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Explicitly covariant dispersion relations for a variety of plasma waves in unmagnetized
and magnetized plasmas are derived in a systematic manner from a fully covariant
plasma formulation. One needs to invoke relatively little known invariant combinations
constructed from the ambient electromagnetic fields and the wave vector to accomplish
the program. The implication of this work applied to the self-induced transparency
effect is discussed. Some problems arising from the inconsistent use of relativity are
pointed out.
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1. Introduction

Investigations of relativistic plasmas, both classical (for instance, (Gedalin &
Oiberman 1995; Elsässer & Pope 1997; Tajima & Shibata 1997; Gedalin & Melrose
2001; Marklund et al. 2003) and references therein) and quantum (Hakim & Heyvaerts
1978, 1980; Hayes & Melrose 1984; Sivak 1985; Bialynicki-Birula, Górnicki &
Rafelski 1991; Melrose 2000, 2005; Melrose, Weise & McOrist 2006; Asenjo et al.
2011; Eliasson & Shukla 2011; Mendonça 2011), have been steadily gaining speed in
the recent past. This effort is motivated by the desire to deeply understand the nature
of physical systems as diverse as: laser produced plasmas, the plasma (MeV) epoch
in the evolution of the early universe, plasmas in the vicinity of highly compact
objects (black holes, galactic nuclei), plasmas in neutron stars and magnetars. It is
natural that fully covariant formulations for plasma dynamics are being put together
(Melrose 1973, 1982, 2008). This work will concentrate on the covariant treatment
of waves in a plasma.

One of the bastions of plasma physics is the investigation of various low-amplitude
(linear) modes in which a plasma can oscillate. One does expect that special relativity
will certainly affect the dispersion relations that these modes obey even if it is only
through the relativistic increase in the particle mass, and the density increase as these
quantities are measured in frames not at rest with respect to the plasma fluid. However
to be consistent and systematic, it may be of essence that all calculations be done in
an explicitly covariant manner so that the spirit of special relativity is fully respected.

† Email addresses for correspondence: mahajan@mail.utexas.edu, felipe.asenjo@uai.cl

https://doi.org/10.1017/S0022377816001227 Published online by Cambridge University Press

mailto:mahajan@mail.utexas.edu
mailto:felipe.asenjo@uai.cl
https://doi.org/10.1017/S0022377816001227


2 S. M. Mahajan and F. A. Asenjo

Although such calculations are aesthetically pleasing, the more important reason is that
such procedures will help us avoid errors that may creep in due to a purely intuitively
driven program of ‘relativization’.

Lorentz invariance demands that all physically acceptable equations must be
equalities between tensors of the same kind (zero being a general tensor) in order to
guarantee frame independence. We remind the reader that wave dispersion relations
are consistency conditions governed by wave character, for instance, the wave
four-vector Kµ

= [ω, k], the plasma parameters (the plasmas ambient four-velocity
Uµ

0 = [γ , γ v] where γ is the relativistic Lorentz factor, the density, the charge, the
mass etc. leading to various quantities like the plasma frequency) and the attributes
of the equilibrium embedding field (Fµν

0 , the Faraday tensor) if any. For a dispersion
relation to be physically meaningful, it must be composed entirely of Lorentz scalars
– that is – besides the explicit Lorentz scalars like the charge q or the rest mass m,
the dispersion relation must be built entirely from the invariant scalars constructed
from the wave, particle and the field attributes.

In this paper we derive explicitly covariant dispersion relations, using an explicitly
covariant formalism for a variety of standard plasma waves both in unmagnetized
and magnetized plasmas. The basic equations employed in this study are the fully
fluid covariant set of Mahajan (2003) derived for a plasma that is relativistic both
in directed velocity as well as in temperature. This paper is, thus, limited to fluid
theories and does not capture kinetic results such as Landau dampimg. For a kinetic
treatment, we refer the reader to the already mentioned Melrose textbook. There do
exist earlier works in which fluid theories have been studied (Roth 1969; Achterberg
& Wiersma 2007); this study, however, is more encompassing and complete in a
more modern and transparent setting. It also raises important questions of how one
can be led astray when enough attention is not paid to Lorentz invariance. Thus, the
aim of the paper is partly presenting new results and partly pedagogic. It is important
to note the difference between (i) a relativistically correct theory, (ii) a covariant
dispersion relation and (iii) the use of a covariant formalism to derive covariant
dispersion relations, in particular between the last two. Any given dispersion relation
(derived in, say, a non-covariant formalism) can be written in a covariant form. Take,
for example, the frequency ω, not being a Lorentz invariant, it has to be the limiting
form of some invariant. It could, in fact, be

√
−KµKµ =

√
ω2 − k · k or it could be

KµUµ
= −γω + γ k · v. Thus simply ‘writing’ a dispersion relation in a covariant

form is not unique and cannot substitute for a direct derivation of the correct and
unique dispersion relation from a proper covariant theory.

