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FRAUD RISK ASSESSMENT WITHIN
BLOCKCHAIN TRANSACTIONS
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Abstract

The probability of successfully spending twice the same bitcoins is considered.
A double-spending attack consists in issuing two transactions transferring the same
bitcoins. The first transaction, from the fraudster to a merchant, is included in a block of
the public chain. The second transaction, from the fraudster to himself, is recorded in a
block that integrates a private chain, exact copy of the public chain up to substituting the
fraudster-to-merchant transaction by the fraudster-to-fraudster transaction. The double-
spending hack is completed once the private chain reaches the length of the public chain,
in which case it replaces it. The growth of both chains are modelled by two independent
counting processes. The probability distribution of the time at which the malicious chain
catches up with the honest chain, or, equivalently, the time at which the two counting
processes meet each other, is studied. The merchant is supposed to await the discovery
of a given number of blocks after the one containing the transaction before delivering
the goods. This grants a head start to the honest chain in the race against the dishonest
chain.
Keywords: Bitcoin blockchain; double-spending problem; risk theory; order statistic
point processes; renewal processes; boundary crossing problems
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1. Introduction

Bitcoin is a decentralized peer-to-peer (P2P) payment system that relies on proof of work
(PoW). Electronic payments are performed by issuing transactions that transfers bitcoins
(BTCs) between bitcoin peers. These transactions are broadcast to a network of bitcoin miners.
These miners will compete to solve a cryptographic puzzle in order to build a block that
contains the pending transactions. The first miner to solve the problem receives a certain
number of BTCs, which is agreed upon by everyone in the network. At the time of the writing,
this bounty is 12.5 BTCs; this value is halved every 210,000 blocks. The block is then included
in the blockchain which plays the part of a public ledger recording all the transactions between
bitcoin peers. Once a transaction enters the blockchain, it is considered validated. The only
way to reverse the process, and, for instance, replace this transaction by another one, is to redo
the work of the associated block and all the subsequent blocks. The blockchain allows in theory
prevention from double spending the same BTCs. A double-spending attack consists in buying
goods from a vendor and transfering the same bitcoins to oneself. Two conflicting transactions
exist then in the network. The buyer-to-vendor transaction is included in the blockchain by
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the honest miners, while a group of colluding miners work on their own private branch, exact
replication of the principal chain up to substituting the buyer-to-vendor transaction with the
buyer-to-buyer transaction. In the presence of two versions of the blockchain, the network
always opts for the longest because more computational effort has been put into it. If the
conspiring miners’ chain ever becomes as long as the honest chain, it will replace it. The
double spending is then successful.

Nakamoto stressed in his whitepaper [27] that a successful double-spending attack is rather
unlikely as long as the pool of honest miners retains the majority of the computing power.
The vendor is advised to wait for a certain number of blocks, say k ∈N, to be added to the
chain before delivering the goods. Assuming that, in the meantime, the attackers manage to
discover l < k blocks, then the honest chain is ahead by z = k − l. The l ≥ k case implies that
double spending occurs right away. The derivation of the probability of a successful double-
spending attack relies on an analogy with the one-sided gambler’s ruin problem. Namely, the
forthcoming block belongs to the honest chain with probability p or to the malicious chain with
probability q = 1 − p. The difference between the length of the chains is then a random walk
{Zn, n ∈N} on Z defined as

Zn = z + Y1 + · · · + Yn for n ∈N,

where the Yi are the independent and identically distributed (i.i.d.) steps of the random walk.
Assuming that the honest miners have more resources implies that p > q, the probability that
the malicious chain ever catches up with the honest one, given it is z blocks behind, is (q/p)z.
For a full treatment of the gambler’s ruin problem, the reader is refered to [2].

The aim of this work is to refine the model underlying the double-spending problem.
Counting processes are introduced to keep track of the number of blocks in the competing
chains. These processes are generated by sequences of arrival times whose probability
distribution reflect the block discovery frequency and the distribution of the computing power
among honest and malicious miners. The probability distribution of the time at which the
malicious chain overtakes (if it ever does) the honest chain is studied. Note that the probability
mass function (PMF) of the stopping time

τz = inf{n ∈N; Zn = 0}
in Nakamoto’s framework is a consequence of the first hitting time theorem with

P[τz = n] = z

n
P[Zn = 0] for n ≥ z;

see, for instance, [35, Theorem 1] and the references therein.
Let {N(t), t ≥ 0} and {M(t), t ≥ 0} be two independent counting processes governing the

block arrival over time in the honest and the malicious chains, respectively. Assume that the
honest chain is z ≥ 1 blocks ahead of the malicious chain at t = 0. Consider the stopping time

τz = inf{t ≥ 0; M(t) = z + N(t)},
at which the double-spending attack is successful. Denote by {Tk, k ≥ 1} and {Sk, k ≥ 1} the
block arrival times in the honest and malicious chains, respectively. In Figure 1 we illustrate
the race between the two processes. The distribution of τz is studied for different sets of
assumptions over the counting processes {N(t), t ≥ 0} and {M(t), t ≥ 0}.

https://doi.org/10.1017/apr.2019.18 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.18


Fraud risk blockchain 445

4

z = 3

2

1

n

S1 S2 S3T1 Tz t
S4

FIGURE 1: Time until the double-spending attack is completed. The solid line represents the length
of the honest chain {z + N(t), t ≥ 0} and the dashed line represents the length of the malicious chain

{M(t), t ≥ 0}.

In Section 2 and 3, the length of the honest chain {z + N(t), t ≥ 0} is driven by an order
statistic point process (OSPP), that is, provided that N(t) = n, the jump times T1, . . . , Tn have
the same distribution as the order statistics of a sample of n i.i.d.random variables concentrated
on [0, t] with distribution function Ft. In Section 2, the probability density function (PDF) of τz

is derived in terms of Abel–Gontcharov (A-G) polynomials when the length of the malicious
chain {M(t), t ≥ 0} is a renewal process (i.e.generated by i.i.d.interarrival times). In Section 3,
the survival function (SF) of τz is expressed in terms of Appell polynomials in the case where
{M(t), t ≥ 0} is an OSPP.

The probability of a successful double-spending attempt, defined by P[τz < ∞], is further
considered. An upper bound is derived in Section 4 when both {N(t), t ≥ 0} and {M(t), t ≥ 0}
are renewal processes. An exact expression is obtained when {N(t), t ≥ 0} is a Poisson process.

The formulae derived in this work hold for a fixed value z. In practice, because the length of
the dishonest chain is unknown to the vendor at the time of the shipping, the delay should be
modelled as an integer-valued random variable Z. Nakamoto [27] let Z be Poisson distributed
with parameter zq/p (that is, the average number of blocks mined in the malicious chain when
k blocks have been mined in the honest chain). Rosenfeld [32] stressed in his analysis that the
right distribution is the negative binomial distribution. The distribution of the double-spending
time follows from inserting the formulae given below in the law of total probability after
conditionning upon the possible values of Z. The determination of the distribution of Z might
not be an easy task in the general case and should be considered for further investigation.

