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SUMMARY
Aiming at 3SPS+1PS parallel hip joint simulator, the maximum stress of branched chains under the
suggested trajectory is obtained by elastodynamic analysis. Based on Corten-Dolan fatigue damage
theory and Rain-flow counting method, the dynamic stress of each branched chain is statistically
analyzed. The fatigue life prediction shows that branched-chain A2 P2C2 is the weakest component
for the simulator. Finally, the fatigue reliability is analyzed and the fatigue life and reliability under
different structural parameters are discussed. The study shows that the fatigue life of each branched
chain can be increased or balanced by increasing structural parameters or exchanging initial motion
parameters.

KEYWORDS: Parallel simulator elastodynamics; Corten-Dolan fatigue damage theory; Rain-flow
counting method; Fatigue life; Fatigue reliability.

1. Introduction
Compared with series manipulators, parallel manipulators with a high speed, low weight, and high
precision have gained intensive attention in the research field of mechanism.1–3 At present, most of
the research on parallel manipulators focuses on kinematics and dynamic analysis,4, 5 performance
analysis,6, 7 error compensation,8, 9 and so on. When a manipulator operates at a high speed, a series
of low-order resonances occur, resulting in periodic changes in the dynamic stress on the robots that
cause strength failure and fatigue damage. Fatigue and strength failures being the main forms of
failure, fatigue analysis of a manipulator provides the foundation for its structural optimization and
life prediction.

Fatigue life is defined as the frequency or time until the manipulator components are destroyed
under cyclic load. The fatigue life is divided into two parts: crack initiation time and crack propaga-
tion time. At present, the research concerning the fatigue life prediction of the mechanisms is limited.
Examples of fatigue life prediction methods include the nominal stress method, strain method, and
energy method. Sun et al. used the obtained load history data and bending stress results, the big
modulus gear’s fatigue life was predicted based on the nominal stress method.10 Nie et al. analyzed
the stress variations caused by the robot operating at different poses using different rivets, presented
a method for modeling and analyzing the fatigue life of robots with flexible joints under percussive
impact forces.11 Guo et al. analyzed the fatigue life, damage, safety, and fatigue sensitivity, and the
weak areas for an amphibious spherical robot with FEA.12 Liu et al. simulated the dangerous point
probability density function for the stress and strain in the structure by the FEA method and estab-
lished a reliable model for two aircraft engine chassis with low-cycle fatigue lives by combining
the linear fatigue damage accumulation theory.13 Yan used the Miner cumulative damage theory to
transform the complex random stress history into equivalent constant amplitude cyclic stress and
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established the reliability model of the series system considering the statistical dependence among
part failures.14 Kassner established the fatigue assessment methods for the bogie frame of a rolling
stock and showed the potential and the advantages of the fatigue assessment with the real loading
assumptions and with different evaluation methods by comparing stress analyses for some selected
stress points.15 Cai et al. considered the load frequency effects in the fatigue life prediction mod-
els and proposed an extended model based on the S-N approach considering the frequency effect.16

Considering a more common failure mechanism that railway contact wires are exposed to repeated
mechanical strain and stress caused by their own weight and discontinuous contact, Kim et al. uti-
lized the maximum local stress on the top of a contact wire to predict its bending fatigue life.17 Gao
et al. redefined the value of exponent d in the Corten-Dolan model to improve it, and the improved
model resulted in significantly smaller errors than the traditional model.18 Using the power form
of the stress ratio between two consecutive load levels to modify the parameter d of Corten-Dolan
model, Liu et al. proposed a new improved version to reflect the nonlinear effect of load interaction
and obtained more satisfactory prediction of fatigue life.19 Cheng et al. proposed a new approach for
the evaluation of Rain-flow fatigue damage to avoid the problem of transformation-based methods
and provide accurate estimation for fatigue damage of narrowband leptokurtic non-Gaussian random
loading.20 Considering the dynamic load characteristics of a machining center, Chen et al. obtained
the joint distribution function of the mean and amplitude of the radial force, axial force, and cutting
torque and compiled the two-dimensional load spectrum of the machining center based on Rain-flow
counting method.21

The 3SPS+1PS parallel simulator is mainly used for friction and wear tests of artificial hip joints
and must run continuously and reliably for a long time. According to ISO14242-1 for the test stan-
dard of artificial hip joints, the motion period of the parallel simulator is 1s and its working frequency
is 1 ± 0.1Hz. The dynamic stress of the branched chains will lead to fatigue damage for the simu-
lator, therefore, it is necessary to analyze the fatigue life and reliability. In this paper, the unsteady,
asymmetric, and variable dynamic stress amplitude of the flexible branched chains is calculated by
elastodynamic analysis. The fatigue lives of branched chains are estimated based on the Corten-Dolan
fatigue cumulative damage theory and the Rain-flow counting method. Based on the Monte Carlo
model, the fatigue reliability of the parallel manipulator is analyzed, and the measures to improve the
fatigue life and reliability of the parallel simulator are proposed.