Finally, in light of the above, it is shown that the standard theoretical picture
of self-induced transparency for an electromagnetic wave, based on the relativistic
decrease in plasma frequency, violates Lorentz invariance. A consistent covariant
understanding of the dispersion relation for electromagnetic waves propagating in a
relativistic hot plasma is presented to show that the directed (kinematic) and thermal
motions affect the dynamics in profoundly different ways; the thermal effects, as
distinct from the kinematic ones, bring about self-induced transparency by actually
lowering the magnitude of the plasma frequency.

2. Relativistic fluid plasma

In the local rest frame, the energy momentum tensor of a perfect isotropic fluid
is fully determined by the two Lorentz scalars: the energy density TR

00
= ε and the
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Covariant dispersion relations 3

pressure TR
ii
= p. The corresponding covariant energy–momentum tensor of the fluid,

then, may then be written as (Misner, Thorne & Wheeler 1973)

Tµν = hUµUν
+ pηµν, (2.1)

where h = ε + p is the enthalpy density, ηµν is the metric tensor and Uµ is the
normalized four-velocity of the fluid (UµUµ

=−1).
Importantly, all the thermodynamical properties of the fluid are defined in its rest

frame. We can model the plasma as a relativistic gas constituting N identical, non-
interacting and non-degenerate relativistic particles with mass m and momentum pi.
Its thermodynamical properties can be easily obtained through the Hamiltonian

H=
N∑

i=1

√
m2c4 + p2

i c2 = p0, (2.2)

which could provide the appropriate Boltzmann factor exp(−H/kBT) in defining the
local rest-frame distribution function, also known as the relativistic Maxwell–Jutnner
distribution. The covariant distribution function, then, is explicitly proportional to
exp(pµUµ/kBT), where the temperature T must be a Lorentz scalar parameter (kB is
the Boltzmann constant). This parameter coincides with the plasma temperature in the
rest frame. Though several relativistic temperature transformations have been proposed
(Ter Haar & Wergeland 1971), it is perfectly consistent that all thermodynamical
quantities will be defined and measured in the rest frame defined at the beginning of
this section.

The partition function of such an N particle gas (ZN(T,V)= [Z1(T,V)]N/N!, where
V is the rest-frame volume) is readily calculated by first noticing that (Greiner et al.
1995)

Z1(T, V)= 4πV
(

m
2πh̄

)3 K2(u)
u

, (2.3)

where u ≡ mc2/kBT is the ratio between the rest-mass particle energy and the rest-
frame thermodynamical energy and Kj is the modified Bessel function of order j. From
the free energy F=−T ln ZN , we deduce the pressure

p=−
∂F
∂V

∣∣∣∣
T,N

= nRT, (2.4)

where nR = N/V is the rest-frame density. Similarly, the entropy density, which is a
Lorentz scalar, can be obtained as

σ =−
1
V
∂F
∂T

∣∣∣∣
N,V

= nR ln

[
4π

nR

(
m

2πh̄

)3 K2(u)
u

]
+ 4nR + nRu

K1(u)
K2(u)

. (2.5)

Finally, the enthalpy density (another Lorentz scalar) is h= F/V + Tσ + p= nRmf (u),
where f takes the succinct form

f (u)=
K3(mc2/kBT)
K2(mc2/kBT)

. (2.6)

Notice that for the Maxwell–Juttner gas, f is a function of temperature T alone.
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It was shown in Mahajan (2003) that the relativistic dynamics of a covariant plasma
(2.1) could be cast in the form (in natural units kB = 1= c)

T∂νσ = qUµ

(
Fµν
+

m
q

Sµν
)
, (2.7)

where q is the particle charge, Fµν
= ∂µAν − ∂νAµ is the electromagnetic field tensor

and
Sµν = ∂µ( fUν)− ∂ν( fUµ), (2.8)

is an equivalent fluid tensor combining the kinematic and statistical attributes of the
plasma through f .

