
Robotica (2007) volume 25, pp. 43–61. © 2006 Cambridge University Press
doi:10.1017/S0263574706002980 Printed in the United Kingdom

Differential and inverse kinematics of robot devices using
conformal geometric algebra
Eduardo Bayro-Corrochano∗ and Julio Zamora-Esquivel
Electrical Engineering and Computer Science Department, GEOVIS Laborator, Centro de Investigación y de Estudios
Avanzados, Guadalajara, Jalisco 44550, Mexico
E-mail: jzamora@gdl.cinvestav.mx

(Received in Final Form: June 12, 2006, First published online: August 29, 2006)

SUMMARY
In this paper, the authors use the conformal geometric algebra
in robotics. This paper computes the inverse kinematics of a
robot arm and the differential kinematics of a pan–tilt unit
using a language of spheres showing how we can simplify
the complexity of the computations.

This work introduces a new geometric Jacobian in terms of
bivectors, which is by far more effective in its representation
as the standard Jacobian because its derivation is done in
terms of the projections of the involved points onto the
line axes. Furthermore, unlike the standard formulation, our
Jacobian can be used for any kind of robot joints.

In this framework, we deal with various tasks of three-
dimensional (3D) object manipulation, which is assisted by
stereo-vision. All these computations are carried out using
real images captured by a robot binocular head, and the
manipulation is done by a five degree of freedom (DOF) robot
arm mounted on a mobile robot. In addition to this, we show
a very interesting application of the geometric Jacobian for
differential control of the binocular head. We strongly believe
that the framework of conformal geometric algebra can
generally be of great advantage for visually guided robotics.

KEYWORDS: Computer vision; Clifford (geometric)
algebra; Projective and affine geometry; Spheres projective
geometry; Incidence algebra; 3D rigid motion; Directed
distance; Inverse kinematics; Differential geometry; Robot
3D object manipulation; Stereo systems; Smooth control of
binocular heads; Visually guided robotics.

1. Introduction
In the literature after the sixties, we find a variety
of mathematical systems used for solving problems in
general robotics, which we will review briefly. Denavit
and Hartenberg10 introduced the widely used kinematic
notation for lower pair mechanisms based on matrix algebra,
Walker24 used the epsilon algebra for the treatment of
the manipulator kinematics, Gu and Luh12 utilized dual-
matrices for computing the Jacobians useful for kinematics
and robot dynamics, and Pennock and Yang20 derived
closed-form solutions for the inverse kinematics problem
for various types of robot manipulators employing dual-

* Corresponding author. edb@gdl.cinvestav.mx

matrices. Similarly, McCarthy19 used the dual form of the
Jacobian for the analysis of multilinks. Funda and Paul11

gave a detailed computational analysis of the use of screw
transformations in robotics. They explained that since the
dual quaternion can represent the rotation and translation
transformations simultaneously, it is more effective than the
unit quaternion formalism for dealing with the kinematics
of robot chains. Many practitioners use a quaternion for
3D rigid transformations for representing the 3D rotation
and simply a 3D translation vector. It can easily be shown
that this kind of representation is a nonlinear function that
leads to nonlinear algorithms for a sequential estimation
of rotation and translation. Kim and Kumar17 computed a
closed-form solution of the inverse kinematics of a six DOF
robot manipulator in terms of line transformations using
dual quaternions. Aspragathos and Dimitros2 confirmed once
again that the use of dual quaternion and Lie algebra in
robotics were overseen so far, and that their use helps to
reduce the number of representation parameters.

In the field of computer vision, although in a different
context as robotics, we can find similar representation
formalisms in various types of applications like motion
estimation, pose and 3D structure recognition, tracking
and visual servoying. In most of the methods, the rotation
and translation transformations were represented separately
using either matrices or quaternions (see the survey of
Sabata and Aggarwal21). The disadvantage of separately
representing these components is that for solving the
problems, nonlinear methods are often required. In the case
of the so-called hand–eye calibration problem, for the
computation of the rotation axis and angle, several authors
considered22,23 the use of quaternions9 and a canonical matrix
representation.18 Chen,8 using the matrix screw theory,
found as key invariant of the screw between the two 3D
axes that the rotation angle and the translation along the
screw axis remained constant. For solving the hand–eye
calibration in a linear manner, Bayro-Corrochano et al.4

used a Clifford algebra of lines called the motor algebra.
In other applications, the authors successfully applied dual
quaternions; e.g., Walker et al.24 for estimating the 3D
location, and twists and exponential maps like Bregler and
Malik7 for tracking the kinematic chains of moving objects
or persons. For solving the hand–eye problem for visual
line tracking, Andreff1 used a matrix approach for a sort
of algebra of screws.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

44 Robot devices

We can see in all these mathematical approaches in the field
of robotics, computer vision, and visual-guided robotics that
basically the authors have taken into account two key aspects:
the obvious use of dual numbers and the representation
of the screw transformations in terms of matrices or dual
quaternions. In this regard, in ref. 5 we were concerned with
the extension of the representation capabilities of the dual
numbers, particularly using the motor algebra beside the
point and line representation we are able to model the motion
of planes. This widened up the possibilities, for example, by
the modeling of the motion of the basic geometric objects
referred to frames attached to the robot manipulator, which
according to circumstances greatly simplify the complexity
of the problem preserving the underlying geometry. In this
past paper after giving the model of prismatic and revolute
transformations of a robot manipulator using points, lines,
and planes, we solved the direct and inverse kinematics of
robot manipulators. Using the motion of points, lines, and
planes in terms of motors, we present constraints for a simple
grasping task. This paper clearly shows the advantages of the
use of representations in motor algebra for solving problems
related to robot manipulators.

However, we are still interested in offering to the
community, a much more general mathematical framework
than the motor algebra. That is why we later introduced6

the conformal geometric algebra as a flexible language for
treating a variety of problems like scene understanding,
robot navigation, visual servoying, haptics, and robot object
manipulation. Unlike the standard projective geometry used
routinely in computer vision and visual servoying, in
conformal geometric algebra, by assuming that the camera
is calibrated, we can deal simultaneously with incidence
algebra operations (meet and join) and conformal transforma-
tions represented effectively using spinors. In this regard, this
framework appears promising for dealing with kinematics,
dynamics, and projective geometry problems without the
need to abandon the mathematical system (unlike the current
approaches). We will show that this mathematical framework
keeps our intuition and insight of the geometry of the problem
at hand, making the development of the algorithms easy in
a truly geometrical sense. It also helps us to considerably
reduce the computational burden of the problems.

In this paper, we compute the inverse kinematics of a
robot arm and a robot pan–tilt unit using a language of
spheres, showing how the complexity of the computations
can be simplified. This work is an extension of our previous
approach using the motor algebra for computing the inverse
kinematics in terms of points, lines, and planes,5 and other
works using points and lines17 or dual orthogonal matrices.19

One important contribution of this work is the introduction
of a new geometric Jacobian in terms of bivectors, which
is by far more effective in its representation as the standard
Jacobian due to its easy derivation that is done in terms of the
projections of the involved points onto the line axes of the
robot joints. Unlike the standard formulation, our Jacobian
is more general, because it can be used for any kind of
robot joints. In this framework, we also deal with the 3D
object manipulation, which is assisted by stereo-vision. We
consider the following tasks: touching a point, following the
interaction of two planes, following a spherical path, and

grasping an object. All these computations are carried out
using real images captured by a robot binocular head, and
the manipulation is done by a five DOF robot arm mounted
on a mobile robot.

The organization of the paper is as follows: Section 2
presents a brief introduction about conformal geometric
algebra. Section 3 describes the n-dimensional affine
plane. Section 4 explains the transformations in conformal
geometric algebra required for this paper. Section 5 presents
the differential kinematics and the derivation of geometric
Jacobian. Section 6 shows the computation of the inverse
kinematics of robot devices using conformal geometry.
Section 7 explains the visual Jacobian useful for closing the
loop between the visual and the mechanical worlds. Section 8
shows the geometric techniques for the following up of
geometric visual primitives, and Section 9 computes the
differential kinematic control of a pan–tilt unit. Section 10
includes the geometric strategies for object manipulation.
Section 11 provides conclusions.