2. Elastodynamic Model of 3SPS+1PS Parallel Simulator
The test prototype and topology structure of 3SPS+1PS parallel simulator is shown in Fig. 1(a) and
(b). The parallel simulator is composed of a moving platform, a base, three SPS branched chains, and
a PS branched chain. The three SPS branched chains connect the base and moving platform with a
spherical joint S. One end of the branched-chain PS is fixed, and the other end is connected with the
moving platform by a spherical joint S. The 3SPS+1PS parallel simulator has a translational DoF and
three rotational DoF for the moving platform in the workspace. During the artificial hip joint friction
test, the translational DoF of the parallel simulator is limited and used to balance the test loading
force of the hydraulic system, the three rotational DoF are used to simulate the motion of the human
hip joint.

The bottom of the branched-chain PS is fixed to the base at point O, and each of the four branched
chains contains a moving pair Pi . The centers of all the spherical hinge on the moving platform form
a regular triangle �C1C2C3 whose center is o(C4), and the centers of all the spherical hinges on the
base form a regular triangle �A1 A2 A3 whose center is O(A4). Then, the local coordinate system
o-xyz and absolute coordinate system O-XYZ are established on the moving platform center and the
base center, respectively. z-axis is perpendicular to the moving platform and Z-axis is perpendicular
to the base, x-axis and X-axis are parallel to C2C3 and A2 A3, respectively, y-axis and Y-axis satisfy the
right-hand rule. The branched-chain reference coordinate system Ai -Xi Yi Zi is established at point
Ai and is parallel to the system O-XYZ. Then, the coordinate system Ai -xi 1 yi 1zi 1 is established and
moves with branched-chain component Ai Pi , xi 1-axis is parallel to Xi -axis, and zi -axis is along the
direction of Ai Pi . Similarly, the coordinate system Pi -xi 2 yi 2zi 2 is established at point Pi and moves
with the branched-chain component Pi Ci . The topological structure of the branched chain is shown
in Fig. 1(c).
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Fig. 1. 3SPS+1PS parallel hip joint simulator. (a) Test prototype. (b) Topology structure. (c) Topology structure
of a branched-chain Ai Pi Ci .

(a) (b)

Fig. 2. Dynamic model of the branched chain. (a) Dynamic model in the element coordinate system. (b)
Dynamic model in the absolute coordinate system.

For 3SPS+1PS parallel hip joint simulator, the stiffness of the moving platform, the base, and
the intermediate branched-chain PS is much larger than three peripheral branched chains. It is only
assumed that the branched-chain AiPi Ci (i = 1, 2, 3) is the flexible component, and the flexibility of
branched-chain joints is ignored. The elastic elements i1 and i2 (i = 1, 2, 3) are set on the branched-
chain components AiPi and Pi Ci , respectively, so there are six flexible elements in total. The three
peripheral branched chains of 3SPS+1PS parallel simulator have the same structural parameters.
Hence, one of three branched chains Ai Pi Ci is selected for elastodynamic analysis. The circular
beam is chosen as the basic element, δ1 ∼ δ3 and δ10 ∼ δ12 represent the elastic displacements of the
element node, δ4 ∼ δ6 and δ13 ∼ δ15 represent the elastic rotation angles of the element node, δ7 ∼ δ9

and δ16 ∼ δ18 represent the elastic curvature of the element node.
According to the structural characteristics of 3SPS+1PS parallel simulator, the branched-chain

component Ai Pi can be treated as a cantilever beam, therefore the elastic displacement at the node
Ai is zero. The node Pi is a prismatic pair and the nodes Ai and Ci are ball pairs, therefore the elastic
curvature at the nodes Pi and Ci are zero. There are 8 nonzero element coordinates for the branched-
chain component Ai Pi and 11 nonzero element coordinates for the branched-chain component Pi Ci ,
as shown in Fig. 2(a). The node deformations of the branched-chain AiPi Ci can be expressed by 16
absolute coordinates Ui = [ui1, ui2, · · · , ui15, ui16]T, as shown in Fig. 2(b).

The transformation relationship between the element coordinates of the element and the absolute
coordinates for the branched-chain components AiPi and Pi Ci are as follows:{

δAi Pi = diag
(

Ri1 Ri1 Ri1 Ri1 Ri1 Ri1
)

uAiPi

δPiCi = diag
(

Ri1 Ri1 Ri1 Ri1 Ri1 Ri1
)

uPiCi
, (1)
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where Ri1 is the transformation matrix from the system O-XYZ to the system Ai -xyz.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δAi Pi = [0, 0, 0, δi1, δi2, δi3, 0, 0, 0, δi4, δi5, δi6, 0, δi7, δi8, 0, 0, 0]T

uAi Pi = [0, 0, 0, ui1, ui2, ui3, 0, 0, 0, ui4, ui5, ui6, ui7, ui8, 0, 0, 0, 0]T

δPiCi = [δi9, δi10, δi11, 0, δi12, δi13, 0, 0, 0, δi14, δi15, δi16, δi17, δi18, δi19, 0, 0, 0]T

uPiCi = [ui4, ui5, ui6, ui9, ui10, 0, 0, 0, 0, ui11, ui12, ui13, ui14, ui15, ui16, 0, 0, 0]T

According to the Lagrange equation and combined with Eq. (1), the dynamics model of the
branched-chain Ai Pi Ci can be obtained as follows:

Mi Üi + Ki Ui = Fi + Pi + Qi , (2)

where Ui is the node absolute coordinates, Mi is the mass matrix, ki is the stiffness matrix, Fi is
the generalized matrix with external load, Pi is the force array given by other components of the
simulator, and Qi is the inertial force matrix.

