
Journal of the Inst. of Math. Jussieu (2008) 7(4), 793–823 c© Cambridge University Press 793
doi:10.1017/S1474748008000224 Printed in the United Kingdom

SOME QUESTIONS CONCERNING HRUSHOVSKI’S
AMALGAMATION CONSTRUCTIONS

ASSAF HASSON∗

Mathematical Institute, University of Oxford,
24–29 St Giles’, Oxford OX1 3LB, UK

(Received 18 December 2006; revised 14 May 2007; accepted 22 May 2007)

Abstract In order to construct a counterexample to Zilber’s conjecture—that a strongly minimal set
has a degenerate, affine or field-like geometry—Ehud Hrushovski invented an amalgamation technique
which has yielded all the exotic geometries so far. We shall present a framework for this construction in
the language of standard geometric stability and show how some of the recent constructions fit into this
setting. We also ask some fundamental questions concerning this method.
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1. Introduction

In his book on stable groups Poizat [27] writes (with respect to our 1987 understanding
of ω-stable fields):

Nous n’avons pas fait de progrès décisif depuis le temps où nous chassions les
aurochs avec une hache de pierre ; nous avons seulment acquis une meilleure
comprehension de l’enjeu du problem.†

Sadly, there is no better way to describe the current situation with respect to the prob-
lem of classifying strongly minimal sets. Since the refutation of Zilber’s Conjecture,
Hrushovski’s amalgamation construction of new strongly minimal sets, introduced in [18]
and [17], stood in the way of any (naive) attempt of classification of their possible pre-
geometries. Indeed, our mastery of the techniques underlying these constructions is now
better than it used to be, but our understanding of the fundamental questions they give
rise to can hardly be said to have improved. To the best of my knowledge, there has not
been any progress at all with respect to some questions that have already been asked in

∗ Present address: Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva,
Israel (hassonas@math.bgu.ac.il).

† We have not made any decisive progress since the time we were chasing aurochs with an ax of stone;
we have only obtained a better understanding of the scope of the problem.
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Hrushovski’s original paper. Several survey papers deal with these amalgamation con-
structions (e.g. [2, 30, 31]). These papers are concerned mainly with the construction
itself—developing axiomatic frameworks in which it can be carried out—and the known
examples it gives rise to. The aim of the present paper is threefold, and different.

• Present a setting—given in the language of (standard) geometric stability theory—
in which these construction can be understood.

• Show how new structures which have been recently constructed using these methods
(most notably [6] and [7]) fit into this framework.

• Point out fundamental questions concerning these constructions, that to the best
of my knowledge have not been addressed.

A central theme of this paper is that the major gap in our understanding of the scope
of these constructions lies in the technically simpler part, usually known as the free
construction, whereas the more involved part of the construction, known as the collapse,
can be fairly well understood within a framework slightly generalizing the notion of
smooth approximations.

The first part of this survey is an attempt to explain the latter statement. The starting
point is Zilber’s treatment of envelopes, introduced as part of his analysis of totally
categorical theories [33]. These tools were subsequently generalized to the context of ℵ0-
categorical ℵ0-stable structures in [11], and in a more developed form to the construction
of smooth approximations of Lie coordinatizable structures in [9]. In the exposition we
will cover the analogies of the collapse with the construction of [9] singling out the crucial
differences, and how they can be dealt with, using the fusion over a vector space as a
worked out example. This choice is not arbitrary. Of all known examples, this is the
one (together with the closely related ‘Red fields’ of [8]) where all the model-theoretic
phenomena discussed herein manifest in a non-trivial way.

The problem of classifying the combinatorial geometries obtained through these amal-
gamation constructions is the focus of the second part of the paper. The thesis I suggest
to explore through a series of questions is that the right object to investigate towards
an eventual such classification is the local geometry (or rather, the local geometries) of
the regular types of infinite rank in the free construction. These questions seem to me
to be crucial not only for the possibly too ambitious classification project, but mostly
for our understanding of the scope of existing construction techniques and as a guide in
our attempts to develop ones that will go beyond them, possibly reaching into genuinely
unknown territory. Hopefully, the exposition of the first section will make at least the
statement of the problems clearer.

A few words concerning what this survey will not cover are also in place. Although by
no means intended for the experts only, some knowledge of the construction techniques
this paper is concerned with will not hurt. A reasonably good understanding of any of the
many papers on the subject, from Hrushovski’s original papers, through the constructions
of [28] or [1] and any of the above mentioned survey papers, should suffice to enable the
reader to follow the present text. For the benefit of interested readers, who do not have
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such an acquaintance with these constructions, a quick survey is given in §§ 2.1–2.3. Due
to the large number of ideas involved in the construction, it may seem that § 2 goes into
the fine details of the collapse. However, this is not the case—many non-trivial technical
points (mostly the more context dependent ones) are left out. Readers interested in the
details are referred to [13]. This survey will also not deal with the construction of strictly
stable structures in the style of [20]. Not because they are not interesting, but because
they do not seem to fall into the model theoretic framework suggested herein, and I do
not have anything new to offer on that matter. Finally, since the main concern of this
paper is the construction of new structures of finite rank, the many subtle variants giving
rise to, e.g. simple theories [19], will not be discussed. For these structures it is not even
clear how to define what would a collapse (of finite rank) be, let alone produce one∗.

Lastly, it should be said that no originality claims are made in this paper. Although
it may not be obvious from the texts of [18] and [17], one need not be a detective to
realize that their relation with the theory of envelopes as developed in [9] was clear to
Hrushovski and possibly to others as well. Nevertheless, I hope that there is still room
for a survey paper that points this out explicitly, and offers a separation of the ideas
needed to overcome the technical difficulties in verifying the validity of the axiomatic
framework—for individual instances of the general theory—from the ideas needed to
produce a genuinely new construction.

1.1. Some technicalities

We spell out some permanent assumptions, bibliographical remarks and terminology
choices.

Throughout this survey all theories making any appearance will be countable. It is
often helpful, though by no means necessary, to assume the theories in question to be
given in a relational language.

In what follows we will be working in models of a theory T∞ which we will assume
to be the result of a free amalgamation construction (this will be explained in more
detail below). For the moment, it is enough to say that T∞ is the theory of the (unique)
countable universal model of some (countable) class A of finite models of a universal
theory T in a language L, where universality is defined with respect to a distinguished
class of L-embeddings (which will be called strong or self-sufficient embeddings). In many
cases a natural expansion of T∞ by definitions can give quantifier elimination (relative
to T ). Though in most places this will not matter, in the present survey T∞ will be
considered in L, which we will call its natural language.

As already mentioned, the fusion over a vector space will serve us as a guiding example
throughout the second section. There are two texts dealing with this construction to
which we will be referring. The exposition of [15] is closer in spirit to this survey, but
does not contain the full result. The text of [6] does contain the full result but uses
a totally different exposition, and in some places, the translation to the language used
herein may be obscure. For that reason, and for the sake of readability, crucial lemmas

∗ It is not the simplicity of the structure that is the problem, but rather the fact that, in general, the
one-dimensional sets in the resulting structures will not be weak linear geometries in the sense of [9].
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from [6] will be given with a precise reference, together with a ‘translation’ in the text.
Nonetheless, the reader may find a handy copy of [6] useful.

Unfortunately, there is no terminology which is generally accepted for dealing with the
technicalities of Hrushovski’s amalgamation constructions. When dealing with it here,
I will adopt, for most purposes, the terminology of [6]. Partly since this will serve as
the main example guiding us through the text, but mostly because I like it. As far
as geometric stability theory terminology is concerned, less common definitions will be
given in the text, but the reader will be assumed to be acquainted with such notions as
orthogonality, almost orthogonality, regular types and their local geometries etc. A good
source for readers wishing to refresh their memory with these definitions and their basic
properties is [25].

2. From envelopes to pseudo-envelopes

One of the main obstacles for a model theorist trying to understand Hrushovski’s amal-
gamation constructions is that the literature in the subject is given in specialized (and
non-standard) terminology based on long technical definitions (codes, parasitic, primi-
tive, pre-algebraic, strong and self-sufficient extensions and difference sequences to name
just a few). The main aim of this section, is to show that the—usually technically more
involved—stage of the construction known as ‘the collapse’ can be understood in standard
geometric stability theoretic terms.

Though given in standard terms, the construction involves quite a few subtle tech-
niques, the details of which non-expert readers may find tedious and not easy to follow.
For that reason, the first three subsections are intended to give a self-contained general
overview of the ideas appearing in the construction. These should hopefully give sufficient
background for readers not interested in the fine details of the construction and wishing
to skip directly to § 3, and a smooth introduction to the more technical parts for the
others.

2.1. The free construction

In many texts concerning Hrushovski’s amalgamation technique it is pointed out that
the construction is carried out in two different steps: first a free amalgamation construc-
tion, which usually produces a structure of infinite rank, and then a collapse stage which
produces one of finite rank. In practice, however, either the first stage is skipped alto-
gether or the collapse looks more like a rehash (albeit with additional difficulties) of the
free amalgamation stage, taking place in a more restrictive (universal) class. As such,
the collapse may be seen more like an independent construction than a second stage
necessarily following the free amalgamation. One of the aims of this section is to make
clear the role of each of the two stages in the construction.

From the technical point of view, the free amalgamation construction (free construc-
tion, for short) is rather straightforward and seems to be quite well understood. What
may be slightly less clear is that it provides the playground where all the rest of the work
will be done. More importantly, if we view the construction of combinatorial geometries
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with prescribed properties as the ultimate goal∗, this is the stage where this geome-
try is obtained (and later slightly modified to fit into a structure of finite rank). Zilber
(e.g. in [34]) interprets this construction—or rather its complete axiomatization—as one
characterized by

• a ‘Generalized Schanuel’ condition requiring that some predetermined integer val-
ued pre-dimension function δ, defined on the set of finite models of a universal
theory, T ∀, be non-negative (informally, Zilber describes this condition as asserting
that ‘no over-determined system of equations has a solution’);

• an existential-closedness condition (with respect to the universal theory determined
by the Schanuel condition), which can be interpreted informally as ‘every system
of equations which is not over-determined has a solution’.