The entropy density σ satisfies the standard thermodynamic relation

nRT∂νσ = ∂νp−mnR∂
ν f . (2.9)

Due to the antisymmetry of the electromagnetic and fluid tensors, equation (2.7) leads
to the isentropic condition

Uν∂
νσ = 0, (2.10)

that is, the plasma entropy density is constant along the streamlines. The complete
plasma dynamics is contained in (2.7), and the Maxwell equation

∂µFµν
=−4πJν, (2.11)

where the four-current, Jµ = qnRUµ, obeying the continuity equation

∂µJµ = 0, (2.12)

has to be computed from (2.7). All thermodynamical densities are defined per unit
proper (rest-frame) volume.

For the simplest case of a homentropic plasma,

∂νσ = 0, (2.13)

entropy density does not appear directly in the equation of motion (2.7). However,
the temperature can be arbitrary, even relativistically large. For such a system, the
equation of motion reduces to

UµFµν
=−

m
q

Uµ∂
µ ( fUν)−

m
q
∂ν f , (2.14)

and can be split into the time component

v ·E+
m
qγ
∂f
∂t
=

m
q

(
∂

∂t
+ v · ∇

)
( fγ ) , (2.15)

and the spatial component

E+ v×B−
m
qγ
∇f =

m
q

(
∂

∂t
+ v · ∇

)
( fγ v) , (2.16)

where γ = (1− v2)−1/2 is the relativistic factor and v =
√

v · v.
One of the primary function of this paper is the covariant ‘derivation’ and discussion

of the dispersion relations governing many of the standard plasma waves. We illustrate
this purpose with the study of some of the well-known dispersion modes.
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Covariant dispersion relations 5

3. Electrostatic waves
We begin with the simplest field free (no equilibrium electric and magnetic fields),

zero pressure system where the ions are fixed and provide a neutralizing background,
and the electrons are the only dynamic species. We further assume a constant
equilibrium velocity v0 = v, such that the equilibrium relativistic factor γ0 = γ is
a constant. Besides, we assume a constant temperature and therefore a constant
function f .

The linearized perturbed electrostatic system, then, is described by

v · δE=−i
m̄
q
(ω− k · v)(γ 3v · δv), (3.1)

ik · δE= 4πqδn, (3.2)
δn
n
=

k · δv
ω− k · v

, (3.3)

where k is the wave vector, ω is the wave frequency, m̄ = mf and n = γ n0
R is the

constant equilibrium density in the laboratory frame; δn, thus, is the perturbed density
in the laboratory frame.

Using (3.2) and (3.3), we relate the electric field with the perturbed velocity

δE=−i
4πqn

ω− k · v
δv, (3.4)

which, when substituted in (3.1), yields the dispersion relation

(ω− k · v)2 =
4πq2n
m̄γ 3

. (3.5)

This dispersion relation looks somewhat awkward, but it is fully covariant.
Remembering that the laboratory-frame density, n = γ n0

R, and defining the wave
four-vector

Kµ
≡ [ω, k] , KµKµ

=−ω2
+ k · k, (3.6a,b)

we cast the dispersion relation (3.5) in the desired form

(KµUµ)
2
=Ω2

p , (3.7)

with
Ωp =

ωp
√

f
, (3.8)

where ωp=
√

4πq2n0
R/m is the usual scalar plasma frequency with constant n0

R. There
are three important points to notice:

(i) the effective local rest-frame plasmas frequency is decreased by the temperature
factor f . We shall discuss this effect in detail later,

(ii) the dispersion relation, as required by special relativity, comes out to be an
equality between two Lorentz scalars, and therefore is frame independent,

(iii) the familiar cold plasma wave dispersion relation ω2
= ω2

p follows in the limit
k · v� ω. The non-relativistic limit breaks the covariance by terms of order k ·
v/ω∼ v/c. Though it is a fully consistent limit, one must note that the standard
dispersion relation is correct only to order zero in v/c.
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Before proceeding further, it is advised that we make a comment about the
fundamental plasma parameter ωp =

√
4πq2n0

R/m. This parameter is a Lorentz scalar,
its value is the same in all frames. Since in a moving frame nR goes to n= γ nR along
with the rest mass m going to γm, the frequency ωp remains constant in any arbitrary
moving frame. Notice that, though n0

R is a constant for this simple dispersion, it is
always a Lorentz scalar even when it is variable.