Nakamoto [27] assumed that double spending occurs when the length of the malicious chain
reaches exactly the length of the honest chain. The situation in which two chains of the same
length coexist in the network is called a fork. The situation resolves as soon as a block is added
to either one of the two chains. Some authors, including Rosenfeld [32] for instance, argued
that the double-spending time should be defined as τ+

z = inf{t ≥ 0; M(t) = N(t) + z + 1}. The
results obtained in this paper apply in this context by noting that τ+

z = τz+1 almost surely.
Nakamoto [27] did not state explicitly that the block arrival is dictated by a homogeneous

Poisson process. However, the probability of a successful double-spending attack, as we will
see later, when the length of the public and private chains are governed by two Poisson
processes of intensity λ and μ, is given by (μ/λ)z. Hence, the intensities play the same role
as p and q as they reflect the hashrate of the miners. Every single result given in this work
holds when the rival chains are modelled by a homogeneous Poisson process because the
homogeneous Poisson process is the one and only renewal process enjoying the order statistic
property. The formulae, which may seem involved in the general cases, simplify when the
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arrival of blocks is Poisson. Now, is it worth considering more sophisticated models to track
the growth of the blockchains?

A statistical study over the interblock times was conducted in a recent work of Bowden
et al. [8]. The authors collected the timestamp information in the header of the blocks. As
pointed out in [8], the timestamp information cannot be readily used, and preprocessing it
represents quite a challenge in itself. The data after preprocessing is available on Rhys Bowden
Github repository [7]. The empirical mean of the interblock time is 9.41 minutes while the
standard deviation is 11.05 minutes. The high variance of the inter-block time is a known flaw
which impedes the consistent flow of validated transactions. Renewal processes allow us to
capture higher-order moments by choosing a more flexible probability distribution to fit the
interblock time data. A propagation delay is sometimes added to the time required for the
creation of a block. A newly discovered block is appended to the chain only once the word
about that block has been spread to the entire network. If it is accepted that the block mining
time is an exponential random variable, the actual time at which the block integrates the chain
is an exponential random variable perturbed by another nonnegative noise. The result may or
may not be exponentially distributed. One of the many takeaways of Bowden et al. [8] was
that the rate at which blocks are discovered varies over time according to the adjustment of
the cryptopuzzles difficulty. The authors of [8] proposed different models allowing for a time-
dependent discovery rate with deterministic or even random difficulty adjustment. When the
difficulty adjustment is deterministic then a nonhomogeneous Poisson process is suitable. This
is fortunate as the nonhomogeneous Poisson process is a particular instance of OSPP. The point
processes having the order statistic property were characterized a while ago by Puri [31]. The
OSPPs are either mixed Poisson processes up to a timescale transformation or mixed sample
processes. This class encompasses classical point processes such as the mixed Poisson process,
the nonhomogeneous Poisson process, the linear birth process with immigration, and the linear
death process.

From a mathematical standpoint, this work ressembles an early work of Picard and
Lefèvre [30] where the probability distribution of the first rendez-vous time between two
counting processes was derived in terms of the Appell and A-G polynomials. The definition
of the stopping time is slightly different in the case considered here. Plus, the reasoning
differs as it relies extensively on the order statistic property and the connection between the
aforementionned families of polynomials and the order statistics joint distribution. It is more
in the spirit of Goffard and Lefèvre [17] where the crossing problem of an OSPP through a
moving boundary was treated. These arguments are inspired from risk theory when solving the
ruin problem in ordered risk models; see, e.g.[9], [15], [18], [20], and [24]. To the best of my
knowledge, the closest link to queueing theory is the single-server queue with either work or
customer removal introduced by Gelenbe et al. [13] and further considered in [5], [19], and
[21] for different queues. The related risk process includes lump addition; see [6]. Perry et al.
[28], [29] used renewal-type arguments to study the distribution of boundary crossing times of
the difference between two Poisson processes and linear boundaries. Regarding the evaluation
of the probability of a successful double-spending attack, P[τz < ∞], the first step consists of
swapping the role of time and space. Namely, a correspondence is established between the ruin
times of two risk models with inverted characteristics. This trick is now standard in risk theory;
see, for instance, [4], [10], [18], [26], and [34]. A classical martingale approach allows us to
derive an expression of the probability of successfully spending twice the sames BTCs.

The rest of the paper is organized as follows. In Section 2 a formula for the PDFof τz

when {N(t), t ≥ 0} is an OSPP and {M(t), t ≥ 0} is a renewal process is derived in terms
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of A-G polynomials. In Section 3 a formula for the SFof τz when both {N(t), t ≥ 0} and
{M(t), t ≥ 0} are OSPPs is provided in terms of Appell polynomials. Section 4 is concerned
with the probability of the double-spending attack ever being successful. Section 5 is devoted
to numerical illustrations.

2. The PDF of the double-spending time

In this section, the length of the honest chain {z + N(t), t ≥ 0} is governed by an OSPP.
Its jump times, provided that N(t) = n, have the same joint distribution as a vector of order
statistics. Namely, it holds that

[T1, . . . , Tn | N(t) = n]
D= (V1: n, . . . , Vn : n),

where ‘
D=’ stands for equality in distribution and V1: n, . . . , Vn : n correspond to the order

statistics of n i.i.d.random variables having a cumulative distribution function (CDF) Ft(s), for
0 ≤ s ≤ t. The length of the malicious chain is a renewal process generated by a sequence of
i.i.d.interarrival times {�S

k , k ≥ 1} having a PDFdenoted by f�S . The sequence of arrival times
{Sn , n ∈N}, with the convention S0 = 0, corresponds to the partial sums of the interarrival
times sequence. The PDFof Sn, for n ∈N, is given by

fSn (t) = f ∗n
�S (t) for t ≥ 0,

where f ∗n denote the n-fold convolution of f�S with itself. Let z ≥ 1 be an integer, the following
result gives a formula for the PDFof

τz = inf{t ≥ 0; M(t) = N(t) + z},
the time at which the double-spending attack is completed.

Theorem 1. If {N(t), t ≥ 0} is an OSPP and {M(t), t ≥ 0} is a renewal process, then the
PDFof τz is given by

fτz (t) =E[(−1)N(t)hN(t)(t, z)f ∗[N(t)+z]
�S (t)], t ≥ 0, (1)

where
hn(t, z) =E{Gn[0 | Ft(Sz), . . . , Ft(Sn+z−1)] | Sn+z = t}, (2)

and Gn(0 | .) is an A-G polynomial such as defined in Appendix A.

Proof. The event {τz ∈ (t, t + dt)} for t ≥ 0 corresponds to the exact time at which the
double-spending attack is successful as the malicious chain takes over the honest chain. At
time t = 0, the honest chain is ahead by z ≥ 1 blocks. Assuming that later, at time t > 0, the
honest miners manage to add N(t) = n ∈N blocks to the chain, then the malicious chain must
be of length M(t−) = n + z − 1 at some time t− < t and jumps to the level n + z exactly at t.
Conditioning over the values of {N(t), t ≥ 0} yields

{τz ∈ (t, t + dt)} =
+∞⋃
n=0

{τz ∈ (t, t + dt)} ∩ {N(t) = n}.