Reversing Zilber’s point of view, the pre-dimension function, δ, can be thought of as
suggesting, given a (finite) set of ‘varieties’ in n-space, what should be the transcendence
degree of a generic point in their intersection—or, in other words, what is the dimension
of their intersection.

For example, in the case of fusion of two strongly minimal theories T1, T2 (with quan-
tifier elimination) over a totally categorical T0 = T1 ∩ T2, for a finite A |= T ∀

1 ∪ T ∀
2 the

pre-dimension function is given by

δ(A) = MR1(tp(A)) + MR2(tp(A)) − MR0(tp(A)),

where MRi denotes Morley rank in the sense of Ti (in other words, MRi is the dimension
of the Ti-locus of A, and δ(A) is the ‘right’ dimension of the intersection of these loci).
So the Schanuel condition simply says that δ(A) � 0 for all finite A, i.e. that there are
no solutions to equations, which on dimension theoretical grounds should not have one.

The existential-closedness condition says that this is the only reason for a system of
equations not to have a solution. To give a more accurate description of this axiom denote
L := L(T ∀) (for T ∀ the universal theory appearing in the axiomatization). We define a
class of distinguished ‘strong ’ (or self-sufficient) embeddings f : A ↪→ B for A, B |= T ∀,
by requiring that†

δ(f(A)) = min{δ(A′) : f(A) ⊆ A′ ⊆ B}.

If A ⊆ B we will write A � B (and say that A is strong in B) if the identity is a strong
embedding of A into B. In those terms the ‘Schanuel condition’ can be stated as ∅ � A

for all A. We will denote C0 := {∅ � A |= T∞}. The existential-closedness axiom scheme
can now be stated as the requirement that for every model M and A ⊆ M , if A � B ∈ C0

(finite) then there exists a strong embedding of B into M over A.
∗ It may be interesting to know whether a bad group of rank 3 can be characterized in terms of the

associated combinatorial geometry. But even if this is impossible, already the construction of a non-
CM-trivial geometry, admitting a group configuration but not a field configuration will be a big step
forward.

† The above definition is not quite accurate. In reality we should not allow all intermediate subsets
A′ to be considered. For the present discussion suffice it if we say that in the case of fusion over a vector
space we restrict our attention only to sub-vector spaces.
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We leave it as an exercise to the reader to verify that in the case of the fusion over a
(totally categorical) vector space both axiom schemes are first-order axiomatizable. From
now on we will denote the above axiom schemes by T∞ and always assume that they are
elementary. Naturally, the first step in the process is to show that T∞ is consistent. This
is done by proving that the class (C0,�) has the amalgamation property and that ‘�’
is transitive on C0

∗ (so it admits a Fräıssé limit, which is easily verified to be a model
of T∞).

2.2. The geometric structure of T∞

As mentioned in the previous subsection, T∞ provides us with the setting in which
the collapse will eventually take place. In this subsection we describe the features of this
setting.

A key observation towards that end (see, for example, Lemma 6.2 of [15] for the fusion
over a vector space) is that (if δ is chosen carefully enough) for any A ⊆ B |= T ∀, if
∅ � B, there exists a unique minimal A ⊆ C � B which we will denote clB(A) (and call
the self-sufficient closure of A in B—omitting B, if the context is clear). From now on we
will assume that cl(A) ⊆ aclT∞(A) for all A. We will see below that in structures where
this is not the case, it is not clear how to define the collapse, and since this is the main
concern of this section, this assumption is natural. It may also be worth noting that if
for every finite A there exists a finite B such that A ⊆ B then the above assumption will
always hold. For a discussion of a construction where this is not the case, see [29] (where
in fact the self-sufficient closure is not well defined).

Under the assumption that cl is well-defined and algebraic it is not hard to check
that cl(Ba) ∼= cl(Aa) ⊕A cl(BA) is a notion of independence (where B ⊕A C denotes
the free amalgam of B with C over A). It follows that T∞ is stable and this notion of
independence must coincide with non-forking†. So we get, in fact, that T∞ is superstable,
and in order not to overload the exposition, we will assume (as is usually the case) that
there are enough formulae in T∞ to isolate each type in its U -rank, implying that T∞ is
ω-stable and U -rank is equal to Morley rank.

Consider a set A = aclT∞(A) ⊆ M |= T∞ and b̄ such that:

• δ(b̄/A) := min{δ(A′b̄) − δ(A′) : A′ ⊆ A, finite} = 0;

• δ(b̄′/A) > 0 for all b̄′ ⊆ b̄.

By our characterization of forking and the minimality of b̄ we get that tp(b̄/A) is minimal,
and by our assumption it must be strongly minimal. Call such a type simply pre-algebraic.
More generally, call b̄ such that δ(b̄/A) = 0 pre-algebraic, and δ-minimal if δ(b̄′/A) >

δ(b̄/A) for all b̄′ ⊆ b̄. Naturally, if A � B and B \A is finite (more precisely, if there exists
a finite set b̄ ⊆ B such that cl(Ab̄) = B) there exists a decomposition (essentially unique)
of tp(B/A) into δ-minimal types. We conclude, that the δ-minimal types coordinatize T∞.

∗ In most cases A � B will be equivalent to δ(X ∩ A) � δ(X) for all X ⊆ B. In cases where this is
not the case, the latter, stronger condition, may be the right definition of A � B.

† This will only be true under the additional assumption that if A � B1, B2 then the isomorphism
type of the free amalgam is uniquely determined.
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That is, for every A � B as above there are b̄1, . . . , b̄n ⊆ b̄ such that acl(Ab̄1, . . . , b̄n) =
acl(Ab̄) and tp(b̄i/ acl(Ab̄1, . . . , b̄i−1)) is δ-minimal for all 1 � i � n. This fact is crucial in
everything that follows, but in many cases it is so obvious that it is in fact not mentioned
explicitly. In the fusion over a vector space this is essentially the content of Proposition 4.7
of [15].

To simplify the exposition further, we will assume the pre-algebraic types are dense
in T∞ and that up to non-orthogonality T∞ has one∗ type pω of rank ω, which we will
call the generic type of T∞. Note that in bi-coloured fields, for example, there are other
natural candidates for the title and the unique regular type of rank ω is usually called
the ‘coloured generic’. This suggests that a more appropriate name for pω might be ‘the
generic regular type of T∞’, but for the sake of clarity, we will use the shorter terminology.
Collecting all of the above together, it is now easy to check that the simply pre-algebraic
types together with pω form a complete set of representatives of the non-orthogonality
classes of regular types in T∞. We will see that the geometries of the regular types have a
crucial role in our analysis. In particular, the geometry we set to construct is (essentially)
the local geometry of pω, which is given by cl.

At this stage, we can already give a rough idea of the ideology behind the collapse: given
M |= T∞ we would like to find a homogeneous, infinite N � M such that dimN (p) < ∞
for every strongly minimal type in S(M) based over N . The idea is that, if everything
works out properly, N will inherit the coordinatization from M (by the homogeneity) and
therefore will be ω-stable and unidimensional (because N is infinite it must have some
non-algebraic type, and the requirement dimN (p) < ∞ should make all the strongly
minimal type of T∞ algebraic, so, by coordinatization, pω will be the only non-algebraic
type). This would make Th(N) uncountably categorical, and pω(N) its unique strongly
minimal set, as desired.

One way of avoiding trivial solutions to the above project can be to require that if
p ∈ ST∞(N) is realized in N then p ⊥ pω (i.e. that pω is not realized in N ; this will be
slightly elaborated in the closing paragraphs of this subsection). This would imply that
N is not a saturated model of its theory, but the homogeneity will be good enough a
replacement.

It is now clear, that if we want any chance of having both any M |= Th(N) to inherit
the coordinatization from T∞ and Th(N) to be uncountably categorical, we must require
that any strongly minimal p ∈ S(N) which is realized in some N ≺T∞ M be locally finite.
Towards this end, we will have to prove something in the spirit of the following lemma.

Lemma 2.1. Every strongly minimal set in T∞ is locally finite. In particular, it is locally
modular.

The lemma is not true in all free constructions, but if some p ∈ S(M) were not locally
finite, in order for N = aclT∞(N) to be unidimensional, we would have to require that
dimN (p) = 0 (the alternative solution—requiring that p be the unique regular type of

∗ This will not, in general, be the case. However, as long as the strongly minimal types are dense in
T∞ the construction is practically unaltered.
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Th(N)—is uninteresting). For such a requirement to be consistent delicate questions
concerning definability of non-orthogonality to p will have to be addressed∗.

It is worth noting, however, that even in the presence of non-locally modular strongly
minimal types in T∞ it may well be that a collapse of the locally modular types is still
possible, resulting in potentially interesting new structures. A good test case where this
approach seems possible to implement can be found in [22] where T∞ is interpreted
in a differentially closed field, with some of its strongly minimal sets non-orthogonal
(in T∞) to the field of constants. In this example, there is only one ‘problematic’ non-
orthogonality class, so that the resulting collapsed structure will still be of rank ω, but
will not be multidimensional. Similar ideas were already used in the constructions of [21].

The importance of the local modularity of the strongly minimal types of T∞ will be
discussed in more detail in the next subsection.

Despite being absolutely crucial for the construction, Lemma 2.1 is not stated explicitly
in most texts dealing with the collapse. In the context of the fusion over a vector space the
lemma is proved in Proposition 6.8 of [15]. In [6] local finiteness follows from Lemma 6.1
(which we slightly reformulate).

Lemma 2.2. Let M |= T∞ and N = aclT∞(N) ⊆ M be such that dimN (p) is finite for
every pre-algebraic type p ∈ S(N), then any strongly minimal formula ϕ ∈ L(N) has
finitely many solutions in N .

However, local modularity only acts behind the scenes of the text in [6]. In [7] it is
even harder to track down these facts. The somewhat harder proof of local finiteness
of strongly minimal sets is rather well hidden in the proof of Lemma 7.3, but is never
stated explicitly (though it follows implicitly from the fact that the class Kµ has the
amalgamation property).