4. Bohm–Gross dispersion relation
When the plasma is hot and pressure perturbations are permitted, the simple plasma

wave become considerably more interesting. The relativistic dispersion relation is
obtained from the linearized equation of motion (equivalent of (3.1)) which has an
additional term proportional to δf (in the homentropic case, temperature appears only
through f )

qv · δE= imγ v (k−ωv) δf − imf (ω− k · v)(γ 3v · δv), (4.1)

where k=
√

k · k. The homentropic condition, δσ = 0, translating as

δp=mn0
Rδf , (4.2)

and the perturbed relation (from the definition n= γ nR)
δnR

n0
R
=
δn
n
−
δγ

γ
, (4.3)

may be combined with the perturbed equation of state (Γ is the adiabatic index)∗

δp= Γ TδnR, (4.4)

and the continuity equation (3.2) to derive a relation between δf and δv

δf =
Γ T
m

(
k · δv
ω− k · v

− γ 2v · δv

)
. (4.5)

For the longitudinal modes, k, v and δE are parallel to one another. Equation (4.5),
then, simplifies to

δf =
Γ T
m
γ 2 (k−ωv)

v · δv

v(ω− kv)
. (4.6)

Combining the Poisson equation (3.4), (4.1) and (4.6), we derive the relation

Ω2
p = γ

2
[
(ω− kv)2 − V2

s (ωv − k)2
]
, (4.7)

where Vs= vs/
√

f , the relativistic sound speed, is the f modulated thermal speed vs=√
Γ T/m.
We can write the above dispersion relation in an explicitly covariant form invoking

the identity between the four-vectors, γ 2(ωv − k)2 = (KµUµ)2 + KµKµ. Thus, the
dispersion relation will be

Ω2
p = (1− V2

s )(KµUµ)2 − V2
s KµKµ, (4.8)

where only the Lorentz scalars KµUµ and KµKµ participate. Notice that the scalar
invariant KµKµ was needed to represent the finite-temperature modifications to the
cold plasmas dispersion. To the best of our knowledge, this is the first derivation of a
relativistic covariant dispersion relation for a longitudinal plasma wave propagating in
a relativistically hot plasma. The standard Bohm–Gross form can be obtained in the
appropriate limit.
∗nRT = p∝ nΓr . In the non-relativistic limit Γ = 5/3. In the ultra-relativistic limit Γ = 4/3.
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5. Two-stream instability
We now proceed to write down the covariant dispersion relation relevant to the

two-stream instability in a plasma consisting of beams of relativistic electrons and
ions. For simplicity, we assume equal and constant temperatures. The electric field is
parallel to the fluid velocity and to the propagation vector. Thus, we could calculate
the electron (specie e) and ion (specie i) density perturbations from (3.1) and (3.3),

δne

ne
=

−iek
mefγ 3

e (ω− kve)2
δE, (5.1)

and
δni

ni
=

iek
mifγ 3

i (ω− kvi)2
δE. (5.2)

Both the electrons and ions have relativistic drift velocities ve and vi with their
associated Lorentz factors γe = (1 − v2

e )
−1/2 and γi = (1 − v2

i )
−1/2. The densities

ne = γen0
Re and ni = γin0

Ri are measured in the laboratory frame (n0
Re and n0

Ri are the
local rest-frame densities).

Substitution in the Poisson equation ikδE = 4πe(δni − δne), leads to the dispersion
relation

1=
Ω2

pi

γ 2
i (ω− k · vi)2

+
Ω2

pe

γ 2
e (ω− k · ve)2

, (5.3)

that has the covariant form

1=
Ω2

pi

(Uµ
i Kµ)2

+
Ω2

pe

(Uµ
i Kµ)2

, (5.4)

where Uµ
e = [γe, γeve] and Uµ

i = [γi, γivi] are the four-velocity of species, and
the appropriately modified plasma frequencies for electrons and ions are Ω2

pi =

4πe2n0
Ri/mif and Ω2

pe = 4πe2n0
Re/mef respectively. The two-stream instability appears

on analysing this dispersion.

