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Abstract. Frege’s definition of the real numbers, as envisaged in the second volume of
Grundgesetze der Arithmetik, is fatally flawed by the inconsistency of Frege’s ill-fated Basic
Law V. We restate Frege’s definition in a consistent logical framework and investigate whether
it can provide a logical foundation of real analysis. Our conclusion will deem it doubtful that
such a foundation along the lines of Frege’s own indications is possible at all.

§1. Overview. The aim of the present paper is twofold: (i) rephrasing Frege’s
inconsistent definition1 of real numbers, as envisaged in Part III of Grundgesetze der
Arithmetik [16], in a consistent setting ruling out value-ranges, and so involving no
version of the infamous Basic Law V (BLV) and (ii) wondering whether the rephrased
definition can be considered logical, and, as such, as a ground for a logicist view about
real analysis.
Concerning (ii) a proviso is in order. In the debate on neologicism, a distinction

has been made between logicality and analyticity, by suggesting, for instance, that,
though not logical, Hume’s principle (HP) is analytic. We are far from undermining
the relevance of this distinction, but we consider unnecessary to stress it for our present
purpose. There are two reasons for that. On the one side, we deem all the arguments
we will advance against the logicality of the relevant principles and definitions also apt
to oppose their analyticity—though some of those advanced in favor of the former are
possibly only sufficient to argue for the latter. On the other side, we are interested in the
epistemic attitude that a faithful Fregean (or even Frege himself) might have (had) in
the face of a definition such as our own. Hence, for the sake of our discussion, we must
follow Frege himself in taking a “truth” to be analytic if, in its proof, “one only runs
into logical laws and definitions” ([15], §3, [17], p. 4),2 and in regarding definitions as
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1 In what follows we will use ‘definition’ quite broadly. The meaning of its occurrences will be
clarified in context.

2 We slightly modify Austin’s translation.
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mandatorily explicit, which suggests regarding logicality as a necessary condition for
analyticity, rather than the latter as a weaker condition than the former.
Concerning (i), it is important to observe that, for Frege, real numbers had to be

defined as ratios of magnitudes, and magnitudes had to belong to different domains.
Hence, his definition should have included two successive steps: a definition of domains
of magnitudes, and a definition of ratios on these domains. As a matter of fact, he
accomplished only the former step, and merely gave some informal indications on how
to accomplish the latter. Both things are done in the second volume of Grundgesetze.3

The latter step should have presumably been accomplished in a third volume that, once
aware of Russell’s paradox, Frege never wrote.
Had he accomplished this step, he should have made it conform to a crucial

requirement: supposing that several domains of magnitude exist, the definition of
real numbers should have identified a ratio on one of these domains with the same real
number as a ratio on each one of the others. Our definition actually complies with this
requirement.
After a short presentation of Frege’s strategy in §2, we will consistently rephrase his

definition of domains of magnitudes in §3.4 To eliminate value-ranges, we will rephrase
first-order formulas involving terms for them as higher-order formulas proper to a
system of higher-order predicate logic as weak as possible, on which we will take stock
in §4. This seems to us the most faithful way to consistently render Frege’s original
definition. Insofar as our appreciation of the logicality of our definition depends on
assuming, in a genuinely Fregean vein, the logicality of higher-order logic, we contend
that this appreciation ipso facto provides an appreciation of the logicality of Frege’s own
definition that remains perfectly independent of any judgement about the logicality of
(any consistent version of) BLV.5

In §5, we will investigate how to define real numbers by following Frege’s indications,
on the base of our definition of domains of magnitudes. In §II.164 of his treatise, Frege
explicitly acknowledged that his envisaged definition of these numbers requires an
existence proof of nonempty such domains. We will explain why this is so. Here, it is
only in order to observe that, in this same section, he also argues that this existence
depends on the existence of continuously many objects (an infinity of objects larger
than “Endloss,” the cardinality of “finite cardinal numbers”), and sketches a plan
for this proof, which, taking the existence of natural numbers for granted, aims at
constructing these objects from them. He then claims that, thanks to this proof, he
would have succeeded “in defining the real number purely arithmetically or logically
as a ratio of magnitudes that are demonstrably there” ([18], p. 1622).
The adverb “arithmetically” is clearly used to emphasize that the envisaged definition

would have been independent of both empirical considerations and geometry. In this
sense, the definition would have surely been arithmetical, and our rendering of it will be
as well. But there is another sense in which, despite his appealing to natural numbers,

3 [16], §§II.165–II.245 and §II.164, respectively; §§II.55–II.159 contain a critical discussion
of alternative definitions, while §§II.160-II.163 contain an informal introduction and a
principled justification of the definition of domains of magnitudes.

4 Knowledge of Frege’s original definition is required to appreciate its correspondence with
our rephrasing. Useful accounts of it can be found in [13, ch. 22; 35, 38, 40].

5 Anyone supporting Quine’s view on the non-logicality of higher-order logic can take our
granting it as made for the sake of the argument.
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Frege did not certainly want his definition to be arithmetical: both his criticisms to the
alternative definitions dependingonan extensionof the domainof rationals—including
Cantor’s (§§II.68-85), Dedekind’s (§§II.138-147), and Weierstrass’s (§§II.148-155)—
and the very purpose of identifying real numbers with ratios of magnitudes make clear
he wanted these numbers to be strictly independent of natural ones, to be properly
Zahlen, rather then Anzahlen. By offering our definition, we will try, among other
things, to comply with this requirement.
In §6, we will account for two distinct strategies to get the required existence proof

in our setting. One of them conforms to Frege’s indications, while the other might
be considered more appropriate for ensuring logicality, since, pace Frege, it does
not require that the existence of continuously many objects be established. In §7,
we will investigate whether the resulting definition does comply with logicality and
non-arithmeticity—in the mentioned sense. In §8, we will provide some concluding
remarks.

§2. Frege’s strategy. Frege’s strategy agrees with the “application constraint”: the
requirement that a mathematical theory be shaped as to immediately account for
its applications.6 This motivates his suggestion to define real numbers as ratios of
magnitudes, magnitudes as elements of distinct domains supposedly including those
of geometric, mechanic and empirical ones, and ratios on these domains as measures
of the relevant magnitudes. Insofar as it would be odd to require that the theory of
real numbers involve these magnitudes as such, together with their respective theories,
this makes providing a structural definition of domains of magnitudes mandatory: a
definition that merely fixes the conditions that a certain domain of independent items
has to meet in order to be recognized as a domain of magnitudes. Frege himself clearly
stresses this crucial point ([16], §II.161; [18], p. 1582):

There aremanydifferent kinds ofmagnitudes: lengths, angles, periods
of time, masses, temperatures, etc., and it will scarcely be possible to
say how objects that belong to these kinds of magnitudes differ from
other objects that do not belong to any kind of magnitude.Moreover,
little would be gained thereby; for we still lack any way of recognizing
which of these magnitudes belong to the same domain of magnitudes.
Instead of asking which properties an object must have in order to

be a magnitude, one needs to ask: how must a concept be constituted
in order for its extension to be a domain of magnitudes?

A natural way to render the required structural definition would have provided
definitional axioms, as usually done for groups or fields. An informal conception of
magnitudes recognizing the existence of “lengths, angles, periods of time, masses,
temperatures, etc.” might have suggested that there are non-isomorphic models
satisfying these axioms. Still, for Frege, magnitudes are just those items that real
numbers are ratios of, and they all behave as lengths do, so that domains of magnitudes
are all isomorphic to each other. Had he defined them through appropriate axioms,
these should have then been expected to be categorical, though algebraic in nature—as

6 See [33] and [37], which include a critical survey of the recent discussion on Frege’s attitude
toward applications of mathematical theories.
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it happens for the usual axioms for real numbers themselves, namely the axioms of
a totally ordered and Dedekind-complete field. Moreover, insofar as magnitudes are
required to add to each other but not to multiply with each other (namely to admit
only a single internal composition law), what he would have needed is a categorical
axiomatization for totally ordered, dense and Dedekind-complete (and, then, also
Abelian and Archimedean)7 groups.
Frege did not straightforwardly follow this route, however. Conforming with a

remark in [19], p. 635 (also in [20], II, pp. 175-76; quoted in [16], §II.161) and putting
it in his perspective, he conceives of magnitudes as value-ranges of permutations, and
so defines their domains not as domains of items merely satisfying certain conditions,
but rather as domains of extensions of appropriate first-level binary relations satisfying
these conditions. Thismakes himable to appeal, alongwith his definitions, to structural
properties of first-level binary relations, namely to the way they compose and are
inverted, as well as to there being the identity relation among them. Accordingly,
rather than listing a number of axioms, and finally getting an implicit definition,
Frege explicitly defines domains of magnitudes as extensions of concepts under which
extensions of certain first-level relations fall. The difficulty he tackles is then that of
looking for an explicit definition of the concept of being one of these extensions (and,
then, a magnitude), and falling under one of these concepts.
Since for Frege extensions are objects, this concept is first-level. In order to define

it, he appeals to a special function allowing him to reduce higher-level concepts to
first-level ones, so as to work in a first-order fragment of his second-order theory.
This is the first-level two-arguments function î ⌢ æ , often too quickly identified with
set-theoretic membership, whose definition is licensed by BLV. Once BLV is omitted,
this function can no more be defined, and the reduction to first-order is no more
possible—unless by a form of set theory. Hence, making Frege’s definition consistent
by eliminating BLV without falling into a set-theoretical setting requires replacing
Frege’s first-order definitions with higher-order ones. We will explain how this can
be done by appropriately rephrasing Frege’s definitions, and in clarifying the logical
nature of the (logical) system that is required for that. This is the purpose of the next
two sections.

§3. Frege’s definition of domains of magnitudes rephrased.

3.1. Eliminating value-ranges. The omission of BLV is made possible by the
elimination, from Frege’s language, of terms for value-ranges. Insofar as the presence
of these terms in his definition of domains of magnitudes entirely depends on the
function î ⌢ æ , we have to make its use pointless.
To make a long story short, this function is such that for any objects Γ and ∆, if

Γ is the value-range
,
εΦ(ε) of a first-level one-argument function Φ (î),8 then ∆⌢ Γ

is Φ (∆), and if Γ is not such a value-range—or, better, it is not a value-range at all,
since, in Frege’s formalism, any value-range reduces to the value-range of a first-level
one-argument function—then ∆⌢ Γ is the value-range of a first-level concept under
which no object falls—for example that of ¬ (î = î), which we could denote by ‘⊘’,

7 See footnotes 19 and 28 below.
8 Our use of Greek capital letters to denote objects and functions whatsoever corresponds to
Frege’s, in his “exposition” of his formal language ([16], part I, §I.1-52).
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for short. In other terms, ∆⌢ Γ is the value, for ∆ as argument, of the first-level
one-argument function of which Γ is the value-range, if Γ is a value-range, and ⊘, if it
isn’t—whatever object ∆ might be.
In a rich enough second-order predicate language including the operator ‘éz [z : ϕ]’

for definite descriptions, together with a symbol for value-ranges, the individual
variables ‘x’, ‘y’ and ‘z’, and the monadic predicate one ‘F ’, this stipulation could
be rendered as follows:

∀x, y
[

x ⌢ y = éz
[

z : ∃F
(

y =
,
εF (ε) ∧ F (x) = z

)]]

,

provided that ‘éz [z : ϕ]’ designates a well-defined object, namely ⊘, even if there is no
z such that ϕ. If ‘a’ and ‘b’ are terms, this makes ‘a ⌢ b’ be a term in turn.
This licenses using this term to denote the æ-argument of the same function î ⌢ æ .

Taking a new term ‘c’ to denote the î-argument, one has the new term ‘c ⌢ (a ⌢ b)’
such that

c ⌢ (a ⌢ b) = éz
[

∃G
(

b =
,
α
,
εG (ε, α) ∧G (c, a) = z

)]

.