In the case where N(t) = 0, the only requirement is that the zth jump of {M(t), t ≥ 0} occurs at
time t. It then follows that

{τz ∈ (t, t + dt)} ∩ {N(t) = 0} = {Sz ∈ (t, t + dt)} ∩ {N(t) = 0}
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and, consequently,
fτz | N(t)=0(t) = f ∗z

�S (t), t ≥ 0,

where fτz | N(t)=0(t) denotes the conditional PDFof τz given that N(t) = 0. On the set {N(t) ≥ 1}
we need to make sure that {M(t), t ≥ 0} behaves properly by constraining its jump times so
that it does not reach N(s) + z at any time s < t and performs the (n + z)th jump at t. Hence, it
holds that

{τz ∈ (t, t + dt)} ∩ {N(t) ≥ 1} =
+∞⋃
n=1

n⋂
k=1

{Tk ≤ Sz+k−1} ∩ {Sz+n ∈ (t, t + dt)} ∩ {N(t) = n}.

Applying the law of total probability yields

P[{τz ∈ (t, t + dt)} ∩ {N(t) ≥ 1}]

=
+∞∑
n=1

P

[ n⋂
k=1

{Tk ≤ Sz+k−1} ∩ {Sz+n ∈ (t, t + dt)}
∣∣∣∣ N(t) = n

]
P[N(t) = n]. (3)

By virtue of the order statistic property, the successive jump times (T1, . . . , Tn) are dis-
tributed as the order statistics (V1:n, . . . , Vn:n) of a sample of n i.i.d.random variables with
CDFFt(s), 0 ≤ s ≤ t. The conditional probability in (3) may be rewritten as

P

[ n⋂
k=1

{Vk:n ≤ Sz+k−1} ∩ {Sz+n ∈ (t, t + dt)}
]

= P

[ n⋂
k=1

{Uk:n ≤ Ft(Sz+k−1)} ∩ {Sz+n ∈ (t, t + dt)}
]

= P

[ n⋂
k=1

{Uk:n ≤ Ft(Sz+k−1)} | Sz+n ∈ (t, t + dt)

]
P[Sz+n ∈ (t, t + dt)]

=E{( − 1)nGn[0 | Ft(Sz), . . . , Ft(Sz+n−1)] | Sz+n ∈ (t, t + dt)}P[Sz+n ∈ (t, t + dt)],
(4)

where U1:n, . . . , Un:n denote the order statistics of a sample of n i.i.d.uniform random variables
on [0, 1], and Gn(. | .) correspond to the sequence of A-G polynomials as defined in the
Appendix A. Inserting (4) into (3) and letting dt be small enough yields

fτz | N(t)≥1(t) =
+∞∑
n=1

E{(−1)nGn[0 | Ft(Sz), . . . , Ft(Sz+n−1)] | Sz+n = t}

× fSz+n (t)P[N(t) = n].

The final step consists in noting that G0(x) = 1 for every x ∈R, and writing

fτz (t) =
+∞∑
n=0

E{(−1)nGn[0|Ft(Sz), . . . , Ft(Sz+n−1)]|Sz+n = t}f ∗(z+n)
�S (t)P[N(t) = n], (5)

which is equivalent to (1). �
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The stopping time τz may be interpreted as the first meeting time of the OSPP {N(t), t ≥ 0)}
and the lower randomized boundary defined by {M(t) − z, t ≥ 0}. This remark explains why
Theorem 1 is reminiscent of the results given in [17, Proposition 3.1] and [18, Theorem 3.1],
where the first-meeting problem of an OSPP with a lower deterministic boundary was handled.
The numerical evaluations of (1), to compute, for instance, the probability that the double-
spending attack succeeds within a fixed time period, looks challenging. A method based on the
truncation of the infinite series in (5) coupled with a numerical integration routine, in the same
vein as proposed in [4], can be put together. The next result shows how (1) may be simplified
when {N(t), t ≥ 0} is a mixed Poisson process.

Corollary 1. If {N(t), t ≥ 0} is a mixed Poisson process then the PDFof τz is given by

fτz (t) =E

[
z

z + N(t)
f ∗[N(t)+z]
�S (t)

]
for t ≥ 0. (6)

Proof. As {N(t), t ≥ 0} is a mixed Poisson process then we can apply Theorem 1 replacing
Ft(s) by s/t for s ≤ t. The function hn(t, z) defined in (2) becomes

hn(t, z) =E

{
1

tn
Gn(0 | Sz, . . . , Sn+z−1) | Sn+z = t

}
,

after applying identity (45). Conditioning upon the values of Sz, and applying successively the
identities (45) and (47) leads to

hn(t, z)

= 1

tn
E{E[Gn(0 | Sz, . . . , Sn+z−1) | Sz, Sn+z] | Sn+z = t}

= 1

tn
E

{
E

[
Gn

(
−Sz | 0, �S

z+1 . . . ,

n−1∑
k=1

�S
z+k

) ∣∣∣∣ n∑
k=1

�S
z+k = Sn+z − Sz

]
| Sn+z = t

}
= 1

tn
E{( − Sz)[ − Sz − (Sn+z − Sz)]

n−1 | Sn+z = t}

= (−1)n

tn
E[Sz(Sz+n)n−1 | Sn+z = t]

= (−1)n z

n + z
. (7)

Substituting (7) into (1) yields (6). �
The formula given in Corollary 1 is reminiscent of the first-hitting time theorem and also the

so-called Kendall identity (see, for instance, [3]), which gives the PDFof the first-meeting time
of a spectrally negative Lévy process with a lower linear boundary. The following example
leads to an expression for the PDFof τz that allows the evaluation of the probability of a
successful double-spending attack P[τz < ∞].

Example 1. Assume that the length of the chains {z + N(t), t ≥ 0} and {M(t), t ≥ 0} are
governed by two homogeneous Poisson processes of intensity λ and μ, respectively. The
interarrival times {�S

k, k ≥ 1} are i.i.d. exponential random variables with parameter μ and
associated PDF

f�S (x) = μe−μx for x ≥ 0.
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Applying Corollary 1 yields, after a couple of rearrangements, the following expression for the
PDFof τz,

fτz (t) =
+∞∑
n=0

(
z

z + n

)(
2n + z − 1

n

)(
μ

μ + λ

)n+z(
λ

μ + λ

)n (λ + μ)2n+zt2n+z−1e−t(μ+λ)

�(2n + z)
(8)

for t ≥ 0. Assuming that λ > μ and integrating (8) with respect to t yields the probability of
successful double-spending attack with

P[τz < ∞] =
+∞∑
n=0

(
z

z + n

)(
2n + z − 1

n

)(
μ

μ + λ

)n+z(
λ

μ + λ

)n

=
(

λ + μ

λ

)z

z
+∞∑
n=0

(
2n + z − 1

n

)(
1

z + n

)[
λμ

(μ + λ)2

]n+z

=
(

λ + μ

λ

)z

z
+∞∑
n=0

(
2n + z − 1

n

) ∫ λμ/(μ+λ)2

0
tn+z−1dt

=
(

λ + μ

λ

)z

z
+∞∑
n=0

(
2n + z − 1

n

) ∫ λμ/(μ+λ)2

0
tn+z−1dt

=
(

λ + μ

λ

)z

z
∫ λμ/(μ+λ)2

0
tz−1

+∞∑
n=0

(
2n + z − 1

n

)
tndt

=
(

λ + μ

λ

)z

z
∫ λμ/(μ+λ)2

0
tz−1 C(t)z−1

√
1 − 4t

dt, (9)

where

C(t) = 1 − √
1 − 4t

2t
, (10)

denotes the generating function of Catalan’s numbers; see, for instance, [1, Chapter 3]. Note
that the last equality follows from an exercise in the textbook of Aigner [1, Exercise 3.25].
Inserting (10) into (9) yields, after straightforward integration,

P[τz < +∞] =
(

μ

λ

)z

.