In this paper, vectors in a 3D Euclidean space have been
represented in bold and lower case. Vectors of geometric
algebra have been written using lower-case letters (slant and
bold except for basis multivectors), and slant and upper case
have been used to denote multivectors in general.

2. Geometric Algebra
In general, a geometric algebra Gn is an n-dimensional
vector space V n over the reals. We also denote with Gp,q,r

a geometric algebra over V p,q,r , where p, q, r denote the
signature p, q, r of the algebra. If p �= 0 and q = r = 0,
the metric is Euclidean Gn; if just r = 0, the metric is
pseudoeuclidean Gp,q ; if none of them are zero, the metric is
degenerate. See refs. 6 and 15 for a more detailed introduction
to the conformal geometric algebra.

We have used the letter e to denote the vector basis ei . In a
geometric algebra Gp,q,r , the geometric product of two basis
vectors is defined as

eiej =

⎧⎪⎨⎪⎩
1 for i = j ∈ 1, . . . , p

−1 for i = j ∈ p + 1, . . . , p + q
0 for i = j ∈ p + q + 1, . . . , p + q + r

ei ∧ ej for i �= j.
(1)

2.1. Conformal geometric algebra
The geometric algebra of 3D Euclidean space G3,0,0 has a
point basis, and the motor algebra G3,0,1 has a line basis. In
the latter geometric algebra, the lines expressed in terms
of Plücker coordinates can be used to represent points
and planes as well.4 The reader can find a comparison of
representations of points, lines, and planes using G3,0,0 and
G3,0,1 in ref. 4.

Interesting enough in the case of the conformal geometric
algebra, we find that the unit element is the sphere that allows
us to represent the other geometric primitives in its terms. To
see how this is possible, we begin giving an introduction in
conformal geometric algebra following the same formulation
presented in ref. 15, and we show how the Euclidean
vector space R

n is represented in R
n+1,1. This space has an

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 45

orthonormal vector basis given by {e1, . . . , en, e+, e−} with
the properties

e2
i = 1, i = 1, . . . , n (2)

e2
± = ±1 (3)

ei · e+ = ei · e− = e+ · e− = 0, i = 1, . . . , n. (4)

Note that this basis is not written in bold.
A null basis {e0, e∞} can be introduced by

e0 = e− − e+
2

(5)

e∞ = e− + e+ (6)

with the properties

e2
0 = e2

∞ = 0, e∞ · e0 = −1. (7)

A unit pseudoscalar E ∈ R
1,1 that represents the

Minkowski plane is defined by

E = e∞ ∧ e0 = e+ ∧ e− = e+e−. (8)

Euclidean points xe ∈ R
n can be represented in R

n+1,1 in
a general way as

xc = (xc ∧ E)E + (xc · E)E = xe + e0 + 1

2
(k1 + k2)e∞

= xe + 1

2
x2

ee∞ + e0. (9)

We can gain further insight into the geometrical meaning of
the null vectors by analyzing Eq. (9). For instance by setting
xe = 0, we find that e0 represents the origin of R

n (hence the
name). Similarly, dividing this equation by xc · e0 = − 1

2 x2
e

gives

xc

xc · e0
= − 2

x2
e

(
xe + 1

2
x2

ee∞ + e0

)
= −2x2

e

x2
e

(
1

xe

+ 1

2
e∞ + e0

x2
e

)
= −2

(
1

xe

+ 1

2
e∞ + e0

x2
e

)
−→

xe→∞ e∞. (10)

Thus, we conclude that e∞ represents the point at infinity.

2.2. Spheres and planes
The equation of a sphere of radius ρ centered at point pe ∈ R

n

can be written as

(xe − pe)2 = ρ2. (11)

Since xc · yc = − 1
2 (xe − ye)2, we can rewrite the formula

given above in terms of homogeneous coordinates as

xc · pc = −1

2
ρ2. (12)

Since xc · e∞ = −1, we can factor the expression given
above to

xc ·
(

pc − 1

2
ρ2e∞

)
= 0 (13)

which finally yields the simplified equation for the sphere as

xc · s = 0 (14)

where

s = pc − 1

2
ρ2e∞ = pe + e0 + p2

e − ρ2

2
e∞ (15)

is the equation of the sphere (note from this equation that a
point is just a sphere with zero radius). The vector s has the
properties

s2 = ρ2 > 0 (16)

e∞ · s = −1. (17)

From these properties, we conclude that the sphere s is a
point lying on the hyperplane, but outside the null cone. In
particular, all points on the hyperplane outside the horosphere
determine spheres with positive radius, points lying on the
horosphere define spheres of zero radius (i.e., points), and
points lying inside the horosphere have imaginary radius.
Finally, note that spheres of the same radius form a surface
that is parallel to the horosphere.

Alternatively, spheres can be dualized and represented as
(n + 1)-vectors s∗ = sI−1. Since

Ĩ = (−1)
1
2 (n+2)(n+1)I = −I−1 (18)

we can express the constraints of Eqs. (16) and (17) as

s2 = −s̃∗s∗ = ρ2

e∞ · s = e∞ · (s∗I) = (e∞ ∧ s∗)I = −1.
(19)

The equation for the sphere now becomes

xc ∧ s∗ = 0. (20)

The advantage of the dual form is that the sphere can be
directly computed from four points (in 3D) as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (21)

If we replace one of these points for the point at infinity, we
get

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (22)

Developing the products, we get

π∗ = xc3 ∧ xc1 ∧ xc2 ∧ e∞

= xe3 ∧ xe1 ∧ xe2 ∧ e∞ + ((xe3 − xe1) ∧ (xe2 − xe1))E

(23)

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

46 Robot devices

Fig. 1. (a) Circle computed using three points. Note the
stereographic projection. (b) Circle computed using the meet of
two spheres.

which is the equation of the plane passing through the points
xe1 , xe2 , and xe3 . We can easily see that xe1 ∧ xe2 ∧ xe3 is
a scalar representing the volume of the parallelepiped with
sides xe1 , xe2 , and xe3 . Also, since (xe1 − xe2) and (xe3 − xe2)
are two vectors on the plane, the expression ((xe1 − xe2) ∧
(xe3 − xe2)) is the normal to the plane. Therefore, planes are
spheres passing through the point at infinity.

2.3. Geometric identities, duals, and incidence
algebra operations
A circle z can be regarded as the intersection of two spheres
s1 and s2. This means that for each point on the circle xc ∈ z
they lie on both spheres as well as xc ∈ s1 and xc ∈ s2.
Assuming that s1 and s2 are linearly independent, we can
write for xc ∈ z

(xc · s1)s2 − (xc · s2)s1 = xc · (s1 ∧ s2) = xc · z = 0. (24)

The result tells us that since xc lies on both the spheres,
z = (s1 ∧ s1) should be the intersection of the spheres or a
circle. It is easy to see that the intersection with a third sphere
leads to a point pair. We have derived algebraically that the
wedge of two linearly independent spheres yields to their
intersecting circle (Fig. 1), this topological relation between

the two spheres can also be conveniently described using the
dual of the meet operation, namely

z = (z∗)∗ = (s∗
1 ∨ s∗

2)∗ = s1 ∧ s2. (25)

This new equation shows that the dual of a circle can be
computed via the meet of the two spheres in their dual form.
This equation geometrically confirms our previous algebraic
computation of Eq. (24).

The dual form of the circle (in 3D) can be expressed by
three points lying on it [Fig. 1(a)] as

z∗ = xc1 ∧ xc2 ∧ xc3 . (26)

Similar to the case of planes show in Eq. (22), lines can
be defined by circles passing through the point at infinity
as

l∗ = xc1 ∧ xc2 ∧ e∞. (27)

This can be demonstrated by developing the wedge products,
as in the case of the planes, to yield

xc1 ∧ xc2 ∧ e∞ = xe1 ∧ xe2 ∧ e∞ + (xe2 − xe1) ∧ E, (28)

from where it is evident that the expression xe1 ∧ xe2 is a
bivector representing the plane where the line is contained,
and (xe2 − xe1) is the direction of the line.