2.3. An overview of the collapse

The ideology underlying the exposition is that once T∞ has been constructed, given
M |= T∞ the collapse can be described as obtaining (elementary) means of constructing
subsets N � M , in which the dimensions of simply pre-algebraic types are well controlled
(and in particular finite).

To better understand this, remark that our assumption that the pre-algebraic types
are dense in T∞ would, in most cases, imply that for any type p ∈ ST∞(A) and a |= p|A
if d(a/A) > 0 then MR(p) is infinite. Since, up to non-orthogonality, pω is the unique
regular type of infinite rank, it follows that any forking extension of pω is domination
equivalent to a pre-algebraic type. Since pre-algebraic types are totally categorical, any
definable subset of M of finite rank has at most finitely many solutions in N (because
the simply pre-algebraic ones are finite in N). In particular, any forking extension of pω

will be algebraic in N , so pω, interpreted in N , will be a minimal type.
Such control over the behaviour of strongly minimal sets made its first appearance

in the totally categorical case, where this process is precisely Zilber’s construction of
∗ As long as p is locally modular, it is quite hopeful that such questions could be addressed—as was

conjectured in [29]. But in the non-locally modular case the situation is much more delicate.
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envelopes. Generalized later to the context of ℵ0-categorical, ℵ0-stable structures in [11] it
reached its ultimate form in [9], as part of the characterization of smoothly approximable
structures. In many ways, as will be made clear in this section, the collapse can be viewed
as a generalization of these constructions. The geometrical ideas underlying the collapse
appear already in these early works, and the main technical difficulty in their adaptation
to the present context lies in its being out of the ℵ0-categorical realm.

Roughly, the main steps in the collapse are

(1) prove that the free amalgam is coordinatized by (usually) a unique regular type
of (in most cases) infinite rank and families of totally categorical strongly minimal
sets;

(2) identify a good set of representatives of the non-orthogonality classes of strongly
minimal sets and collect them in a ‘standard system’ C where each class is repre-
sented (essentially) once;

(3) show that for a function µ : C → N, µ-envelopes of ∅ (with respect to C), i.e. maximal
algebraically closed subsets X ⊆ M satisfying dimX J � µ(J) for all J ∈ C, are
homogeneous (and in particular that, for some µ, they exist);

(4) find a good elementary analogue of envelopes for which the same construction
works.

The coordinatization lemma which forms the first part of the process described above
is usually straightforward and was dealt with in the previous subsections, as well as
the somewhat trickier and crucial fact that all strongly minimal sets in T∞ are totally
categorical.

To obtain a consistent set of conditions of the form ‘the dimension of Ja is at most
µ(Ja)’ for a strongly minimal geometry Ja (definable in M), it is most convenient to
make sure that such a condition is given only once for each non-orthogonality class
of geometries. It is therefore important to be able to collect a (non-redundant) set of
representatives for those classes. The technical term for such collections is systems of
standard geometries. This is taken care of in step two in the process described above.
The key to the construction of such systems of geometries is definability of orthogonality
in T∞. This requires a good understanding of forking and algebraic closure in the free
amalgam, but since—as we have already seen—this geometry has an explicit description
in the same terms used for the construction of the amalgam it should not, in general, be
hard to obtain. Section 2.5 covers these questions in some detail.

The construction of envelopes can now follow, almost word by word, the one in § 3
of [9]. In this construction, as in the ℵ0-categorical case, local modularity of the strongly
minimal geometries in question plays an important role by supplying us with the ‘unique-
ness of parallel lines’, assuring the homogeneity of envelopes. To better understand this,
assume that X = aclT∞(X) ⊆ M |= T∞ is such that dimX p = µ(p) for some p, the
generic type of a projective space (over a finite field) definable over X. If we want to
have any chance of X being homogeneous, we must decide—given A, an affine space of
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p defined over X—whether A has a point in X or not. The ‘uniqueness of parallel lines’
assures, that if X = aclT∞(X) is contained in a µ-envelope and does not contain a point
of A then for any a ∈ A, Xa is contained in a µ-envelope too (so the answer is ‘every
affine space defined over X has a point’). In § 2.5 we will see that this is, essentially, all
we have to require to assure the homogeneity of envelopes.

But, in general, envelopes will not be elementary. Given a family J of strongly minimal
sets, the statement dim Ja = n will not be first order (the reason being that despite the
total categoricity of Ja we cannot uniformly bound |aclT∞(a) ∩ Ja|). This calls for a first-
order approximation of dimJa = n, which in [6] was appropriately called pseudo-Morley
sequence of length n. This leads naturally to the concept of pseudo-envelopes, which are
introduced in § 2.6.

Since pseudo-Morley sequences approximate actual Morley sequences, the construction
of pseudo-envelopes is not very far from the construction of envelopes, with one important
exception. Strongly minimal sets in T∞ are totally orthogonal, i.e. if E0 = acl T∞(E0)
embeds into a µ-envelope, and a/E0 is strongly minimal, then for any projective geometry
I definable over Ea := aclT∞(E0a) we have dimEa I > 0 only if I ⊥ E0. This is, of course,
a very handy tool in the construction of envelopes. As in the smoothly approximable case,
this property follows inductively from the coordinatization of T∞, with the base case
following from the fact that if c = Cb(tp(a/E0)) then dimacl(c) tp(a/E0) = 0. This last
equality is not quite true of pseudo-Morley sequences, for which an appropriate correction
must be proved. The strategy for overtaking this obstruction are discussed in § 2.7.

Choosing µ : J → N for which this construction can be carried out, will assure that
no strongly minimal set I definable over a µ-pseudo-envelope E has infinite dimension in
E and by total categoricity (of strongly minimal sets in T∞) in fact |E ∩ I| < ∞. Homo-
geneity of pseudo-envelopes assures quantifier elimination (modulo T∞) so E inherits the
coordinatization from T∞. This implies that E is unidimensional, and from the coordi-
natization, ω-stable. Hence E is uncountably categorical.

We now proceed to describe this construction in more detail. We will use the construc-
tion of the fusion over vector spaces as a main example, stressing the translation of the
specialized terms of the construction into the standard geometric terminology.

2.4. Envelopes

We make a slight digression to discuss the notion of envelopes, as it was developed in
the ℵ0-categorical context.

A key step in Zilber’s proof of the non-finite axiomatizability of totally categorical
theories was noting the importance of envelopes. We remind readers of the following
definition.

Definition 2.3. Let T be stable, J := (ϕ1, . . . , ϕk) a set of pairwise orthogonal strongly
minimal sets definable over ∅ and X ⊆ M |= T any set. A J -envelope EJ (X) of X is a
maximal set such that EJ (X)

�X
J .

In this terminology, Zilber proved the following theorem.
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Theorem 2.4. Let ϕ be a strongly minimal set definable in a totally categorical theory
T then

(1) Eϕ(X) is finite for all finite X;

(2) for any m ∈ N there exists a natural number sm such that for all X, Eϕ(X) is
m-elementary (i.e. for all ā ∈ X, |ā| = m, Eϕ(X) |= ∃x̄ψ(x̄, ā) if and only if
|= ∃x̄ψ(x̄, ā)) provided that |acl(X) ∩ ϕ| > sm;

(3) ϕ-envelopes are homogeneous.

To obtain a possibly better understanding of the nature of envelopes, note that Zilber’s
theorem proves that if M is the unique countable model of a totally categorical structure,
then it is smoothly approximable by envelopes. This means not only that Th(M) is the
limit theory of its envelopes but also that Aut(M) is the limit (in the natural sense of
pointwise convergence) of the groups of automorphisms of envelopes.

Zilber’s use of envelopes was subsequently generalized to the context of ℵ0-categorical
ℵ0-stable structures. In both cases the notion of coordinatization played a crucial role.
Recall the following definition (say, in an ℵ0-categorical ℵ0-stable theory T ).

Definition 2.5. If p ∈ S(∅) is non-algebraic and is ∅-definable, then p coordinatizes ψ

if acl(x) ∩ p = ∅ for all x ∈ ψ.

The reader unfamiliar with this notion of coordinatization should have in mind the
example of a definable set ψ(x) of rank n and {ϕ(x, y) : y ∈ p} an infinite definable
normal family of rank n − 1 subsets of ψ(x). Then by local modularity MR(p) = 1 and
the p-coordinate of a ∈ ψ is b |= p such that a ∈ ϕ(x, b).

The main ingredients in Zilber’s proof, appearing later also in [11] (in the absence of
∅-definable equivalence relations), were

• the theory is coordinatized by finitely many (one, in the totally categorical case)
ℵ0-categorical strongly minimal set(s);

• ℵ0-categorical strongly minimal sets are locally modular;

• if ψ is a non-trivial, ℵ0-categorical and non-modular strongly minimal set defined
over ∅ there are an ∅-definable equivalence relation with finite classes F and a
∅-definable vector space V such that (ψ/F, V ) is an affine space;

• wrapping all of the above together, if J is a set of modular coordinatizing geome-
tries, and T is primitive (i.e. does not have non-trivial ∅-definable equivalence rela-
tions), then E is a J -envelope of X = acl(X) if and only if E = acl(E) ⊇ X, every
J -affine space definable over E has a point in E and dimE(J) = dimX(J) for all
J ∈ J .

Ideologically, it should be clear that the homogeneity of envelopes (which plays a
crucial role in the proof) must come from their maximality. However, it should also be
clear that maximality alone is not enough: envelopes have to be algebraically closed, but
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they also have to include realizations of types (non-orthogonal but) almost orthogonal to
J —as many as possible without increasing the J -dimension. However, in general, given
(a finite) X = acl(X) the order in which we add to X realizations of types p ⊥a

X J (but
non-orthogonal to J) is not immaterial. In the above setting, the additional ingredient,
coming easily from local modularity, is the so-called ‘uniqueness of parallel lines’: for
strongly minimal types p1 ⊥ p2 either p1 ⊥a p⊗n

2 for all n or p2 ⊥a p⊗n
1 for all n,

provided that p1 ⊥a p2.
The construction of envelopes in the works of Zilber and Cherlin–Harrington–Lachlan

was relatively easy (modulo the hard classification of locally finite pregeometries) due
to the fact it used the simple definition of envelopes given above, where we only care
about finitely many coordinatizing geometries (based on ∅). In [9] the notion of Lie
coordinatizable structures was introduced, refining the definition of coordinatization and
allowing definable (multidimensional) families of geometries, giving the structure a form
of a tree (historically, in the stable case in which we are interested, a related definition of
quasi-coordinatizable structures appears already in [10] with a close relative in [23], but
the one in [9] is more accessible, and generalizes easily to the contexts we are interested
in).