The result given above is consistent with Corollary 3; see Section 4.

3. The SFof the double-spending time

In this section, the length of the honest and the malicious chains are governed by two
independent OSPPs. The order statistic property satisfied by {M(t), t ≥ 0} implies that

[S1, . . . , Sm | M(t) = m]
D= (V∗

1:m, . . . , V∗
m:m),

where V∗
1:m, . . . , V∗

m:m denote the order statistics of a sample V∗
1 , . . . , V∗

m of m i.i.d.random
variables having a CDFF∗

t (s) for 0 ≤ s ≤ t. Note that, regarding {N(t), t ≥ 0}, the notation of
Section 2 is preserved. The following result gives a formula in terms of Appell polynomials
for the SFof τz = inf{t ≥ 0, M(t) = N(t) + z}.
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Theorem 2. If {N(t), t ≥ 0} and {M(t), t ≥ 0} are two OSPPs, then the SFof τz is given by

P[τz > t] =E(AM(t){1 | 0, . . . , 0, F∗
t [V1: N(t)], . . . , F∗

t [VM(t)+1−z:N(t)]} 1M(t)≤N(t)+z−1) (11)

for t ≥ 0, where An(1 | .) is an Appell polynomial such as defined in Appendix A.

Proof. If M(t) ≥ N(t) + z, at time t ≥ 0, then the double-spending attack already occured.
Consider the event {τz > t}, conditioning upon the possible values of the counting processes
leads to

{τz > t} =
+∞⋃
n=0

n+z−1⋃
m=0

{τz > t} ∩ {N(t) = n} ∩ {M(t) = m}.

The double-spending attack did not happen before time t ≥ 0 if M(t) is smaller or equal to
z − 1, irrespective of the value of N(t). If M(t) falls between z and N(t) + z then N(t) must have
jumped, at least once, and an investigation over the jump times of both point processes must
be conducted. The event {τz > t} is further rewritten as

{τz > t} =
z−1⋃
m=0

{M(t) = m} ∪
+∞⋃
n=1

n+z−1⋃
m=z

m⋂
k=z

{Sk > Tk+1−z} ∩ {N(t) = n} ∩ {M(t) = m}.

The law of total probability yields

P[τz > t]

= P[M(t) ≤ z − 1] +
+∞∑
n=1

n+z−1∑
m=z

P

[ m⋂
k=z

{Sk > Tk+1−z}
∣∣∣∣ N(t) = n, M(t) = m

]
× P[N(t) = n, M(t) = m]. (12)

Now, by the order statistic property, it holds that

[(T1, . . . , Tm+1−z) | N(t) = n]
D= (V1: n, . . . , Vm+1−z : n)

and
[(Sz, . . . , Sm) | M(t) = m]

D= (V∗
z : m, . . . , V∗

m : m).

Therefore, the conditional probability in (12) may be rewritten as

P

[ m⋂
k=z

{V∗
k:m > Vk+1−z:n}

]
= P

[ m⋂
k=z

{Uk : m > F∗
t (Vk+1−z:n)}

]
= Am[1 | 0, . . . , 0, F∗

t (V1:n), . . . , F∗
t (Vm+1−z:n)], (13)

where U1:m, . . . , Um:m are the order statistics of a sample of m i.i.d.uniform random variables
on (0, 1) and Am(. | .) denote the Appell polynomials defined in Appendix A. Inserting (13)
into (12) yields

P[τz > t] = P[M(t) ≤ z] +
+∞∑
n=1

n+z−1∑
m=z

Am[1 | 0, . . . , 0, F∗
t (V1:n), . . . , F∗

t (Vm+1−z:n)]

× P[N(t) = n, M(t) = m], (14)

which is the same as (11) after noting that Am(1 | 0, . . . , 0) = 1 for every m ∈N. �
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In Subsection 5.2 a Monte Carlo evaluation of the expectation of (11) is performed. This
type of estimator has been studied in [17, Section 6] and named Appell polynomial Monte
Carlo (APMC). The procedure entails a variance reduction in comparison to a crude Monte
Carlo evaluation. The following result shows how (11) may be simplified by setting z = 1,
when the OSPPs are similar in a sense detailed below.

Corollary 2. Assume that z = 1. If {N(t), t ≥ 0} and {M(t), t ≥ 0} are two OSPPs such that
Ft(s) = F∗

t (s) for every s ≤ t, then the SFof τz is given by

P[τz > t] =E

(
N(t) − M(t) + 1

N(t) + 1
1M(t)≤N(t)

)
for t ≥ 0. (15)

Proof. Let {N(t), t ≥ 0} and {M(t), t ≥ 0} be two OSPPs such that Ft(s) = F∗
t (s) for every

s ≤ t. Applying Theorem 2, with z = 1, yields

P[τz > t] =E(AM(t){1 | U1:N(t), . . . , UM(t):N(t)} 1M(t)≤N(t)) for t ≥ 0.

Recall the probabilistic interpretation of the Appell polynomial in Proposition 1 with

P[τz > t] =E(P[U∗
1:M(t) > U1:N(t), . . . , U∗

M(t):M(t) > UM(t):N(t)} 1M(t)≤N(t))

for t ≥ 0. Applying Bertrand’s ballot theorem, allowing for ties, yields (15). �
The case treated in the numerical illustrations considers that the length of the chains are

governed by two nonhomogeneous Poisson processes, which is consistent with the empirical
study conducted in [8], as explained in the following example.

Example 2. Bowden et al. [8] recommended modeling the arrival of blocks as a nonhomo-
geneous Poisson process with an intensity function designed to capture the evolution of the
global hashrate on one hand and the difficulty adjustment of the cryptopuzzles on the other
hand. The block number n is associated to a hash f (n), which is a number drawn randomly
from the lattice {0, 1, . . . , 2256 − 1}. Mining a block consists in computing the hash of the
block until it is lower than a target L. The number of trials required is a geometric random
variable Geom(L × 2−256) with associated PMF(1 − L × 2−256)k−1L × 2−256 for k ≥ 1. The
difficulty is adjusted by tuning the target L. Denote by {Tk , k ≥ 1} the sequence of arrival
times of the blocks. The difficulty is adjusted every 2016 blocks to maintain an average of 1
block mined every 10 minutes. Mining 2016 takes about 2 weeks. This leads to the definition
of a piecewise constant target function L(t) as

L(t) =
{

L0 for t ∈ (0, T2016),

Lk for t ∈ (T2016k, T2016(k+1)) and k > 0,

where the sequence of real numbers {Lk, k ≥ 0} is defined recursively as

Lk =
⎧⎨⎩2224 for k = 0,

Lk−1
T2016k − T2016(k−1)

1209600
for k > 0.