It follows that ‘c ⌢ (a ⌢ b)’ is a term that denotes the value for c and a as arguments
of the first-level two-argument function of which b is the value-range, if b is such a
value-range.9

Hence, if Φ (î) and Ψ (î, æ) are a first-level one-argument and a first-level two-
argument function, respectively, then

a ⌢
,
εΦ(ε) = Φ (a)

c ⌢
(

a ⌢
,
α
,
εΨ(ε, α)

)

= Ψ(c, a) .

Suppose that ‘Pb ’ and ‘Rb ’ be respectively a monadic and a dyadic predicate
10

appropriate for rendering, in an appropriate predicate language, two functions Φ (î)
and Ψ (î, æ) of which b is the value-range. It follows that, in order to make the use
of the function î ⌢ æ pointless, and so eliminate value-ranges while restating Frege’s
definition of domains of magnitudes, it is enough to replace each term of the form
‘a ⌢ b’ with the formula ‘Pba’ and each term of the form ‘c ⌢ (a ⌢ b)’ with the
formula ‘cRba’, and to transform Frege’s formal system accordingly.

11 The system so
obtained will be independent of BLV, and so will any definition stated in it.

3.2. Working with binary first-order relations. Informally speaking, Frege con-
ceived of a nonempty domain of magnitudes as a totally ordered, dense andDedekind-
complete additive group of permutations. In light of his rejection of implicit definitions,
defining such a group required to explicitly defining a particular function to play the

9 If b is not such a value-range, different cases are possible. It is not necessary to account for
them, here. For a complete treatment, see [30].

10 Here and in what follows, we take boldface capital latin letters as dummy letters for first-level
properties and relations. The same letters in italics will, instead, be used for the corresponding
variables.

11 To be sure, this rendering of the function î ⌢ æ in terms of predication is not fully faithful
to Frege’s original view: for Frege, both ‘∆⌢ Γ’ and ‘—∆⌢ Γ’ (see footnote 12, below)
denote an object, while for us ‘a ⌢ b’ is rather a formula. Nevertheless, whenever ‘Γ’ denotes
the extension of a concept Φ (î), ‘∆⌢ Γ’ and ‘—∆⌢ Γ’ are, for Frege, names of the True if
and only if ‘Φ(∆)’ itself is a name of the True. Insofar as only this case is relevant here, this
rendering does not alter the aspects of Frege’s definition that are of interest here.
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role of its (additive) law of composition, which required, in turn, to have objects
available, endowed with an internal structure making such a definition possible. To
this purpose, he made the simplest choice possible: he took those objects to be
extensions of functional first-level binary relations, and assigned the role of this law to
the composition of the corresponding relations. This obviously resulted in taking the
extension of the identity relation as the neutral element of the group, and the extensions
of the inverse relations as its inverse elements.
This choice is easily rendered in a predicate setting lacking extensions. We merely

have to fix the conditions under which a first-level binary relation is functional and
results either from the inversion of another such relation, or from the composition of
two other such relations. Taking ‘R’ and ‘S’ to range over first-level binary relations,
this can be formally done through the following explicit definitions:

[Functionality] ∀R
(

IR⇔ ∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z))) ,

[Inversion] ∀R∀x, y (xR–y ⇔ yRx) ,

[Composition] ∀R,S∀x, y (x[R ⊔ S]y ⇔ ∃z (xRz ∧ zSy)) .

These definitions define three third-order constants, respectively: the monadic
predicate constant ‘I’, designating a property of first-level binary relations; the
monadic functional constant ‘∼–’, designating a one-argument function from and
to first-level binary relations; the dyadic functional constant ‘∼ ⊔ ∼’, designating a
two-argument function from and to first-level binary relations, again. Hence, in order
to be licensed, they require appropriate instances of predicative comprehension. The
first requires the following instance of third-order predicative comprehension without
parameters:

(Functionality-CA) ∃X∀R
(

XR⇔ ∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z))) .

The other two require the following instances of second-order dyadic predicative
comprehension with parameters respectively:

(Inversion-CA) ∀R∃S∀x, y (xSy ⇔ yRx) ,

(Composition-CA) ∀R,S∃T∀x, y
(

xTy ⇔ ∃z(xRz ∧ zSy))) ,

where ‘T ’ ranges over first-level binary relations, too.
One might replace, however, these explicit definitions with mere (metalinguistic)

typographic stipulations:
(

Functionality′
)

I(R) := ∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z)),
(

Inversion′
)

R– (xy) := yRx,
(

Composition′
)

R ⊔ S (xy) := ∃z(xRz ∧ Szy).

Any instance of the left-hand side of these stipulations is intended to be a mere
abbreviation of the corresponding instance of the right-hand side. For example,
while ‘IR’ in (Functionality) is an atomic third-order (open) formula, ‘I(R)’ in
(Functionality′) is an atomic symbol abbreviating the second-order (open) formula
‘∀x, y(xRy ⇒ ∀z(xRz ⇒ y = z))’. And analogously for ‘xR–y’ and ‘R– (xy)’ in
(Inversion) and (Inversion′), respectively, and for ‘x [R ⊔ S] y’ and ‘R ⊔ S (xy)’ in
(Composition) and (Composition′), respectively. Adopting these stipulations requires
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neither any instance of comprehension, nor any extension of the usual second-order
language.
We will see in what follows whether these stipulations are enough for our purpose, or

the corresponding explicit definitions are needed, and the instances of comprehension
they require.12

3.3. Domains of classes. For Frege, a domain of magnitudes is the domain of a
“positive class,” which is in turn a “positival class” of an appropriate sort. In his
setting, a class is the extension of a first-level concept ([16], §II.16), and the objects
falling under this concept are said to belong to the class. Positival and positive classes
are, in particular, extensions of concepts under which (only) extensions of first-level
binary relations fall. Defining them amounts to fixing the conditions that a concept is
to meet for the objects falling under it to be just these extensions. To do this, Frege
appeals to their “domains.”He has, then, to firstly define, in general, domains of classes
(ibidem, §II.173). The definition applies to any class, but we only need to consider its
application to the case of the domain of a class of extensions of first-level binary
relations.
This is the extension of a concept under which fall: the extensions in the class; the

extensions of the inverses of the relations whose extensions are in the class; and the
extensions of the relations composed by each of the relations whose extensions are in
the class and their inverses—which in case these relations are functional, as required
for both positival and positive classes, all coincide with the extension of the identity
relation. In our setting, we can, then, rephrase, Frege’s definition of the domain of a
class of extensions of first-level binary relations as follows:

∀X∀R



ðXR⇔







XR∨

∃S

[

XS ∧ ∀x, y

[

[xRy ⇔ S– (xy)]∨
[xRy ⇔ S ⊔ S– (xy)]

]]









 , (3.1)

12 In Frege’s original setting things would not be so simple. Consider only the example of
(Functionality). In this setting, the role of this definition is played by the definition of the
first-level concept Iî ([16], §I.37). By adapting Frege’s notation to our modern one, the
definition might be stated as follows:

[

∀x, y
[

—(x ⌢ (y ⌢ a))⇒ ∀z
[

—(x ⌢ (z ⌢ a))⇒ y = z
]]]

= Ia.

where ‘a’ is a term used as a parameter, and—î is the horizontal concept (ibidem, §I.8), which
is such that —Γ is the True if Γ is also the True, and the False otherwise. It follows that Ia is
the same object as ∀x, y

[

—(x ⌢ (y ⌢ a))⇒ ∀z
[

—(x ⌢ (z ⌢ a))⇒ y = z
]]

, which is a
truth-value. If a is not a value-range of a first-level binary relation, — (b ⌢ (c ⌢ a)) is the
False for whatever pair of objects b and c, and Ia is then the True, which makes any object
other than a value-range of a first-level binary relation fall under the concept Iî. If a is the
value-range of a first-level binary relation Φ (î, æ), a falls under the concept Iî if and only
if either Φ (î, æ) is empty, or, for any x, there is at most one y such that Φ (x, y) is the True.
Clearly, there is no way to regard this definition as a mere typographic stipulation. It rather
defines a total first-level concept by introducing a functional constant to designate it. Among
many others, there are two relevant differences with our case: (i) Frege’s definition applies in
general, whereas both (Functionality) and (Functionality′) only apply to first-order binary
relations and (ii) differently from (Functionality′), Frege’s definition is licensed only via a
stipulation analogous to second-order comprehension.Mutatis mutandis, this also applies to
(Inversion) and (Composition), and to any other particular definition entering his definition
of domains of magnitudes.
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where ‘X’ is a third-order monadic variable, and ‘ð’ a functional operator applied to
it. This definition makes clear that, when applied to whatever (second-level) property
Q of first-level binary relations,13 ð gives another property ðQ of these same relations.
To license this definition, we need to ensure the existence and uniqueness of a second-

level property providing a putative value for ðX under the existence of a second-level
property providing a value forX, and this requires, in turn, third-order comprehension
with parameters. But suppose we wanted to define a certain (third-level) propertyQ14

that a class of first-level binary relations should have in order to be positival, which
is required to render Frege’s definition of positival classes. If, in defining it, we had to
appeal to the domains of the classes that could have it, as is also required to render
Frege’s definition, we should have recourse to a definition like this:

∀X [QX ⇔ φ (ðX)] ,

where ‘φ (ðX)’ stands for an appropriate formula involving the predicate ‘ðX’. Hence,
insofar as, in our rendering of Frege’s definition of positival and positive classes and
domains of magnitudes, this predicate would only appear in instances of formulas of
the form ‘ðXR’, we can replace (3.1) with the following abbreviation stipulation

ð(X)(R) :=







XR∨

∃S

[

XS ∧ ∀x, y

[

[xRy ⇔ S– (xy)]∨
[xRy ⇔ S ⊔ S– (xy)]

]]






, (3.1′)

then use appropriate instances of ‘ð(X)(R)’ instead of the corresponding instances of
‘ðXR’. As amatter of fact, this stipulation is all we need for our present purpose, and it
must be supplied by no sort of comprehension, since it introduces no new predicate, but
merely lets each instance of its left-hand side be an abbreviation of the corresponding
instance of the right-hand side. For short, read both ‘ðXR’ and ‘ð(X)(R)’ as ‘R belongs
to the domain of the class of first-order binary relations that haveX’.

3.4. Positival classes. We can now consider Frege’s definition of positival classes.
If we had to render it through a(n explicit) definition, we should define a fourth-
order monadic predicate constant designating a third-level property. This would
require to quantify over second-level properties, and, then, to appeal to fourth-order
comprehension. But, once again, we are not forced to do it. As above, we might recur
to an abbreviation stipulation by so avoiding any sort of comprehension.
In agreement with Frege’s definition, the extension of a first-level binary relation R

belongs to a positival class if (and only if): both R and its inverse are functional; the
extension of R ⊔ R–, i.e. the identity relation, does not belong to the class; and for any
first-level binary relation S, if its extension belongs to the class, then: the class of the
objects that bearR to some other object coincides with the class of the objects to which
some object bears S;15 the extension of R ⊔ S belongs to the class; both the extension
of R– ⊔ S and that of R ⊔ S– belong to the domain of the class. In our setting, this can

13 Here and in what follows we use ‘Q’ as a dummy letter for second-level properties. Later we
will also use ‘A’, ‘E’, ‘H’, ‘L’, ‘M’ and ‘P’ for the same purpose.

