1, . . . , l}} ∪ {y = f(x̄, q̄)},
and note that (i) and (ii) of Definition 5.1 hold for Γ(x̄, q1, . . . , qn, y) and f(x̄, q̄).
So, there is a term t(x̄) such that Q � Δ(x̄) ∪ Γ(x̄, q̄, y) → y = t(x̄), and hence
b = tB(ā) ∈ A. �
Budkin also defines the projective property PBP(Δ) where no restriction is posed
on the length of q̄ and the requirement (ii) is dropped. The characterization of the
PBP(Δ) in terms of dominions [4, Theorem 2] can be obtained from Theorem 3.2
with a proof similar to the one above.

§6. Epimorphisms and epic substructures. Let A,B be structures, and K a class
of structures.

• A homomorphism h : A → B is a K-epimorphism if for every C ∈ K and
homomorphisms g, g ′ : B→ C, if gh = g ′h then g = g ′.

It follows at once from the definitions that h : A → B is a K-epimorphism iff
domK

B h(A) = B.
• A class K has surjective epimorphisms if for all A,B ∈ K every K-epimorphism
from A to B is surjective.

As mentioned in Section 1, this property is of special interest to algebraic logic,
since whenever K is the algebraic counterpart of a logic 	, then K has surjective
epimorphisms if and only if 	 has the (infinite) Beth property [2, Theorem 3.17].
When considering whether epimorphisms are surjective in a class K the notion
of dominion proves very helpful. This is because it translates a categorical problem
into an algebraic (or model theoretic) problem, and even more so in the light
of Theorem 3.2. The following definition isolates the phenomenon we want to
investigate.

• A is an epic substructure of B with respect to K if A ≤ B and domK
B A = B.

Notation: A ≤K
e B.

We say thatA is a proper epic substructure ofBwith respect toK, andwriteA <K
e B,

if A ≤K
e B and A �= B.

The next lemma states the straightforward connection between epic substructures
and epimorphisms.

Lemma 6.1. Suppose h : A→ B. The following are equivalent:
1. h is a K-epimorphism.
2. The inclusion map � : h(A)→ B is a K-epimorphism.
3. h(A) ≤K

e B.
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Here are some easy facts used in the sequel.

Lemma 6.2. Let A,B,C ∈ K.
1. A ≤K

e B if and only if A ≤ISP(K)
e B.

2. If A ≤K
e B and h : B→ C, then h(A) ≤K

e h(B).
3. Let Q be a quasivariety. The following are equivalent:
(a) Q has surjective epimorphisms.
(b) For all A,B ∈ Q we have that A ≤Q

e B implies A = B.

Given a quasivarietyQ it is in a general a difficult problem to determine whether
Q has surjective epimorphisms, or equivalently, no proper epic substructures. Below
we prove two results that, under certain assumptions on Q, provide a (hopefully)
more manageable class C ⊆ Q such that Q has surjective epimorphisms iff C has
surjective epimorphisms.
Our first result provides such a class C for quasivarieties with a near-unanimity
term. The second one for arithmetical varieties whose class of finitely subdirectly
irreducible members is universal.
For the remainder of this section all languages considered are algebraic, i.e.,
without relation symbols. We frequently use the name algebra for a structure of an
algebraic language.

6.1. Quasivarieties with a near-unanimity term. A k-ary term t(x1, . . . , xk) is a
near-unanimity term for the class K if k ≥ 3 and K satisfies the identities

t(x, . . . , x, y) = t(x, . . . , x, y, x) = · · · = t(y, x, . . . , x) = x.
When k = 3 the term t is called a majority term for K. In every structure with a
lattice reduct the term (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) is a majority term. This example
is specially relevant since many classes of structures arising from logic have lattice
reducts.
For functionsfi : Xi → Yi with i ∈ {1, . . . , k} let (f1, . . . , fk) : X1×· · ·×Xk →
Y1 × · · · × Yk be defined by (f1, . . . , fk)(a1, . . . , ak) := (f1(a1), . . . , fk(ak)).
Theorem 6.3 ([18]). Let K be a class of structures with a k-ary near-unanimity
term and suppose the first-order formulaϕ(x̄, y) defines a function inK. The following
are equivalent:

1. There is a term t(x̄) such that K � ∀x̄, y ϕ(x̄, y)→ y = t(x̄).
2. For all A1, . . . ,Ak ∈ Pu(K), all S ≤ A1 × · · · × Ak and all s1, . . . , sn ∈ S such
that ([ϕ]A1 , . . . , [ϕ]Ak )(s̄) is defined, we have that ([ϕ]A1 , . . . , [ϕ]Ak )(s̄) is in S.