Considering the influence of elastic deformation, the moving platform has six independent DoF
and the reference point of the moving platform changes from point C4 to point C ′

4, the small defor-
mation is expressed as [δα, δβ, δγ , δxC , δyC , δzC ]. The transformation matrix from the coordinate
system C ′

4 − x ′y′z′ to the coordinate system C4-xyz is represented by �R. The elastic deforma-
tions are small and is based on Taylor expansion and Maclaurin in the formula, sin(δα)≈ δα, and
cos(δα)≈ 1.

In the absolute coordinate system,⎡
⎢⎢⎢⎣

xC ′
i

yC ′
i

zC ′
i

1

⎤
⎥⎥⎥⎦ =�R

⎡
⎢⎢⎢⎣

xCi

yCi

zCi

1

⎤
⎥⎥⎥⎦ , �R≈

⎡
⎢⎢⎢⎣

1 −δα δβ δxC

δα 1 −δγ δyC

−δβ δγ 1 δzC

0 0 0 1

⎤
⎥⎥⎥⎦ . (3)

The elastic displacement of the branched chain is as follows:⎡
⎢⎢⎢⎣
�xCi

�yCi

�zCi

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

xC ′
i

yC ′
i

zC ′
i

1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

xCi

yCi

zCi

1

⎤
⎥⎥⎥⎦ = (�R − I)

⎡
⎢⎢⎢⎣

xCi

yCi

zCi

1

⎤
⎥⎥⎥⎦ . (4)

The corresponding relationship between the changes of the node displacement and the six elastic
changes of the moving platform is as follows:

⎡
⎢⎣
�xCi

�yCi

�zCi

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0 0 zCi −yCi

0 1 0 −zCi 0 xCi

0 0 1 yCi −xCi 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δxCo

δyCo

δzCo

δγ

δβ

δα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where [�xCi , �yCi , �zCi ]T is the component matrix of the displacement for the node Ci from
nominal configuration to actual configuration along each axis of the absolute coordinate system.

According to Eq. (5), the kinematic constraints between the moving platform and the branched-
chain Ai Pi Ci expressed by UCi and U0 are as follows:

UCi =
⎡
⎢⎣

1 0 0 0 zCi −yCi

0 1 0 −zCi 0 xCi

0 0 1 yCi −xCi 0

⎤
⎥⎦ U0. (6)

Equation (6) is abbreviated as

UCi = Ji U0, (7)
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where UCi is the elastic displacement vector of the node Ci in branched-chain Ai Pi Ci , U0 is the
deformation of the position and attitude for the moving platform caused by the elastic deformation
of the branched chains, and Ji is the kinematic constraint matrix of the simulator.

Combined with Eq. (6), we can get:

δ0 =
[

R0 0

0 R0

]
U0, (8)

where δ0 = [δ01, δ02, δ03, δ04, δ05, δ06]T is the deformation of the position and attitude for the moving
platform in the coordinate system C4 − x ′y′z′, U0 = [u1, u2, u3, u4, u5, u6]T is the deformation of
the position and attitude for the moving platform in the coordinate system O-XYZ, and R0 is the
transformation matrix of the coordinate system O-XYZ to the coordinate system C4 − x ′y′z′.

When the coupling effect between the nominal motion of the moving platform and the deformation
caused by the elastic deformation of the branched chains is not considered, in the coordinate system
O-XYZ, the velocity and the acceleration of the moving platform can be expressed as follows:{

u̇0 = [ ẋC + u̇1 ẏC + u̇2 żC + u̇3 γ̇ + u̇4 β̇ + u̇5 α̇ + u̇6 ]T

ü0 = [ ẍC + ü1 ÿC + ü2 z̈C + ü3 γ̈ + ü4 β̈ + ü5 α̈ + ü6 ]T . (9)

Based on the Newton–Euler equation, the dynamic model of the moving platform is obtained as

M0Ü0 = f 0 + F0 − M0Ü0r , (10)

where M0 is the generalized mass matrix of the moving platform, f 0 is the matrix of the resultant
force and resultant moment of the branched chains acting on the moving platform, F0 is the matrix
of external force and moment acting on the moving platform, and Ü0r is the acceleration matrix of
the moving platform.