14 Here we use ‘Q’ as a dummy letter for third-level properties.
15 This makes the relations whose extensions belong to the class permutations on a subjacent
first-order domain.
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be rendered either this way

∀X













LX ⇔ ∀R













XR⇒













∀S










XS ⇒










∀x [∃y (xRy)⇔ ∃z (zSx)]∧

XR ⊔ S∧

ðXR ⊔ S–∧

ðXR– ⊔ S



















∧

IR ∧ IR– ∧ ¬XR ⊔R–





































,

(3.2)

or this way:

L(X) := ∀R













XR⇒













∀S










XS ⇒










∀x [∃y (xRy)⇔ ∃z (zSx)]∧

XR ⊔ S∧

ð(X) (R ⊔ S–)∧

ð(X) (R– ⊔ S)



















∧

I(R) ∧ I(R–) ∧ ¬XR ⊔R–

























, (3.2′)

where both ‘LX’ and ‘L (X)’ are short for ‘X is a positival class’ or, more precisely,
‘the first-level binary relations havingX form a positival class’.
In (3.2), ‘L’ is a fourth-order predicate constant and ‘LX’ an atomic (open) formula.

This is, then, an explicit definition, which is to be licensed by an appropriate form
of fourth-order comprehension. In (3.2′), ‘L (X)’ is, instead, an abbreviated (open)
formula, and ‘L’ is merely a symbol occurring in it. Hence (3.2′) neither requires a
fourth-order language nor is to be licensed by any formof fourth-order comprehension.
This does not mean that no form of comprehension is required to license it. Since, in

its right-hand side, the signs ‘–’ and ‘⊔’ do not merely occur as parts of the abbreviated
formulas ‘R– (xy)’ and ‘R ⊔ S (xy)’ introduced by (Inversion′) and (Composition′),
but as functional signs allowing to construe the predicate variables ‘R–’ and ‘R ⊔ S’.
Their use in (3.2′) is, then, to be licensed by the explicit definitions (Inversion) and
(Composition), which respectively require, in turn, (Inversion-CA) and (Composition-
CA), or, more generally, the following second-order predicative comprehension axiom
schema with parameters:

∀R ... T∃U∀x, y
[

xUy ⇔ φ∆10
(R ... T )

]

, (PCA2
∆10
)

where ‘U ’, ‘R’, ‘S’, and ‘T ’ range over first-level binary relations, and ‘φ∆10
(R ... T )’

stands for any second-order formula containing the parameters ‘R’, ...‘T ’, but no
higher-order quantifiers.
Before going ahead with the definition of positive classes, some remarks are in order

about the informal import of the conditions characterizing a positival class. They
apply, mutatis mutandis, both to (3.2) and to (3.2′), but, for short and simplicity, we
only make them about the latter.
LetL be a second-level property. Requiring that

∀R
[

LR⇒
(

I(R) ∧ I(R–))
]
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amounts to requiring that both a binary relation that has L and its inverse are
functional. If this condition obtains, requiring that

∀R [LR⇒ ¬LR ⊔R–]

and that

∀R,S∀x [(LR ∧ LS)⇒ ∃y [(xRy)⇔ ∃z (zSx)]] ,

respectively amount to requiring that the identity relation has not L, and that all
the relations havingL are permutations16 on a subjacent unspecified set. Hence, only
permutations but the identity one, haveL. Thus,⊔ is an associative law of composition
without neutral element on the relations having L. Again, if all the above conditions
obtain, requiring that

∀R,S [(LR ∧ LS)⇒ LR ⊔ S]

amounts to requiring that the family of permutations having L is closed under ⊔.
This makes: the inverse of any such permutation not have L—since, if it did, the
identity permutation would also have it; the family of permutations that satisfy the
open formula ‘ð(L)(R)’ be also closed under composition of the inverses of those
having L—since, for whatever permutations R and S that have L, R– ⊔ S– is the
same permutation as (S ⊔ R)

–. All this is still not enough to ensure that the family of
permutations that satisfy the open formula ‘ð(L)(R)’, if any, is closed under ⊔, and
forms, then, a(n additive) group of permutations. Also requiring that

∀R,S
[

(LR ∧ LS)⇒
[

ð(L) (R ⊔ S–) ∧ ð(L) (R– ⊔ S)
]]

just amounts to requiring it. IfL is a second-level (monadic) property such thatL (L),
the first-level binary relations satisfying the open formula ‘ð(L)(R)’, if any, form, then,
a(n additive) group of permutations, whose internal law of composition is ⊔, whose
neutral element is the identity permutation, and whose inverse function is R 7−→ R–.
This group is not necessarily Abelian, for⊔ is not commutative on permutations. But

it is endowed with a total and right-invariant order defined in terms of the composition
operation. Since, ifH and K are two permutations whatsoever that satisfy ‘ð (L) (R)’,
requiring thatH ⊔ K– have the propertyL is equivalent to requiring thatK andH bear
a right-invariant strict-order relation, let as say⊏L, on these permutations.

17 Hence, if
this relation is conceived of as the smaller-than relation (that is, ‘LH ⊔ K–’ or ‘K ⊏L H’
are read as ‘K is smaller thanH ’), then we can take the collection of the permutations

16 One should better say ‘correspond to permutations’, since, strictly speaking, permutations
are functions, not relations. Let us adopt, however, a more straightforward, though abusive,
language, for short.

17 The proof is simple. As it has been required that ¬LH ⊔H–, we immediately have that
¬H ⊏L H. As K ⊔H– is the same permutation as (H ⊔ K–)

–, we have that LH ⊔ K– ⇒
¬LK ⊔H–, i.e. K ⊏L H⇒ ¬H ⊏L K. Again, if J is, also, a permutation that satisfies
‘ð (L) (R)’, then J ⊔ K– is the same permutation as (J ⊔H–) ⊔ (H ⊔ K–), and so we have
that (LH ⊔ K– ∧ LJ ⊔H–)⇒ LJ ⊔ K–, i.e., (K ⊏L H ∧H ⊏L J)⇒ K ⊏L J. Finally,
as (H ⊔ J) ⊔ (K ⊔ J)

– is the same permutation as H ⊔ K–, we have that LH ⊔ K– ⇒
L (H ⊔ J) ⊔ (K ⊔ J)

–, i.e. K ⊏L H⇒ K ⊔ J ⊏L H ⊔ J.
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that haveL, if any, as the positive semi-group of the group of permutations formed by
the permutations that satisfy ‘ð(L)(R)’.18

3.5. Positive classes and domains of magnitudes. Informally speaking, a nonempty
positive class is a positival class whose domain is a totally-ordered, dense
and Dedekind-complete group of permutations, which is, by consequence, also
Archimedean and Abelian.19 By having a strict order available, the density condition

18 In commenting his definition of positival classes, Frege ([16], §II.175; [18], pp. 1712–
722) claims to have “tried [bemüht]” to include in it only “necessary [nothwendigen]” and
“mutually independent [einander unabhängig]” conditions, though taking as unprovable his
having succeeded in this. In a note added at the end of his book (ibidem vol. 2, p. 243,
[18], p. 2432), explicitly referred to this comment, he corrects himself by observing that
a proof could have been possible by means of counterexamples, though taking it to be
“doubtful [bezweifeln]” that these counterexamples could be given in his formal setting.
In [13] Dummett suggests that his doubt concerned the independence of the condition we
expressed by ‘∀R,S

[

(LR ∧ LS)⇒ ð(L) (R– ⊔ S)
]

’ from the other ones characterizing a
positival class, by observing that, in his developments concerning domains of magnitudes,
Frege appeals to this condition as late as possible (namely only in §II.218), after making
explicit (§II.217) the “indispensability” of this condition for the purpose for which it is used,
which, in our setting, corresponds to prove that if H and K belong to a positive class and H
is smaller than K over the positive semigroup involved in this class, then K– is smaller than
H– over the corresponding group. Adeleke, Dummett and Neumann ([1], theorem 2.1) have
finally proved that this condition is actually independent of the others. When transposed in
our setting, the proof goes along the following lines. LetL⋆ be a property satisfying ‘L (X)’
except for the condition at issue, G⋆ be the structure formed by the permutations that satisfy
‘ð (L⋆) (R), and H and K two binary first-level relations havingL

⋆. Insofar as (K– ⊔H)
– is

the same permutation as H– ⊔ K, not ensuring that K– ⊔H satisfies ‘ð (L⋆) (R)’ is the same
as not ensuring that the disjunction

‘LK– ⊔H ∨ ∀x, y [xH–y ⇔ xK–y] ∨ LH
– ⊔ K’ i.e., ‘H– ⊏L K

– ∨H– =L K
– ∨ K– ⊏L H

–’

holds, namely that H– and K– are comparable according to the order over G⋆. It would
follow that, besides of not being a group, this last structure is not endowed with a total order,
but only with a partial one. It can be proved (ibidem, Lemma 1.2) that this partial order is
an “upper semilinear order”—that is, a strict partial order “such that the elements greater
than any given one are comparable, and that, for any two incomparable elements, there is
a third greater than both of them,”or, more simply, a strict partial order that “may branch
downwards, but cannot branch upwards” ([13], p. 288). But G⋆ is a sub-structure of the
group G formed by the permutations that satisfy ‘ð (L) (R), where L satisfies ‘L (X)’ as a
whole. Hence, the condition at issue follows from the others if and only if G⋆ can be extended
in no group other than G. To prove the independence of this condition it is, then, enough
to prove that there is a group including G⋆ other than G. By Cayley’s theorem, any group is
isomorphic to a group of permutations. It is, then, enough to prove that there is a partially
ordered group whatsoever not isomorphic to G (that is, not totally ordered) that includes a
sub-structure isomorphic to G⋆. This is just what Adeleke, Dummett and Neumann do.

19 That a totally-ordered, dense and Dedekind-complete group (of permutations) is also
Archimedean and Abelian is in fact proved by Frege himself. He proves that a Dedekind-
complete positival class is Archimedean ([16], theorem 635, §II. 214), and that the domain
of a positive class is Abelian (ibidem, th. 689, §II. 244). This is the last theorem he proves.
Insofar as the proof of the former theorem does not appeal to the condition considered in
footnote 18 above, Adeleke, Dummett and Neumann ([1], p. 516) restate these theorems
as follows: a Dedekind-complete upper semilinear order is Archimedean—which, of course
makes it also a Dedekind-complete total order; if the order of a group is dense, Archimedean
and total, then the group is Abelian.
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can be stated easily. For stating the Dedekind-completeness one, further means are
required.
To this purpose, Frege defines the upper rims over a positival class. Let L be such

that L (L), andA a sub-property of it. In our setting, an upper rimU of the collection
of permutations that have A over the collection of those that have L is a relation
having L, such that any other relation that has L and is smaller than U over the
former collection has A. To define it, Frege begins with a general definition, then
applies it to positival classes. In the general case, both the informal notion of an upper
rim and the subsequent one of an upper limit become nonsensical. Formally speaking,
this is immaterial, however, since the following definition of positive classes excludes
that the deviant cases obtain in the case of such a class.20

Once again, there are two ways to render the general definition: either as

∀X,Y∀R [X`RY ⇔ ∀S [(XS ∧ XR ⊔ S–)⇒ YS]] , (3.3)

or as

[(X)` (Y)] (R) := ∀S
[(

XS ∧ X(R ⊔ S–))⇒ YS
]

. (3.3′)

The upper limit of a sub-class of a positival class is the greatest of all the upper rims
of the former over the latter, if there is one. Anew, Frege’s definition can be rendered
in two ways: either as

∀X,Y∀R
[

XłRY ⇔ {LX ∧ XR ∧ X`RY ∧ ¬∃S [XS ∧ XS ⊔ R– ∧ X`SY]}
]

, (3.4)

or as:

[(X) ł (Y)] (R) :=

{

L (X) ∧ XR ∧ [(X)` (Y)] (R) ∧ ¬∃S

[

XS ∧ X(S ⊔R–)∧

[(X)` (Y)] (S)

]}

. (3.4′)

For short, read both ‘X`RY’ and ‘[(X)` (Y)] (R)’ as ‘R is an upper rim of Y over
X’, and both ‘XłRY’ and ‘[(X) ł (Y)] (R)’ as ‘R is the upper limit of Y overX’.
LetP be a third-level monadic property of first-order binary relations. Informally

speaking, the relations that have it form a positive class if they form a positival one,
and are such that: for any relation R which hasP, there is another relation S smaller
than it over P (density); any proper subclass Y of P which has an upper rim over
P also has an upper limit overP (Dedekind-completeness). These conditions can be
rendered in two ways: either as