The dual of a point p is a sphere s. The intersection of
four spheres yields a point [Fig. 2(b)]. The dual relationships
between a point and its dual, the sphere, are

s∗ = p1 ∧ p2 ∧ p3 ∧ p4 ↔ p∗ = s1 ∧ s2 ∧ s3 ∧ s4 (29)

where the points are denoted as pi and the spheres si for
i = 1, 2, 3, 4.

A summary of the basic geometric entities and their duals
ispresented in Table I.

There is another very useful relationship between an
(r − 2) -dimensional sphere Ar and the sphere s∗ (computed
as the dual of a point s). If from the sphere Ar we can compute

Fig. 2. (a) Conformal point generated by projecting a point of the affine plane to the unit sphere. (b) Point generated by the meet of four
spheres.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 47

Table I. Entities in conformal geometric algebra.

Entity Representation Grade Dual representation Grade

Sphere s = p + 1
2 (p2 − ρ2)e∞ + e0 1 s∗ = a ∧ b ∧ c ∧ d 4

Point x = x + 1
2 x2e∞ + e0 1 x∗ = s1 ∧ s2 ∧ s3 ∧ s4 4

Plane π = nIE − de∞ 1 π∗ = e∞ ∧ a ∧ b ∧ c 4
n = (a − b) ∧ (a − c)

d = (a ∧ b ∧ c)IE

Line L = π1 ∧π2 2 L∗ = e∞ ∧ a ∧ b 3
L = nIE − e∞mIE

n = (a − b)
m = (a ∧ b)

Circle z = s1 ∧ s2 2 z∗ = a ∧ b ∧ c 3

Point pair P P = s1 ∧ s2 ∧ s3 3 P P∗ = a ∧ b 2
P P = s ∧ L 2

the hyperplane Ar+1 ≡ e∞ ∧ Ar �= 0, we can express the
meet between the dual of the point s (a sphere) and the
hyperplane Ar+1 getting the sphere Ar of one dimension
lower

(−1)ε s∗ ∩ Ar+1 = (s∗I) · Ar+1 = s Ar+1 = Ar . (30)

This result tells us an interesting relationship: the sphere
Ar and the hyperplane Ar+1 are related via the point s
(dual of the sphere s∗); thus, we then rewrite Eq. (30) as
follows:

s = Ar A−1
r+1. (31)

Using Eq. (31) and given the plane π (Ar+1) and the circle z
(Ar), we can compute the sphere as [Fig. 3(a)]

s = zπ−1. (32)

Similarly, we can compute another important geometric
relationship called the pair of points using Eq. (31) directly
as

s = P P L−1. (33)

Using this result, given the line L and the sphere s, we can
compute the pair of points P P [Fig. 3(b)] as

P P = sL = s ∧ L. (34)

3. The 3D Affine Plane
We have described the general conformal framework and its
transformations. However, many of those operators were not
employed in the present work. Indeed, in the case that only
rigid transformations are needed, we will limit ourselves to
the use of the Affine Plane, which is an (n + 1)-dimensional
subspace of the hyperplane of reference P(e∞, e0).

We have chosen to work in the G4,1 algebra. Since we
deal with homogeneous points, the particular choice of
null vectors does not affect the properties of the conformal
geometry. Thus, for this work, we choose to define these
vectors as shown in Eqs. (2)–(6).

Points in the affine plane x ∈ R
4,1 are formed as follows:

xa = xe + e0 (35)

where xe ∈ R
3. From this equation, we note that e represents

the origin (by setting xe = 0); similarly, e∞ represents
the point at infinity. The previous equation, allows its

Fig. 3. (a) The meet of a sphere and a plane. (b) Pair of points resulting from the meet between a line and a sphere.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

48 Robot devices

normalization, which is expressed as

e∞ · xa = 1. (36)

In this framework, the conformal mapping equation is
expressed with

xc = xe + 1

2
x2

ee∞ + e = xa − x2
ee∞. (37)

For the case when we will be exclusively working on the
affine plane, we will be mainly concerned with a simplified
version of the rejection. Noting that E = e∞ ∧ e0 = e∞ ∧ e,
we write an equation for rejection asfollows:

P ⊥
E (xc) = (xc ∧ E)E = (xc ∧ E) · E

= (e∞ ∧ e0) · e0 + (xc ∧ e∞) · e0

xe = −e0 + (xc ∧ e∞) · e0. (38)

Now, since the points in the affine plane have the form
xa = xe + e0, we conclude that

xa = (xc ∧ e∞) · e0 (39)

is the mapping from the horosphere to the affine plane.

3.1. Lines and planes
The lines and planes in the affine plane are expressed in a
similar manner to their conformal counterparts as the join of
2 and 3 points, respectively.

La = xa
1 ∧ xa

2 (40)

�a = xa
1 ∧ xa

2 ∧ xa
3. (41)

Note that unlike their conformal counterparts, the line is a
bivector and the plane is a trivector. As seen earlier, these
equations produce a moment-direction representation

La = e∞d + B (42)

where d is a vector representing the direction of the line, and
B is a bivector representing the (orthogonal) moment of the
line. Similarly we have

�a = e∞n + δe123 (43)

where n is the normal vector to the plane and δ is a scalar
representing the distance from the plane to the origin. Note
that in any case, the direction and normal can be retrieved
with d = e∞ · La and n = e∞ · �a , respectively.

In this framework, the intersection or meet has a simple
expression too. Let Aa = aa

1 ∧ · · · ∧ aa
r and Ba = ba

1 ∧
· · · ∧ ba

s , then the meetis defined as

Aa ∩ Ba = Aa · (Ba · ĪAa∪Ba) (44)

where ĪAa∪Ba is either e12e∞, e23e∞, e31e∞, or e123e∞,
according to which basis vectors span the largest common
space of Aa and Ba; see Section 2.

3.2. Directed distance
To derive our equations, we can use the line and the plane
depicted in Fig. 4. We can see that any k-plane Aa consists
of a momentum of degree k and a direction of degree k − 1.
Thus, if we take the inner product between the unit direction
and the moment, we will gain a directed distance as the vector
pa . If we dot the equation of Aa with ē and divide this result
by its norm, we get the unit direction Da

u

Da = ē · Aa −→ Da
u = Da

a∣∣Da
a

∣∣ (45)

which we can further use to compute a directed distance as
follows:

pa = Da
u · Aa. (46)

Here, the dot operation basically takes place between Da
u and

the moment part of Aa . The point pa is referred to the origin
and it touches orthogonal the k-plane Aa . Interesting enough,

Fig. 4. (a) Line in the 2D affine space. (b) Plane in the 3D affine space (note that the 3D space is “lifted” by a null vector e.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 49

the norm of pa equals the Hesse distance. For the sake of
simplicity in Figs. 4(a) and (b), only Da · La and Da · �a

are shown, respectively.
Now, having this point on the first object, we can use it to

compute the directed distance from the k-plane Aa parallel
to the object Ba as follows:

d[Aa, Ba] = d[Da · Aa, Ba] = d[(ē · Aa) · Aa, Ba]. (47)

4. Rigid Transformations
We can express rigid transformations in conformal geometry
carrying out reflections between planes.

4.1. Reflection
In general the reflection operation can be used to build more
complex conformal transformations. Here we will explain
the geometry of a reflection. The reflection of a point x

with respect to the plane π is equal to x minus twice the
direct distance between the point and plane (see Fig. 5),
that is, x = x − 2(π · x)π−1. To simplify this expression, we
apply the property of the Clifford product of vectors, namely
2(b · a) = ab + ba. Then reflection could be written as

x ′ = x − (πx − xπ)π−1 (48)

x ′ = x − πxπ−1 − xππ−1 (49)

x ′ = −πxπ−1. (50)

For any geometric entity Q, the reflection with respect to the
plane π is given by

Q′ = πQπ−1. (51)

4.2. Translation
The translation of conformal entities can be done by carrying
out two reflections in parallel planes π1 and π2 (see Fig. 6),
that is,

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q
(
π−1

1 π−1
2

)︸ ︷︷ ︸
T̃a

(52)

Ta = (n + de∞)n = 1 + 1

2
ae∞ = e− a

2 e∞ (53)

where a = 2dn.