Definition 2.6. A stable structure M is coordinatized by Lie geometries if it carries a
tree structure of finite height with a unique, ∅-definable root, such that for each a ∈ M

above the root either a is algebraic over its immediate predecessor in the tree ordering,
or there exists b < a and a b-definable projective geometry Jb fully embedded in M and
either:

(1) a ∈ Jb; or

(2) there is c ∈ M with b < c < a, and a c-definable affine geometry (Jc; Ac) with
vector part Jc, such that a ∈ Ac and the projectivization of Jc is Jb.

We refer to § 2 of [9] for more details concerning the above definition (where it is given
in the general, non-stable, context).

Remark 2.7.

(1) It may well be that in the stable context the term ‘coordinatization by linear
geometries’ is more appropriate than the one given.

(2) For totally categorical theories the two definitions of coordinatization coincide.

(3) For an ℵ0-categorical, ℵ0-stable theory T the new definition is more subtle. For
simplicity, assume that M |= T is coordinatizable (in the sense of Definition 2.5)
by one strongly minimal type. The coordinatization induces an equivalence relation
‘∼’ on M . As every ∼-equivalence class is itself ℵ0-categorical, ℵ0-stable, and of
lower rank than MR(M), it is now easy to see how to obtain a tree of coordinatizing
geometries on M . Indeed, if M is primitive, i.e. admits no non-trivial ∅;-definable
equivalence relations then the definitions coincide.
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Gathering the results form § 2.2, the coordinatization of T∞ by δ-minimal types and
the modularity of the strongly minimal ones among them (Lemma 2.1) we start getting
the impression that the structures we are interested in can be viewed as a fairly natural,
somewhat overgrown, version of (stable) Lie coordinatizable structures.

There are, however, two important differences.

(1) The depth of the graph∗ of coordinatizing geometries is not, as a rule, finite.

(2) The generic type pω is not, in general, projective.

In the collapse of T∞ the presence of the non-projective generic type can, for all
practical purposes, be ignored. Neglecting pω causes no harm because, in some sense,
it is a grown up type that can take care of itself: pω is approximated by types of finite
rank (and usually even by strongly minimal types); if we handle the strongly minimal
types well enough, compactness will take care of pω. In fact, if instead of working in a
saturated model of T∞ we work in a large existentially closed M̄ |= T∞, the generic type
will not appear in the coordinatizing tree of M̄†.

As for the fact that the tree of (projective) coordinatizing geometries is infinite—in
itself it does not cause a serious problem. It is, however, a witness to the fact that T∞
is not ℵ0-categorical, which is the main additional difficulty with respect to Lie coor-
dinatizable structures. Instead of working with complete types, we will have to content
ourselves with approximating formulae which will require harder work in order to obtain
uniformity results needed to make our strategy work.

2.5. Systems of standard geometries

We will now proceed slightly deeper into the description of the strategy of the collapse.
We will be working in an ω-stable theory T∞ coordinatized by locally finite strongly mini-
mal types and a unique generic type pω of rank ω. Our goal is to construct a homogeneous
infinite N = aclT∞(N) ⊆ M in which every strongly minimal type p ∈ S(N) has at most
finitely many realizations. As we have already seen, in this setting it will be enough to
control the behaviour of simply pre-algebraic types.

In order to obtain such control we will adapt a tool form [9]. The idea of [9] (appear-
ing already in earlier works of Lachlan) is to (definably) collect representatives of non-
orthogonality classes of rank 1 types in systems of standard geometries. A standard
geometry is, basically, a definable family whose domain is a complete type and whose
range is a set of pairwise orthogonal rank 1 projective geometries. A system of standard
geometries is a collection of standard geometries where each non-orthogonality class is
uniquely represented. In the present context, since T∞ is not ℵ0-categorical, things are
more complicated, and we will have to extract (and preserve) explicitly much of the
information that comes for free in standard systems of geometries. The resulting objects
are known, maybe not very informatively, as codes (2-codes in [17]).

∗ Indeed, in general this graph will not be a tree, but it is nonetheless easily stratified, which is all we
will need.

† Recall that T∞ is given in its natural language. In particular, if ā � M , 0 < δ(ā) there exists
ā′ |= qftp(ā) with ā′ �� M . Hence M is existentially closed, if and only if δ(ā) = 0 for all ā � M
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In this subsection we will discuss the guidelines in the construction of codes, avoiding
the unpleasant technical details and definitions. The first thing to observe is that if
p1, p2 ∈ S(B) are strongly minimal and p1 ⊥ p2 then there are two options.

• p1, p2 are both modular so p1 ⊥a
B p2 with a B-definable finite-to-finite correspon-

dence, f between them. If p1, p2 are strictly minimal, then f is bijective.

• p1 or p2 are affine, i.e. locally modular non-modular, in which case their projec-
tivization is based on B, reducing the problem to the case where p1 is affine and
p2 projective. In that case p1 does not have a solution in B and by the uniqueness
of parallel lines, dimacl(Ba) p2 = dimacl(B) p2 for any a |= p1|B .

This leads to the following observations.

(1) If we want to control the dimension of p ∈ S(N) in N it suffices to control the
dimension in N of any representative of the non-orthogonality class of p.

(2) The representatives of the non-orthogonality classes of strongly minimal types in
T∞ which are easier to handle are modular (preferably even strictly minimal).

(3) Since, ultimately, we want to be able to axiomatize Th(N) the choice of represen-
tatives should be done in a uniform way.

Which raises, naturally, the question of definability of orthogonality in T∞. Recall the
following definition.

Definition 2.8. Let p ∈ S(B) be a stationary type. We say that orthogonality to
p := pa (for some finite a such that Cb(p) ⊆ dcl(a)) is definable if for every definable
family R(x̄, ȳ) there exists a formula Oa(ȳ) such that

Oa(ȳ) = {b : R(x̄, b̄) ⊥ p}.

The definition of orthogonality is uniform if there exists θ ∈ tp(a) such that the same is
true of all a′ |= θ.

To the best of my knowledge the question of definability of orthogonality in the context
of amalgamation constructions has been addressed explicitly only in [21] (in a different
setting) where it is the main technical tool required for the construction, and in § 7 of [15].
In the original works of Hrushovski’s non-orthogonality of simple pre-algebraic n-types
amounted to the action of Sym(n) on the variables of p, as can be inferred, from the proof
of the Algebraic Amalgamation Lemma of [18]. Again, slightly changed in formulation,
this lemma is stated as follows.

Lemma 2.9. Let A � B1, B2 � M |= T∞, B1/A simply pre-algebraic. Let E = B1⊕AB2

be the free amalgam and assume that p ∈ S(E) is pre-algebraic with µ > δ(A) pairwise
disjoint realization in E then either p = tp(B1/A) for some enumeration of B1 \ A or
dimB2 p = dimE p.
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In this and in similar cases definability of orthogonality trivializes. In the case of
the fusion over a vector space VF , in some sense, V -linear dependence replaces some
of the roles of equality in fusions over {=}. It is therefore natural that in this setting
a similar claim is true, but with the action of AGLn(F ) (the group of invertible affine
transformations of V n

F ) on p. This is proved, essentially, in Lemma 6.4 of [6]. The uniform
definability of orthogonality follows easily. Reformulating (and slightly weakening), it says
the following.

Lemma 2.10. Let A, B1, B2, E be as above. Let p ∈ S(B2) be a simply pre-algebraic
modular type. There exists a natural number λ(p) such that if there is a λ(p)-Morley-
sequence in p contained in E then either dimB2 p = dimE p or there is H ∈ GLn(F ) and
a ∈ B2 such that tp((H(B1) + a)/A) = p (for some enumeration of B1 \ A).

Note that in both cases the above lemmas give us more information than the defin-
ability of orthogonality. They give us the number λ(p) which is a bound on the length
of Morley sequences in E of any strongly minimal p ∈ S(E) which is not based on B2

(or B1). These bounds will be most significant in the next subsection.
Having obtained the definability of orthogonality, we now have a better chance of

getting definable control over non-orthogonality classes. Following (2) of the guidelines
described in § 2.3 it is usually useful to definably separate affine types from modular
types. In most worked out examples (including, maybe somewhat surprisingly, [7]) all
strongly minimal types are trivial, whence modular (in this latter example, this is a key
feature in making the collapse possible). In the case of the fusion over a vector space (as
in the case of the Red fields of [8]) this is not the case, and some work is needed. This
appears as Lemma 7.8 of [15]. In [6] this corresponds to the distinction made between
the so-called coset types and other types, which is taken care of in C(v) of the definition
of codes [6, § 2].

For technical reasons it is more convenient to be able to definably collect simply pre-
algebraic types. This means that for every simply pre-algebraic type p ∈ S(B) we want
a formula ϕ(x, b) ∈ p and ψ ∈ tp(b/∅) such that for every b′ |= ψ the formula ϕ(x, b′) is
stationary with a simply pre-algebraic generic type. This is easily seen to be equivalent
to definability of strong minimality in T∞. In some cases, this may not be needed at all
(see [16]) and in general it will suffice to have a rank preserving expansion of T∞ with
this property. It is not known if in the absence of such an expansion the construction
cannot be carried out. It is also worth mentioning that for fusion constructions this
technical point is the only place the definable multiplicity property (DMP) of the fused
theories is needed—it gives definability of strong minimality in T∞. It should not be
hard to check that the converse is also true. In the fusion over a vector space, definability
of strong minimality in T∞ is taken care of by C(i)–C(iii) of the definition of codes
(and the subsequent proof that codes exist). The proof of this part in the definition of
codes amounts to not much more than definability of Morley rank and degree in each of
the fused theories and is very close in spirit to the first-order axiomatization of T∞ as
discussed in § 2.1.