Note that the time unit is the second and 1 209 600 seconds correspond to 2 weeks. The number
of trials relates to the mining time through the (global) hashrate function H(t). The hashrate
function corresponds to the number of hashes computed per second by the entire network
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of miners. Hence, the instantaneous average mining time is given by 2256/H(t)L(t) and the
intensity function of the underlying nonhomogeneous Poisson process is given by

λ(t) = H(t)L(t)

2256
for t ≥ 0. (16)

There are two main drivers of the hashrate. First, the improvement of the mining machines
which enhances the computing power of the miners. Second, the number of miners in the
network. The miners enter and exit the network according to how profitable mining BTCsis
at the moment. This last factor depends on the price of the electricity and the value of
the BTCsat a given point in time. Information regarding the target L(t) can be collected
from the header of the block. The hashrate H(t) is retrieved from the knowledge of the
difficulty and the timestamp data. Bowden et al. [8] proposed an exponential function of the
form H(t) = eat+b arguing that the log hashrate is piecewisely linear over time. The values of
a and b follow from the linear interpolation within successive time periods. Once the hashrate
function has been determined, the length of the blockchain {N(t), t ≥ 0} is a nonhomogeneous
Poisson process with intensity function λ(t) defined in (16). Assuming that N(t) = n, the
arrival times T1, . . . , Tn are distributed as the order statistics of n i.i.d.random variables with
associated CDF

Ft(s) = �(s)

�(t)
for s ≤ t,

where �(t) = ∫ t
0 λ(s) ds. In the event of a double-spending attack, the difficulty of the puzzle

is the same for the honest miners and the colluding miners. The difference between the two
pools lies in their computing power and, thus, their hashrate function. We may assume that
both the honest and dishonest miners contribute to the global hashrate of the network in an
additive way. More specifically, let H1(t) = p × H(t) be the hashrate of the honest miners and
H2(t) = (1 − p) × H(t), where p ∈ (0, 1) represents the repartition of the computing resources
among the miners. Theorem 2 is applicable and (11) simplifies to

P[τz > t] =E(AM(t){1 | 0, . . . , 0, U1:N(t), . . . , UM(t)+1−z:N(t)} 1M(t)≤N(t)+z−1), (17)

because F∗
t (s) = Ft(s) for every s ≤ t. An evaluation via Monte Carlo simulation is possible

by generating values for M(t), N(t), and U1:N(t), . . . , UM(t)+1−z:N(t). Appell polynomials do
not usually admit a closed-form expression but can be computed recursively via the relations
provided in Appendix A; see Proposition 2.

Note that the evaluation of (11) may be achieved through the truncation of the infinite series
in (14) followed by numerical integration, in the same vein as performed in [11]. Another
solution would be to resort to a fully recursive evaluation as in [22].

4. The probability of a successful double-spending attack

In this section we study the probability of a successful double-spending attack, P[τz < +∞],
when the length of the chains {z + N(t), t ≥ 0} and {M(t), t ≥ 0} are modeled by independent
renewal processes generated by their respective sequence of i.i.d.interarival times denoted by
{�T

k , k ≥ 1} and {�S
k, k ≥ 1}. Assume that

(A1) E(�S) >E(�T );

(A2) the equation

log E[eθ(�T−�S)] = 0 (18)

has a unique nonnegative solution denoted by γ , refered to as the adjustment coefficient.
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The stopping time τz = inf{t ≥ 0; M(t) = z + N(t)} coincides with the ruin time τz = inf{t ≥
0; R(t) = 0} associated to the risk process

R(t) = z + N(t) − M(t), t ≥ 0. (19)

Define the claim surplus process as

S(t) = M(t) − N(t), t ≥ 0. (20)

In risk theory, processes such as (19) model the evolution of the net worth of an insurance
company over time. Here, the insurance company holds an initial capital of amount z, its
premium income is governed by {N(t), t ≥ 0} while {M(t), t ≥ 0} corresponds to its liability
at time t ≥ 0. Note that risk theory terminology is being used only to improve the presentation,
I am not claiming that one should model the evolution of the financial reserves of any nonlife
insurance company via (19). When studying the distribution of the ruin time is problematic,
a simple trick consists in passing to a dual risk model. This approach is rather standard (see
the references given in the introduction). For the sake of clarity, the idea is recalled hereafter
and illustrated by Figure 2. In Figure 2(a) we display the ruin problem in model (19). The
initial ruin problem is converted into another equivalent ruin problem. Increment the value of
{M(t), t ≥ 0} by one unit and consider the risk model

R̃(t) = z + N(t) − [M(t) + 1], t ≥ 0.

Further define the ruin time

τ̃z = inf{t ≥ 0; z + N(t) < [M(t) + 1]},
which corresponds to the first-crossing time of {M(t) + 1, t ≥ 0} through the upper boundary
{N(t) + z, t ≥ 0}; see Figure 2(b). It holds that

τz
a.s.= τ̃z,

where ‘
a.s.= ’ stands for equality almost sure as it is true for every trajectory. Then rotate

Figure 2(b) by 90◦ anticlockwise to obtain Figure 2(c). Shifting the origin from (0, 0) to
(z − 1, 0) finally leads to Figure 2(d). The ruin problem displayed in Figure 2(d) concerns
a discrete-time risk model denoted by {R∗(n), n ≥ 1} and defined as

R∗(n) = Sz−1 +
n∑

k=1

(�S
k+z−1 − �T

k ) for n ∈N. (21)

The initial capital is Sz−1, the sequence {�S
k+z−1, k ≥ 1} models the premium collected at each

time period, and the sequence {�T
k , k ≥ 1} represents the total claim amounts incurred during

each time period. The conventions S0 = 0 and T0 = 0 are adopted. The claim surplus process
{S∗(n), n ≥ 1} is given by

S∗(n) =
n∑

k=1

(�T
k − �S

k+z−1). (22)

The ruin time is defined as σSz−1 = inf{n ∈N; R∗(n) ≤ 0} and relates to τz = inf{t ≥ 0; R(t) = 0}
as

τz
a.s.= τ̃z

a.s.= SσSz−1 +z−1,
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FIGURE 2: Boundary crossing problems in the various risk models.

which implies that

P[τz < ∞] = P[σSz−1 < ∞]. (23)

Again the one-to-one correpondence between the trajectories leading to ruin in the multiple
risk models entail the equality almost surely. The following result provides, inter alia, an upper
bound for the probability of a successful double-spending attack.

Theorem 3. If {N(t), t ≥ 0} and {M(t), t ≥ 0} are two independent renewal processes such
that (A1) and (A2) hold then

P[τz < ∞] = [E(e−γ�S
)]z−1

E[eγ ξ (Sz−1) | τz < ∞]
, (24)
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where ξ (Sz−1) = S(σSz−1 ) − Sz−1 denotes the overshoot, immediately after ruin, in model (21).
The following Cramér–Lundberg upper bound holds:

P[τz < ∞] ≤ [E(e−γ�S
)]z−1. (25)

Proof. The claim surplus process {S∗(n), n ≥ 1} in (22) is a random walk. Assumption (A2)
implies that the process {eγ S∗(n), n ≥ 1} is a martingale as a consequence of [2, Theorem 1.1].
Note also that S∗(n)

a.s→ −∞, where ‘
a.s→’ stands for convergence almost surely, follows from

assumption (A1) and the law of large numbers. Let the initial reserves Sz−1 = s ≥ 0 be fixed in
(21). The application of [2, Proposition 3.1] allows us to rewrite the ultimate ruin probability
as

P[σs < ∞] = e−γ s

E[eγ ξ (s) | σs < ∞]
,

where ξ (u) = S∗(σs) − s denotes the overshoot given that ruin occurred in model (21). Thanks
to the connection (23), by conditioning on the values of Sz−1, it holds that

P[τz < ∞] = E[e−γ Sz−1 ]

E[eγ ξ (Sz−1) | τz < ∞]
= E[e−γ�S

]z−1

E[eγ ξ (Sz−1) | τz < ∞]
.