6. Compressional Alfvén waves
Next we investigate electromagnetic waves in a relativistic electron–positron plasma

with constant temperature embedded in an external electromagnetic field. The self
consistent system consists of the equations of motions (2.16) for each specie (electrons
e and positrons p)

E+ ve ×B=−
m̄
e

(
∂

∂t
+ ve · ∇

)
γeve, (6.1)

E+ vp ×B=
m̄
e

(
∂

∂t
+ vp · ∇

)
γpvp, (6.2)

and the Maxwell equation

∇×B−
∂E
∂t
= 4πnRe(γpvp − γeve). (6.3)

The choice of external electromagnetic fields suitable for a covariant theory requires
some care. One may, in principle, choose arbitrary fields E0 and B0. However we will
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restrict our calculation to the field choice that, in the standard non-relativistic limit,
reduces to the so called a magnetic or magnetizable system. For this class of fields,
the two relativistic invariants must obey

FµνFµν
≡ |B|2 − |E|2 > 0, (6.4)

FµνFµν
≡E ·B= 0, (6.5)

where Fµν = (1/2)εµναβFαβ is the dual of the electromagnetic tensor. Equations (6.4)
and (6.5) insure that the electric and magnetic fields are perpendicular, and there
exists a frame which contains only the magnetic field (E = 0). In fact we will do
our calculations exactly in such a frame and then apply a boost to go to an arbitrary
frame.

A simple consistent equilibrium solution is made up of constant fields (E0, B0), and
constant and equal flows for the two species: ve= vp= v, γe= γp= γ = (1− v · v)−1/2.
Notice that this kind of an equilibrium pertains to a specific frame. We will further
assume that the calculation frame is defined by E00= 0, and B00=B00ẑ. We had used
the subscript 00 for the magnetic field in the special equilibrium frame (B00 = B00ẑ,
E00 = 0) to distinguish it from an arbitrary equilibrium frame with subscript 0 (B0,
E0). The linearized set of equations for studying wave propagation, then, are:

δE+ v× δb+ δve × ẑ=
i
Ωc

(ω− k · v) δ(γeve), (6.6)

δE+ v× δb+ δvp × ẑ=−
i
Ωc

(ω− k · v) δ(γpvp), (6.7)

k× δb+ωδE=−i
Ωp

VA
δ(γpvp − γeve), (6.8)

where δE and δb are the perturbed electromagnetic fields normalized to B00. We must
emphasize that both the cyclotron frequency and the Alfvén velocity are defined as
Lorentz scalars with their rest mass enhanced only by the scalar temperature (thru
the statistical factor, m̄=mf )

Ωc =
eB00

m̄
, VA =

B00√
4πn0

Rm̄
, (6.9a,b)

and n0
R is the background constant density in the local rest frame.

In general δ(γeve)= γ δve + veγ
3ve · δve (same for positrons), but for perturbations

perpendicular to the equilibrium flow, it follows that δ(γeve) = γ δve. For this
calculation, we restrict ourselves to such perturbations. Adding and subtracting
(6.6) and (6.7), we rewrite the linearized system

δE+ v× δb+ 1
2 V × ẑ=−iPj, (6.10)

j× ẑ=−2iPV, (6.11)

k× δb+ωδE=−i
Ωp

VA
γ j, (6.12)

in terms of the perturbed magnetohydrodynamic (MHD) variables: the mean
fluid velocity V = δvp + δve, and the current j = δvp − δve. The symbol P =
γ (ω− k · v) /2Ωc is introduced for notational convenience.
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The linearized system can be manipulated similarly to Alfvén waves in the MHD
theory. Let us first derive the dispersion relation whose non-relativistic limit is the
compressional Alfvén wave. These waves are transverse, k · δb= 0 and devoid of fluid
perturbations along the field lines ẑ · δv= 0= ẑ ·V (no sound wave, we have neglected
pressure perturbations).

By taking the curl of (6.10) and (6.12), we obtain the following equations

2(ω− k · v)δb+ kzV − ẑ(V · k)=−2iPk× j, (6.13)
k× j= iQδb, (6.14)

where kz = k · ẑ and Q= VA(ω
2
− k2)/γΩp. From them, we can derive the relation

2(ω− k · v − PQ)δb= ẑ(V · k)−Vkz. (6.15)

Similarly, combining (6.14) and (6.11) yields

Qẑ · δb=−2PV · k. (6.16)

With the aid of (6.16), the ẑ component of (6.15) (ẑ ·V= 0) leads to the dispersion
relation

γ 2(ω− k · v)2
(

1+
k2
−ω2

2Ω2
p

)
=

V2
A

2
(k2
−ω2). (6.17)

It is comforting that, in the non-relativistic limit and for ω2
� k2, we recover the

standard compressional wave dispersion relation ω2
= k2V2

A/(2+ k2/Ω2
p ). The factor 2

appears because the both the electron and positron fluids contribute equally; it could
be absorbed in a redefinition of the Alfvén speed.