An algebraA in the quasivarietyQ is relatively subdirectly irreducible provided its
diagonal congruence is completely meet irreducible in the lattice of Q-congruences
ofA. We writeQRSI to denote the class of relatively subdirectly irreducible members
of Q. For a class K and a positive integer k let

Pk(K) := {A1 × · · · × Ak | A1, . . . ,Ak ∈ K}.
Theorem 6.4. Let Q be a quasivariety with a k-ary near-unanimity term and
letM = Pu(QRSI). The following are equivalent:
1. Q has surjective epimorphisms.
2. For all A,B ∈ Q we have that A ≤Q

e B implies A = B.
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3. For all A,B ∈ SPk(M) we have that A ≤Pk(M)
e B implies A = B.

4. SPk(M) has surjective epimorphisms.
Proof. The equivalences (1)⇔(2) and (3)⇔(4) are immediate, and (2) clearly
implies (3). We prove (3)⇒(2). Suppose A ≤Q

e B and let b ∈ B. We shall see that
b ∈ A. By Theorem 3.2 there is a p.p. L-formula ϕ(x̄, y) defining a function in Q,
and such that [ϕ]B(ā) = b for some ā ∈ An. Let

Σ := {ε | ε is a p.p. sentence of LA and BA � ε},
and define

K := {C ∈Mod (Σ) | C|L ∈ M}.
Let 	(y) := ϕ(ā, y), and note that 	(y) defines a nullary function in K. Note
as well that ∃y 	(y) ∈ Σ, and hence [	]C is defined for every C ∈ K. We aim
to apply Theorem 6.3 to K and 	(y). To this end fix C1, . . . ,Ck ∈ Pu(K) = K
and let S ≤ C1 × · · · × Ck . Note that as Σ is a set of p.p. formulas we have
C1×· · ·×Ck � Σ, and thus byLemma3.1 there is an ultrapowerEofC1×· · ·×Ck and
a homomorphism h : BA → E. We have that E ∈ PuPk(K) ⊆ PkPu(K) = Pk(K),
and so

E|L ∈ Pk(K|L) ⊆ Pk(M).
Next observe that since h(A) ≤Q

e h(B), and h(A), h(B) ≤ E|L, by (3) it follows that
h(A) = h(B). Also, as S is an LA-subalgebra of E, we have that

h(BA) = h(AA) ≤ S.
The fact that B � 	(b), implies E � 	(hb), and so [	]E = hb ∈ S. We know
that {C1, . . . ,Ck,C1 × · · · × Ck} � ∃y 	(y); furthermore, since 	 is p.p., we have
([	]C1 , . . . , [	]Ck ) = [	]C1×···×Ck . Putting all this together

([	]C1 , . . . , [	]Ck ) = [	]C1×···×Ck = [	]E ∈ S.
Thus, Theorem 6.3 produces an LA-term t such that

K � ∀y 	(y)→ y = t. (6.1)

In particular, for all C ∈ QRSI and all c1, . . . , cn ∈ C such that [ϕ]C(c̄) is defined,
we have

[ϕ]C(c̄) = tC(c̄).

Next let {Bi | i ∈ I } ⊆ QRSI such that B ≤ ∏
I Bi is a subdirect product. For every

i ∈ I let BAi be the expansion of Bi to LA given by aB
A
i = 
i(a), where 
i : B→ Bi

is the projection map. It is clear that

BA ≤
∏
I

BAi . (6.2)

Now, each BAi is a homomorphic image of BA, so B
A
i � Σ and thus BAi ∈ K for all

i ∈ I . Since ∀y 	(y) → y = t is (equivalent to) a quasi-identity, from (6.1) and
(6.2) we have