∀X










PX ⇔

















LX∧

∀R [XR⇒ ∃S [XS ∧ XR ⊔ S–]]∧

∀Y

[[

∃R [X`RY ∧ XR]∧

∃S [XS ∧ ¬YS]

]

⇒ ∃T [XłTY]

]


























, (3.5)

or as:

P (X) :=

















L (X)∧

∀R [XR⇒ ∃S [XS ∧ XR ⊔ S–]]∧

∀Y

[[

∃R ([(X)` (Y)] (R) ∧ XR)∧

∃S (XS ∧ ¬YS)

]

⇒ ∃T [[(X) ł (Y)] (T )]

]

















. (3.5′)

20 See footnote 21 below.
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For short, read both ‘PX’ and ‘P (X)’ as ‘X is a positive class’ or, more precisely,
‘the first-level binary relations havingX form a positive class’.
While (3.3), (3.4) and (3.5) are explicit definitions, and have to be licensed by

some form of fourth-order comprehension, (3.3′), (3.4′) and (3.5′) are abbreviation
stipulations, and require no form of comprehension stronger than (PCA2

∆10
).21

From the previous remarks, it should be clear that if the second-level monadic
propertyP is such that P (P), then the permutations that respectively satisfy ‘ðPR’
or ‘ð (P) (R)’, if any, form a totally-ordered, dense and Dedekind-complete group

21 Comparing (3.5) and (3.5′), on the one side, with (3.3–3.4) and (3.3′–3.4′), on the other,
allows us to see why the deviant cases pertaining to the definition of an upper rim and an
upper limit become immaterial by passing to the definition of a positive class. For short
and simplicity, we only consider (3.3′–3.5′). The right-hand side of (3.3′) fails, as such, in
rendering the informal notion of an upper rim since it does not express the two crucial
conditions that Y be a sub-class of X, and that X be a positival class and R belong to it.
This makes ‘XR ⊔ S–’ do not render the condition that S be smaller thanR overX. Hence,
according to (3.3′), it could happen that [(L) ` (H)] (R) even ifH is not a sub-class ofL or
R it is not such that any relation smaller than it overL hasH. It follows that the conjunction

L (L) ∧ LR ∧ [(L) ` (H)] (R)

renders the informal condition thatRbe anupper rimofH overL except for the requirement
thatH be a sub-class ofL. What are the consequences of missing this requirement? To see
it, let us write the implication

‘∀S [(XS ∧ XR ⊔ S–)⇒ YS] ’ as ‘¬∃S [XS ∧ XR ⊔ S– ∧ ¬YS] ’.

It this clear that this formula can be satisfied byL (as value ofX) andH (as value ofY) even
ifH is not a sub-class ofL. For instance, this is just what happens, whatever first-level binary
relation R might be, if L is a sub-class of H. Hence, missing the mentioned requirement
results in admitting that, for any R, if L is a sub-class of H, then [(L) ` (H)] (R). But
suppose that the first-level binary relations that haveL form a positival class and that R be
one of them, that is, that L (L) ∧ LR. If R is not the smallest relation that has L, there is
certainly another relation S such thatLS ∧ LR ⊔ S–. Hence, for it to hold that

¬∃S [LS ∧ LR ⊔ S– ∧ ¬HS] and [(L) ` (H)] (R) ,

it is necessary that any such S haveH. But if this is so, thenL andH are not disjoint. This
having been established, rewrite the right-hand side of (3.4′) in agreement with (3.3′), i.e., as
follows

L (X) ∧ XR ∧ ¬∃S [XS ∧ XR ⊔ S– ∧ ¬YS]

∧ ¬∃T [XT ∧ XT ⊔ R– ∧ ¬∃W (XW ∧ XT ⊔W – ∧ ¬YW )] .

For this conjunction to hold, it has to exist a first-order binary relation that hasX but not
Y. The case whereL is a sub-class ofH is then expunged from those in which it can happen
that [(L) ł (H)] (R) for some R. Insofar as (3.4′) implies that [(L) ł (H)] (R) only if L is
positival, R has it, and [(L) ` (H)] (R), it follows that, provided that R be not the smallest
relation having L, it can happen that [(L) ł (H)] (R) only if H is a sub-class of L or, at
least,L andH are not disjoint, butL is not a sub-class ofH. Let nowP be a property of
first-level binary relations satisfying the right-hand side of (3.5′), and, then, such thatP (P).
The sub-group formed by the relations having it is, then, dense. IfR hasP, it cannot happen
that it be the smallest relation having it. Hence, it can happen that [(P) ` (H)] (R), only if
H is either a subclass ofP, orP andH are not disjoint, butP is not a subclass ofH.
HenceP andH are not disjoint, that is, some relation havingH has alsoP. Thus, even if
H is not a sub-class ofP, it can happen that it has both some upper rims and an upper limit
overP, which is just what is relevant for both (3.4′) and (3.5′) to comply with the informal
explanations given above.
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of permutations. This is just what a domain of magnitudes is in our setting. Indeed,
for Frege, domains of magnitudes are nothing but domains of positive classes. This
suggests either the following explicit definition licensed, again, only by an appropriate
form of fourth-order comprehension,

∀X [MX ⇔ ∃Y [PY ∧ ∀R [XR⇔ ðYR]]] , (3.6)

or the following abbreviation stipulation requiring no comprehension stronger than
(PCA2

∆10
),

M (X) := ∃Y [P (Y) ∧ ∀R [XR⇔ ð (Y) (R)]] , (3.6′)

where both ‘MX’ and ‘M (X)’ are to be read as ‘X is a domain of magnitudes’ or,
more precisely, ‘the first-level binary relations havingX form a domain of magnitudes’.

§4. Which definition, in which system? As a matter of fact, (3.6) and (3.6′) provide
two different definitions of domains ofmagnitudes. The former results from the explicit
definition of the third-order predicate constant ‘M’. The latter merely exhibits the
third-order open formula briefly designated by ‘M (X)’, and involves no explicit
definition other than (Inversion) and (Composition). Both render Frege’s definition,
but require different logical resources, and play distinct roles in our setting.
Let us begin with the logical resources they require. A first difference is manifest:

while (3.6) requires a fourth-order system, a third-order system is enough for (3.6′).
Though both systems encompass no proper axioms, the former is, by far, more
entangled than the latter. This is not only because of its higher order, but also
because of the forms of comprehension it has to incorporate, in order to license (3.6).
Besides (PCA2

∆10
)—or its instances (Composition-CA) and (Inversion-CA)—required

to license (Composition) and (Inversion), it also calls for other comprehension axioms,
respectively required to license (Functionality) and (3.1–3.6).22 The latter system only
needs to involve (PCA2

∆10
), or merely (Composition-CA) and (Inversion-CA), instead.

22 Namely:

∃X∀R
[

XR⇔ φ∆10

]

[where ‘φ∆10
’ stands for a second-order predicative formula], (CA3

∆10
)

required to license (Functionality);

∀X∃Y∀R[YR⇔ φΣ2
1(1)
(X)]





where ‘φΣ2
1(1)
(X) ’ stands for a

third-order formula involving a second-order
existential quantifier and the parameter ‘X ’



, (PCA3
Σ2
1(1)

)

required to license (3.1);

∃X∀X[XX ⇔ φΠ2
1(1)
]

[

where ‘φΠ2
1(1)
’ stands for a third-order formula

involving a second-order universal quantifier

]

, (CA4
Π2
1(1)

)

required to license (3.2);

∃V∀X,Y∀R[XVRY ⇔ φΠ2
1(1)
] [where ‘φΠ2

1(1)
’ is as in (CA

4
Π2
1(1)
)], (CA4

Π2
1(1)

)
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First-order variables (and the usual logical constants) apart, the language of
this latter system has only to include dyadic second-order and monadic third-order
variables, together with the corresponding quantifiers,23 and the functional constants
‘–’ and ‘⊔’. Though third-order, this system is, then, quite weak. As a matter of fact,
we have nevertheless shown that Frege’s definition of domains of magnitudes can be
consistently rephrased in such aweak system, and is, then, so rephrased, equiconsistent
with it.24 For future reference, call this system ‘L2PCA

2
∆10
’.

It remains, however, that (3.6′), and, then, this very system, are suitable for our
present purpose only if we are content with admitting that a second-level propertyM

is a domain of magnitudes (or that the first-level binary relations that have it form such
a domain) if and only if it satisfies the right-hand side of (3.6′). Were we, instead, in
need of defining a (third-level) property thatM has if and only if it is so, (3.6′) would
nomore be suitable, and we would have to recur to (3.6) and the corresponding fourth-
order and much stronger system. Provided that the definition of positival and positive
classes is, in the present setting, merely instrumental to that of domains of magnitudes,
the former attitude might be easily admitted for the corresponding properties. But
one might consider that the same attitude is not admissible in the case of these very
domains, whose definition is the final outcome of Frege’s work, on pain of missing a
genuine entity counting as such a domain, and, then, the definition itself.
Still, even if the definition of domains of magnitudes is the last step Frege reached

in his formalization of real analysis,25 it is in no way the final step such a formalization
should have reached: this should have rather been an explicit definition of real numbers,
and, possibly, of the operations and relations making them form a totally ordered and
Dedekind-complete field. Hence, if Frege’s informal indications for reaching this final
aimmay be rendered in our settingwithout defining the predicate constant ‘M’, there is

required to license (3.3);

∃V∀X,Y∀R[XVRY ⇔ φΣ3
1(1)
]

[

where ‘φΣ3
1(1)
’ stands for a fourth-order formula

involving a second-order existential quantifier

]

,(CA4
Σ3
1(1)

)

required to license (3.4);

∃X∀X[XX ⇔ φΠ3
1(2)
]

[

where ‘φΠ3
1(2)
’ stands for a fourth-order formula

involving a third-order universal quantifier

]

, (CA4
Π3
1(2)

)

required to license (3.5);

∃X∀X[XX ⇔ φΣ3
1(2)
]

[

where ‘φΣ3
1(2)
’ stands for a fourth-order formula

involving a third-order existential quantifier

]

, (CA4
Σ3
1(2)

)

required to license (3.6).
23 Notice that a third-order quantifier only occurs once: in the right-hand side of (3.5′). This
single occurrence is however essential for the definition of domains of magnitude to succeed.

24 A note of caution. The fact that, when rephrased as suggested, Frege’s definition
is equiconsistent with this system does not entail at all that the original definition
requires no impredicative comprehension, and is, then, consistent in itself. It crucially
involves the function î ⌢ æ, which cannot be defined without impredicative (second-order)
comprehension.