The upper bound (25) follows from noting that E[eγ ξ (Sz−1) | σs < ∞] > 1. �
The next result specifies the expression for the probability P[τz < ∞] in the case where

{N(t), t ≥ 0} is a Poisson process.

Corollary 3. If {N(t), t ≥ 0} is a homogeneous Poisson process of intensity λ and {M(t), t ≥
0} is a renewal process, independent from {N(t), t ≥ 0}, such that (A1) and (A2) holds then

P[τz < ∞] = λ − γ

λ
E[e−γ�S

]z−1. (26)

If {M(t), t ≥ 0} is also a homogeneous Poisson process of intensity μ < λ then

P[τz < ∞] =
(

μ

λ

)z

. (27)

Proof. As {N(t), t ≥ 0} is a homogenous Poisson process, it is a renewal process and (24)
holds. The sequence of interarrival times {�T

k , k ≥ 1} is formed by i.i.d.exponential random
variables with parameter λ, which implies that the overshoot ξ (Sz−1) is also exponentially
distributed with parameter λ by virtue of the lack of memory of the exponential distribution. It
follows that

E[eγ ξ (Sz−1) | τz < ∞] = λ

λ − γ
.

Substituting in (24) yields (26). Now, assume that {M(t), t ≥ 0} is also a Poisson process with
intensity μ < λ. The sequence of interarrival times {�S

k, k ≥ 1} is made of i.i.d.exponential
random variables with parameter μ. Equation (18) is equivalent to

log

(
λμ

(λ − θ )(μ + θ )

)
= 0

and admits γ = λ − μ as only nonnegative solution. Substituting γ = λ − μ into (26) yields
(27). �
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This result allows confirmation of Corollary 1; see Example 1. Note that the probability of a
successful double-spending attack when the length of the chains are two independent Poisson
processes may be retrieved without using the duality argument as shown in the following
remark.

Remark 1. Assume that {N(t), t ≥ 0} and {M(t), t ≥ 0} are two independent homogeneous
Poisson processes with respective intensity λ and μ such that λ > μ. The claim surplus process,
already defined in (20) as

S(t) = M(t) − N(t) for t ≥ 0,

is the difference between two independent Poisson processes and, thus, a Lévy process.
Theorem 1.2 of [2] then implies that the process defined by

eθS(t)−tκ(θ) for t ≥ 0,

where κ(θ ) = log E[θS(1)], is a martingale. The equation κ(θ ) = 0 is equivalent to

μeθ + λe−θ − (λ + μ) = 0

and admits a unique nonnegative solution γ = log (λ/μ). Consequently, the process {eγ S(t),

t ≥ 0} is a martingale. Moreover, the condition λ > μ entails S(t)
a.s.→ −∞. Applying [2,

Proposition 3.1] yields

P[τz < ∞] = e−γ z

E[eγ ξ (z) | τz < ∞]
, (28)

where ξ (z) = S(τz) − z denotes the overshoot after ruin occurred in model (19). In the case
considered here there is no overshoot as S(τz) = z. Substituting γ = log (λ/μ) into (28) yields
(26).

5. Numerical illustrations

The numerical results presented here are based on the data collected by Bowden [7] and the
analysis conducted in [8]. In Subsection 5.1 data is used to fit the interblock time distribution
within the public chain. The lack of data regarding the growth of the malicious chain is
circumvented by assuming that the interblock times in the malicious chain are defined as a
transformation of the interblock times in the public chain. This allows us to illustrate the results
given in Sections 2 and 4. Subsection 5.2 focuses on the case where the lengths of the chains are
governed by nonhomogeneous Poisson processes which seems to be the most suitable model
according to Bowden et al. [8]. It allows us to illustrate the results derived in Section 3.

5.1. Length of the chains as renewal process

In this subsection the length of the chains {N(t), t ≥ 0} and {M(t), t ≥ 0} are assumed to be
governed by renewal processes. The first task consists in studying the fit of the interblock
time distribution to the data provided in [7]. In Figure 3 we display the interblock times
chronologically. The distribution of the interblock times of the first few blocks presents a few
spikes (to the magnitude of the day) before reaching stationarity around the 200 000th block;
see Figure 3(a). If we limit our analysis to the latest blocks, starting, for instance, from the
400 000th, then the data admits fewer outliers, with a maximum of 2 hours; see Figure 3(b).
The inference of the block arrival is therefore based on the interarrival times starting from
the 400 000th block onward which still represents 96 628 data points. The empirical mean is
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equal to 9.57 minutes while the standard deviation is significantly lower than the overall one
with 9.56 minutes. In Figure 4 we show the histogram of the interblock times. The PDFof the
exponential distribution Exp(̂λ), where λ̂ = 1/9.57 corresponds to the method of the moment
estimator, matches reasonably well the histogram. In Figure 4(b) the empirical quantiles are
plotted against the quantiles of the exponential distribution Exp(̂λ). The points overlap the
diagonal y = x, which indicates a superb fit. This analysis leads us to model the number of
blocks in the honest chain {N(t) , t ≥ 0} by a homogeneous Poisson process of intensity λ̂.

Regarding the block arrival in the malicious chain, no data is available. The only a priori
information is that the interblock time should be larger to account for the unbalanced repartition
of the computing power in favour of the honest miners. The growth of {M(t), t ≥ 0} should be
slower than the growth of {N(t), t ≥ 0}. In the sequel, two definitions of the interarrival times
{�S

k, k ≥ 1} that generate {M(t), t ≥ 0} are compared in terms of the risk of a double-spending
attack.

1. Define

�S D= �T

r
,
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where r > 1. The interarrival times {�S
k, k ≥ 1} are i.i.d.exponential random variables

and the process {M(t), t ≥ 0} is a homogeneous Poisson process with intensity λ̂/r.
Corollary 3 applies and the probability of a successful double-spending attack is given
by

P[τz < ∞] =
(

1

r

)z

. (29)

The PDFof the double-spending time fτz follows from applying Corollary 1 and is given
in (8) after substituting λ = λ̂ and μ = λ̂/r.

2. Define
�S D= �T

1 + · · · + �T
r ,

where r > 1 is integer valued. The interarrival times {�S
k, k ≥ 1} are i.i.d.gamma random

variables Gam(r, λ) with associated PDF

f�S (t) = e−λttr−1λt

�(r)
for t ≥ 0.

The process {M(t), t ≥ 0} is a renewal process and Corollary 3 applies. The probability
of a successful double-spending attack is given by

P[τz < ∞] = λ − γ

λ

[
λ

λ + γ

]r(z−1)

, (30)

where γ is the only nonnegative solution to

log

[
λr

(λ − θ )(λ + θ )r−1

]
= 0. (31)

Note that the root in (31) is derived numerically using the uniroot built-in function in
R. The PDFfτz of the double-spending time follows from the application of Corollary 1
and reduces, after a couple of rearrangements, to

fτz (t) =
+∞∑
n=0

(
z

z + n

)
�[r(n + z) + n]

�(n + 1)�[r(n + z)]2r(n+z)+n

(2λ)r(n+z)+ntr(n+z)+n−1e−2λt

�[r(n + z) + n]
(32)

for t ≥ 0.