But for the occurrence of B00 in the definition of VA, equation (6.17) will be fully
covariant. This is readily fixed if we recall that the calculations were done in a frame
in which the electric field, E00 = 0. All that we need to do is to replace B2

00 by
the invariant F0µνF0

µν
= B2

0 − E2
0, since F0µνF0

µν
≡ B2

00. When the Alfvén speed is
expressed as

V2
A =

B2
00

4πn0
Rm̄
−→

F0µνF0
µν

4πn0
Rm̄

, (6.18)

the dispersion relation (6.17) assumes the fully covariant form

(
UµKµ

)2

(
1+

KνKν

2Ω2
p

)
=
(
KµKµ

) F0ανF0
αν

8πn0
Rmf

. (6.19)

It is important to remind the reader that the explicitly covariant expression for the
cyclotron frequency Ωc = eB00/m̄ will be Ωc = e(F0µνF0

µν)1/2/m̄.
When the plasma is unmagnetized (F0µν = 0) , the dispersion relation (6.19) reduces

to KµKµ
=−2Ω2

p , which may be recognized as the electromagnetic wave dispersion
for an electron–positron plasma. We will discuss this mode in considerable detail
in § 8.
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7. Shear Alfvén waves
We now turn to the relativistic version of shear Alfvén wave for which the

perturbations are perpendicular to the background magnetic field, and to the wave
vector. With k ·V = 0, (6.15) reduces to

2(ω− k · v − PQ)δb=−kzV. (7.1)

For perturbations perpendicular to the ambient field, δb · ẑ= 0= δE · ẑ, equation (6.12)
yields

ẑ · (k× δb)=−i
Ωp

VA
γ jz, (7.2)

where jz = j · ẑ. Invoking k · j = 0, we obtain from (6.11) and (6.14), two equations
relating jz to ẑ · (k× δb) and ẑ · (k×V)

jzk2
z =−2iPkzẑ · (k×V), (7.3)

−jzk2
= iQẑ · (k× δb). (7.4)

From the preceding three equations (7.2)–(7.4), one derives

VA

Ωpγ
(ω2
− k2

z )ẑ · (k× δb)= 2kzPẑ · (k×V). (7.5)

Another independent relation between ẑ · (k× δb) and ẑ · (k×V) is derived by applying
the operator (ẑ · k×) to (7.1)

KµUµ

γ

(
1+

k2
−ω2

2Ω2
p

)
ẑ · (k× δb)=−kzẑ · (k×V). (7.6)

By combining equations (7.5) and (7.6), we, finally arrive at the dispersion relation

V2
A

2
(k2

z −ω
2)= (UµKµ)

2

(
1+

KνKν

2Ω2
p

)
. (7.7)

The dispersion relation (7.7), clearly is not explicitly covariant because of the
presence of (k2

z − ω
2), the very hallmark of the shear Alfvén wave. The problem is

beautifully solved by figuring out that this quantity is, indeed, the correct translation,
in the frame of calculation (E0 = 0), for an invariant PµPµ. In an arbitrary frame,
this four-vector, constructed from the duel Fµν

0 of the equilibrium Faraday tensor,
and the wave four-vector, spells out as

Pµ
=F0

µνKν ≡ {k ·B0, ωB0 − k×E0}. (7.8)

And in the E0 = 0 frame, the invariant PµPµ takes exactly the form

PµPµ = (k ·B0)
2
−ω2B2

0 = (k
2
z −ω

2)B2
0, (7.9)

that appears in the dispersion relation. Thus a fully explicitly covariant dispersion
relation which contains the shear Alfvén wave in its appropriate non-relativistic limit
appears as (

UµKµ

)2

(
1+

KνKν

2Ω2
p

)
=

PµPµ

8πn0
Rmf

, (7.10)

in which all combinations are Lorentz scalars.
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8. Electromagnetic waves and self-induced transparency
Because of the widespread applications of the dispersion relation for electromagnetic

waves, particularly in laser produced relativistic plasmas, we deal with it in a little
more detail. We will derive this dispersion relation in a slightly different way because,
in the absence of density perturbations, the electromagnetic wave (under well-defined
conditions) is an exact solution of the system. We begin by rewriting the Maxwell
equation (2.11) in the covariant Lorentz gauge (∂µAµ = 0)