Fig. 5. Reflection of a point x with respect to the plane π .

Fig. 6. Reflection about parallel planes.

Fig. 7. Reflection about nonparallel planes.

4.3. Rotation
Rotation is the product of two reflections between nonparallel
planes (see Fig. 7)

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q
(
π−1

1 π−1
2

)︸ ︷︷ ︸
R̃θ

(54)

or computing the conformal product of the normals of the
planes

Rθ = n2n1 = cos

(
θ

2

)
− sin

(
θ

2

)
l = e− θ

2 l (55)

with l = n2 ∧ n1, and θ equal to twice the angle between the
planes π2 and π1. The screw motion called motor related to
an arbitrary axis L is M = T RT̃

Q′ = (T RT̃)︸ ︷︷ ︸
Mθ

Q((T R̃T̃))︸ ︷︷ ︸
M̃θ

(56)

Mθ = T RT̃ = cos

(
θ

2

)
− sin

(
θ

2

)
L = e− θ

2 L. (57)

4.4. Kinematic chains
The direct kinematics for serial robot arms is a succession
of motors and it is valid for points, lines, planes, circles, and
spheres

Q′ =
n∏

i=1

MiQ

n∏
i=1

M̃n−i+1. (58)

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

50 Robot devices

5. Differential Kinematics
The direct kinematics Eq. (58) can be used for points as

x ′
p =

n∏
i=1

Mixp

n∏
i=1

M̃n−i+1. (59)

This equation could be used in conformal geometric algebra,
using motors to represent 3D rigid transformations similar
to the motor algebra.5 Now we give an expression for
differential kinematics through the total differentiation of
Eq. (59) as follows:

dx ′
p =

n∑
j=1

∂qj

(
n∏

i=1

Mixp

n∏
i=1

M̃n−i+1

)
dqj . (60)

Each term of the sum is the product of two functions in qj ;
then the differential reads

dx ′
p =

n∑
j=1

⎡⎣∂qj

(
j∏

i=1

Mi

)
n∏

i=j+1

Mixp

n∏
i=1

M̃n−i+1

+
n∏

i=1

Mixo

n−j∏
i=1

M̃n−i+1∂qj

⎛⎝ n∏
i=n−j+1

M̃n−i+1

⎞⎠⎤⎦ dqj .

(61)

Since M = e− 1
2 qL, the differential of the motor is d(M) =

− 1
2MLdq. Thus, we can write the partial differential of the

motor’s product as follows:

∂qj

(
j∏

i=1

Mi

)
=−1

2

j∏
i=1

MiLj = − 1

2

(
j−1∏
i=1

Mi

)
LjMj . (62)

Similarly, the differential of the M̃ = e
1
2 qL give us d(M̃) =

1
2MLdq and the differential of the product is

∂qj

⎛⎝ n∏
i=n−j+1

M̃n−i+1

⎞⎠ = 1

2
M̃jLj

n∏
i=n−j+2

M̃n−i+1. (63)

Replacing Eqs. (62) and (63) in Eq. (61), we get

dx ′
p =

n∑
j=1

⎡⎣−1

2

j−1∏
i=1

MiLjMj

n∏
i=j+1

Mixp

n∏
i=1

M̃n−i+1

+ 1

2

n∏
i=1

Mixo

n−j∏
i=1

M̃n−i+1M̃jLj

j−1∏
i=1

M̃j−i

]
dqj (64)

which can be further simplified as

dx ′
p = −1

2

n∑
j=1

⎡⎣j−1∏
i=1

Mi

⎛⎝Lj

⎛⎝ n∏
i=j

Mixo

n−j+1∏
i=1

M̃n−i+1

⎞⎠
−
⎛⎝ n∏

i=j

Mixp

n−j+1∏
i=1

M̃n−i+1

⎞⎠Lj

⎞⎠ j−1∏
i=1

M̃j−i

⎤⎦ dqj .

(65)

Note that the product of a vector with an r-vector is given by

a · Br = 1

2
(aBr + (−1)r+1 Bra). (66)

Using Eq. (66), we can simplify Eq. (65), since L is a bivector
and xp is a vector. Then, we can rewrite Eq. (65) as follows:

dx ′
p =

n∑
j=1

⎡⎣(j−1∏
i=1

Mi

)⎛⎝⎛⎝ n∏
i=j

Mixp

n−j+1∏
i=1

M̃n−i+1

⎞⎠ · Lj

⎞⎠
×
(

j−1∏
i=1

M̃j−i

)]
dqj . (67)

Similar to the case of points, all the transformations in
conformal geometric algebra can also be applied to the lines.
Thus

dx ′
p =

n∑
j=1

⎡⎣⎛⎝j−1∏
i=1

Mi

n∏
i=j

Mixp

n−j+1∏
i=1

M̃n−i+1

j−1∏
i=1

M̃j−i

⎞⎠
·
(

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

)]
dqj . (68)

Since
∏j−1

i=1 Mi

∏n
i=jMi =∏n

i=1Mi , we have

dx ′
p =

n∑
j=1

[(
n∏

i=1

Mixp

n∏
i=1

M̃n−i+1

)

·
(

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

)]
dqj . (69)

Recall Eq. (59) of the direct kinematics, since in Eq. (69) x ′
p

appears again. We can replace Eq. (59) in Eq. (69) to get

dx ′
p =

n∑
j=1

[
x ′

p ·
(

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

)]
dqj . (70)

If we define L′ as function of L as follows:

L′
j =

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i (71)

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 51

we get a very compact expression of differential kinematics

dx ′
p =

n∑
j=1

[x ′
p · L′

j]dqj . (72)

In this way we can finally write

ẋ ′
p = (x ′

p · L′
1 · · · x ′

p · L′
n)

⎛⎜⎝q̇1
...

q̇n

⎞⎟⎠ . (73)

After we have given the theoretical background of
our geometric approach for modeling and controlling
robotic devices, we will now present inverse kinematics
computations of robot devices, and also some interesting
applications of these geometric techniques using real images
captured by a mobile robot.

6. Inverse Kinematics of Robot Devices
This section presents a new way to compute inverse
kinematics using the conformal geometric algebra. We
illustrate the computations of the inverse kinematics of a
robot arm of five DOF and that of a binocular head of a robot.
The striking aspect of our approach is the use of a mathemati-
cal language of spheres.

6.1. Inverse kinematics of robot arms
The inverse kinematics problem consists of determining the
angles of each joint of the robot arm θ1 · · · θ5, so that the end-
effector reaches a specific point (pt), the plane of the gripper
is parallel to the plane πt , and its direction is lt (see Fig. 8). We
show how to find the values of θ1 · · · θ5 using the conformal
approach. For this purpose, we use geometric entities like
circles, planes, and spheres. For its solution, the problem
will be divided in five steps.
Step 1: Find the position of the point p2.

The sphere with center at pt and radius d3 is given by

St = pt − 1

2
d2

3e∞. (74)

Fig. 8. Point of touch pt , plane of grasp πt , and direction lt .

Now we consider the second constraint that forces the
gripper to be parallel to the plane πt . This constraint reduces
the possible positions of p2, forcing this point to lie on the
circle zt , which is the intersection of the plane πt with the
sphere St (see Fig. 8).

zt = St ∧ πt . (75)

Finally, we consider the last alignment condition. The
tangent to the circle zt at the point p2 is orthogonal to the
line lt ; therefore, lt passes through the point pt , it belongs to
the plane πt and it intersects the circle zt at point p2.

Pp2 = lt ∧ St . (76)

Step 2: Compute the position of the point p0.
The y-axis (ly) is the line going through the origin with

direction e2 (see Eq. (27))

l∗y = e2E. (77)

When the base rotates around the y-axis (see Fig. 9), the
point p0 describes the circle z0. This circle is the intersection
of the plane π0 and the sphere with center at the origin and
radius d0.