Taking the generalized coordinates U∗
i = [ui1, ui2, · · · , ui5, ui6, u1, u2, · · · , u6]T, and based on

Eq. (6), we can obtain:

Ui = Ri U∗
i ,Ri =

⎡
⎣ [Ii ]10×10 0 0

0 0 [Ji ]3×6

0 [Ii ]3×3 0

⎤
⎦

16×19

. (11)

Combining Eqs. (2) and (11), we can obtain:

Mi Ri Ü
∗
i + Ki Ri U∗

i = Fi + Pi + Qi . (12)

Both sides of Eq. (12) are left multiplied by RT
i , and taking Mi = RT

i Ki Ri , Ki = RT
i Ki Ri , and

Fi = RT
i (F

i + Pi + Qi ), Eq. (14) is rewritten as

Mi Ü
∗
i + Ki U∗

i = Fi , (13)

where Mi =
[ [M11

i ]13×13 [M12
i ]13×6

[M21
i ]6×13 [M22

i ]6×6

]
, Ki =

[ [K11
i ]13×13 [K12

i ]13×6

[K21
i ]6×13 [K22

i ]6×6

]
, U∗

i =
[ [ U0i ]13×1

[U0]6×1

]
, Fi =

[ [ F1
i ]13×1

[F2
i ]6×1

]
, and U0i = [ui1, ui2, ui3, ui4, ui5, ui6, ui7, ui8, ui9, ui10, ui4, ui5, ui6]T.

Combining Eqs. (10) and (13), the undamped elastodynamic model of 3SPS+1PS parallel
simulator is

MÜ + KU = F − MÜr, (14)

where M is the total mass matrix, K is the total stiffness matrix, F is the generalized force matrix,
Ür is the acceleration matrix, U is the generalized coordinate matrix, and Ü is the second derivative
matrix of generalized coordinates to time, that is the elastic acceleration matrix.

Considering the effect of damping in the elastodynamic analysis, and the viscous damping is
directly proportional to the velocity of elastic deformation, the dynamic model of the simulator
considering the effect of damping is as follows:
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MÜ + CU̇ + KU = F − MÜr

C = λ1M + λ2K
, (15)

where U̇ is the first derivative of the generalized coordinates and is called elastic acceleration,
C ∈ R61×61 is the damping matrix of the system,and λ1 and λ2 are Rayleigh damping scale
coefficients.

Generally, when the elastic deformation is small, the relationship between deformation and load
is linear. The component of deformation is a combination for the parallel simulator. The method
to study the combined deformation is to calculate the stress and strain separately for each basic
deformation, and then use these to obtain the stress and strain under the composite deformation of
the system.

For the spatial circular section beam element, the bending stress at any point on the interface of
the beam element can be expressed as follows:⎧⎪⎨

⎪⎩
σ 1(x, t)= EzD

∂2Wz(x, t)

∂x2

σ 2(x, t)= EyD
∂2Wy(x, t)

∂x2

, (16)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂2Wz(x, t)

∂x2
=

(
∂2NC

∂x2

)T

δe(t)= n̈1δe3(t)+ n̈2δe5(t)+ n̈3δe8(t)+ n̈4δe12(t)+ n̈5δe14(t)+ n̈6δe17(t)

∂2Wy(x, t)

∂x2
=

(
∂2NB

∂x2

)T

δe(t)= n̈1δe2(t)+ n̈2δe6(t)+ n̈3δe9(t)+ n̈4δe11(t)+ n̈5δe15(t)+ n̈6δe18(t)

where δe(t) is the elastic deformation vector of the element, δei (t) is the ith component in the elastic
deformation, E is the elastic modulus of materials in tension and compression, yD is the distance
from any point on the section of element beam to z-axis, zD is the distance from any point on the
section of element beam to y-axis, n = x/L, L is the length of the branched chain, and n̈i is the second
partial derivative of element configuration function to x.

The tensile and compressive stresses at any section of the beam element are as follows:

σ3(x, t)= E
∂Wx(x, t)

∂x
. (17)

∂Wx(x, t)

∂x
=

(
∂NA

∂x

)
δe(t)= (δe10(t)− δe1(t))/L

For any moment of the simulator motion, the maximum normal stress on any section of beam
element is

σmax(x, t)= σ1max(x, t)+ σ2max(x, t)+ σ3max(x, t). (18)

The dynamic parameters of 3SPS+1PS parallel simulator are shown in Table I. According to
ISO14242-1 for the standard of artificial hip joints, the motion curves of the simulator can be
approximately simplified to trigonometric function curves, and the expression is as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α = 21.5π

180
cos (2π t)+3.5π

180

β = 6π

180
cos (2π t + π)− 4π

180

γ = 5.5π

180
cos[2π(t − 0.21)] + 1.5π

180

, (19)

where α, β, and γ are the attitude rotation angles of the moving platform for the parallel simulator,
respectively.

Through the numerical simulation, the maximum stress of each branched chain of 3SPS+1PS
parallel hip joint simulator is shown in Fig. 3(a), (b) and (c). In the process of the single motion cycle
for the simulator, the maximum stress of each branched chain under Eq. (19) changes along with
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Table I. Dynamic parameters of 3SPS+1PS parallel hip joint simulator.