Finally, we have to decide how to choose representatives of the non-orthogonality
classes (of strongly minimal types). If we enumerate all ϕ(x, y) such that whenever ϕ(x, b)

https://doi.org/10.1017/S1474748008000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000224


808 A. Hasson

is non-empty it isolates a simply pre-algebraic type, then using induction and uniform
definability of orthogonality, it is not hard to make sure that if ϕi(x, b) ⊥ ϕj(x, d) for some
b and all j < i, d we can find a restriction ϕ̃i(x, y) of ϕi(x, y) such that ϕ̃i(x, b) ∼ ϕi(x, b)
and for all b′ for which ϕ̃i(x, b′) is non-empty the same is true (i.e. ϕ̃i(x, b′) ⊥ ϕj(x, d)).
It is harder to control non-orthogonality within different instances of ϕ(x, y) itself. As a
rule, assuring that exactly one representative is chosen for each non-orthogonality class
is non-trivial and has to be done in T eq, as this is done in § 2.5 of [9] (and see also
Lemma A.2 of [15] for the case of the fusion over sub-languages). A different approach,
which was taken in [6] (following the simpler treatment in [17]), is to make sure that
given a strongly minimal type p := pa, a formula ϕ(x, a) ∈ p is chosen in such a way that

(1) for all ‘unavoidable’ p′ ⊥ p there is some a′ such that ϕ(x, a′) ∈ p′;

(2) for all other p′ ⊥ p there is no such a′.

In § 2 of [6] this is achieved in C(vi) and C(vii) of the definition of codes. Luckily,
the ‘unavoidable’ types can only appear in finitely many guises, allowing for a definable
control over them. Specifically, if ϕc(x, y) is a code then we have the following.

C(vi) For all b and m the set defined by ϕc(x + m, b) is encoded by ϕc.

C(vii) There is a subgroup Gc of GLn(F ) such that

• for all H ∈ Gc and all non-empty ϕc(x, b) there is a unique bH such that
ϕc(Hx, b) ≡ ϕ(x, bH);

• if H ∈ GLn(F ) \ Gc then no non-empty ϕc(Hx, b) is encoded by φc.

And the fact that this can be achieved is not a difficult consequence of compactness.
Since we are following [6] as a main example, in the present discussion we will adopt

the approach which does not lead us into the imaginary world.
Gathering all this together we obtain a collection C of families of strongly minimal

sets {ϕi(x, y)}i<ω such that for every simply pre-algebraic type p there exists a unique
i < ω and some b such that ϕi(x, b) ⊥ p and the set {b′ : ϕi(x, b′) ⊥ p} is uniformly
definable. This gives us an analogue of a representative set of all standard systems of
geometries [9, Definition 2.5.6], which play a central role in the construction of envelopes
in Lie coordinatizable structures. The significant difference (which causes many technical
problems) from the ℵ0-categorical case is that the domain of our standard systems of
geometries (in this context usually better known as codes) is not a complete type.

We note that the complexity of the construction of a standard system of geometries
(codes) depends mostly on the possible complexity of non-orthogonality and not (directly)
on the geometry of the strongly minimal sets. Thus the codes appearing in [17], e.g. are
relatively simple, whereas those appearing in [7] are as complicated as those appearing
in fusion over a vector space, despite of the fact than in both cases all strongly minimal
types are trivial.
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2.6. Pseudo-envelopes

From now on we fix a set C of representatives of all standard system of geometries
satisfying all the properties discussed in the previous subsection. We remind the reader
of the following definition from [9].

Definition 2.11.

(1) An approximation to a geometry of a given type is a finite or countable dimensional
geometry of the same type.

(2) A dimension function is a function defined on C, with values isomorphism types
of approximations to canonical projective geometries of the given type. (This is
actually determined by a dimension, and the type.)

(3) If µ is a dimension function, then a µ-envelope is a subset E satisfying the following
three conditions:

(a) E is algebraically closed in M (not M eq);

(b) for c ∈ M \ E, there is a standard system of geometries J with domain A and
an element b ∈ A ∩ E for which acl(Ec) ∩ Jb properly contains acl(E) ∩ Jb;

(c) for J a standard system of geometries defined in A and b ∈ A ∩ E, Jb ∩ E has
the isomorphism type given by µ(J).

The two main properties of envelopes which are of interest to us are their existence
and homogeneity for every dimension function µ. Our aim is to suggest a definition of
envelopes suitable for the present context, such that for some finite µ (i.e. such that µ(J)
is finite for all J ∈ C) the same will be true.

A major concern in the present context is that we want envelopes to be uncountably
categorical (in the original setting the aim was to show envelopes were finite, provided µ

was) so we have to take care that the good properties of our envelopes will be preserved
under taking elementary extensions and substructures. We will tackle this last problem
by assuring that our envelopes have a reasonable first-order axiomatization.

As we have already hinted above, a major problem in carrying out the plan of con-
structing envelopes is that the domain of our system of standard geometries are not
complete types. This is a serious problem for the following reason. If J ∈ C and
a ∈ dom(J), then Ja is a totally categorical geometry. Hence, there is a finite set of
formulae ϕ1(x, a1), . . . , ϕka(x, ak) generating the structure on Ja. As long as the ϕi can
be chosen uniformly in a, there will be no problem specifying in a first-order way that for
all a′ ∈ dom(J) ∩ A we have dimJa′ N = µ(J) (once we specify dom(J) we would only
have to say that there is a Morley sequence of length dimµ(J) in Ja(N) whose algebraic
closure is the whole of Ja(N)). But if the structure of Ja is not uniform in a, this will
not be a first-order statement∗. For future reference it will be useful to introduce the
following definition.

∗ This is equivalent to the non-definability of strict minimality in T eq
∞ .
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Definition 2.12. A system of standard geometries C admits a uniform structure, if for
any J ∈ C there are ϕ1(x, y), . . . , ϕnJ

(x, y) such that for all a ∈ dom(J) the structure of
Ja is generated by ϕ1(x, a), . . . , ϕnJ

(x, a).

Our first goal is therefore to define pseudo-µ-envelopes in T∞ where the type of the
geometry approximating Ja will not be specified, but only a good enough definable
approximation thereof. Fortunately, [9] provides a characterization of envelopes which
is easier to handle in our context.

Fact 2.13. Let M be a Lie coordinatizable structure. If E = acl(E) ⊆ M is maximal
such that for every J ∈ C and a ∈ dom(J) the geometry Ja(E) embeds into µ(J) then
E is a µ-envelope.

It is now natural to make the following definition.

Definition 2.14. Let µ : C → N∪{∞}. An algebraically closed structure E is a pseudo-
µ-envelope if it is maximal such that for every J ∈ C and every a ∈ dom(J) ∩ E there is
no pseudo-µ(J)-Morley sequence of length µ(J) in Ja(E).

It remains, of course, to define pseudo-n-Morley sequences, which is a rather tedious
and technical job. We will not give the whole set of requirements (which may vary from
structure to structure) but review only the most important ones.

Fix a stationary type p and denote p⊗n the type of an independent set of n realizations
of p. A pseudo-n-Morley sequence in p is a formula ψn ∈ p⊗n such that for (a1, . . . , an) |=
ψn:

(1) Cb(p) ⊆ dcl(ai1 , . . . , aik
) for some k depending only on p (but not n) and for all

1 � i1 < · · · < ik � n. In particular, n has to be large enough;

(2) (aσ(1), . . . , aσ(n)) |= ψn for any σ ∈ Sym(n);

(3) if b |= p|(a1,...,an) then (a1, . . . , ai−1, b, ai+1, . . . , an) |= ψn for all 1 � i � n; also
(a1, . . . , an, b) |= ψn+1;

(4) if n − 1 is large enough then (a1, . . . , an−1) |= ψn−1;

(5) there are no obvious dependencies in a1, . . . , an over Cb(p) (e.g. they are pair-
wise disjoint and in the case of the fusion over a vector spaces they are linearly
independent with respect to that vector space);

(6) in most cases it will be more convenient to choose ψn quantifier free in the natural
language of T∞.

In [18] pseudo-Morley sequences (in simply pre-algebraic types) are just (long enough)
sequences of pairwise disjoint realizations of the type. In [17] the definition is slightly
more complicated and is practically equivalent to (1)–(5), which are given as part of the
definition of 2-codes. In [6] so-called difference sequences, as defined in § 3 are pseudo-
Morley sequences (if we restrict our attention, as we may, to modular types) with quite
a few additional properties which are irrelevant at the moment, and will be referred to
below. Since the definition of difference sequences involves many technical details, we will
not give it here.
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2.7. Overtaking obstructions

Recall that we fixed a system C of standard geometries. By definition, for every function
µ (and any definition of pseudo-µ-Morley sequence) pseudo-µ-envelopes (with respect
to C) exist. Our problem is to show that they are homogeneous (and elementary).

We will do it by giving an explicit axiomatization of the theory of pseudo-µ-envelopes
(for appropriately chosen µ). The first approximation to an axiomatization of pseudo-µ-
envelopes would be:

(1) T ∀
∞;

(2) for every model E, every J ∈ C and a ∈ dom(J) ∩ E there is no pseudo-(µ(J) + 1)-
Morley sequence in Ja(E);

(3) every model is (self-sufficient and) algebraically closed in the sense of T∞;

(4) for every model E, every J ∈ C and every a ∈ dom(J) ∩ E there exists a pseudo-
µ(J)-Morley sequence in Ja(E);

(5) for every model E, every affine geometry definable over E has a point in E.

Remark 2.15. In general, it is more natural to define the envelope of a set X, in which
case something has to be said concerning the realizations of pω in the envelope of X. In the
present context, the most natural (conforming also with the standard definition) would
be to require that E(X)

�X
a for all a |= pω|X . As we have already said before—since

pω can take care of itself—we will ignore this part in our treatment of envelopes.