S0 = eo − d2
o

2
e∞ (78)

π0 = e2 + he∞ (79)

z0 = So ∧ π0. (80)

We have restricted the position of the point p0 to lie on the
circle z0, but there is another restriction: point p0 must lie
on the plane π1 generated by the y-axis (ly ; Eq. (77)) and
the point p2 calculated in step 1 (Eq. (76)), as we can see in
Fig. 8, so that p0 can be determined by intersecting the plane
π1 with the circle z0

π∗
1 = l∗y ∧ p2 (81)

Pp0 = z0 ∧ π1. (82)

Fig. 9. Point p0 as an intersection of the planes π1, π0, and the
sphere s0.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

52 Robot devices

Fig. 10. Point p1 as an intersection of the spheres s1, s2, and the
plane π1.

We have a pair of points as solution and we choose one of
them.
Step 3: Determine the position of the point p1.

Computing the point p1 is usually a difficult task because
it is the intersection of two circles; however, using conformal
geometry we can easily determine this point by intersecting
the spheres S1 and S2 with the plane π1, as can be seen in
Fig. 10.

S1 = p1 − d2
1

2
e∞ (83)

S2 = p2 − d2
2

2
e∞ (84)

Pp1 = S1 ∧ S2 ∧ π1. (85)

Similar to the previous step, we choose one of the two
points.
Step 4: Determine the lines and planes between the joints of
the robot.

Once p0, p1, and p2 have been determined, the lines l1, l2,
and l3, and the planes π2 and π3 can be defined. These lines
and planes will be used to calculate the angles θ1 · · · θ5.

π∗
3 = p1 ∧ p2 ∧ pt ∧ e∞ (86)

π∗
2 = e3Ic (87)

l∗1 = p0 ∧ p1 ∧ e∞ (88)

l∗2 = p1 ∧ p2 ∧ e∞ (89)

l∗3 = p2 ∧ p3 ∧ e∞. (90)

Step 5: Find the angles θ1 · · · θ5.

Once we have all the geometric entities, the computation
of the angles is a trivial step

cos(θ1) = π∗
1 · π∗

2

|π∗
1 ||π∗

2 | (91)

cos(θ2) = l∗1 · l∗y
|l∗1 ||l∗y |

(92)

cos(θ3) = l∗1 · l∗2
|l∗1 ||l∗2 | (93)

cos(θ4) = π∗
1 · π∗

3

|π∗
1 ||π∗

3 | (94)

cos(θ5) = l∗2 · l∗3
|l∗2 ||l∗3 | . (95)

Since the robot arm has just five DOF, the line l2 should
intersect the line jz. Therefore, it is not always possible to
satisfy the constrains πt , pt , and lt . But we can solve for πt

and pt as follows.
There is an infinite number of solutions to reach the point

pt because p2 can remain at a distance of d3 around pt (see
Fig. 11). That is, the point p2 lies on the sphere St with center
at pt and radius d3

St = pt − 1

2
d2

3e∞. (96)

However, we must also satisfy the condition that the plane
of the gripper should be parallel to the plane πt . Hence, p2

must lie on the circle zt , which is the intersection of the
sphere St (Eq. (96)) and the plane πt

zt = St ∧ πt . (97)

Since the robotic arm has only five DOFs, the point p2 can
only be in two positions, namely the points on the circle zt

that are closest to, and farthest from ly . Finding these points
is easy because they are the intersections of the plane πj and

Fig. 11. Point p2 given by the intersection of the plane πt , st , and
the plane πj .

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 53

the circle zt

j ∗
z = zt ∧ e∞ (98)

ld = d(pt , l
∗
y) ∧ pt ∧ e∞ (99)

π∗
j = j ∗

z ∧ (l∗dE) (100)

Pp2 = πj ∧ zt . (101)

In this way, we have two points of solution. However, we
need to choose one. We choose the point that is mechanically
possible to reach and follow the steps 2–5 for computing the
angles.

7. Visual Jacobian
This section includes the Jacobian visual of the camera useful
for closing the loop between the visual 3D space and the 3D
mechanical world. The rows of the camera projection matrix
are interpreted as optical planes (π1, π2, π3). Each one of
these optical planes is written in conformal geometry as a
vector. Then, the camera in general position is described by
the collection of three conformal planes

P =
⎛⎝π1

π2

π3

⎞⎠ . (102)

A conformal point (that represents a point in 3D visual space)
is projected to the camera projection matrix by computing
the inner product between this point and each one of the
camera’s planes. The same is true for its derivative

m =
⎛⎝π1 · X

π2 · X

π3 · X

⎞⎠ ṁ =

⎛⎜⎝π1 · Ẋ

π2 · Ẋ

π3 · Ẋ

⎞⎟⎠ . (103)

The point in the image is computed as follows:

s =
(π1·X

π3·X
π2·X
π3·X

)
(104)

and its derivative

ṡ =

⎛⎜⎝ṁ1
1

m3
+ m1

(
−ṁ3

m2
3

)
ṁ2

1
m3

+ m2

(
−ṁ3

m2
3

)
⎞⎟⎠ (105)

simplifying

ṡ = κ

(
m3ṁ1 − m1ṁ3

m3ṁ2 − m2ṁ3

)
(106)

where κ = 1
m2

3
. Evaluating the values of m and ṁ in Eq. (106),

we get

ṡ = κ

(
[(π3 · X) π1 − (π1 · X) π3] · Ẋ

[(π3 · X) π2 − (π2 · X) π3] · Ẋ

)
. (107)

This equation can be reduced using Eq. (1.10) of the Hestenes
Chapter in ref. 15

ṡ = κX ·
(

π1 ∧ π3

π2 ∧ π3

)
· Ẋ. (108)

The wedge product of two planes equals the representation
of the line of their intersection. In this paper, Lx and Ly are
used to denote the intersection of the planes (π1, π3) and
(π2, π3), respectively.

Lx := π1 ∧ π3 (109)

Ly := π2 ∧ π3. (110)

Using these definitions, Eq. (108) can be rewritten as

ṡ = κX ·
(

Lx

Ly

)
· Ẋ. (111)

In order to close the loop of perception and action, we
compute the relationship between visual velocities in the
image of the camera and joint velocities in the mechanical
structure.

Remembering the equation of the differential kinematics
for a pan–tilt unit, which relates joint and end-effector
velocities, we can claim

Ẋ′ = (X′ · L′
1 X′ · L′

2)

(
q̇1

q̇2

)
. (112)

Combining Eqs. (108) and (112), a new equation is
obtained that relates the joint and image velocities

ṡ = κ

(
(X′ · L′

x) · (X′ · L′
1) (X′ · L′

x) · (X′ ·L′
2)

(X′ · L′
y) · (X′ · L′

1) (X′ · L′
y) · (X′ ·L′

2)

)
q̇. (113)

This expression is called the visual Jacobian and it can be
used to implement a robust control law for visual tracking
using a pan–tilt unit.

7.1. Inverse kinematics for a pan–tilt unit
The problem involves determining the angles θtilt and θpan of
a stereo-head, so that the cameras fix at the point pt . We will
now show how we can find the values of θpan and θtilt using
the conformal approach. For its solution, The problem will
be divided in three steps.
Step 1: Determine the point p2.

When the θtilt rotates and the bases rotate (θpan) around
the ly (see Fig. 12), the point p2 describes a sphere s1. This
sphere has center at the point p1 and has a radius d2.

S1 = p1 − d2
2

2
e∞. (114)

Also the point pt can be locked from every point around
it. That is, the point p2 is in the sphere

S2 = pt − d2
3

2
e∞ (115)

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

54 Robot devices

Fig. 12. Point p2 given by the intersection of the plane π1 and the
spheres s1 and s2.

where d3 is the distance between point pt and the cameras,
and we can calculate d3 using the Pythagorean theorem d2

3 =
D2 − d2

2 , where D is the direct distance between pt and p1.
We have restricted the position of the point p2, but there
is another restriction: the vector going from the point p2 to
the point pt must lie on the plane π1 generated by the ly-
axis (l∗y = p0 ∧ p1 ∧ e∞) and the point pt , as we can see
in Fig. 12. Hence, p2 can be determined by intersecting the
plane π1 with the spheres s1 and s2 as follows:

π∗
1 = l∗y ∧ pt, Pp2 = s1 ∧ π1 ∧ s2. (116)

Step 2: Determine the lines and planes.
Once p2 have been determined, the line l2 and the plane π2

can be defined. This line and plane will be useful to calculate
the angles θtilt and θpan.

l∗2 = p1 ∧ p2 ∧ e∞, π∗
2 = l∗y ∧ e3. (117)

Step 3: Find the angles θtilt and θpan.
Once we have all the geometric entities, the computation

of the angles is a trivial step.

cos(θpan) = π∗
1 · π∗

2

|π∗
1 ||π∗

2 | , cos(θtilt) = l∗1 · l∗y
|l∗1 ||l∗y |

. (118)

8. Following Geometric Primitives
for Object Manipulation
In this section, we will show how to perform certain
object manipulation tasks now in the context of conformal
geometric algebra. First, we will solve the problem of
positioning the gripper of the arm in a certain position
of space disregarding the grasping plane or the gripper’s
alignment. Then, we will illustrate how the robotic arm can
follow linear paths.