Parameter Value Parameter Value

Material density ρ 7800 kg/m3 Moving platform mass m0 10 kg
Elasticity modulus E 2.1 × 1011N/m2 Moving platform Radius r 144 mm
Shear modulus G 7.85 × 1010N/m2 Base radius R 200 mm
Rayleigh coefficient λ1 2 × 10−3 Cylinder rod diameter d 30 mm
Rayleigh coefficient λ2 3 × 10−4 Cylinder body diameter D 40 mm
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Fig. 3. Maximum stress of each branched chain for 3SPS+1PS parallel hip joint simulator. (a) Maximum stress
of A1P1C1. (b) Maximum stress of A2 P2C2. (c) Maximum stress of A3 P3C3.

time, and there are tensile stress and compressive stress at the same time. The maximum value of
maximum stress for the branched-chain A2P2C2 is the largest, and the maximum value of maximum
stress for the branched-chain A3 P3C3 is the smallest. The result shows that the branched chains might
have different fatigue life due to different stress.

3. Fatigue Life Analysis of 3SPS+1PS Parallel Simulator

3.1. Stress cycle counting method
The simplified process, the random and irregular stress-time course is transformed into a series of
full-cycle or half-cycle processes with different amplitudes, is called the “Cycle counting method”.
The cycle counting method can simplify and shorten the stress-time course, and make it more conve-
nient to deal with the results of stress tests and structural fatigue analysis. Rain-flow counting method
is the cycle counting method with two parameters. It considers the influence of large stress amplitude
and small stress amplitude on structural fatigue damage. However, the influence of the order of all
stress amplitudes on fatigue life is not calculated.
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The Rain-flow counting method turns an actual stress-time course 90◦ and takes the vertical axis
to represent time, and the horizontal axis to represent stress. The counting principle is as follows:

(1) The starting point of rain flow starts at the inner side of each peak (valley) value in turn;
(2) The rain flow falls at the next peak (valley) value until there is a larger (smaller) value on the

opposite side than the peak (valley) value at the beginning;
(3) The rain flow stops when it comes to rain from the roof above;
(4) Take out all the full cycles and record their vibration ranges;
(5) Take out all the half cycles according to the positive and negative slopes, and record their

vibration ranges;
(6) The half-cycle is counted according to the second stage of Rain-flow counting method.

3.2. Fatigue life analysis theory
For 3SPS+1PS parallel hip joint simulator, the fast speed, stress cycle, and complex geometric con-
straint relationship between the branched chains limit the elastic deformation of the branched chain.
The fatigue of the branched chains for the parallel simulator is a type of high-cycle fatigue at low
stress. The fatigue curve can be expressed by the following form:

(σ−1N )
mN1 = (σ−1)

mN0 = C, (20)

where σ−1N is the corresponding fatigue limit for the stress cycle is N, N0 is the circular base, σ−1 is
the endurance limit, and m and C are the material constants.

The dynamic stress amplitude of the branched chains calculated utilizing Kineto-Elasto Dynamics
(KED) is unsteady, asymmetric, and variable, and so, it is required to be converted into a symmetric
form as expressed in the formula below:

σ−1a = σra +ψσσrm, (21)

where σ−1a is the calculated symmetrical stress amplitude, σra is the asymmetric stress amplitude, σrm

is the average symmetrical stress amplitude, and ψσ is the reduction factor related to the materials.
The S-N curve can be utilized to estimate the number of cycles in which the material is destroyed

under different stress levels. However, the S-N curve is not able to estimate the fatigue life directly
when the branched chain is under two or more stress levels of the cyclic loading. In addition to the
S-N curve, the Corten-Dolan cumulative damage theory can also estimate the fatigue life.

The Corten-Dolan fatigue cumulative damage theory is used to study the effect of alternating stress
on the fatigue life experimentally and theoretically. Based on the theory, assuming that the damage
starts at multiple locations on the specimen surface and each transformation cycle is called a stress
cycle, then the stress characters can be determined based on the average value and amplitude of the
stress. Finally, the development of fatigue damage is analyzed under the condition that stress σ1 and
σ2 change alternately. Therefore, the calculation formula for the fatigue life can be expressed as

Nf = N1

α + S1/α(1 − α)
, (22)

where α is the ratio of the cycle numbers of the stress σ1 to the total load cycles and N1 is the cycle
number till the fatigue damage occurs under single stress. The stress ratio S = r2/r1 is symmetrical
in the stress cycle and r1 and r2 represent the damage coefficients corresponding to stress levels
σ1 and σ2, respectively. S is related to the stress level, and S1/a can be replaced by (σ2/σ1)

d . The
Eq. (22) can be re-expressed as

Nf = N1

α + (σ2/σ1)d(1 − α)
. (23)

Equation (23) can be extended to multi-level loading:

Nf = N1

k∑
j=1
γ j

(
σ j

σmax

)d
, (24)
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Fig. 4. Number of cycles in the stress-time course of branched chains. (a) Branched-chain A1 P1C1. (b)
Branched-chain A2 P2C2. (c) Branched-chain A3 P3C3.

where Nf is the cycle numbers until the material is destroyed, N1 is the cycle numbers under
maximum stress σmax, σmax is the maximum alternation stress under the multistage load, γ j is the
percentage of circulation under alternating stress σ j ( j = 1, 2, 3, . . . , ), k is the number of the cycle,
and d is a material constant.