BA � ∀y 	(y)→ y = t.
Hence b = tBA ∈ A, and the proof is finished. �
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Observe that Theorem 6.4 holds for anyM ⊆ Q closed under ultraproducts and
containing QRSI.
Corollary 6.5. Let Q be a finitely generated quasivariety with a k-ary near-
unanimity term. The following are equivalent:

1. Q has surjective epimorphisms.
2. SPk(QRSI) has surjective epimorphisms.
Proof. For any class K we have Q(K)RSI ⊆ ISPu(K). Thus if Q is finitely gener-
ated, then QRSI is (up to isomorphic copies) a finite set of finite algebras, and the
corollary follows at once from Theorem 6.4. �
Recall that an algebraA is finitely subdirectly irreducible if its diagonal congruence
is meet irreducible in the congruence lattice of A. It is subdirectly irreducible if the
diagonal is completely meet irreducible. For a varietyV wewrite (VFSI)VSI to denote
its class of (finitely) subdirectly irreducible members.
The following is an interesting consequence of Corollary 6.5.

Corollary 6.6. Suppose L is a finite algebraic language. Let F be a finite set of
finite L-algebras with a common k-ary near-unanimity term. It is decidable whether
the (quasi)variety generated by F has surjective epimorphisms.
Proof. Let V be the variety generated by F . By Jónsson’s lemma [14] VSI ⊆

HSPu(F) = HS(F) is a finite set of finite structures, and by Corollary 6.5 it suf-
fices to decide whether SPk(VSI) has surjective epimorphisms, and this is clearly a
decidable problem. IfQ is the quasivariety generated byF , thenQRSI ⊆ ISPu(F) =
IS(F), and the same reasoning applies. �
6.2. Arithmetical varieties whose FSI members form a universal class. A variety

V is arithmetical if for every A ∈ V the congruence lattice of A is distributive and
the join of any two congruences is their composition. For example, the variety of
boolean algebras is arithmetical.

Lemma 6.7. Let V be an arithmetical variety such that VFSI is a universal class, and
let ϕ(x̄, y) be a p.p. formula defining a function in V . Suppose that for all A ∈ VFSI,
all S ≤ A and all s1, . . . , sn ∈ S such that A � ∃y ϕ(s̄ , y), we have S � ∃y ϕ(s̄ , y).
Then there is a term t(x̄) such that V � ∀x̄, y ϕ(x̄, y)→ y = t(x̄).
Proof. Add new constants c1, . . . , cn to the language of V and let K := {(A, ā) |
A � ∃y ϕ(c̄ , y) and A ∈ VFSI}. Note that	(y) := ϕ(c̄ , y) defines a nullary function
in K, and this function is defined for every member of K. Also note that by our
assumptionsK is a universal class. Using Jónsson’s lemma [14] it is not hard to show
that V(K)FSI = K. Since K|L is contained in an arithmetical variety it has a Pixley
Term [5, Theorem 12.5], which also serves as a Pixley Term forK, and thus V(K) is
arithmetical. Next we show that	(y) is equivalent to a positive open formula in K.
By [6, Theorem 3.1] it suffices to show that

• For all A,B ∈ K, all S ≤ A, all h : S → B and every a ∈ A we have that
A � 	(a) implies B � 	(ha).

So supposeA � 	(a). From our hypothesis and the fact that	(y) defines a function
we haveS � 	(a), and as	(y) is p.p. we obtainB � 	(ha). Hence there is a positive
open formula�(y) equivalent to	(y) inK. Now, [7, Theorem 2.3] implies that there
is a conjunction of equations α(y) equivalent to �(y) (and thus to 	(y)) in K.
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We have K � ∃!y α(y), and by [6, Lemma 7.8] there is an L ∪ {c1, . . . , cn}-term t′
such that V(K) � α(t′). Let t(x1, . . . , xn) be an L-term such that t′ = t(c̄). So, if Γ
is a set of axioms for VFSI, we have

Γ ∪ {∃y ϕ(c̄ , y)} � ϕ(c̄ , t(c̄)),

and this implies
Γ � ∃y ϕ(c̄ , y)→ ϕ(c̄ , t(c̄)),

or equivalently
VFSI � ∀y(ϕ(c̄ , y)→ ϕ(c̄ , t(c̄))).