8.1. Touching a point
In order to reconstruct the point of interest, we back-project
two rays extending from two views of a given scene (see
Fig. 13). These rays will not intersect in general, due to noise.
Hence, we compute the directed distance between these lines
and use the middle point as target. Once the 3D point pt

is computed with respect to the cameras’ framework, we
transform it to the arm’s coordinate system.

Once we have a target point with respect to the arm’s
framework, there are three cases to consider. There might be
several solutions [Figs. 14(a) and 15(a)], a single solution
[Fig. 14(b)], or the point may be impossible to reach
[Fig. 15(b)].

In order to distinguish between these cases, we create
a sphere St = pt − 1

2d2
3e∞ centered at the point pt , and

intersect it with the bounding sphere Se = p0 − 1
2 (d1 +

d2)2e∞ of the other joints [Fig. 14(a) and (b)], producing
the circle zs = Se ∧ St .

Fig. 14. (a) Se and St meet (infinite solutions). (b) Se and St are
tangents (single solution).

Fig. 13. Point of interest in both the cameras (pt).

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 55

Fig. 15. (a) St inside Se produces infinite solutions. (b) St outside
Se, produces no solution.

If the spheres St and Se intersect, then we have a solution
circle zs that represents all the possible positions point p2
(Fig. 14) may have in order to reach the target. If the spheres
are tangent, then there is only one point of intersection and a
single solution to the problem, as shown in Fig. 14(b).

If the spheres do not intersect, then there are two
possibilities. The first case is that St is outside the sphere Se.
In this case, there is no solution since the arm cannot reach
the point pt , as shown in Fig 15(b). On the other hand, if the
sphere St is inside Se, then we have a sphere of solutions. In
other words, we can place the point p2 anywhere inside St ,
as shown in Fig. 15(a). For this case, we arbitrarily choose
the upper point of the sphere St .

In the experiment shown in Fig. 16(a), the sphere St is
placed inside the bounding sphere Se. Therefore, the point
selected by the algorithm is the upper limit of the sphere,
as shown in Fig. 16(a) and (b). The last joint is completely
vertical.

8.2. Line of intersection of two planes
In the industry, mainly in the sector dedicated to car assembly,
it is often required to weld pieces. However, due to several
factors, these pieces are not always in the same position
complicating this task and making this process almost
impossible to automate. In many cases, the requirement is
to weld pieces of straight lines when no points on the line are
available. This is the problem that has been dealt with in the
following experiment.

If we do not have points on the line of interest, then we
find this line via the intersection of two planes (the welding
planes). In order to determine each plane, we need three

Fig. 17. Images acquired by the binocular system of the robot
“Geometer” showing the points on each plane.

points. The 3D coordinates of the points are triangulated
using the stereo-vision system of the robot yielding a
configuration like the one shown in Fig. 17.

Once the 3D coordinates of the points in space have been
computed, we can find each plane with π∗ = x1 ∧ x2 ∧ x3 ∧
e∞ and π ′∗ = x′

1 ∧ x′
2 ∧ x′

3 ∧ e′
∞. The line of intersection is

computed via the meet operator l = π ′ ∩ π . In Fig. 18(a),
we show a simulation of the arm following the line produced
by the intersection of these two planes.

Once the line of intersection l is computed, it suffices with
translating it on the plane ψ = l∗ ∧ e2 [Fig. 18(b)] using
the translator T 1 = 1 + γ e2e∞, in the direction of e2 (the
y-axis) a distance γ . Furthermore, we build the translator
T 2 = 1 + d3e2e∞ with the same direction (e2), but with a
separation d3 that corresponds to the size of the gripper.
Once the translators have been computed, we find the lines
l ′ and l ′′ by translating the line l with l ′ = T 1lT−1

1 , and
l ′′ = T 2l ′T−1

2 .
The next step after computing the lines, is to find the points

pt and p2 that represent the places where the arm will start
and finish its motion, respectively. These points were given
manually, but they may be computed with the intersection
of the lines l ′ and l ′′ with a plane that defines the desired
depth. In order to make the motion over the line, we build
a translator TL = 1 − �Lle∞ with the same direction as l,
as shown in Fig. 18(b). Then, this translator is applied to the
points p2 = TL p2T−1

L and pt = TL pt T
−1
L in an iterative

fashion to yield a displacement �L on the robotic arm.
By placing the endpoint over the lines and p2 over the

translated line, and by following the path with a translator in
the direction of l, we get a motion over l as seen in the image
sequence of Fig. 19.

Fig. 16. (a) Simulation of the robotic arm touching a point. (b) Robot “Geometer” touching a point with its arm.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

56 Robot devices

Fig. 18. (a) Simulation of the arm following the path of a line produced by the intersection of the two planes. (b) Guiding lines for the
robotic arm produced by the intersection (meet) of planes and vertical translation.

Fig. 19. Image sequence of a linear-path motion.

8.3. Following a spherical path
This experiment involves following the path of a spherical
object at a certain fixed distance from it. For this
experiment, only four points on the object are available
[Fig. 20(a)].

After acquiring the four 3D points, we compute the
sphere S∗ = x1 ∧ x2 ∧ x3 ∧ x4. In order to place the point
p2 in such a way that the arm points toward the sphere,
the sphere was expanded using two different dilators. This
produces a sphere that contains S∗ and ensures that a fixed
distance between the arm and S∗ is preserved, as shown in
Fig. 20(b).

The dilators are computed as follows:

Dγ = e
− 1

2 ln(γ + ρ

ρ
)E (119)

Dd = e
− 1

2 ln(d3 + γ + ρ

ρ
)E

. (120)

The spheres S1 and S2 are computed by dilating St

S1 = Dγ St D−1
γ (121)

S2 = Dd St D−1
d . (122)

We decompose each sphere in its parametric form as

pt = M1(ϕ)M1(φ) ps1
M−1

1 (φ)M−1
1 (ϕ) (123)

p2 = M2(ϕ)M2(φ) ps2
M−1

2 (φ)M−1
2 (ϕ) (124)

where ps is any point on the sphere. In order to simplify the
problem, we select the upper point on the sphere. To perform
motion on the sphere, we vary the parameters ϕ and φ, and
compute the corresponding pt and p2 using Eqs. (123) and
(124). The results of the simulation are shown in Fig. 21(a),

Fig. 20. (a) Points over the sphere as seen by the robot “Geometer”. (b) Guiding spheres for the arm’s motion.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 57

Fig. 21. (a) Simulation of the motion over a sphere. (b) and (c) Two of the images in the sequence of the real experiment.

whereas the results of the real experiment can be seen in
Fig. 21(b) and (c).

9. Differential Kinematic Control of a Pan–Tilt Unit
We will show an example using our new formulation of
the Jacobian. This is the control of a pan–tilt unit where a
stereo-vision system is fastened. This system is actually the
binocular head of our mobile robot.

9.1. The pan–tilt unit
We implement algorithm for the velocity control of a pan–tilt
unit (PTU; Fig. 22) assuming three DOFs. We consider the
stereo-depth as one virtual DOF; thus, the PTU has a similar
kinematic behavior as a robot with three DOFs.