∂ν∂
νAµ =−4πJµ =−4πqnRUµ, (8.1)

from which follows the spatial component

∂ν∂
νA=

(
−
∂2

∂t2
+∇

2

)
A=−4πqγ nR v. (8.2)

We, then, take the curl of the spatial part of the equation of motion (2.16) and
rearrange to find

∂

∂t
(∇× P)=∇× [v× (∇× P)] , (8.3)

where P = (m̄/q)γ v + A is proportional to the canonical momentum appropriately
modified to reflect the relativistic kinematic as well as thermal motion. Equation (8.3)
represents the evolution of the generalized vorticity ∇× P. A very interesting feature
of the vorticity evolution equation is that if ∇×P is zero anytime, it always remains
so. We shall exploit this special property to assume the simplest solution P= 0

v =−
q

m̄γ
A, (8.4)

relating the velocity and the magnetic field. Substitution in (8.2) leads to

∂ν∂
νA=Ω2

p A, (8.5)

where Ω2
p is the temperature-corrected plasma frequency defined in (3.8). Since ∂ν∂ν

is a Lorentz-invariant operator, both sides of (8.5) transform like A implying that the
equation is frame independent. Equation (8.5) is manifestly a linear equation, and is
readily Fourier analysed to yield the covariant dispersion relation

−KµKµ
=ω2

− k · k=Ω2
p . (8.6)

As dictated by the demands of covariance, no explicit γ factor can or does appears
on the right-hand side of (8.6). This is because of the fact that the plasma frequency
is constructed from the invariant combination n/M, where the density n and the mass
M (the rest mass is denoted by m) must refer to the same frame. The numerical value
of n/M= nR/m is a characteristic scalar of the given fluid, where the number density
is a varying function governed by the continuity equation in any given frame. Hence,
nR/m is a characteristic local scalar that varies self-consistently with field. In the
literature there exists a serious conceptual problem: the relativistic dispersion relation
is often written as ω2

− k2
=Ω2

p/γ with Ωp defined with n rather than nR (it is as if
we decided to allow for a relativistic increase in mass but suppressed the relativistic
increase in density). At the very least this is in violation of the spirit of relativity, but
this confusion has much more serious consequences. For instance, the mixing of the
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frames has led many authors to treat (8.5) as a nonlinear equation when it is entirely
linear (Akhiezer & Polovin 1956; Kaw & Dawson 1970; Guérin et al. 1995; Lefebvre
& Bonnaud 1995; Guérin et al. 1996; Cattani et al. 2000; Goloviznin & Schep 2000;
Emerin, Korzhimanov & Kim 2010). One of the more exciting predictions of the
alleged relativistic decrease in Ω2 is the self-induced transparency (SIT) in relativistic
plasmas. Conventionally, using equation k2

= ω2
− Ω2

p/γ , one may deduce that,
for a given frequency radiation, a plasma which was initially opaque can become
transparent since the critical frequency decreases by γ as electrons gain speed and
become heavy. Such a conclusion, however, could not be drawn if one looked at the
covariant dispersion relation (8.6), which tells us that for a given rest-frame density
nR, the ‘plasma frequency’ is independent of γ , the relativistic mass increase is, and
must be, fully cancelled by the density increase.

In order to demonstrate the confusion that may arise when Lorentz invariance is not
used as a guide, let us rewrite the dispersion relation (8.6) as

ω2
− k · k=

4πq2n
m̄γ

, (8.7)

where n is the laboratory-frame density, and we have used that nR = n/γ . Now, by
using (8.4), it is straightforward to obtain (E=−(∂/∂t)A is the electric field)

γ 2
= 1+

q2E2

ω2m̄2
, (8.8)

where E is the amplitude of the electromagnetic wave. This allow us to write the
dispersion relation (8.7) as

ω2
− k · k=

4πq2n
mf

(
1+

q2E2

ω2m2f 2

)−1/2

, (8.9)

which could be viewed as the finite-temperature generalization of the dispersion
relation for pure transverse electromagnetic waves appearing, for example, in Kaw
& Dawson (1970). However, this explicit appearance of γ (E2) is just an artefact;
this γ (E2) should exactly cancel the γ (E2) implicit in n = nRγ (E2), and leave
only nR that has no direct cognizance of E2. Notice that local rest-frame density
evolves dynamically and self-consistently with the electromagnetic fields obeying a
continuity equation through the conserved current density Jµ = qnRUµ. The correct
Lorentz-invariant dynamical equation (8.5) does not require that the rest-frame density
be constant. One could go back to the dynamical equation (8.5) (rewritten using the
relation (8.4), and replacing nR by n/γ )