3.3. Fatigue life analyses of branched chains
Through the analysis of the stress variation for three branched chains, we conclude that the root of
each branched chain is relatively weak and the value of the dynamic stress is also the largest. The
statistics of the stress cycling of each branched chain at all the levels are collected by Rain-flow
counting method, and the results are shown in Fig. 4(a), (b) and (c).

The stress amplitude is the main factor that causes the fatigue cumulative damage, and Rain-flow
counting method is utilized to filter out all the stress cycles from the branched-chain stress-time
course. Minimum stress σmin, maximum stress σmax, average stress σrm, stress amplitude σra, and
symmetrical cyclic stress σ−1a converted among all the stress spectra of the three driven branched
chains are listed in Tables II–V.

The fatigue lives of the branched chains of the 3SPS+1PS parallel simulator can be estimated
according to the data in Tables II– IV. The number of cycles until the branched chain is destroyed
under the maximum stress can be determined by Eq. (20), and Eq. (24) is utilized to evaluate the
fatigue life of branched chain under the KED stress spectrum.

In Eqs. (20) and (24), taking the parameters σ0 = 110 Mpa, σmax = 164.1 MPa, m = 9, and d = 4.8,
the fatigue life of the branched-chain A1P1C1 can be calculated as follows:

N1 =
(
σ0

σmax

)m

N0= 2.732 × 105.

N f 1 = N1

k∑
j=1
γ j

(
σ j

σmax

)d
= 5.4868 × 106cycles.
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Table II. Stress cycles at all stress spectra of branched-chain A1P1C1.

Cycle σ min(MPa) σ max(MPa) σ rm(MPa) σ ra(MPa) σ−1a(MPa) Full/Half-cycle

C1 0.06 68.14 34.10 34.04 51.09 0.5
C2 −11.73 34.77 11.52 23.25 29.01 1
C3 −0.51 45.29 22.39 22.90 34.10 1
C4 51.33 56.48 53.91 2.58 29.54 1
C5 12.05 20.50 16.28 4.23 12.37 1
C6 −11.73 60.00 24.14 35.87 47.94 1
C7 −125.27 −98.27 −111.77 13.50 −42.39 1
C8 −164.10 58.14 −47.98 116.12 92.13 0.5
C9 −164.10 0.06 −82.02 82.08 41.07 0.5

Table III. Stress cycles at all stress spectra of branched-chain A2P2C2.

Cycle σ min(MPa) σ max(MPa) σ rm(MPa) σ ra(MPa) σ−1a(MPa) Full/Half-cycle

C1 −66.69 0.03 −33.33 33.36 16.70 0.5
C2 −0.17 25.94 12.89 13.06 19.51 1
C3 102.32 130.43 116.39 14.06 72.26 1
C4 −66.69 191.30 62.30 129.00 160.15 0.5
C5 0.03 191.30 95.67 95.64 143.48 0.5

Table IV. Stress cycles at all stress spectra of branched-chain A3P3C3.

Cycle σ min(MPa) σ max(MPa) σ rm(MPa) σ ra(MPa) σ−1a(MPa) Full/Half-cycle

C1 0.05 0.56 0.31 0.26 0.42 0.5
C2 −30.58 −10.05 −20.32 10.27 0.11 1
C3 −58.37 0.56 −28.91 29.47 15.02 0.5
C4 77.33 99.12 88.23 10.90 55.02 1
C5 −58.37 128.11 34.87 93.24 110.68 0.5
C6 −46.52 −46.16 −46.34 0.18 −22.99 1
C7 −82.18 −38.98 −60.58 21.60 −8.69 1
C8 −82.18 128.10 22.96 105.14 116.62 0.5
C9 −82.18 0.05 −41.07 41.12 20.59 0.5

Similarly, according to Tables III and IV, the fatigue life of the branched-chain A2 P2C2 and the
branched-chain A3 P3C3 can be calculated as

N f 2 = 4.1315 × 106cycles, N f 3 = 7.3556 × 106cycles.

For the 3SPS+1PS parallel hip joint simulator, the time of a motion cycle is 1s. When the sim-
ulator is used for continuous tests of artificial hip joints, the fatigue lives of branched chains can
be converted into N f 1 ≈ 63.50 days, N f 2 ≈ 47.82 days, and N f 3 ≈ 85.13 days when the branched
chains never stop moving. The results show that the fatigue life of the branched chain is different.
The branched-chain A3 P3C3 has the longest fatigue life, and the fatigue life of the branched-chain
A2 P2C2 is the weakest. Therefore, it is necessary to replace the branched chain or adjust the motion
parameters of the simulator according to the fatigue life analysis of the branched chains.

Combined with Fig. 3, there is a corresponding relationship between the fatigue life and the maxi-
mum stress for the branched chain. In a motion cycle, the smaller the maximum stress on the branched
chain, the longer the fatigue life. The calculation indicates that branched-chain A2 P2C2 is weaker
than the other branched-chains of the simulator. Therefore, it will enter the stage of fatigue failure
earlier and result in a system crash. During the design for the parallel simulator, the parameters of
the rods can be adjusted appropriately to reduce the dynamic stress and prolong the lives for the rods
to equilibrate, thereby, enhancing the dynamics performance.
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Table V. Distribution of the random variables of 3SPS+1PS parallel hip joint simulator.