This and the fact that ϕ(x̄, y) defines a function in V yields
VFSI � ∀x̄, y ϕ(x̄, y)→ y = t(x̄).

To conclude, note that ∀x̄, y ϕ(x̄, y) → y = t(x̄) is logically equivalent to a
quasi-identity, and since it holds in VFSI it must hold in V . �
Theorem 6.8. Let V be an arithmetical variety such that VFSI is a universal class.
The following are equivalent:

1. V has surjective epimorphisms.
2. For all A,B ∈ V we have that A ≤V

e B implies A = B.
3. For all A,B ∈ VFSI we have that A ≤VFSI

e B implies A = B.
4. VFSI has surjective epimorphisms.
Proof. We prove (3)⇒(2) which is the only nontrivial implication. Fix A,B ∈

VFSI such that A ≤VFSI
e B and let b ∈ B. We shall see that b ∈ A. By Theorem 3.2

there is a p.p.L-formulaϕ (x̄, y) defining a function inV , and such that [ϕ]B(ā) = b
for some ā ∈ An . Let

Σ := {ε | ε is a p.p. sentence of LA and BA � ε},
and define

K := {C | C � Σ and C|L ∈ VFSI}.
Claim. K is a universal class.
Since K is axiomatizable we only need to check that K is closed under substruc-
tures. Let C ≤ D ∈ K; clearly C|L ∈ VFSI, so it remains to see that C � Σ. As
D � Σ, Lemma 3.1 yields a homomorphism h : BA → E with E an ultrapower
of D. Note that E ∈ K. Since h(A) ≤V

e h(B) and h(A), h(B) ∈ VFSI, it follows
that h(A) = h(B), because there are no proper epic subalgebras in VFSI. Now C is
an LA-subalgebra of D, so h(B) = h(A) ⊆ C . Finally, since h(B) � Σ and every
sentence in Σ is existential, we obtain C � Σ. This finishes the proof of the claim.
Claim. V(K) is arithmetical and V(K)FSI = K.
To show that V(K) is arithmetical we can proceed as in the proof of Lemma 6.7.
We prove V(K)FSI = K. Note that for C ∈ K we have thatC and C|L have the same
congruences; hence every algebra in K is FSI. For the other inclusion, Jónsson’s
lemma [14] producesV(K)FSI ⊆ HSPu(K), and by the first claimHSPu(K) = H(K).
So, as H(K) � Σ, we have that V(K)FSI � Σ and thus V(K)FSI ⊆ K.
Next we want to apply Lemma 6.7 to V(K) and ϕ(ā, y), so we need to check that
the hypothesis holds. Take C ∈ K and S ≤ C. Since K is universal we have S ∈ K,
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and thus S � ∃y ϕ(ā, y). Let t be a term such that V(K) � ∀y ϕ(ā, y) → y = t.
Then b = tBA ∈ A, and we are done. �
Every discriminator variety [5, Definition 9.3] satisfies the hypothesis in Theorem
6.8. Furthermore, in such a variety every FSImember is simple (i.e., has exactly two
congruences). Writing VS for the class of simple members in V we have the following
special case of Theorem 6.8.

Corollary 6.9. For a discriminator variety V the following are equivalent.
1. V has surjective epimorphisms.
2. For all A,B ∈ V we have that A ≤V

e B implies A = B.
3. For all A,B ∈ VS we have that A ≤VS

e B implies A = B.
4. VS has surjective epimorphisms.
It is not uncommon for a variety arising as the algebrization of a logic to be a
discriminator variety; thus the above corollary could prove helpful in establishing
the Beth definability property for such a logic.
Another special case relevant to algebraic logic to which Theorem 6.8 applies
is given by the class of Heyting algebras and its subvarieties (none of these are
discriminator varieties with the exception of the class of boolean algebras). Heyting
algebras constitute the algebraic counterpart to intuitionistic logic, and have proven
to be a fertile ground to investigate definability and interpolation properties of
intuitionistic logic and its axiomatic extensions by algebraic means (see [1] and its
references).
I would like to thank Diego Castaño and TommasoMoraschini for their insight-
ful discussions during the preparation of this paper. I would also like to thank
the anonymous referee introducing me to the concept of dominions. She/he point-
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provided a significant improvement to the scope of this article.
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