∂ν∂
νA=

4πq2n A

m̄
√

1+ (q2/m̄2)A2
(8.10)

and get the impression that it is a nonlinear equation in A. However the moment
one puts back γ nR for n, the nonlinearity through γ disappears and we go back to
(8.5), the correct Lorentz-invariant equation. Mixing frames violates special relativity;
equations (8.9) and (8.10) should be construed as a bad and misleading representations
of (8.6) (or (8.5)), and should be avoided.

One can, thus, conclude that the phenomena of SIT in relativistic plasmas has
a subtler origin; in fact, it must be attributed to what has been called the field

https://doi.org/10.1017/S0022377816001227 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001227


Covariant dispersion relations 13

renormalized mass (Mahajan & Asenjo 2016). What has been ‘propagated’ in
literature for over fifty years does not pass the covariance muster. Fortunately, the
prospects of discovering exciting relativistic phenomena like the SIT, relativistic
self-focusing and profile steepening, have stimulated a great amount of research. The
literature is replete with studies and investigations of laser–plasma interactions; the
laser intensities have, recently, become so large that the electron motions under their
influence can be strongly relativistic (Mourou, Tajima & Bulanov 2006; Umstadter
2013). However, it seems that there does not exist definitive experimental evidence for
conventional understanding of SIT (Goloviznin & Schep 1999). In fact there is some
experimental ‘evidence’ that propagation and penetration in overdense relativistic
plasmas may be due to effects different from what could be termed conventional
SIT (Giulietti et al. 1997, 1998). In this context the reader is referred to Mahajan &
Asenjo (2016).

For a hot plasma, however, enhanced penetration (compared to predictions from
the simple cold plasma dispersion relation (Cairns, Rau & Airila 2000)) is somewhat
easier to understand. Simulations (Pukhov, Sheng & Meyer-ter Vehn 1999) find that
the temperature T of the electrons goes up as T ∼

√
I with the intensity I of the

laser beam. When temperature effects are properly included, the effective momentum
of the charged fluid becomes p = mfγ v (see (2.16)), where f ≡ f (T) is the scalar
function given in (2.6). Dispersion relation (8.6) for electromagnetic waves in a hot
relativistic electron plasma implies that strong thermal motion, as distinct from the
directed motion, does actually lead to a lower effective plasma frequency, by 1/f .
Thus a strong laser beam will, indeed, be able to make a plasma more transparent
as it transfers more and more energy to raise the plasma temperature.

The thermal self-induced transparency effect is clearly amenable to the conventional
interpretation since it directly reflects an ‘actual’ decrease in the plasma frequency
due to thermally enhanced electron inertia mf . Notice that at low temperatures, f
approaches unity.

9. Conclusions
Using the fundamental Lorentz tensors defining the plasma, the ambient magnetic

field and the wave characteristics, we have systematically derived explicit covariant
forms of some of the well-known dispersion relations in magnetized as well as
unmagnetized plasmas. It is difficult to overemphasize the importance of finding
covariant dispersion when one deals with plasmas at high velocities and temperatures.
It is only through such a route that one can insure physically acceptable solutions, as
an intuitive relativization of the dispersion relations may be misleading. This paper’s
content should be as significant as the interesting and elegant covariant forms for the
dispersion relations.

This formalism allow us to identify a fully consistent interpretation for SIT, that
is that the plasma temperature increase the effective average inertia of the fluid
by the factor f . Hence, this factor is responsible for bringing down the effective
plasma frequency, while the rest-frame density evolves self-consistently in the plasma
system. We hope that this interpretational change will make it easier to understand
the experimental and simulation results.

Finally we would like to point out that, for mildly relativistic plasmas, thermally
induced transparency effects are somewhat stronger than the kinematically induced
ones. For example, for a T ≈ 20 KeV (T/m ≈ 0.04) plasma, the thermally induced
change in critical density, f − 1' (5/2)T/m= (5/4)vth

2
= 0.1, while, for v = vth, the

kinematically induced difference, γ − 1' v2/2= 2/50' 0.04.
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