Like the situation in [9], these properties (striking out ‘pseudo’ whenever it appears)
characterize µ-envelopes, in the present context as well. However, as stated, they will not,
in general, be consistent. To better understand the problem consider E0 satisfying (1)–(3).
Let J ∈ C and a ∈ dom(J)∩E0 be such that the longest pseudo-Morley sequence in Ja(E0)
has length ν(Ja) < µ(J). Let b |= Ja|E0 and E := acl(E0b). Does E satisfy (3)? By the
construction of our system of standard geometries, for all J ′ ∈ C and all a′ ∈ dom(J)∩E0

we have
dimE J ′

a � dimE J ′
a + 1 (∗)

and strict inequality holds unless J = J ′ and Ja ⊥ Ja′ . Since E0 = aclT∞(E0) it follows
from the above that J ′

a(E0) = J ′
a0

(E0) for all other J ′ and a′ ∈ dom(J) ∩ E0 implying
that (3) holds of J ′

a′ . In fact, since our standard geometries are all modular, if J = J ′ and
Ja ⊥ Ja′ we must have equality in (∗). It is usually not hard to check in that case—with
a reasonable definition of pseudo-Morley sequences—that for every such a′ we have in E

sequences of length ν(Ja) + 1 � µ(J). However, it is not at all clear (and in fact, not in
general true, see the example of § 4 of [3]) that the same holds of any a ∈ dom(J) ∩ E

(but not necessarily a ∈ E0).
Since (1)–(3) are obviously not strong enough (as they say nothing on the maximality

of pseudo-envelopes) and (1)–(4) are inconsistent we have to correct our axioms into
something of the following flavour.
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(4′) For every model E, every J ∈ C, a ∈ dom(J) ∩ E and k < µ(j), if b1, . . . , bk is a
pseudo-k-Morley sequence in Ja(E) either

(a) there exists bk+1 ∈ Ja(E) such that (b1, . . . , bk, bk+1) |= ψJ
k+1; or

(b) for every generic b ∈ Ja there exists J ′ ∈ C and a′ ∈ dom(J ′) such that in
aclT∞(Eb) there exists a pseudo-(µ(J ′) + 1)-Morley sequence in J ′

a′ .

Our problem now is to show that (4′)(b) can be stated in a first-order way. Towards
this end we will introduce the only new definition of this text (see [15, Appendix A] for
more details).

Definition 2.16.

(1) Let a ∈ dom(J) for some J ∈ C. Say that Ja admits an obstruction if there exists
some B = acl(B) such that for every generic b ∈ Ja there exists some J ′ ∈ C and
d ∈ (dom(J ′) ∩ acl(Bb)) \ (dom(J ′) ∩ B) such that (J ′

d ⊥ J and) dimacl(Bb) J ′
d > 0.

Call dimacl(Ba) J ′
d the size of the obstruction.

(2) Ja admits bounded obstruction if there is a bound on the size of the obstructions
it admits.

(3) J admits bounded obstructions if Ja does for all a ∈ dom(J) and the bound is
uniform (in a).

It follows almost immediately from the definition of Lie coordinatizable structures,
that any family of standard geometries does not admit any obstructions at all (i.e. all
obstructions are uniformly bounded by 0). The same proof works in the present context.
As explained in § 2.5, the problem with translating the proof to the case of pseudo-
envelopes is that if c ∈ dom(J), it may well be that acl(c) contains fairly long (unbound-
edly as c varies over dom(J)) pseudo-Morley sequences (so it will not be appropriate
to call these, ‘pseudo-obstructions’, since they actually cause much more trouble than
obstructions—but we will do it nonetheless!).

In [13] this problem is bypassed, by assuming the existence of a system of standard
geometries admitting uniform structure. As we have already said, this assumption is
not valid in T∞ for most amalgamation constructions. The solution is to prove enough
uniformity of structure in order to uniformly bound the size of pseudo-obstructions. In
practice, what we will prove is the existence of a function c : C → N and for every J ∈ C a
natural number B(J) such that for every J ′ ∈ C the size of a possible pseudo-obstruction
to J witnessed by an element from J ′ is bounded by B(J) + c(J ′). Before we proceed to
explain how this can be achieved, we show why this would be enough.

Choose any enumeration of C. Let E0 |= (1)–(3), b ∈ dom(J i) and a ∈ J i
b generic over

E0. By our assumption the size of a Ji obstruction witnessed by some J ′ is bounded
by B(J i) + c(J ′). Choose any function µ∗ : C → N which is finite to one, and set
µ(j) = µ∗(j) + c(Jj). So there are only finitely many j ∈ N such that

B(J i) + c(Jj) � µ(j) = µ∗(j) + c(Jj).
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So for such a choice of µ, for a given J ∈ C there are only finitely many J ′ ∈ C which may
witness the existence of a pseudo-obstruction, and axiom scheme (4′)(b) readily becomes
elementary.

So we now turn back to the proof of the above form of uniform boundedness of pseudo-
obstructions. The idea is to show that if E = acl(E), J ∈ C, a ∈ dom(J) ∩ E and
b ∈ Ja \ E then there exists a function ∆ : C → N such that if b1, . . . , b∆(J′) is a pseudo-
Morley sequence in J ′

c ∩ acl(Ea) for some J ′ ∈ C and c ∈ dom(J ′) then either J ′
c ⊥ E

or J ′
c ⊥ acl(ab). This is enough, since if J ′

c ⊥ E then c ∈ E (because E = acl(E)) and
therefore it must be that J ′ = J and c = b, so this is not an obstruction. If, on the
other hand, J ′

c ⊥ acl(ab), we may assume that c /∈ E so there is a uniform bound c(J ′)
on the length of a pseudo-Morley sequence in J ′ containing only elements which meet
acl(b) (otherwise this will contradict either the assumption that c /∈ acl(b) ⊆ E or the
fact that acl(b) � M). So all but c(J ′) of the elements in the sequence witnessing the
pseudo-obstruction must lie in acl(ab) \ acl(b), and it remains to check that the number
of such elements is bounded by a function of |a| (which depends, among others, on the
definition of pseudo-Morley sequences). In the case of fusion over a vector space this
bound is simply |a|.

So finally, we are reduced to showing that indeed (with the same notation) J ′
c ⊥ E or

J ′
c ⊥ acl(ab). The key observation is that the geometries (but not the pre-geometries!)

of strongly minimal types in T∞ are determined by the quantifier free formulae (in the
natural language of T∞), and that the quantifier free structure of standard geometries is
uniform∗.

To state this more precisely, it will be useful to introduce for a stationary type p the
notation qf p⊗n := {ϕ ∈ p⊗n : ϕ quantifier free}. With this notation, Lemma 5.4 in [6],
translated into a more standard model theoretic language, says the following.

Lemma 2.17. Let M � N and J ∈ C. There exists a function λ(n, J) such that for
b ∈ dom(J) and distinct a1, . . . , aλ(n,J) ∈ Jb(N) either Jb ⊥ M or there are 1 � i1 <

· · · < in � λ(n, J) such that (ai1 , . . . , ain) |= qf J⊗n
b |M .

This is a simple corollary of the total categoricity of strongly minimal sets in T∞. The
same lemma appears, and has an as important role in the construction of the bad field
of [7]. In the latter case the proof is somewhat harder, mostly due to the fact that local
finiteness of the strongly minimal sets in T∞ is far from obvious.

The desired conclusion now follows rather easily, but since it uses quite heavily the
specific construction, we will avoid the details. In [6] this appears as Lemma 7.3 and
in [7] it is Lemma 9.1, with a similar proof.

It should be clear by now that we can use the same results also to obtain the analogous
correction of (5).

(5′) Every affine space (A, V ) definable over E has a point in E, unless for every generic
b ∈ A one of possibly finitely many (definable families) of obstructions occur.

∗ This statement is not quite precise: see, for example, [16]. Moreover, it depends heavily on L(T ∀),
and if T∞ happens to have quantifier elimination in that language, will generally not be true. Suffice it
if we say that in all known examples there exists L′ ⊆ L(T∞) such that the geometry of all strongly
minimal sets is determined by their L′ structure and in which we have uniformity of structure.
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So in order to check that this axiom is consistent with (1)–(4′) we simply have to make
sure that if no obstruction occur and (A, V ) does not have a point in E then acl(Eb)
still satisfies (1)–(4′) for any choice of b ∈ A generic over E. This is an almost immediate
corollary of the uniqueness of parallel lines (see § 3 of [9] for the details).

2.8. Concluding remarks

We have shown in the last subsection that for µ growing fast enough, pseudo-µ-
envelopes are first-order axiomatizable. Denoting the resulting theory Tµ it is now a
straightforward exercise to ascertain that models of Tµ are homogeneous. The proof pro-
ceeds by back and forth. The point is that if E is a pseudo-envelope, Ai = aclT∞(Ai)
(for i = 1, 2) are small and f : A1 → A2 is a partial isomorphism, then for every a ∈ E

there exists ā ⊆ E such that a ∈ ā and ā/A1 is prealgebraic. The analysis of the previous
subsection shows that the only way there could not be a solution of f(tp(ā/A1)) in E

is if there is an obstruction witnessed already in aclT∞(f(Cb(ā/A1) ∪ {ā})) (where f(a)
is a any generic realization of f(tp(ā/A1))), which cannot be, as this would imply an
obstruction already existed in A1.

Therefore, Tµ eliminates quantifiers (relative to T∞) whence it inherits the coordina-
tization of T∞ and consequently has a unique non-algebraic regular type (all the regular
types in T∞ orthogonal to pω have dimension bounded by µ in all models—hence they are
algebraic). With the coordinatization Tµ inherits also the ω-stability of T∞, so pseudo-
envelopes are uncountably categorical, and Tµ is the collapse of T∞.

The most natural question at this stage is of course to understand the geometry of
the strongly minimal set (corresponding to the unique non-algebraic type) obtained in
this way. To answer this question, it will be more convenient to work in a saturated
E |= Tµ, such that E � M |= T∞ (recall that for the construction of Tµ we worked in
an existentially closed model of T∞, so the resulting envelope could not be saturated).
Choosing a transcendence base I � E, we get that E is the pseudo-µ-envelope of I. It is
now not hard to check, that any finitary property of the geometry of pω will be preserved
in the geometry of Tµ, provided that µ is large enough. More precisely, consider any set
a1, . . . , ak ∈ I then

clpω
(a1, . . . , ak) ∩ E = aclTµ

(a1, . . . , ak) \ aclTµ
(∅).