In order to carry out a velocity control, we first need to
compute the direct kinematics; this is very easy to do, as we
know the axis lines

L1 = −e31 (125)

L2 = e12 + d1e1e∞ (126)

L3 = e1e∞. (127)

Fig. 22. Pan–tilt unit has two DOFs and the depth has a virtual
DOF.

Since Mi = e− 1
2 qiLi and M̃i = e

1
2 qiLi , we can compute the

position of the end-effector using Eq. (59) as

xp(q) = x ′
p = M1M2M3xpM̃3M̃2M̃1. (128)

The estate variable representation of the system is as
follows: ⎧⎪⎪⎨⎪⎪⎩ ẋ ′

p = x ′ · (L′
1 L′

2 L′
3)

⎛⎝u1

u2

u3

⎞⎠
y = x ′

p

(129)

where the position of the end-effector at home position xp

is the conformal mapping of xpe
= d3e1 + (d1 + d2)e2 (see

Eq. 9), the line L′
i is the current position of Li , and ui is the

velocity of the i-junction of the system. As L3 is an axis at
infinity, M3 is a translator, that is, the virtual component is a
prismatic junction.

9.2. Exact linearization via feedback
Now the following state feedback control law is chosen in
order to get a new linear and controllable system.⎛⎝u1

u2

u3

⎞⎠ = (x ′
p · L′

1 x ′
p · L′

2 x ′
p · L′

3)−1

⎛⎝v1

v2

v3

⎞⎠ (130)

where V = (v1, v2, v3)T is the new input to the linear system,
then we rewrite the equations of the system{

ẋ ′
p = V

y = x ′
p.

(131)

9.3. Asymptotic output tracking
The problem of following a constant reference xt is solved
by computing the error between the end-effector position x ′

p

and the target position xt as er = (x ′
p ∧ xt) · e∞. The control

law is then given by

V = −ke. (132)

This error is small if the control system is doing its job.
It is mapped to an error in the joint space using the inverse
Jacobian.

U = J−1V. (133)

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

58 Robot devices

Doing the Jacobian J = x ′
p · (L′

1 L′
2 L′

3)

j1 = x ′
p · (L1) (134)

j2 = x ′
p · (M1L2M̃1) (135)

j3 = x ′
p · (M1M2L3M̃2M̃1). (136)

Once we have the Jacobian, it is easy to compute dqi using
the Crammer’s rule.

⎛⎝u1

u2

u3

⎞⎠ = (j1 ∧ j2 ∧ j3)−1 ·

⎛⎜⎝V ∧ j2 ∧ j3

j1 ∧ V ∧ j3

j1 ∧ j2 ∧ V

⎞⎟⎠ . (137)

This is possible because j1 ∧ j2 ∧ j3 = det(J)Ie. Finally,
we have dqi that will tend to reduce these errors. Due to the
fact that the Jacobian has singularities, we should use the
pseudo-inverse of Jacobian.

9.4. Pseudo-inverse of Jacobian
To avoid singularities, we compute the pseudo-inverse of the
Jacobian matrix

J = [j1 j2]. (138)

Using the pseudo-inverse of Moore–Penrose

J+ = (J T J)−1J T . (139)

Now evaluating J in Eq. (139)

J+ = 1

det(J T J)

(
(j2 · j2)j1 − (j2 · j1)j2

(j1 · j1)j2 − (j2 · j1)j1

)
. (140)

And using Clifford algebra we could simplify this equation
further

det (J T J) = (j1 · j1)(j2 · j2) − (j1 · j2)2 (141)

= (|j1||j2|)2 − (|j1||j2|)2 cos2(θ), (142)

= (|j1||j2|)2 sin2(θ), (143)

= |j1 ∧ j2|2 (144)

calling θ the angle between vectors. Each row of J+ could
be simplified as follows:

(j2 · j2)j1 − (j2 · j1)j2 = j2 · (j2 ∧ j1) (145)

(j1 · j1)j2 − (j2 · j1)j1 = j1 · (j1 ∧ j2). (146)

Now Eq. (139) can be rewritten as

J+ = 1

|j1 ∧ j2|2
(

j2 · (j2 ∧ j1)

j1 · (j1 ∧ j2)

)
=
(

j2 · (j2 ∧ j1)−1

j1 · (j1 ∧ j2)−1

)
.

(147)

Fig. 23. Stereo cameras.

Using this equation, we can compute the input as U =
J+V that is equal to

U = (j1 ∧ j2)−1 ·
(

V ∧ j2

j1 ∧ V

)
. (148)

9.5. Visual tracking
The target point is measured using two calibrated cameras
(Fig. 23). With each image, we estimate the center of mass of
the object in movement in order to do a retroprojection and
finally estimate the 3D point. To compute the mass center,
first we subtract the current image Ia to an image in memory
Ib. The image in memory is the average of the last N images,
and this help us to substract the background.

Ik(t) = Ia(t) − Ib(t − 1) × N (149)

Ib(t) = (Ib(t − 1) × N + Ia)/(N + 1). (150)

After that the moments of x and y are computed. They are
divided by the mass (pixels in movement), which corresponds
to the intensity difference between the current and the
memory images. In this way, the mass center is obtained.

xo =
∫ n

0

∫ m

0 Iky dx dy∫ n

0

∫ m

0 Ik dx dy
(151)

yo =
∫ n

0

∫ m

0 Ikx dx dy∫ n

0

∫ m

0 Ik dx dy
. (152)

When the camera moves, the background changes and it is
necessary to reset N to 0 to restart the process of tracking.

Once we found the points (Xo, X
′
o) in the images, we

calculated the lines of retroprojection.

L = Xoc
∧ Cc ∧ e∞ (153)

L′ = X′
oc

∧ Cc ∧ e∞. (154)

The point in 3D is the intersection of these lines. However, in
the case when they do not intersect, the expected point will
be considered as the center of their direct distance.

9.6. Smooth tracking
In this experiment, the binocular head should smoothly
track a target. Figures 24(a), 25(a), and 26(a) show the 3D
coordinates of the focus of attention. Figures 24(b), 25(b),

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 59

Fig. 24. (a) The x coordinate of the focus of attention. (b) The
image of tracking.

Fig. 25. (a) The y coordinate of the focus of attention. (b) The
image of tracking.

Fig. 26. (a) The z coordinate of the focus of attention. (b) The image
of tracking.

and 26(b) show examples of the image sequence. We can see
that the curves of the 3D object trajectory are very rough;
however, the control rule manages to keep the trajectory of
the pan–tilt unit smooth.

10. Conformal Geometric Control
for Object Manipulation
This section shows a conformal geometric control technique
used for robot manipulation of objects. This uses the inverse
kinematics of the robot arm. The geometric control scheme is
shown in Fig. 27. Note that the stereo system for image
acquisition and the 3D reconstruction is represented by the
L and R blocks.

Unlike a standard control technique that uses error of
vector, we use as reference circles instead of points for
computing the error in the 3D rigid transformation, which
is coded efficiently using motors.

Fig. 27. Control scheme.

Fig. 28. (a) Corners in the image of the object. (b) 3D reconstruction
of the object.

Next, we compute the grasping circle in the object. Then,
the griper circle is estimated. Finally, the error in the
translation and rotation (Motor M) is computed.

10.1. Grasping circle
The object in 3D is observed using the stereo-vision system of
the robot; then key corners are automatically detected in each
of the stereo images. Using triangulation, the robot computer
computes a 3D reconstruction of the object [Fig. 28(b)].

Just four points of the object are considered for the
computations. Three of them are in the base (x1, x2, x3) and
one more (x4) is at the top of the object as we can see in
Fig. 28(a). Using these points, one computes the grasping
circle. The points of the base give us a circle zb from which
one computes the base plane πb as follows:

z∗
b = x1 ∧ x2 ∧ x3, (155)

πb = (z∗
b ∧ e∞)Ic. (156)

The object might be grasped in the middle, which means
the grasping circle is the translation of the circle zb in the
direction of x4 as

T = 1 + 1

4
(πb · x4)πbe∞ (157)

zt = T zbT̃ . (158)

Now, the grasping circle zt will be the target.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

60 Robot devices

Fig. 29. Griper circle.