25 To be more precise, Frege offers no explicit formal definition of domains of magnitudes, and
rather is content with informally claiming that a domain of magnitudes is the domain of a
positive class.
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no stringent reason for accepting the foregoing argument, so that (3.6′) and L2PCA
2
∆10

may be considered enough for the purpose of rendering the result he was envisaging.
In §5, we will show that this can be actually done. We can, then, conclude that, whereas
(3.6), and the fourth-order system it requires, are suitable for the purpose of defining
domains of magnitude, as such, (3.6′) and L2PCA

2
∆10
are so for the purpose of defining

real numbers as ratios on such domains. As this is our goal, we’ll go, then, for the latter
option.
This is all the more justified because no form of comprehension can guarantee the

existence of positival and positive classes and domains thereof. Surely, by the standard
interpretation of higher-order logic, the stipulations (3.2′) and (3.5′–3.6′) being given,
the following instances of third-order impredicative comprehension

∃X∀R [XR⇔ ∃Y (L (Y) ∧ YR)] ,

∃X∀R [XR⇔ ∃Y (P (Y) ∧ YR)] ,

∃X∀R [XR⇔ ∃Y (M (Y) ∧ YR)]

are enough to ensure the existence of the second-level properties that a first-level binary
relation has to have for being respectively included in a positival and a positive class and
in a domain of magnitudes. Again, the following instances of fourth-order predicative
comprehension

∃X∀X [XX ⇔ L (X)] ,

∃X∀X [XX ⇔ P (X)] ,

∃X∀X [XX ⇔ M (X)]

are enough to ensure the existence of the third-level properties of being a positival
and a positive class and a domain of magnitudes. Still, securing this existence is no
substantial achievement, since these properties would exist even if they were empty, or
there were not enough relations satisfying them, to make them play the required role
in a definition of the reals.
Even more so, if we grant the extensional conception of properties and relations,

we also have to grant that, no matter how the first-order domain might be, both the
empty first-level binary relation and the empty second-level property exist,26 which
alone is enough to ensure that all six foregoing second- and third-level properties exist,
in turn, and are nonempty, since, according to (3.2′) and (3.5′–3.6′), the empty second-

26 Frege is not clear about what he takes to make a property or a relation exist, if at all.
It is even plausible to ascribe him an intensional conception, which makes the talk of
existence of properties and relations inappropriate ([27]). What is unquestionable is that
he does not explicitly endorse any sort of comprehension axiom, by rather pervasively
admitting of a substitution policy which we could consider as equivalent to full second-order
comprehension. In the light of BLV, our replacing value-ranges of binary first-level relations
with these very relations seems, however, in line with granting the extensional conception of
properties and relations while doing semantic considerations about L2PCA

2
∆10
. This means

informally taking a n + 1-order m-adic predicate variable to range on all the subsets of
ordered m-tuples of the elements of the n-order domain (n,m = 1, 2, ...), and a predicate
constant to designate one of these subsets.
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level property is at the same time a positival class, a positive one, and a domain of
magnitudes.27

Clearly though, if a positival class exists that includes at least a first-level binary
relation, then it necessarily includes infinitely many (extensionally) distinct relations,
which are continuously many if the class is positive.28 And, if this holds for a positive

27 Let E0 be the second-level empty property. From (3.2
′) it follows thatL(E0), since ∀R¬ [E0R].

Let V be the empty first-level binary relation, and E1 the second-level property of being
this property. If R is a first-level binary relation (extensionally) distinct from V, then,
we have that both E1V and ¬E1R. Moreover, from (Functionality

′), (Inversion′) and
(Composition′), it follows that I(V), and that V extensionally coincides both with V

–

and with V ⊔ V
–, and, then, also with V

– ⊔ V (see [16], §II.164). This is enough to show
that V does belong to no positival (and, then, positive) class, and that both ¬L(E1) and
L∗(E1), where ‘L

∗(X)’ is the abbreviation of the formula resulting from the right-hand side
of (3.2′), by skipping the conjunct ‘¬XR ⊔R–’. Then, E1 is positival, except for admitting the
possibility that the identity relation be included in it. Thus, both the second-level properties
[R : ∃Y (L (Y) ∧ YR)] and

[

R : ∃Y (L∗ (Y) ∧ YR)
]

and the third-level ones [X : L (X)] and
[

X : L∗ (X)
]

not only exist by appropriate forms of comprehension, but are also nonempty.

Consider now (3.5′). It is enough to observe that L(E0) and ¬∃R [E0R] to conclude that
P(E0). Look, then, at E1. Insofar as R ⊔ V

– coincides with V, whatever first-level binary
relation R might be, from (3.3′) it follows that

[

(E1)`(Y)
]

(R) if and only if Y is E1 itself.

Insofar as ∀S¬ [E1S ∧ ¬E1S], from (3.5
′) it also follows that P∗(E1), where ‘P

∗(X)’ is the
abbreviation of the formula resulting from the right-hand member of (3.5′) by replacing
‘L (X)’ with ‘L∗ (X)’. So, the properties [R : ∃Y (P (Y) ∧ YR)],

[

R : ∃Y (P∗ (Y) ∧ YR)
]

,

[X : P (X)] and
[

X : P∗ (X)
]

not only exist by appropriate forms of comprehension, but

they are also nonempty. Finally, consider (3.6′). Provided that ‘M∗(X)’ be the abbreviation
of the formula resulting from the right-hand side of (3.6′) by replacing ‘P (X)’ with ‘P∗ (X)’,
it is immediate that both M(E0) and M∗(E1), just because P(E0) and P∗(E1) and the
domains of E0 and E1 respectively coincide with E0 and E1 themselves. Hence, the properties
[R : ∃Y (P (Y) ∧ YR)],

[

R : ∃Y (P∗ (Y) ∧ YR)
]

, [X :M (X)] and
[

X :M∗ (X)
]

, too, not
only exist by appropriate forms of comprehension, but are also nonempty. Notice thatM∗

does not (extensionally) coincide withM, sinceM∗(E1), but notM(E1).
28 More precisely, this is with respect to the full model of L2PCA

2
∆10
, which we also take as its

intended one, where the first-order variables, x, y, z, ...vary over a large enough domain A of
objects, the second-order dyadic variables R, S, T, ...vary over the full power set of A× A,
and the third-order monadic variablesX, Y, ...vary over the full power set of the power set
of A. It is, indeed, easy to see that L2PCA

2
∆10
is far from categorical. A simple way to see

it (thanks to Andrew Moshier for suggesting it to us) is to observe that the lack of third-
order comprehension makes this system have a model where the third-order variables vary
over the empty set. In this model, all closed formulas beginning by a third-order universal
quantifier, as the third conjunct in the right-hand side of (3.5′), are vacuously true. This
makes ‘P (X)’ trivially satisfied by countably many (appropriate) binary relations (whereas

PCA2
∆10
makes any model of L2PCA

2
∆10
include countably many first-level binary relations).

One might be surprised we take the full model to be the intended model, rather than an
appropriate Henkin one. Still, we think a restriction on comprehension, or even the lack
of it, is no reason for imposing a restricted semantics: one thing is the logical resources, in
particular the instances of comprehension, required for a definition; another the selection
of the intended model. The former are deductive, syntactical tools required to formulate
definitions; the latter depends on semantic considerations relative to the informal piece of
knowledge that the relevant system is expected to render—which, in this case, involves the
idea of a positive class as a complete semi-group of permutations. We are not going to take a
stand on this matter, here, but costs and benefits are worthmentioning. Should our definition

be required to recover positive classes including exactly 2ℵ0 permutations, then the intended
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class, it also holds for its domain. It follows that a positive class and a domain of
magnitudes exist, which include at least a first-level binary relation, if and only if
there exists one including continuously many of them. No semantic consideration is,
however, apt to prove the existence of nonempty positive classes and domains thereof.
To prove it, it is necessary to prove that there are enough objects, for defining on them
continuously many appropriate relations.
This was the crucial challenge for Frege’s definition of the real numbers, and it is

also ours. Before tackling it, it is, however, in order to see what makes this proof
indispensable both for Frege’s and for our purposes. This requires looking at how
Frege’s original theory of the reals as objects can be revived in our setting, on the basis
of (3.5′).

§5. Real numbers as objects. Apart from some generalities, most of which we
already discussed above, and the sketchy outline of a possible existence proof for
nonempty domains of magnitudes, which we will consider in §6.1, the pars construens
of part III of Grundgesetze only contains the definition of these domains. No precise
indication of how to define the real numbers is available. The only thing that is clear
is that these numbers should be defined as ratios of magnitudes, and that these ratios
have to be defined as objects, i.e., first-order items, logically speaking.29

5.1. Euclid’s principle with natural numbers. A simple way to accomplish this plan
is by an abstraction principle governing an operator taking pairs of relations (i.e.,
magnitudes) from a domain of magnitudes as arguments and having objects (i.e.,
ratios) as values. As suggested in [40] and [13], this can be done by rephrasing definition
V.5 of Euclid’s Elements, and defining the relation of proportionality between four
magnitudes taken two by two.30

semantic is to be clearly full. If impredicativity were deemed a price worth paying for this
purpose, one should also be aware of the heavy-duty logical resources called for it.

29 From what he writes in the very last § of his treatise, it seems that Frege was also requiring
that real numbers form themselves a domain of magnitudes ([16], §II.245; [18], p. 2432):

The commutative law for the domain of a positive class is thus proven. The
next task is now to show that there is a positive class, as indicated in §164 [see
p. 3, above]. This opens the possibility of defining a real number as a ratio of
magnitudes of a domain that belongs to a positive class. Moreover, we will
then be able to prove that the real numbers themselves belong as magnitudes
to the domain of a positive class.

This further requirement would have not only uselessly entangled Frege’s own first-order
definition, if he completed it ([13], pp. 190–191), but it is also logically incompatible, in our
predicate setting, with the requirement that real numbers be objects. This is why we will set
it aside in our reconstruction.

30 As observed in [13], Euclid’s definition, probably tracing back to Eudoxus, in fact, had been
explicitly appealed to by Hölder in his paper on the “axioms of quantity” ([24]), which
appeared two years before the second volume of the Grundgesetze. But, apparently, Frege’s
was not aware of this. On [24], cf. [5], which also sums up how the notion of magnitude
was investigated around the end of 19th century by several mathematicians, including Du
Bois-Reymond, Stolz, and Weber, by explicitly referring to Euclid’s theory, and achieving
results mathematically equivalent to Frege’s.
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This raises a technical difficulty, however. Whereas this definition applies only if
the magnitudes composing each pair are such that it cannot be the case that any
multiple of one of them be smaller, equal, or greater than any multiple of the other,
this condition is not met by pairs of magnitudes of the same domain, since, differently
fromwhat happened for Euclid’s ones, these are intended to be either positive, negative,
or null. A way to solve the difficulty is by appropriately modifying the very structure of
Euclid’s definition, in order to get the following abstraction principle, which deserves,
nevertheless, the name of ‘Euclid’s Principle’ (or ‘EP’, from now on),











∀(P)X,X
′

∀(ð(X))R ∀XS

∀(ð(X′))R
′ ∀X′S ′





























R [R,S] = R [R′, S ′]⇔















[

XR ∧ X
′R′∧

∀Nx, y(xR ⊏X yS ⇔ xR′
⊏X′ yS ′)

]

∨

[

XR– ∧ X
′R′–∧

∀Nx, y(xR
–
⊏X yS ⇔ xR′–

⊏X′ yS ′)

]

∨

[

∀z, w

[

(zRw ⇔ z[S ⊔ S–]w)∧

(zR′w ⇔ z[S ′ ⊔ S ′–]w)

]]


































, (EP)

where:

– ‘R’ is the relevant abstraction operator;
– ‘∀(P)X [ϕ]’ abbreviates ‘∀X [P (X)⇒ ϕ]’, and the same for ‘X′’;

– ‘∀(ð(X))R [ϕ]’ abbreviates ‘∀R [ð (X) (R)⇒ ϕ]’, and the same for ‘X
′’ and ‘R′’;

– ‘∀XS [ϕ]’ abbreviates ‘∀S [XR⇒ ϕ]’, and the same for ‘X′’ and ‘S ′’;
– ‘∀Nx [ϕ]’ abbreviates ‘∀x [Nx ⇒ ϕ]’, and the same for ‘y’;
– ‘N’ denotes the property of being a natural number;
– ‘xR’ abbreviates ‘R ⊔R ⊔ ... ⊔R

︸ ︷︷ ︸

x times

, and the same for ‘y’, ‘S’, ‘S ′’,R′’, ‘R–’, ‘R′–’;

and
– ‘xR ⊏X yS’ abbreviates ‘XyS ⊔ (xR)–’, and the same for ‘X′’, ‘R′’, ‘S ′’, ‘R–

’, ‘R′–’.