This readily implies, that at least for generic µ (in any reasonable definition of the
term) the geometrical properties of pω are reflected in the unique generic type of Tµ. For
example, it is clear that if pω is n-ample for some n (see [26] for the definition) then so
is Tµ. Note, however, that in general (see, for example, [18, § 5.2]) µ may be recoverable
from the geometry of Tµ, so that the geometry of pω will not be isomorphic to that of Tµ.

So the role of the free construction is to provide us with the theory T∞ where the
collapse is taking place and the local geometry (of its unique regular type of infinite
rank) is the one ultimately determining the geometry of the collapse. It is a thorough
(though more often than not implicit) analysis of the geometric properties of T∞ which
tells us how to perform the collapse, which can be viewed as a smooth approximation
of T∞.
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It is perhaps not just a coincidence that both the free construction and the collapse are
(or at least can be) obtained by means of amalgamation. But this similarity is misleading:
the two constructions are genuinely different. I hope that this section of the paper has
made it clear that there is a good model theoretic theory underlying the collapse. I hope
that the next section will help me convince that the true challenge, the terra incognita,
lies in the realm of free constructions.

3. Some old open questions

This section is dedicated to the presentation of some, in my view, important open ques-
tions related to Hrushovski’s construction. Some of the problems may be quite hard, but
others seem accessible, possibly even easy. Throughout, all theories will be in countable
languages.

3.1. Geometry

The questions in this subsection are motivated mainly by the following problem.

Problem 3.1. Is there a classification of strongly minimal geometries?

But also by the challenge of constructing a bad group of finite Morley rank. Already
the first step in Problem 3.1 seems rather hard.

Problem 3.2. Formulate a conjecture on the classification of strongly minimal geome-
tries.

A reasonable approach to the problem would be a classification of strongly minimal sets
according to the complexity of their geometries. A possible measure of complexity can be
found in Pillay’s hierarchy of n-ample geometries proposed in [26]. Pillay’s conjectural
hierarchy has two major drawbacks.

• It does not offer any gauge of complexity for structures interpreting infinite fields
(as such structures are n-ample for all n).

• All known strongly minimal structures either interpret an infinite field or fall into
one of the three first classes in the infinite hierarchy.

A partial remedy to the first of these problems could be to classify the strongly minimal
geometries in terms of (countable) collections of ‘basic’ types of geometries (say the n-
ample non-(n + 1)-ample geometries together with the geometries of algebraically closed
fields). But this does not settle the question of the sort of classification such collections
of geometries may give us.

Recovering the geometry of a strongly minimal set from a set of reducts of lower
complexity may be an over ambitious goal, as the following example shows. Consider
T , a strongly minimal fusion (over {=}, say) of two algebraically closed fields, T1, T2.
The natural choice of a set of geometries associated with T is given by the geometries
of T1, T2. However, recovering the geometry of T from the data might call for additional
information concerning the µ-function used in the collapse (see, for example, [18, § 5]).
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In the above example the more natural geometry to associate with Tµ = T1⊕µT2 is the
local geometry of pω in the corresponding free fusion T∞ := T1 ⊕∞ T2. In addition, it is
easy to verify that if Tµ = T1 ⊕µ1 T2 ⊕µ2 T3 the local geometry of T∞ := T1 ⊕∞ T2 ⊕∞ T3

is fully determined by T1, T2, T3 (and in particular does not depend on the order in
which the theories are fused). So we make the following definition.

Definition 3.3. Let {Ti}i∈I be a countable collection of strongly minimal sets in
countable (disjoint) languages, {Gi}i∈I their associated geometries. The free amalgam
G :=

⊕
i∈I Gi is the local geometry of T∞ :=

⊕
i∈I Ti.

A combinatorial geometry G is a free amalgam, if it is obtained as the free amalgam
of n-ample (possibly unbounded n) strongly minimal geometries and the geometries of
algebraically closed fields.

To clarify the above definition we need a couple of observations.

Remark 3.4.

(1) Recall that if T1, T2 are strongly minimal geometries then T2 ⊕∞ T2 always exists,
regardless of DMP, which is only needed for the collapse.

(2) The pre-dimension function for the free fusion of countably many theories at one go
is given by δ(A) := |A| +

∑
i∈I(MRi(A) − |A|). By requiring that δ(A) � 0 (which

is an elementary property) we assure that the support of this last sum is finite.

(3) The standard proof of ω-stability of the resulting theory
⊕

i∈I Ti goes through
unaltered.

Thus, we have a canonical way of associating with a given collection of strongly minimal
geometries (possibly with repetitions∗) a combinatorial geometry (which need not, in
general, be that of a strongly minimal set). It may therefore be reasonable to try and
classify the geometries of strongly minimal sets using those of free amalgams of strongly
minimal geometries.

This raises naturally, the question already hinted to in the end of the previous section,
concerning the relation between the local geometry of T∞ and the geometry of Tµ. As
already mentioned, the geometry of Tµ can be viewed as obtained from the one in T∞
by reducing to an appropriate subset of realizations of pω. Although this is not quite a
satisfactory characterization, the following can be asked.

Problem 3.5. Is every strongly minimal geometry an infinite homogeneous subset (with
the induced closure operator) of a free amalgam?

It may well be that the definition of freely amalgamated geometries will have to be
modified to encompass even the known constructions. The obvious test cases are the
following.

∗ What is the geometry of the fusion of an algebraically closed field with itself?

https://doi.org/10.1017/S1474748008000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000224


Questions concerning Hrushovski’s construction 817

Problem 3.6.

(1) Let T := T1 ⊕∞
T0

T2 be the (free) fusion of the strongly minimal theories T1, T2 over
their common totally categorical vector space T0. If T1, T2 satisfy the conclusion
of the previous problem, does T?∗

(2) Let T be a theory of finite Morley rank with DMP. Let D(T ) be a strongly minimal
theory interpreting it, as obtained in [14]. If every strongly minimal set definable
in T satisfies the conclusion of the previous problem, does D(T )?

(3) As a concrete example of (2) above, let T be the theory consisting of E, an equiva-
lence relation with infinitely many classes, each of which supporting (uniformly) a
stricture of an algebraically closed field. Let X be the imaginary sort corresponding
to E and T ′ the theory T fused with a function F : E → X which is a bijection on
the E-classes. So T ′ is a strongly minimal theory. Does its geometry come from an
amalgamated one?

(4) What about the geometries associated with the (almost strongly minimal) coloured
fields?

A positive answer (to my mind, not very likely) to the following question would suggest
a more natural formulation of Problem 3.5.

Problem 3.7. Let Tµ := T1 ⊕µ T2. Is the geometry of Tµ locally isomorphic to that
of T∞ (i.e. are the two geometries isomorphic after localizing at a set S with dim(S) =
codim(S) = ℵ0).

More generally, we can ask the following question.

Problem 3.8. Is there a canonical way of associating with any strongly minimal geom-
etry an amalgamated geometry in such a way that the geometry associated to ‘basic’
geometries is basic?

Problem 3.7 generalizes a question form [18]. In § 5 of the paper continuum many
non-isomorphic strongly minimal flat geometries are constructed, and the question arises
as to whether these geometries are non-locally isomorphic. It is also asked whether a
continuum of non-locally isomorphic flat strongly minimal geometries exists. To the best
of my knowledge these questions are still open.

A related problem, generalizing Problem 3.7, which may be of interest (although it does
not seem to have immediate implications on the classification problem) is the following.

Problem 3.9. Let {Gi}i∈I and {Fj}j∈J be countable collections of strongly minimal
geometries, G, F their respective free amalgams. Suppose there is no bijection f : I → J

such that Gi
∼= Ff(i) for all i ∈ I. Can it be that G ∼= F . Can they be locally isomorphic

if the basic geometries are not?
∗ Recall that under the same assumptions, if in addition T1, T2 are one based, then T1 ⊕µ

T0
T2 is

1-based [15] whereas T1 ⊕µ T2 (the fusion over {=}) is not.
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Note that in the above problem F , G need not be amalgamated geometries, as it is
not assumed that {Gi}i∈I and {Fj}j∈J are ‘basic’ geometries.

Returning to the question of the number of non-locally isomorphic strongly minimal
geometries, I do not know of any published proof of the existence of continuum many
such. We give here a short proof, based on an idea of Hrushovski’s. Recall, from the
introduction of [17]:

The geometry [of the fusion] can be viewed as ‘relatively flat’ over the geome-
tries of the strongly minimal sets, however. In particular, it can be shown
that if G is a connected group definable in the strongly minimal amalgam
of D1, D2 then there exist connected groups Gi definable over Di and defin-
able surjective group homomorphism f : G → G1 × G2 with finite (central)
kernel. It would be good to have the sharper result with the arrow reversed
f : G1 × G2 � G.

Already from the easier of the above assertions it would follow that if F1, F2 are
strongly minimal fields of distinct positive characteristics p1, p2 (respectively) then any
strongly minimal group of characteristic pi interpretable in their fusion F1 ⊕µ F2 is a
finite cover of (Fi, +). For every prime p denote Kp := acl(Fp). By induction it would
follow that for any (possibly infinite) set S of primes the free fusion KS :=

⊕
p∈S Kp

interprets strongly minimal groups of characteristic p precisely for the primes p ∈ S. By
Theorem C of [12], this gives a continuum of non-locally isomorphic strongly minimal
geometries, as S varies over subsets of the primes. So we prove the following claim.

Claim 3.10. If G is a connected group definable in the strongly minimal fusion T :
D1 ⊕µ D2 then there exist connected groups Gi definable over Di and definable surjective
group homomorphism f : G → G1 × G2 with finite kernel.