10.2. Griper circle
Similar to the grasping circle, the griper circle is estimated
on the basis of the tracked screws of the griper that are seen
in the pair of images. Figure 29 shows the position of the
point ph. This point is the center of the circle and is tracked
with the cameras. The griper circle can be calculated easily,
by creating a sphere with center at pt and radius ρ equal to
the middle of the aperture of the griper.

Sh = ph − 1

2
ρ2e∞. (159)

Now tracking two more points a and b on the griper, we
create the plane πh as

πh = ph ∧ a ∧ b ∧ e∞. (160)

Finally, the griper circle is computed as

zh = Sh ∧ πh. (161)

10.3. Motor estimation
In order to close the loop of control, we calculate the error
between the griper circle and the grasping circle. This is
achieved by simultaneously computing the 3D rotation and
translation in terms of a motor (Fig. 30). The translation axis
is computed easily having the centers of the circles. First, we

Fig. 30. Geometric relation between the griper circle z∗
h and the

grasping circle z∗
t .

calculate spheres with centers at each circle as

Sh = z∗
h

z∗
h ∧ e∞

(162)

St = z∗
t

z∗
t ∧ e∞

. (163)

Now, the translation axis is given by

l∗T = sh ∧ st ∧ e∞. (164)

The distance d between circles is d = |l∗|. The rotation axis
is computed using the axes of each circle l∗h and l∗t

l∗h = zh ∧ e∞ (165)

l∗t = zt ∧ e∞. (166)

The axes lh and lt lying on the plane π∗
th are given by

π∗
th = l∗t ∧ (l∗hE). (167)

Therefore, the rotation axis is

l∗r = sh ∧ πth ∧ e∞. (168)

The angle θ between circles is computed as follows:

cos(θ) = l∗t · l∗h
|l∗t ||l∗h|

. (169)

After that, we estimate the rotation and translation axes,
and calculate the next position of the griper. This movement
will reduce the error between the circles.

R = e−1
2 �θlr (170)

T = 1 + 1

2
�dlte∞ (171)

z′
h = T RzhR̃T̃ . (172)

The circle z′
h is the new circle of the griper.

In Fig. 31(a), we can see two overlapped gripers. One of
them is the griper in the real position [Fig. 31(b)] and the
other one is the next position of the griper. The images of
the griper are processed to extract the features and the vision
system tracks them to know the position of the griper in real
time.

Fig. 31. (a) Tracking of the griper. (b) Real-time graphical result.

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

Robot devices 61

Fig. 32. Tracking of the griper with a stereoscopic vision system:
The start position (top) and the final position (left).

Finally, in Fig. 32, the pair of images that are needed to
retroproject the corners for computing the 3D reconstruction
of the object and the griper, are presented. The images show
the initial and the final positions of the griper. Note the lines
of the motion.

11. Conclusion
In this paper, we have advantageously utilized the
mathematical system of the conformal geometric algebra.
We compute the inverse and differential kinematics of
robot devices using a language of spheres showing how we
simplify the complexity of the computations. In this work, we
introduced a new geometric Jacobian in terms of bivectors,
which is by far more effective in its representation as the
standard Jacobian because its derivation is done in terms
of the projections of the involved points onto the line axes.
Furthermore, our Jacobian can be used for any kind of robot
joints.

In this framework, we solve various tasks of 3D object
manipulation, which is assisted by stereo-vision. All these
computations are carried out using real images captured
by a robot binocular head, and the manipulation is done
by a five DOF robot arm mounted on a mobile robot.
In this context, an interesting conformal geometric control
technique is introduced. We present a very elegant application
of our geometric Jacobian for smooth control of a binocular
head.

We believe that the framework of conformal geometric
algebra can be in general of great advantage for solving
various complex tasks of visually guided robotics.

References
1. N. Andreff, Asservissement visuel à partir de droites et auto-

étalonnage pince-camera Ph.D. Thesis (Grenoble, France:
Institut National Polytechnique de Grenoble, 1999).

2. N. A. Aspragathos and J. K. Dimitros, “A comparative study of
three methods for robot kinematics,” IEEE Trans. Syst., Man,
Cybern.–B, Cybern. 28(2), 135–145, Apr. 1998.

3. E. Bayro-Corrochano, Geometric Computing for Perception
Action Systems (Springer Verlag, Boston, MA, 2001).

4. E. Bayro-Corrochano, K. Daniilidis and G. Sommer, “Motor
algebra for 3D kinematics. The case of the hand–eye
calibration,” J. Math. Imaging Vis. 13(2), 79–100, 2000.

5. E. Bayro-Corrochano and D. Kähler, “Motor algebra approach
for computing the kinematics of robot manipulators,” J. Robot.
Syst. 9(17), 495–516, 2000.

6. E. Bayro-Corrochano and L. E. Falcón, “Geometric algebra
of points, lines, planes and spheres for computer vision and
robotics,” Robotica 23(6), 755–770, 2005.

7. C. Bregler and J. Malik, “Tracking people with twists and
exponential maps,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
Santa Barbara, CA (Jun. 23–25, 1998) pp. 8–15.

8. H. H. Chen, “A screw motion approach to uniqueness
analysis of head-eye geometry,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, Maui, HI (Jun. 3–6, 1991) pp. 145–151.

9. J. C. K. Chou and M. Kamel, “Finding the position
and orientation of a sensor on a robot manipulator using
quaternions,” Int. J. Robot. Res. 10(3), 240–254 (1991).

10. J. Denavit and R. S. Hartenberg, “A kinematic notation for
the lower-pair mechanism based on matrices,” ASME J. Appl.
Mech. 77, 215–221 (1955).

11. J. Funda and R. P. Paul, “A computational analysis of screw
transformation in robotics,” IEEE Trans. Robot. Autom. 6(3),
348–356 (Jun. 1990).

12. Y. L. Gu and J. Y. S. Luh, “Dual-number transformation and
its applications to robotics,” IEEE J. Robot. Autom. RA-3(6),
615–623 (1987).

13. D. Hestenes, Space–Time Algebra (Gordon and Breach, New
York, 1966).

14. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric
Calculus: A Unified Language for Mathematics and Physics
(Reidel, Amsterdam, The Netherlands, 1984).

15. D. Hestenes, H. Li and A. Rockwood, “New Algebraic
Tools for Classical Geometry,” In: Geometric Computing with
Clifford Algebra (G. Sommer, ed.) (Springer-Verlag, Berlin
Germany, 2001) pp. 3–23, Chap. I.

16. D. Hestenes and R. Ziegler, “Projective Geometry with Clifford
Algebra,” Acta Appl. Math. 23, 25–63 (1991).

17. J. H. Kim and V. R. Kumar, “Kinematics of robot manipulators
via line transformations,” J. Robot. Syst. 7(4), 649–674 (1990).

18. M. Li and D. Betsis, “Hand–eye calibration,” Proceedings of
the International Conference on Computer Vision, Boston, MA
(Jun. 20–23, 1995) pp. 40–45.

19. J. M. McCarthy, Dual orthogonal matrices in manipulator
kinematics,” Int. J. Robot. Res. 5(2), 45–51 (1986).

20. G. R. Pennock and A. T. Yang, “Application of dual-
number matrices to the inverse kinematics problem of robot
manipulators,” J. Mech. Transm. Autom. Des. 107, 201–208
(1985).

21. R. Sabata and J. K. Aggarwal, “Estimation of motion from a
pair of range images: A review,” CVGIP, Image Underst. 54,
309–324 (1991).

22. Y. C. Shiu and S. Ahmad, “Calibration of wrist-mounted
robotic sensors by solving homogeneous transform equations
of the form AX = XB,” IEEE Trans. Robot. Autom. 5, 16–29
(1989).

23. R. Y. Tsai and R. K. Lenz, “A new technique for fully
autonomous and efficient 3D robotics hand/eye calibration,”
IEEE Trans. Robot. Autom. 5, 345–358 (1989).

24. M. W. Walker, “Manipulator kinematics and the epsilon
algebra,” IEEE J. Robot. Autom. 4(2), 358–364 (1987).

https://doi.org/10.1017/S0263574706002980 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002980