Informally speaking, EP states that for whatever pairs of domains of magnitudes,
issued by two positive classes P and P

′,31 and whatever two ordered pairs of
permutationsR, S andR′, S′, such thatR, andR′ respectively belong to the domains of
these classes, while S and S′ belong to the classes themselves (and are, then, intended
as positive), the ratio R [R,S] of the elements of the first pair is the same as the ratio
R [R′,S′] of the elements of the second pair if and only if:

– either both the first elements R and R′ of these pairs belong to the
respective positive classes P and P

′ (and are, then, intended as positive),

31 Notice that EP does not involve domains of magnitudes as such, but rather positive classes
and their domains. This is perfectly in line with Frege’s missing a formal definition of these
domains: see footnote 25, above.
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and their equimultiples are always smaller than the equimultiples of the second
elements;32

– or both the inverses R– and R′– of the first elements R and R′ of these pairs
belong to the respective positive classesP andP

′ (so thatR andR′ are intended
as negative), and their equimultiples are always smaller than the equimultiples
of the second elements;

– or both the first elements R and R′ of these pairs are the identity relation (and
are, then, intended as null).

So rephrasing Euclid’s definition surely solves the technical difficulty, but it does not
solve all problems: though EP involves neither a predicate constant ‘P’ for the third-
level property of being a positive class, nor a functional constant ‘ð’ for the domain
operator, but merely depends on the stipulations (3.5′) and (3.1′), it cannot, as such,
be added to L2PCA

2
∆10
as a new axiom, so as to get an extended system in which real

numbers are to be defined. There are two reasons for that. First of all, EP involves the
predicate constant ‘N’ for the first-level property of being a natural number, which is
not and cannot be defined within L2PCA

2
∆10
. Secondly, it involves the symbol ‘xR’ (or

‘R ⊔R ⊔ ··· ⊔R
︸ ︷︷ ︸

x times

’) (where ‘x’ is a variable ranging over the natural numbers) whose use

in a formal system is licensed only if this latter contains a device to count the iterated
applications of the functional constant ‘⊔’, which is not and cannot be provided within
L2PCA

2
∆10
.

Away to overcome the first issue is to extend L2PCA
2
∆10
to a stronger system, in which

the property of being a natural number can somehowbe defined, e.g., by addingHP as a
new axiom and appropriately extending its language bymonadic first-order predicates,
tomake it includeFregeArithmetic (FA). Thiswould be, however, a quite radicalmove,
which would also openly conflict with Frege’s requirement of non-arithmeticity for his
definition of real numbers. Even more so, it would not overcome the second issue,
unless the new system were supplied by some ingenious device not usually available in
(the current versions of) FA.
A much less radical and costly, though a bit laborious, way to overcome both issues

at once is available. It is in fact suggested by a trick Frege appeals to in proving the
Archimedeanicity of positive classes ([16], §II.199–214). It consists in amending EP
with the help of some new abbreviation stipulations, which merely require adding new
third-order binary variables.

5.2. Euclid’s principle without natural numbers. Let us begin by adopting the
following new abbreviation stipulation:

D(T ) (R,S) := ∀x, y (xSy ⇔ x[T ⊔R]y) .

32 Notice also that, whereas Euclid’s definition requires that the equimultiples of the first and
the third, among the four relevant magnitudes, “alike exceed, are alike equal to, or alike fall
short of [ἅμα ὑπερέχῃ ἢ ἅμα ἴσα ᾖ ἢ ἅμα ἐλλείπῃ]” ([14], vol. II, p. 114) the equimultiples
of the second and the fourth, we can just require that the equimultiples of the first and the
third magnitudes all be smaller than those of the second and the fourth, since, as noticed in
[36], in the case of Archimedean magnitudes, the latter condition entails the former.
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Let R, S, and T, be whatever first-level binary relations. According to this stipulation,
the formula ‘D(T) (R,S)’ asserts that S results from, or extensionally coincide with,
the composition of T and R. Hence, ‘D(R) (R,S)’ asserts that S results from the
composition of R with itself. In the notation employed in stating EP, this means that S
coincides with 2R.
This allows to simulate the usual definition of the weak ancestral of a binary relation:

D
⊔⊔

(R) (S) := ∀X













XR∧

∀R′, S ′

[[

XR′∧

D(R′) (R
′, S ′)

]

⇒ XS ′

]







⇒ XS






.

This makes the formula ‘D
⊔⊔

(R) (S)’ assert that S extensionally coincides with R or with
the relation resulting froma iterated compositionofRwith itself, and is, then, amultiple
ofR itself. In the notation employed in stating EP, this means that S coincides with nR,
for some natural number n. Let, now,P be a positive class, and R a relation in it. It
is clear that if D

⊔⊔

(R) (T) and D
⊔⊔

(R) (S), then both T and S belong toP. Suppose it is so,

and thatPT ⊔ S–. We can, then, take S to be smaller than T overP. Hence, if alsoP
′

is a positive class (either distinct fromP or not), R′ is a first-level binary relation that
belongs to it, and it is also the case that D

⊔⊔

(R′) (T
′) for some first-level binary relation

T′, then T is the same multiple of R overP as T′ of R′ overP′ if and only if there are
as many first-level binary relations that satisfy the open formula ‘D

⊔⊔

(R) (S) ∧ PT ⊔ S–’

as those that satisfy the other open formula ‘D
⊔⊔

(R′) (S
′) ∧ P

′T′ ⊔ S ′–’.

This suggests enriching the language of L2PCA
2
∆10
by introducing third-order binary

variables, ranging over second-level binary relations between first-level such relations,
and adopting the following further abbreviation stipulation

(X,X′)E (R,T,R
′, T ′) :=































D
⊔⊔

(R) (T ) ∧ D
⊔⊔

(R′) (T
′)∧

∃R














∀S






(

D
⊔⊔

(R) (S) ∧ S ⊑X T
)

⇒

∃!S ′
[

SRS ′ ∧ D
⊔⊔

(R) (S
′) ∧ S ′ ⊑X′ T ′

]




∧

∀S ′






(

D
⊔⊔

(R′) (S
′) ∧ S ′ ⊑X′ T ′

)

⇒

∃!S
[

SRS ′ ∧ D
⊔⊔

(R) (S) ∧ S ⊑X T
]

















































,

(5.1)

where ‘R’ is such avariable, and ‘S ⊑X T ’ abbreviates ‘XT ⊔ S– ∨ ∀x, y [xSy ⇔ xTy]’,
and the same as for ‘X′’, ‘T ′’ and ‘S ′’. Thus, ifP,P′, R, R′, T, and T′ are as above,
then the formula ‘(P,P′)E (R,T,R

′,T′)’ asserts that T is the same multiple of R over

P as T′ of R′ overP′.
For short, let us, now, adopt this other abbreviation stipulation:

(X,X′)E
(R,T,R′,T ′)
(S,U,S′,U ′)

:= (X,X′)E (R,T,R
′, T ′) ∧ (X,X′)E (S,U, S

′, U ′) .
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EP can, then, be restated as follows:











∀(P)X,X
′

∀(ð(X))R∀XS

∀(ð(X′))R
′∀X′S ′





































R [R,S] = R
[

R′, S ′
]

⇔






























XR ∧ X
′R′ ∧

∀T,U, T ′, U ′




(X,X′)E

(R,T,R′,T ′)
(S,U,S′,U ′)

⇒

(T ⊏X U ⇔ T ′
⊏X′ U ′)











∨








XR– ∧ X
′R′–∧

∀T,U, T ′, U ′




(X,X′)E

(R–,T,R′–,T ′)
(S,U,S′,U ′)

⇒

(T ⊏X U ⇔ T ′
⊏X′ U ′)











∨

[

∀zw [zRw ⇔ z[S ⊔ S–]w]∧

∀zw
[

zR′w ⇔ z[S ′ ⊔ S ′–]w
]

]


















































. (EP∗)

It should be easy to verify that, informally speaking, EP∗ has the same content as
EP. But it expresses this content in the language of L2PCA

2
∆10
, merely enriched by the

addition of third-order binary variables as ‘R’. This addition being admitted, EP∗ can,
then, be added to this system as a supplementary axiom. Since EP∗ is an abstraction
principle, its left-hand side is a first-order identity (i.e., ‘R [R,S]’ and ‘R [R′, S ′]’
are singular terms). Moreover, its right-hand side involves no constant other than
‘–’ and ‘⊔’. Hence, adding it to L2PCA

2
∆10
requires no further comprehension axiom.

The theory obtained is, then, a third-order one, including first-order, second-order
binary, and third-order monadic and binary variables, but only admitting predicative
second-order comprehension.

5.3. Real numbers. Though EP∗ supplies the required grounds for defining real
numbers as objects, this theory falls short of achieving it. All that one can do, in the
light of it, is informally (and meta-theoretically) identify these numbers with ratios
likeR [R,S]. If a predicate constant designating the first-level property of being a real
number is to be available, one also has to admit a new form of comprehension, for
licensing the following explicit definition:

∀x
[

Rx ⇔ ∃(P)X∃(ð(X))R∃XS [x = R [R,S]]
]

. (5.2)

What we need, then, is the following second-order third-orderly impredicative axiom-
scheme:

∃X∀x[Xx ⇔ φΣ21
], (CA2

Σ21
)

where ‘φΣ21
’ stands for a third-order formula involving a third-order existential

quantifier—together with a second-order one.
It is then only in such a (highly) impredicative third-order theory obtained from

L2PCA
2
∆10
by adding to it both the proper axiom EP∗ and the comprehension axiom-

schema (CA2
Σ21
), that the property of being a real number can be properly defined in

our predicate setting. For short, let us call this theory ‘FMR’ (for ‘Frege’s (theory of)
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magnitudes (and) real (numbers)’). If such an impredicative theory were to be avoided,
definition (5.2) should be omitted. At most, one could recur to a new abbreviation
stipulation as

R (x) := ∃(P)X∃(ð(X))R∃XS [x = R [R,S]] , (5.2′)

by then admitting that a real number is an object that satisfies the open formula ‘R (x)’.
Call ‘FMR′’ the theory got from L2PCA

2
∆10
by merely adding EP∗, and replacing (5.2)

with (5.2′). The same argument used above to prefer (3.6′) over (3.6) does not apply
here, since the definition of real numbers is the final purpose to be reached to revive
Frege’s program. Hence, if one considers that this aim is reached only if a property,
counting as the property of being a real number, is directly expressed as such, in the
relevant formal setting, on pain of missing the definition itself, there is no other option
than going for FMR.
According both to (5.2) and (5.2′), a real number is a ratio over some domain of

magnitudes. This might appear odd at first glance, since, given different such domains,
this might seem to entail that different sorts of real numbers arise, according to the
domain of magnitudes they are defined on. However, from EP∗, it easily follows that,
if there are several domains of magnitudes, for any ratio (or R-abstractum) on one of
them, there is just another ratio (or R-abstractum) on each other of them that is the
same object as the former—i.e., that the ratio of two first-level binary relations having
a certain propertyM such thatM (M) is the same object as the ratio of two first-level
binary relations having another propertyM

′ such thatM
(

M
′
)

.
Hence, once real numbers are defined, either in FMR or in FMR′, as ratios

of magnitudes, one can define the usual properties, relations and functions on
them, making the development of real analysis possible, within these systems—or
some appropriate extensions of them, if needed. We stop here, however, and rather
tackle some meta-theoretical issues concerning these systems, and the corresponding
definitions.