Random variable Distribution Average Variance

Elasticity modulus E (N/m2) Normal distribution 2.1 × 1011 2.1 × 1010

Shear modulus G (N/m2) Normal distribution 7.85 × 1010 7.85 × 109

Material density ρ (kg/m3) Normal distribution 7800 780
Cylinder rod diameter d (m) Uniform distribution 0.0300 0.0030
Cylinder rod length lu (m) Uniform distribution 0.2800 0.0280
Cylinder diameter D (m) Uniform distribution 0.0400 0.0040
Cylinder length ld (m) Uniform distribution 0.4000 0.0400
Moving platform radius e (m) Uniform distribution 0.1440 0.0144
Moving platform mass m0 (kg) Uniform distribution 10 1.0000
Middle branched-chain height H (m) Uniform distribution 0.6900 0.0690

To verify the correctness of the fatigue life model for the branched chains, the same structural
parameters model as the theoretical analysis is established with ANSYS. The minimum values of
fatigue lives for branched chains in FEA are NFEA_ f 1 = 4.0363 × 106 cycles, NFEA_ f 2 = 2.8508 ×
106 cycles, and NFEA_ f 3 = 6.1472 × 106 cycles. Compared with N f 1, N f 2, and N f 3, the results of
FEA are basically consistent with the theoretical calculation, and it also shows the fatigue life model
for the simulator is effective. Besides, the FEA values are slightly less than the theoretical calculation,
this is because the stress of the branched chain is mainly considered in the theoretical calculation,
while the influence of other factors on the fatigue life is ignored.

4. Fatigue Reliability Analysis of 3SPS+1PS Parallel Simulator

4.1. Fatigue reliability analysis method
The purpose of fatigue reliability analysis is to ensure that 3SPS+1PS parallel hip joint simulator can
operate within the design life as well as avoid early failure because of the materials fatigue cumula-
tive damage. The reliable characteristics include the reliability, accumulated invalidation probability
(or unreliability), average life, reliable life, and failure rate. These indicators reflect the general reli-
ability level of a simulator. Combined with cumulative fatigue damage or crack growth theory, the
model considers the fatigue life as the parameter to analyze the fatigue reliability. The safety margin
equation for the fatigue life model can be expressed as

MN = N0 − N , (25)

where N0 is the design life and N is the fatigue life of the components under loading.
Design life N0 can be expressed as

Pr = P {N0 − N ≥ 0} . (26)

4.2. Reliability analysis based on the fatigue life model
The dynamic stress of branched chains is a type of function that is related to the structural param-
eters and some physical constants. Each random parameter of the stress analytic function is set as
X j ( j = 1, 2, . . . , n). It is assumed that the structural parameters of the mechanism follow a nor-
mal distribution, and all the physical constants are considered to follow a uniform distribution. The
parameters are listed in Table V.

The Monte Carlo model is established by MATLAB, and the simulation times are 1000. Using
a mathematical method, we obtain n random arrays Z js that obey a uniform distribution or normal
distribution in the range of the parameters. Subscript j is the label of random parameter X j and s
represents the number of simulations. Substituting the values of the random parameters (X1s , X2s ,
. . . , Xns) obtained from the simulations into Eq. (18), the corresponding dynamic stress sample of
each branched chain can be derived. After repeated simulation for m times, m dynamic stress samples
of each branched chain can be obtained. According to the fatigue life analysis of the branched chains,
a group of the fatigue life distribution of each branched chain is obtained. Next, utilizing the samples
for the statistical analysis, the distribution histogram of the fatigue life is plotted and fitted to the
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Fig. 5. Flow diagram of the reliability analysis for the fatigue life.
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Fig. 6. Logarithm life of the simulator. (a) Distribution histogram. (b) Fitting function.

fatigue life distribution function. Finally, the reliability is calculated and evaluated based on the
fatigue life distribution function. The process is shown in Fig. 5.

The calculated dynamic stresses exhibit a trend that the dynamic stress of the branched-chain
A1 P1C1 and A3 P3C3 is higher than that of the branched-chain A2 P2C2 under the same structural
parameters. The fatigue life of each branched chain displays a similar variation and the branched-
chain A2 P2C2 has the minimum fatigue life. The damage of a single branched chain will cause
the failure of the whole simulator; therefore, this study only considers the fatigue reliability of
the branched-chain A2 P2C2. The distribution histogram for the fatigue life of the branched-chain
A2 P2C2 is shown in Fig. 6(a) and the fitting function of the logarithm life is shown in Fig. 6(b).