A sketch of the proof. The proof is not hard, so we give only a sketch. The idea is to
pull back the group configuration of G to group configurations in D1 and D2. So let Q :=
{a, b, c, x, y, z} ⊆ G be a set of G-generics forming a group configuration (e.g. y = a−1x,
c = ab and z = b−1a−1x). For simplicity we may assume that Q � M |= D1 ⊕µ D2 =: T .
By assumption, y ∈ aclT (ax) \ (aclT (x) ∪ aclT (a)), whence d(y/ax) = 0 and if ŷi are
Li-transcendence bases for y/(a, x), we get |ŷ1| + |ŷ2| = n (for n = length(y), otherwise
we would get a contradiction to the assumption that a, x ∈ G are independent generics).

We can also find âi ⊆ a such that MRi(âi) = MRi(a/x, y) = MRi(y/a, x). Similarly,
we can find x̂i ⊆ x with the same property. Using the fact that tpT (x/y) = tpT (z/y) we
find σ ∈ Aut(M/y) (some saturated M |= T ) such that σ(z) = x, so we get that σ(b) is
interalgebraic with a over x, y. Pulling back âi and x̂i we can find b̂i and ẑi such that
the triple (b, z, y) has the same properties with respect to (b̂i, ẑi, ŷi) as (a, x, y) had with
respect to (âi, x̂i, ŷi). By similar arguments we can find a corresponding ĉi ⊆ c with the
same properties (with respect to (a, b, c) and (c, z, x)).

Thus, setting Q̂i := {âi, b̂i, ĉi, x̂i, ŷi, ẑi} we get that either Q ∈ acli(Q̂i), or Q/Q̂i is
a group configuration in Li. Because |ŷ1| + |ŷ2| = n whereas MR1(y) + MR2(y) > n it
cannot be that both Q ∈ acl1(Q̂1) and Q ∈ acl2(Q̂2), whence at least one actually gives
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a group configuration. Let G1, G2 be the corresponding groups (if Q ∈ acli(Q̂i) we set
Gi = {e}, the trivial group).

The claim now follows easily (using the fact that Q̂i is a set of Di-independent generic
elements). �

Remark 3.11. By similar arguments it can be shown that the only strongly minimal
fields interpretable in T = D1 ⊕∞ D2 are the ones already interpretable in either D1 or
D2 (use the field configuration and the fact that we know it corresponds to the action of
a two-dimensional group on a one-dimensional homogeneous space).

Obtaining the sharper characterization of groups definable in D1 ⊕µ D2 as suggested
in [17] would, of course, call for a closer analysis of the situation.

It may be worth pointing out, though, that a similar argument would show that if M is
a structure of finite Morley rank (with DMP) and D a strongly minimal set interpreting
M , as obtained by the construction of [14], then any group interpretable in D is a finite
cover of one already definable in M . It seems that the same goes for Ziegler’s fusion of
structures of finite Morley rank [32], but here the situation is somewhat more delicate.
The problem is, that in order to carry the argument through, some care should be taken
in handling imaginaries.

Moreover, if T1 := D1 ⊕ D2 is the free fusion of D1, D2 (i.e. µ = ∞) the same should
be true. Indeed, in that case, if G is a (connected) group definable in T and Q is a
self-sufficient quadrangle as above, then a ⊆ aclT (xy) ⇐⇒ a ⊆ 〈xy〉 where 〈·〉 is the
transitive closure of closing under acl1 and acl2. Hence this is a special case of the one
treated in the proof of Claim 3.10. Interestingly, enough, though, despite of the fact that
the claim remains true for the (strongly minimal) fusion over a vector space, it will no
longer be true of the free fusion over a vector space. Using [15] it should be a fairly easy
exercise to classify the groups of finite rank in this last case.

Finally, note that if pω is the (regular) generic type of T∞, any group configuration in
p⊗n

ω would produce a group configuration in Tµ for large enough µ, and therefore must
originate in group configurations in D1, D2, as in the previous claim.

All this (together with the fact that connected CM-trivial groups of finite Morley rank
are nilpotent [24]) support, the general feeling expressed in the introduction to [5]:

Hrushovski’s amalgamation techniques, as they stand at present, produce
theories which are CM-trivial or at least CM-trivial over the data (the latter
notion has not been made precise yet). So [24] suggests that these methods
will not produce new simple groups of finite Morley rank.

Today this statement is as well accepted as it was when written in 1998, but, unfortu-
nately, also as ambiguous as it was then. The main problem with making it more precise
is that technically it is probably wrong. Let M be a countable (saturated) structure of
finite Morley rank. Assume without loss that T := Th(M) eliminates quantifiers and is
given in a relational language. Let C be the class of all finite models of T ∀. For A ∈ C
define δ(A) = MR(tp(f(A))) for some elementary embedding f : A → M . By quanti-
fier elimination δ(A) is well defined. Note also that quantifier elimination assures that if
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A ⊆ B ∈ C then δ(A) � δ(B) so A ⊆ B ⇐⇒ A is self-sufficient in B. Thus (C,⊆) has
the amalgamation property, and its Fräıssé limit is M .

Therefore, if we translate ‘Hrushovski’s amalgamation techniques’ into ‘Amalgamation
constructions in a universal (or inductive) class with pre-dimension’, we get that any
structure of finite Morley rank can be reconstructed in such a way. Possibly more precise
(and certainly more cumbersome) would be the following.

Definition 3.12. A stable pre-dimensioned class is a universal theory T in a language
L and a function δ : C → N, where C is the set of all finitely generated models of T ,
satisfying

(1) δ is L-isomorphism invariant;

(2) δ(∅) = 0;

(3) δ is sub-modular;

(4) setting, for A ⊆ B ∈ C, the relation A � B ⇐⇒ δ(A) � δ(A′) for all A ⊆ A′ ⊆ B,
makes (C,�) into an amalgamation class;

(5) if A � B1, A � B2, Bi ∈ C then there is at most one structure D ∈ C (up to
isomorphism) which is an �-amalgam for B1 with B2 over A, satisfying δ(D/B2) =
δ(B1)—moreover, if there is no A � B′

1 ⊆ B1 such that B′
1 ↪→ B2 then such D (the

free amalgam of B1 with B2 over A) does exist;

(6) the Fräıssé limit of (C,�) is a saturated model of its own theory.

By Corollary 3.4.5 of [31] stable pre-dimensioned classes produce ω-stable theories (if
|C| = ℵ0). In those terms, stable pre-dimensioned classes produce structures which are
flat (in the sense of Hrushovski’s, as quoted above) over the data, in the sense that any
group configuration in the Fräıssé limit of C arises from one in C. More precisely, if U is
the Fräıssé limit of C and Q ⊆ U is an algebraic quadrangle, there is C ∈ C, R � C and
an embedding f : C ↪→ U satisfying f(R) = Q.

More generally, if we define, in the natural way, for a stable pre-dimensioned class C,
replacing the notion of acl with that of cl-closure, we can readily define δ-quadrangles
in C, or whether C is n-ample, non-(n + 1)-ample (what about the interpretability of an
infinite field), properties which will all be carried out to the Fräıssé limit of C.

The considerable amount of work invested over the years around Hrushovski’s amalga-
mation constructions improved our understanding of their mechanism and our mastery of
their manipulation; it changed significantly our view on the diversity of possible phenom-
ena in strongly minimal theories, but it has not taught us how stretch these constructions
further. Of all the many variants of these constructions (ultimately producing structures
of finite rank) that I know, only the one of [4] uses a pre-dimension function that is
not an immediate derivations of the ones introduced in Hrushovski’s original works. So
to my taste, the true challenge in this field of constructions, is to find new stable pre-
dimensioned classes. Ones which are n-ample non-(n + 1)-ample for large (i.e. greater
than 1!) n, ones in which algebraic quadrangles do not arise from known ranked groups,
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ones with new pre-dimension functions. And what about the collapse? I believe it will
take care of itself.

3.2. The collapse

The problems in this subsection are of a less general nature than the ones in the
previous subsection, but since they are more closely related to the discussion of the
previous section, it may be appropriate to present them here.

To the best of my knowledge, Cherlin’s question (quoted in [17], but not appearing
in any of Cherlin’s own papers) concerning the existence of a maximal minimal theories
has not been completely settled in the strongly minimal case. Of course, the work of [17]
gives a negative answer for strongly minimal theories with DMP, or even to ones with a
strongly minimal expansion with DMP. It is therefore quite natural to ask the following
question.

Problem 3.13. Does every strongly minimal set have a strongly minimal expansion
with DMP?

It seems plausible that if we restrict ourselves to rank preserving expansions the answer
to the question is negative (an adaptation of the construction of [16] to the example of § 3
in [14] could do the trick) but in its full generality the question seems to me completely
open.

Another, possibly of more interest, approach to Cherlin’s question could be as follows.

Problem 3.14. Let T1, T2 be strongly minimal theories (with quantifier elimination) in
(countable) disjoint languages. Is there a strongly minimal completion of T ∀

1 ∪ T ∀
2 .

Of course, a positive answer to Problem 3.13 will also answer positively this last ques-
tion, but it may not be the easiest way of answering it. As already mentioned earlier,
there is no problem construction an ω-stable completion T∞ ⊇ T ∀

1 ∪ T ∀
2 of rank ω, and

the natural question is whether this theory can be collapsed. As pointed out in § 2.3, in
that generality T∞ need not have definability of strong minimality, though it will have a
weaker version thereof, namely for a strongly minimal ϕ(x, b) there is n ∈ N and θ ∈ tp(b)
such that MR(ϕ(x, b)) = 1 and its multiplicity at most n, for all b′ |= θ. This in itself
suffices for the construction of envelopes (since T∞ will still not have obstructions), but
when trying to construct pseudo-envelopes things become more delicate. Apparently, a
closer look at pseudo-obstructions and the ways they can arise will be needed.

In all probability if the fusion of strongly minimal sets can be carried out without
DMP, the same techniques could be adapted to complete the characterization, started
in [14], of structures of finite Morley rank interpretable in strongly minimal structures,
and in particular answer the following fairly natural question.

Problem 3.15. Is every uncountably categorical theory interpretable in a strongly min-
imal one? What if we require the interpretation to be rank preserving?

In fact, I do not know the answer to the above question even for almost strongly
minimal theories.
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