§6. Existence proofs. It is easy to see that EP∗ implicitly defines continuously
many objects to be identified, either through (5.2) or through (5.2′), with the real
numbers, only in the presence of nonempty positive classes. If there were no first-level
binary relations R such that ∃X [P (X) ∧ XR], its second-order universal quantifier
would range on an empty domain, and this would render the right-hand side of EP∗

nonsensical, as well as, then, both (5.2) and (5.2′). Still, a nonempty positive class exists
if and only if this is so for a nonempty domain of magnitudes. Hence, an existence
proof of such a domain (or of a positive class) is an indispensable supplement to our
definition of real numbers: it is required to make it sensible.
Of course, no form of comprehension might be appealed to in order to deliver

this proof, since no comprehension axiom can secure the existence of an R such that
∃X [M (X) ∧ XR]. Moreover, it would not be enough to observe that the empty first-
level binary relation exists no matter what the first-order domain looks like, since, as
observed in footnote 27, this relation neither forms nor belongs to a positival (and,
then, positive) class.What is to be proved, then, is that there are enough appropriate (or
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appropriately related) objects for defining on them continuously many (extensionally)
distinct first-level binary relations forming a nonempty domain of magnitudes.33

This cannot be accomplished by a proof following a similar pattern as the one that
allows neologicists to prove the existence of natural numbers within the very theory in
which they define them, namely FA. This proof goes as follows:

– The concept [x : x 6= x] exists by predicative comprehension.
– Then, HP allows to define 0 as # [x : x 6= x].
– By logic, [x : x 6= x] ≈ [x : x 6= x].
– Hence, by HP, 0 = 0, from which it follows that 0 exists.34

– SinceHPallows to define the successor relation on thewhole first-order domain,
natural numbers can be defined as the objects that bear the weak ancestral of
this relation to 0.

– Proving—from HP plus (impredicative) comprehension—that any such object
has a (unique) successor is, then, enough to prove, by countable induction, that
all the natural numbers exist.

This pattern only allows to prove that there are objects falling under a first-level
concept, given both a way to identify these objects collectively, as values of a particular
function such as #, and a way to identify them individually, as values of this function
for particular concepts as arguments. In our case, one should, instead, prove that there
are enough objects on which one can define binary relations falling under some second-
level concept complying with a certain structural condition, where no particular way
is given to identify both these objects and these relations either individually (except for
the identity relation) or collectively. Moreover, by appealing to countable induction,
this pattern can, at best, be suitable for proving the existence of countablymany objects,

33 This is just what Frege seems to signal at the beginning of §II.164, in the passage we have
quickly referred to in footnote 27 above ([16], §II.164; [18], pp. 1602-612; notice that the
English term ‘Relation’ with capital ‘R’ is used here to translate the German term ‘Relation’,
which Frege uses, as opposed to ‘Beziehung’, translated instead as ‘relation’, to name value-
ranges of relations):

We can now approach the question raised earlier (§159) fromwhere we obtain
the magnitudes whose ratios are real numbers. They will be Relations; and
they must not be empty, i.e., they must not be extensions of relations in which
no objects stand to each other. For such relations have the same extension;
there is only one emptyRelation.We could not define any real number with it.
If q is the empty Relation, then [...][q–] is the same; likewise [...][q ⊔ q–]. Also
the composition of Relations on our domain of magnitudes cannot result in
the empty Relation; but that would happen if there were no object to which
some object stood in the first Relation and which also stood to some object
in the second Relation. We thus require a class of objects that stand to each
other in the Relations of our domain of magnitudes, and, in particular, this
class has to contain infinitely many objects.

34 Notice that, since HP licenses the formation of the term ‘# [x : x 6= x]’, the identity ‘0 = 0’
might be derived, in classical logic, as an immediate consequence of the theorem ‘∀x [x = x]’.
Still, if such a proof of the existence of 0 were admitted, HP would inevitably be endowed
with an existential import that would be incompatible with its alleged analyticity. This is one
of the reasons why it is often advanced that the subjacent logic to FA should be free: the
matter has been firstly tackled in [39], §IV–V; but see also [34].
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and—even if it were possible to show that such objects allow to define on them the
required binary relations35—the main task of the proof would just be to prove that,
which is certainly not something that might be done by following this pattern. Hence,
though required for making the very definition of real numbers sensible, the existence
proof of nonempty domains of magnitudes cannot be carried out in the theory FMR
itself, and, a fortiori, in FMR′, in which that definition is stated.
Two alternative strategies seem possible to deliver it. The first is in line with Frege’s

perspective and looks for an alternativeway toprove the existence of continuouslymany
objects on which continuously many permutations, forming a domain of magnitudes,
can be defined. The second departs from this perspective, and usesmathematical results
unavailable to Frege. It might be appealed to, as a sort of unhoped lifeline for Frege’s
purpose, in order to avoid some problems the former strategy suffers from. It consists
of inquiring whether continuously many permutations forming such a domain can be
obtained from countably many objects, whose existence might, if needed, be proved by
applying the previous proof-pattern. Let us call the first strategy ‘inflationary’ and the
second ‘non-inflationary’.

6.1. The inflationary strategy: bicimal pairs. The inflationary strategy can be
implemented in at least two slightly different ways, in our setting. One follows Frege’s
own plan sketched in §II.164, and takes the existence of natural numbers for granted.
The other appeals, instead, to a restricted version of BLV, to get an ù-sequence
of objects other than Frege’s natural numbers. The structural similarity of these
approaches makes them suffer from the same difficulties. We merely consider the
former. The reader might get an idea of the latter from the way we deal with a restricted
version of BLV at the beginning of §6.2.
Taking the existence of natural numbers for granted, Frege considers the pairs

< n, {mi}
∞
i=0 > composed by a natural number and an infinite sequence of positive

natural numbers. These pairs are apt to code Cauchy series like

n +
∞
∑

j=1

ëj
1

2j
(ëj ∈ {0, 1}), (6.1)

under the condition thatmi is the i-th value of j such that ëj = 1 and the ëj are not all
0 after a certain range. It follows that, once addition is appropriately defined on these
pairs, one can associate to each of them, let us say α, a binary (first-level) relation Rα
such that, for any pair of these same pairs x and y, xRαy if and only if x + α = y. It
is easy to see that this allows to define as many relations as pairs like < n, {mi}

∞
i=0 >,

namely continuously many ones, and that these relations are such that:

– both they and their inverses are functional, since, for any such pairs x, y and z,
x + α = y ∧ x + α = z and y + α = x ∧ z + α = x each entails that y = z;

– their composition mimics an addition on the pairs they are defined on, since,
if â is also such a pair, Rα ⊔ Râ extensionally coincides with Rα+â , which is
proved by observing that, for any such pairs x and y, x + (α + â) = y if and
only if there is such a pair z such that x + α = z ∧ z + â = y; and

– the identity relation is not one of them, since no Cauchy series like (6.1) is equal
to zero.

35 We shall hark back on this matter in §6.2 below.
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It is, then, easy to verify that these relations form a positive class, fromwhich a domain
of magnitudes is obtained by merely adding their inverses and the identity relation.
Objects rendering these pairs in a formal setting are quite easy to define in any

second-order version of arithmetic. A simple way to do it ([28] and [32]) is by adding
a new axiom, under the form of the following abstraction principle:

∀NX,Y∀Nx, y [< x,X >=< y,Y >⇔ (x = y ∧ ∀z (Xz ⇔ Yz))] , (FP)

where the index ‘N’ signals that the universal quantifiers are restricted to properties of
natural numbers and to these very numbers respectively—the acronym ‘FP’ stands for
‘Frege’s Principle’, and emphasizes the fact that this principle is a restricted adapted
form of BLV.
Of course, to go ahead, we have to prove that FP is consistent. Assuming the

consistency of second-order arithmetic, to this purpose, it is, however, enough to
observe that FP has a model in the Vù+1 stage of ZF’s hierarchy. This is because
second-order arithmetic has a model in the Vù segment of ZF, and consequently the
set ℘ù of all subsets of the set of natural numbers is at stage Vù+1, and provides the
required model.
This having been established,we can look at the pairs like< n,P >, implicitly defined

by FP, and formed by a natural number n and a property P of natural numbers, and
select among them those whose second element P is an infinite property of natural
numbers—i.e., it is such that ∀Nx [Px ⇒ ∃Ny [x < y ∧ Py]]. For short, call them
‘bicimal pairs’. Clearly, FP allows to distinguish continuously many such pairs.
They can be arranged into two partitions, such that any bicimal pair < n,P >

belongs to one partition if P0, and to the other if ¬P0. A total order can, moreover,
be defined on these pairs, in such a way that the pairs in the former partition count
as positive, the pair < 0,N+ > (where ‘N+’ designates the property of being a positive
natural number) counts as the zero pair, and the other pairs in the latter partition
count as negative (more details are given in [28], p. 417; others will be found in [32]).
This makes the bicimal pairs form an additive Abelian group, that can be proved to
be dense, totally ordered and Dedekind-complete (and, then, Archimedean), and can
also be extended to a field by an appropriate definition of multiplication (details are,
again, to be found in [32]). It would, then, be not only very tempting, but also rather
natural to code the real numbers by bicimal pairs, so as to avoid the very definition of
domains of magnitudes and of ratios thereof as perfectly useless.
Still, this is certainly not what Frege’s strategy should lead us to. In order to follow his

indications, one should rather define appropriate permutations on bicimal pairs and
show that they form a domain of magnitudes. This can easily be done by associating to
any such pair < n,P > the binary relation R<n,P> such that, for any two such pairs <
y,Y > and < z,Z >, < y,Y > R<n,P> < z,Z > if and only if < y,Y >+< n,P > =
< z,Z >. It would, then, be easy to verify that the relations associated with positive
bicimal pairs just behave as those Frege suggests to associate to his pairs, and form,
then, a positive class, which is easy to extend to a domain of magnitudes.
Following this path leads, then, to an arithmetical copy of the additive (ordered)

group of the real numbers, as an intermediate step in amuchmore complex, supposedly
non-arithmetical definition of them. Hence, real numbers might be ipso facto identified
with bicimal pairs, by so dramatically departing, however, from Frege’s purpose. The
same happens for any other way of pursuing the inflationary strategy: it inevitably leads
either to encode the real numbers by objects other than ratios of magnitudes and thus
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depart from Frege, or to define real numbers twice, structurally speaking, by accepting
the idea that the second definition requires a supplementary axiom which is not at all
required by the first, namely EP∗.
Though mathematically quite shocking, the former option poses no problem from

a realist perspective such as Frege’s, since the realist may argue that bicimal pairs are
intrinsically not real numbers, though they behave like them. We do not want to dig
into this possibly rather odd attitude. We merely observe that, in this perspective, the
ratios on the appropriate permutations defined on these pairs could not but be taken to
be real numbers. Thus, the only way to avoid concluding that, paceFrege, real numbers
are intrinsically arithmetical objects would be to prove that there are non-arithmetical
nonempty domains of magnitudes. Insofar as EP∗ identifies the ratios on any domain
of magnitudes with the ratios on any other such domain, this would leave room for
arguing that being a real number is not intrinsically the same as being a ratio on
permutations defined on bicimal pairs, since such a ratio would merely provide one
among other possible and essentially distinct modes of presentation of such a number.
But, then, how to prove the existence of other, non-arithmetical nonempty domains of
magnitudes?

6.2. The non-inflationary strategy.36 As a matter of fact, also the non-inflationary
strategy might be grounded on the assumption of the existence of natural numbers.
Strictly speaking, this is not necessary, however: it might also be grounded on a
consistently restricted version of BLV.
Let ‘F(X)’ be the abbreviation of a logical second-order formula stating that X

is a property satisfied at most by finitely many objects. A possibility is appealing to
Dedekind-finiteness:

F(X ) := ∀Y







∀x [[Yx ⇒ Xx] ∧ ∃y [Xy ∧ ¬Yy]]⇒

¬∃R

[

∀z [Xz ⇒ ∃! z ′ (zRz ′ ∧ Yz ′)]∧

∀z ′ [Yz ′ ⇒ ∃! z (zRz ′ ∧ Xz)]

]






.

The relevant restricted version of BLV, call it ‘FinBLV’, is, then, this:

∀(F)X,Y [εX = εY ⇔ ∀x (Xx ⇔ Yx)] , (FinBLV)

where ‘εX ’ and ‘εY ’ denote the extensions of X and Y, and the index ‘F’ signals that
the universal quantifier is restricted to the (first-level) properties satisfying the formula
‘F(X )’.37

36 Both for this § and the following one,we are verymuch indebted toMirnaDžamonja,Andrew
Moshier and, overall, Alain Genestier who guided us in the understanding of Karrass and
Solitar’s proof and annexed topics.