If logarithm life lg N f is represented as κ , the fitting function of the logarithm life based on the
fatigue life distribution histogram is expressed as

F(κ) = 16.009κ6 − 519.519κ5 + 6906.016κ4 − 48152.491κ3

+ 185880.467κ2 − 376978.357κ + 314073.330
. (27)

3SPS+1PS parallel simulator needs to satisfy that the tests are no less than 3 × 106 times (it is
equivalent to the amount of exercise of the artificial hip joint in a patient for 2–3 years). When
the simulator runs for a duration of 3 × 106 s, the corresponding logarithm life is 6.47. Hence, the
simulator is considered fatigue failure when the calculated logarithm life is less than 6.47 and the
range of the fatigue failure life is 4 ≤ κ ≤ 6.47, as shown in Fig. 6.
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Table VI. Fatigue life of 3SPS+1PS parallel simulator with different structural parameters.

Fatigue life of branched chains (cycles)

Structural parameters (mm) A1 P1 C1 A2 P2 C2 A3 P3 C3 Reliability

Cylinder rod diameter d = 30.0 5.4868 × 106 4.1315 × 106 7.3556 × 106 0.6426
Cylinder body diameter D = 40.0

Cylinder rod diameter d = 30.0 6.0588 × 106 5.2789 × 106 8.4731 × 106 0.6724
Cylinder body diameter D = 41.5

Cylinder rod diameter d = 31.5 7.0458 × 106 6.0841 × 106 9.7843 × 106 0.7095
Cylinder body diameter D = 40.0

For the discretization of the fatigue life, a fatigue life value κr is selected in the interval 0.01,
and the value is substituted into Eq. (22) to obtain the corresponding number of the samples. The
number of samples F(κr ) corresponding to each life value κr is summed. The number of samples
corresponding to the failure life of the simulator is

F(4 ≤ κr ≤ 6.47) =
κr =247∑
κr =1

F(κr )

= 16.009κ6
r − 519.519κ5

r + 6906.016κ4
r − 48152.49κ3

r

+ 185880.467κ2
r − 376978.357κr + 314073.330

. (28)

The calculated samples of the fatigue life in the range 4 ≤ κ ≤ 6.47 are F(4 ≤ κ ≤ 6.47)= 33695
when the length of the calculation step is 0.01.

The samples of the fatigue life in the entire sample interval 4 ≤ κ ≤ 8 are as follows:

F(4 ≤ κ ≤ 8)=
κr =400∑
κr =1

F(κr )=94267. (29)

The failure probability of 3SPS+1PS parallel simulator is

P(κ ≤ 6.47)= 1 − F(4 ≤ κ ≤ 6.47)

F(4 ≤ κ ≤ 8)
= 1 − 33695

94267
= 0.6426. (30)

4.3. Effect of branched-chain structural parameters on the reliability
Different structure parameters of the branched chains are selected for studying the effect of the struc-
tural parameters on the fatigue reliability. The values, fatigue lives, and fatigue reliability under
different parameters are shown in Table VI.

The results indicate that the fatigue life and reliability of the branched chains can be increased to
a certain degree by increasing the diameter of the cylinder rod and cylinder body. When the cylin-
der body diameter increases from 40.0 to 41.5 mm, the fatigue life of the branched-chain A1 P1C1,
A2 P2C2, and A3 P3C3 increases by 10.4%, 27.7%, and 15.2%, respectively, and the fatigue reliabil-
ity increases by 4.6%. When the cylinder rod diameter increases from 30.0 to 31.5 mm, the fatigue
life by increases by 28.4%, 47.3%, and 33.0%, respectively, and the fatigue reliability increases by
10.4%. It is noteworthy that the effect on the fatigue life of increasing the diameter of the upper
branched chain (the cylinder rod diameter) is higher, and increasing the cylinder rod diameter can
significantly improve the fatigue reliability.

Furthermore, three branched chains of 3SPS+1PS parallel simulator have the same structural
parameters, and the structure of the simulator is completely symmetrical in space. It is effective
to balance the difference of fatigue life between branched chains by changing the initial motion
parameters among the three chains. After the parallel simulator has been running for a while, the
motion parameters of branched-chain A1 P1C1 and A3 P3C3 can be regularly exchanged to balance
the fatigue life gap between branched chains.
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5. Conclusion
For 3SPS+1PS parallel hip joint simulator, based on the Corten-Dolan fatigue cumulative damage
theory and the Rain-flow counting method, the fatigue lives of branched-chains A1 P1C1, A2 P2C2,
and A3 P3C3 are 5.4868 × 106 cycles, 4.1315 × 106 cycles, and 7.3556 × 106 cycles, respectively.
The dynamic stress of branched-chain A2 P2C2 is the highest and its fatigue life is the shortest.
Therefore, it is the weakest part of the simulator.

Setting the structure parameters as random variables, the subsamples of random parameters are
obtained by random sampling and the corresponding dynamic stress samples are obtained by elasto-
dynamics. The fatigue reliability of the branched-chain A2 P2C2 is used to represent the reliability of
the simulator. The fatigue life samples can be obtained by the fatigue life analysis, and based on the
fatigue life fitting function, the reliability of the parallel simulator is 0.6426.

The study indicates that an appropriate increase in the cylinder rod diameter can result in a
significant improvement of the fatigue life and reliability. This paper also provides a theoretical
basis for the exchange of initial motion parameters to balance the fatigue life gap between branched
chains.
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