In Table 1 we report the values of (29) and (30) for r = 2, 3, 4, 5 and z = 1, 2, 3, 4, 5. Although
definitions 1 and 2 both mean that the building of blocks is r times slower on average in
the malicious chain, the probability of a successful double-spending attack is much smaller
when {M(t), t ≥ 0} is a renewal process with gamma-distributed interarrival times. It shows
the influence of the shape of the distribution of the interarrival times on the likelihood of a
double-spending attack. In Figure 5 we display the PDFand CDFof the double-spending time

τ1 = inf{t ≥ 0;N(t) + 1 = M(t)}
for r = 2 along with the reference horizontal lines y = P[τ1 < ∞]. Note that the infinite series
in (8) and (32) are truncated to the order K = 50. In both cases, the merchant who is waiting for
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TABLE 1: Probability of a successful double-spending attempt

�S ∼ Exp(λ/r) �S ∼ Gamma(r, λ)
z

r = 2 r = 3 r = 4 r = 5 r = 2 r = 3 r = 4 r = 5

1 0.5000 0.3333 0.2500 0.2000 0.3819 0.1608 0.0724 0.0342
2 0.2500 0.1111 0.0625 0.0400 0.1459 0.0258 0.0052 0.0012
3 0.1250 0.0370 0.0156 0.0080 0.0557 0.0042 0.0004 0.0000
4 0.0625 0.0123 0.0039 0.0016 0.0213 0.0007 0.0000 0.0000
5 0.0312 0.0041 0.0010 0.0003 0.0081 0.0001 0.0000 0.0000
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FIGURE 5: PDFand CDFof the double-spending time τ1: {M(t), t ≥ 0} is a homogeneous Poisson process
with intensity λ̂/2 (solid line), {M(t), t ≥ 0} is a renewal process with gamma Gam(r = 2, λ̂) distributed

interarrival times (dash–dot line).

two hours is not taking much risk as the CDFreaches the barrier P[τ1 < ∞]. Namely, if P[τ1 <

∞] − P[τ1 < t] = ε, for some t ≥ 0 and ε > 0, then the probability of the double-spending ever
being successful, conditionning upon {τz > t}, may be written as

P[τz = +∞ | τz > t] = P[τz = +∞]

P[τz = +∞] + ε
.

This probability becomes close to 1 as we let ε tend to 0. The R code is accessible online at
[16] for the sake of reproducibility.

5.2. Length of the chains as a nonhomogeneous Poisson process

In this subsection the length of the chains {z + N(t), t ≥ 0} and {M(t), t ≥ 0} are assumed to
be governed by two nonhomogeneous Poisson processes. The intensity function of {N(t), t ≥
0} is given by

λ(t) = pH(t)L(t)

2256
,

where H(t) denotes the global hashrate function, L(t) is the target function, and p ∈ (0, 1)
reflects the repartition of the computing power between honest and dishonest miners. We
refer the reader to Example 2 for a definition of these quantities. The intensity function of
{M(t), t ≥ 0} is given by

λ∗(t) = (1 − p)H(t)L∗(t)

2256
.
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The global hashrate is assumed to admit a parametric form with H(t) = eat+b, where the values
of a and b are selected from [8, Table 1]. The difficulty is assumed to be the same for all the
miners so that L∗(t) = L(t). More specifically, let us consider a time span during which the
difficulty is contant, equal to L say. This is true for time periods that are about two weeks
long as it corresponds to the average time to discover 2016 blocks. The intensity function λ(t)
associated to {N(t), t ≥ 0} becomes

λ(t) = peat+bL

2256
,

and may be integrated as

�(t) =
∫ t

0
λ(s) ds = pebL

2256a
(eat − 1). (33)

Note that we equivalently have

λ∗(t) = (1 − p)eat+bL

2256

and

�∗(t) =
∫ t

0
λ∗(s) ds = (1 − p)ebL

2256a
(eat − 1). (34)

In view of these assumptions, the conditional distribution of the block arrival times given
the length of the chain is the same in the honest and the malicious chains. Namely, it
holds that Ft(s) = F∗

t (s) and the probability P[τz > t] of the double-spending attack being
unsuccessful before t may be estimated via (17). The practical evaluation is handled via Monte
Carlo simulations; note that the numerical value of Appell polynomials of any order may be
computed recursively using the relations given in Appendix A (see Proposition 2). Let the time
unit be one second, and consider a two week time period, which corresponds to 1 209 600
seconds. Let us set the parameters of the hashrate function to a = −9.44 × 10−9 and b = 27.1
according to the first row of Table 1 of [8]. The difficulty is assumed to be constant, equal to

L = 2016 × 2256a

eb(ea∗1209600 − 1)
,

in order to have on average 2016 blocks discovered by the end of the time horizon (i.e.two
weeks). In Figure 6 we display the integrated intensity functions (33) and (34) over time. The
parametrization entails a linear growth (on average) of the chains which makes our example
close to the homogeneous Poisson arrival situation. Equation (11) is difficult to use for risk
management purposes without the knowledge of the mass of probability associated to τz = ∞.
This issue is addressed by assuming that an attacker gives up his double-spending attempt
if not completed within three hours (10 800 seconds). It makes little sense in practice for an
attacker to carry on an attack for two weeks. We then investigate the probability of a successful
double-spending attack attempted every three hours over the course of two weeks. Namely,
denote by

tk = k × 10800 for 0 ≤ k < 112,

the sequence of time steps and by

pz,k = P[τz,k < 10800] (35)

https://doi.org/10.1017/apr.2019.18 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.18


462 P.-O. GOFFARD

2000

p = 0.6

p = 0.8

p = 0.7

p = 0.9

1500

1000

0

0 200000

Time (in seconds)Time (in seconds)

Time (in seconds) Time (in seconds)

400000 600000 800000 1000000 12000000 200000 400000 600000 800000 1000000 1200000

0 200000 400000 600000 800000 1000000 1200000 0 200000 400000 600000 800000 1000000 1200000

500

2000

1500

1000

0

500

2000

1500

1000

0

500

2000

In
te

ns
ity

 f
un

ct
io

n

In
te

ns
ity

 f
un

ct
io

n
In

te
ns

ity
 f

un
ct

io
n

In
te

ns
ity

 f
un

ct
io

n
1500

1000

0

500

FIGURE 6: Integrated intensity functions over time: �(t) associated to {N(t), t ≥ 0} (solid line), �∗(t)
associated to {M(t), t ≥ 0} (dash–dot line).
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FIGURE 7: Evolution of the probability of performing a successful double-spending attack in the course
of two weeks for various values of p: p = 0.6 (solid line), p = 0.7 (dashed line), p = 0.8 (dotted line),

p = 0.9 (dash–dot line).

the probabilities of interest, where

τz,k = inf{t ∈ (tk, tk+1);M(t) = z + N(t) | M(tk) = N(tk) = 0}.
Let us assume that the honest chain is one block ahead, which in turn allows us to use

(15) and alleviate the computational burden associated to the recursive evaluation of Appell
polynomials. In Figure 7 we display the value of the probabilities (35) over the two weeks
of operations for various repartition p ∈ {0.6, 0.7, 0.8, 0.9} of the hash power. Note that the
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evaluation is based on 10 000 trajectories of {N(t), t ≥ 0} and {M(t), t ≥ 0}. The probabilities
pz,k are constant over time, which was expected as the arrival of blocks is almost time
homogenous due to the parametrization of the global hashrate function. The source code
is available online [16] and the reader is invited to experiment the effect of modifying the
parameters a and b on the double-spending probabilities.

6. Concluding remarks

In this paper, the model, initially proposed by Nakamoto [27], to comprehend the double-
spending issue is refined. Assuming that the lengths of the competing blockchains are governed
by counting processes leads to interesting boundary crossing problems. This refinement offers
more flexibility to reflect accurately the block discovery frequency as well as the distribution of
the computing power among honest and dishonest miners through the calibration of the arrival
times that generate the aforementionned counting pocesses. Theorem 3 is useful to advise the
merchant on how many subsequent blocks should be added to the chain before shipping the
goods. Theorems 1 and 2 enable us to determine the time at which the double-spending attack
is most likely to occur. This is helpful to provide merchants with guidelines on how long they
should wait before shipping goods, which compliments the advice on the number of blocks.

Throughout this paper, the lag z > 0 between the honest and malicious chains is assumed
to be deterministic. In practice, because the length of the dishonest chain is unknown to the
vendor at the time of the shipping, the delay should be assumed to be stochastic. From a
mathematical point of view, the question is when do we initialize the counting processes
{N(t), t ≥ 0} and {M(t), t ≥ 0}? If the starting time is the time at which the goods are shipped
then Z and the counting processes are independent. Thus, we can apply the law of total
probability together with the formulae derived above. We have an atom at 0 with probability
mass P[Z ≤ 0]. If we initialize the counting processes at the time of issuance of the transactions
then Z and the counting processes are linked. The vendor is asked to wait for say k ∈N blocks
to be added to the blockchain before shipping the goods. The honest chain is then ahead by
Z = k − M(Tk), where Tk is the arrival time of the kth block in the honest chain. The time
interval [0, Tk] is a burn-in period during which it does not matter which chain is leading. If
{N(t), t ≥ 0} and {M(t), t ≥ 0} are Poisson processes then Tk has a gamma distribution, the
stopped processes at Tk are again Poisson processes, and M(Tk) is governed by a negative
binomial distribution which is consistent with Rosenfeld’s findings [32]. The general case will
be studied in upcoming research.

The success of the blockchain method has resulted in bitcoin becoming increasingly popular
and inspiring other electronic payment methods. It is worth mentionning that the results derived
in this paper may be relevant to understanding other systems where similar blockchain policies
are used.

Selfish mining, described, for instance, in [12], [14], and [33], is another type of miners’
misconduct. Nowadays, it is no longer feasible to mine BTCs in isolation. Empirical evidence
shows that BTC miners behave strategically by gathering in pools. All members contribute to
the solution of each cryptopuzzle, and share the rewards proportionally to their contribution.
Selfish mining is a strategy that can be used by a minority pool to obtain more revenue. The
key idea is for the pool of selfish miners to keep its discovered blocks private while honest
nodes continue to mine on the public chain. Assuming that the private chain has the lead over
the public chain, when the public branch approaches the selfish miners’ chain, the private
chain is released publicly. It results in a waste of resources for all the miners but Eyal and
Siren [12] showed that the revenue of the selfish miners goes beyond the revenue expected
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when following the usual protocol given their share of the total computing power. The results
presented here may be relevant in the context of a selfish mining attack as it boils down again
to the race between two counting processes.

Appendix A. Appell and A-G polynomials

Appell and A-G polynomials are well known in mathematics. They can be used to solve
various problems in statistics and applied probability. A short presentation is provided below.
We refer the reader to, e.g. [25] for a review with applications in risk modeling. Let U =
{ui, i ≥ 1} be a sequence of real numbers, nondecreasing in our context. To U is attached a
(unique) family of Appell polynomials of degree n in x, {An(x | U), n ≥ 0}, defined as follows.
Starting with A0(x | U) = 1, the An(x | U) satisfy the differential equations

A(1)
n (x | U) = nAn−1(x | U), (36)

with the border conditions
An(un | U) = 0, n ≥ 1. (37)

So, each An, n ≥ 1, has the integral representation

An(x | U) = n!
∫ x

un

[ ∫ yn

un−1

dyn−1 · · ·
∫ y1

u1

dy2

]
dyn. (38)

In parallel, to U is attached a (unique) family of A-G polynomials of degree n in x, {Gn(x | U),
n ≥ 0}. Starting with G0(x | U) = 1, the Gn(x | U) satisfy the differential equations

G(1)
n (x | U) = nGn−1(x | EU), (39)

where EU is the shifted family {ui+1, i ≥ 1}, with the border conditions

Gn(u1 | U) = 0, n ≥ 1. (40)

So, each Gn, n ≥ 1, has the integral representation

Gn(x | U) = n!
∫ x

u1

[ ∫ y1

u2

dy2 · · ·
∫ yn−1

un

dyn

]
dy1. (41)

Note that both polynomial families are sometimes defined without the factor n! in (38) and
(41). Of course, these polynomials are related through the identity

Gn(x | u1, . . . , un) = An(x | un, . . . , u1), n ≥ 1.

However, the two families (i.e. considered for all n ≥ 0) are distinct and enjoy quite different
properties. From (38) and (41), we may see that the polynomials An and Gn, n ≥ 1, can be
interpreted in terms of the joint distribution of the order statistics (U1:n, . . . , Un:n) of a sample
of n independent uniform random variables on (0, 1).

Proposition 1. For 0 ≤ u1 ≤ · · · ≤ un ≤ x ≤ 1,

P[U1:n ≥ u1, . . . , Un:n ≥ un and Un:n ≤ x] = An(x | u1, . . . , un),

while for 0 ≤ x ≤ u1 ≤ · · · ≤ un ≤ 1,

P[U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = ( − 1)n Gn(x | u1, . . . , un).
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These representations play a key role in the first-meeting problems discussed in the paper.
Numerically, it will be necessary to evaluate some special values of the polynomials. To this
end, it is convenient to use the following recursive relations.

Proposition 2. We have

An(x | U) =
n∑

k=0

(
n

k

)
An−k(0 | U)xk, n ≥ 1, (42)

where the An(0 | U) are obtained recursively from

An(0 | U) = −
n∑

k=1

(
n

k

)
An−k(0 | U)uk

n, n ≥ 1. (43)

The A-G polynomials are computed through the recursion

Gn(x | U) = xn −
n−1∑
k=0

(
n

k

)
un−k

k+1Gk(x | U), n ≥ 1. (44)

Equations (42) and (43) follow from Taylor’s expansion of An, using also (36) and (37).
Equation (44) follows from an Abelian expansion of xn based on (39) and (40). Details are
omitted here. Of course, the computing time increases with the degree of the polynomials.
Note that

An(x | a + bU) = bnAn

(
x − a

b

∣∣∣∣ U

)
, n ≥ 1, (45)

with the same identity for Gn. An important particular case in our study is when the parameters
in U are random and correspond to partial sums of exchangeable random variables.

Proposition 3. Let {Xn, n ≥ 1} be a sequence of exchangeable random variables of partial
sums Sn = ∑n

k=1 Xk with S0 = 0. Then, for n ≥ 1,

E[An(x | S1, . . . , Sn) | Sn] = xn−1(x − Sn), (46)

E[Gn(x | S0, . . . , Sn−1) | Sn] = x(x − Sn)n−1. (47)

Proof. The identity (46) was derived in Proposition A.1 of [23], while the identity (47)
follows from [18]. �
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