37 This principle is freely inspired by two different suggestions respectively advanced in
[2], and in [6] p. 99 and [7] p. 178, in particular by Boolos’ New V, i.e., ∀F ∀G(εF =
εG ↔ (Small(F ) ∨ Small(G)→ F ≡ G)), where ‘Small’ means ‘not equinumerous with
the universal concept [x : x = x]’. By remaining faithful to this suggestion, we should
replace ‘Small’ by ‘Fin’ (or take the former to mean ‘finite’), and FinBLV by ‘∀F ∀G(εF =
εG ↔ (F(F ) ∨ F(G)→ F ≡ G))’. Though this latter principle would not be equivalent to
FinBLV, we cannot see any relevant difference between them with respect to our purpose.
We prefer FinBLV simply because it makes immediately clear that infinite concepts do not
matter, here, by ascribing to them no extension, rather than ascribing to all of them the same
extension.
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FinBLV implicitly defines a countable infinity of extensions. To see it, notice that
[x : x 6= x] is a finite property, whose existence is warranted by predicative second-
order comprehension. So FinBLV applies to it. Let ⊘ be its extension. Since it is
a theorem of second-order (free)38 logic that ∀x([x : x 6= x]⇔ [x : x 6= x]), from
FinBLV it follows that ⊘ = ⊘, which entails that ∃x (x = ⊘). One can, then, firstly
appeal to second-order impredicative comprehension to define a functional first-level
binary relation on the whole first-order domain, by stating that

∀x, y [xSy ⇔ [∃XF [x = εX ] ∧ y = ε [z : z = x]] ,

then define the weak ancestral of S, i.e., S∗=, and finally appeal to second-order
predicative comprehension to define the property E⊘ of being an extension belonging
to the S-succession starting from ⊘:

∀x[E⊘x ⇔ ⊘S
∗=x].

This allows to accomplish the task by repeating, mutatis mutandis, the neologicist
recursive proof of the existence of natural numbers.39

Now, consider the symmetric group ΣN on the natural numbers, i.e., the (additive)
group of all permutations onN.We know thatΣN has cardinality 2

ℵ0 . But we also know

38 See footnote 34, above.
39 The proof depends on the lemma that ∀x∃y [y = ε[z : z = x]]. Here is how this can
be proved. FinBLV and ∀X∀x [Xx ⇔ Xx] imply that ∀(F)X [εX = εX ], and, then,

∀X(F)∃y [y = εX ]. What is required is, then, to prove that ‘[z : z = x]’ denotes a (finite)
property, which is ensured by predicative comprehensionwith parameters, since it entails that
∀x∃X∀z [Xz ⇔ z = x]]. Notice that this proof also holds in (negative) free logic: thanks to
Ludovica Conti for drawing our attention to this; see also [10]. This lemma implies, a fortiori,
that∀E⊘

x∃y [y = ε[z : z = x]]. The very definition of theweak ancestral ofS allows, then, to
prove quite easily the principle of induction for the FinBLV-abstracta having the property E⊘

(or E⊘-abstracta, from now on)—namely ‘∀X

[(

X ⊘ ∧X
S

−→
E⊘

X

)

⇒ ∀E⊘
x [Xx]

]

’, where

‘X
S

−→
E⊘

X ’ abbreviates ‘∀E⊘
x∀y [(Xx ∧ xSy)⇒ Xy]’. With this principle at hand, it is,

then, equally easy to prove that ∀E⊘
x∃X [x = εX ], as a consequence of the stipulation that

⊘ = ε[x : x 6= x], from which it immediately follows that ∃X [⊘ = εX ]. By appealing to
∀E⊘
x∃y [y = ε[z : z = x]], one gets that ∀E⊘

x∃y [∃X [x = εX ] ∧ y = ε[z : z = x]], that
is, ∀E⊘

x∃y [xSy]. Next, the properties of the ancestral of a binary relation allow to prove
that ∀E⊘

x∀y [xSy ⇒ E⊘y], and so to conclude that ∀E⊘
x∃E⊘

y [xSy]. The existence of

countablymanyE⊘-abstracta finally follows from proving by induction that ∀E⊘
x[¬xS∗6=x],

where S∗6= is the strong ancestral of S. This last part of the proof is a little bit harder than
the previous ones, but requires no specific skills: it just parallels the analogous proof of FA,
by exploiting, like this (together with the principle of induction and some properties of the

strong ancestral, also) the obvious facts that¬ ⊘ S
∗6=⊘ and ∀x, y, z [(xSy ∧ zSy)⇒ x = z].

Though quite simple, this proof of existence of countablymanyE⊘-abstracta directly involves
most of Peano’s second-order axioms as theorems about them. The axioms that do not enter
it, i.e., ‘¬∃E⊘

x [0Sx]’ and ‘∀x, y, z [(xSy ∧ xSz)⇒ y = z]’ (the second of which would

allow replacing the relation S by the successor function), are, moreover, even easier to
prove. Hence, if impredicative comprehension is accepted, Peano’s second-order arithmetic
is interpretable on the mentioned extensions—with no appeal to set-theoretical assumptions
on them. These extensions do not comply, however, with HP, which makes them crucially
differ from natural numbers as defined in FA.
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that it contains torsion elements,40 which prevents both from defining on ΣN a total
order compatible with the group structure, and from making an injective map from a
(nonempty) domain of magnitudes (if any) into it surjective. It follows that ΣN does
not provide a nonempty model for our Fregean consistent definition of such a domain.
Nevertheless, by a theorem in [25], ΣN provably “contains a copy of the additive group
of the reals.” In other terms, there is a subgroup of ΣN which is isomorphic to (R,+),
and is, then, not only totally ordered, but also Abelian, dense, Archimedean and
Dedekind-complete. Since any totally ordered, dense and Dedekind-complete group
of permutations is a model of our definition of domains of magnitudes,41 ΣN contains
such a model. Insofar as ΣN is isomorphic to the symmetric group on whatever infinite
countable set, it is also so to the symmetric group ΣE⊘ formed by the E⊘-abstracta.
Hence, Karras and Solitar’s theorem entails that admitting the existence of this latter
symmetric group ensures the existence of a nonempty domain of magnitudes. It would,
then, be enough to admit that it makes sense to speak of all permutations on an infinite
countable domain D of objects,42 and that the existence of (the elements of) D ipso
facto entail the existence of the group formed by these permutations, to conclude that
the existence of a nonempty domain of magnitudes is ensured by the existence of the
natural numbers or of the E⊘-abstracta, because of an immediate corollary of Karrass
and Solitar’s result.43

Karrass and Solitar’s proof could certainly not have been within Frege’s reach. But
it is not very entangled, as such, and, under the mentioned admission, most of it can
be conducted constructively, which is something Frege seems to require for his proof.
Let I be an infinite countable set, for example an infinite subset ofN. Let ó =

∐

i∈I Ci
be a partition of N in infinite (countable) subsets Ci (i ∈ I), which makes

⋃

i∈I Ci = N

andCh ∩ Ck = ∅, for anydistinct h, k in I. Let̺ : N −→ Ibe the (surjective) application
defined by this partition, associating to any n inN, the single element i = ̺ (n) of I such
that n ∈ Ci . Such a partition, and therefore such an application, can easily be defined
constructively. Tomake a simple example, take I to be the set of all prime numbers plus
0, C0 the set of all natural numbers that are not (positive) powers of a prime number,
namely {0, 1, 6, 10, ...}, and, for any prime number p,Cp the set of all (positive) powers
of p. Though we would not be (presently) able to write a general formula providing, for
any natural number n, the value ̺ (n) of i, such that n ∈ S̺(n), there is a finite algorithm
allowing us to calculate such a value ̺ (n) for whatever given natural number n.
For any i in I, let ði be a permutation on Ci . Define ð : N −→ N by establishing

that for any n in N, ð (n) = ð̺(n) (n). This is clearly a permutation on N, so that
ð ∈ ΣN. If

∐

i∈I Si and ̺ have been defined constructively, any ði , and therefore ð,
can also be so defined. Supposing ̺ be defined as in the previous example, we might,
for example, take ði to be the permutation exchanging the (2j – 1)-th element of

40 A torsion element of a group G is an element g of G such that gn = e for some natural
number n, where e is the identity element of G.

41 More precisely, the second-order property of being a permutation belonging to any such
group satisfies the right-hand side of (3.6′).

42 As Frege himself should have admitted, in order to make his own definition of domains of
magnitudes sensible.

43 Notice that though the definition of S∗= allows proving that the E⊘-abstracta form an ù-
sequence, as showed in footnote 39 above, all that is relevant here is the cardinality of set
formed by these abstracta, namely the fact that this set is countably infinite.
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any set Ci , according to the usual order on N, with the 2j-th one, and vice versa
(j = 1, 2, ...). Then ðwould permute any natural number with another natural number
following or preceding it in this subset, according to this order: ð (0) = 1, ð (1) = 0,
ð (2) = 4, ... Insofar as the same can be done for any permutation ði on any Ci ,
the application ð : N −→ N defined by stating that ð (n) = ð̺(n) (n) provides a group

monomorphism44
∏

i∈I ΣCi −→ ΣN, where
∏

i∈I ΣCi is the product of the symmetric
groups on all sets Ci—since, if {ði}i∈I and {ð

′
i}i∈I are two families of permutations on

all the sets Ci , then {ði}i∈I ◦ {ð
′
i}i∈I = {ði ◦ ð

′
i}i∈I. Under the condition mentioned

above, and provided all sets Ci be (constructively) given, this further step of the proof
is, also, constructively licensed.
By Cayley’s theorem, any group G is isomorphic to a subgroup of the symmetric

group ΣG on G itself. Thus, there is a group monomorphism (Q,+) −→ ΣQ from
the additive group of the rational numbers (Q,+) into the symmetric group ΣQ on Q.
Though quite general, Cayley’s theorem can easily be proved constructively, which also
makes this new step of Karrass and Solitar’s proof admissible from Frege’s perspective.
A quite usual way to prove it is, for example, by considering the translation ôy : x 7−→
y ∗ x on the domain ofG (where ∗ is the composition law of this group), since it is easy
to see that ô(a∗b) = ôa ◦ ôb , for any a, b in such a domain. This proof directly applies to
the present case, for G is nothing but (Q,+). To this purpose, we can take Q to play
the role of the domain of G and + that of ∗, and observe that ô(q+r) = ôq ◦ ôr , for any
q, r in Q. Notice, moreover, that this application is perfectly akin to Frege’s suggested
definition of permutations on the pairs < n, {mi}

∞
i=0 > in the outline of his existence

proof.45

For any i in I, let us choose a bijection ϑi : Q −→ Ci from the set Q to the set
Ci . Because of the monomorphism (Q,+) −→ ΣQ, this engenders, for any such i, a
new group monomorphism (Q,+) −→ ΣCi from (Q,+) into the symmetric group ΣCi
on any Ci , and, by composition, a further group monomorphism

∏

i∈I (Q,+) −→∏

i∈I ΣCi from the product
∏

i∈I (Q,+) of countably many copies of the additive group
(Q,+) into the product

∏

i∈I ΣCi . Again, if the partition ð and the application ̺ are
defined constructively, making the choice of the bijections ϑi and so getting these two
monomorphisms require no form of the Axiom of Choice, and, under the condition
mentioned above, is unquestionably constructive. By combining the monomorphisms
∏

i∈I ΣCi −→ ΣN and
∏

i∈I (Q,+) −→
∏

i∈I ΣCi , we finally get, constructively again, a
final monomorphism

∏

i∈I

(Q,+) −→ ΣN. (6.2)

This provides a constructive ground for Karrass and Solitar’s proof. But, for its
completion, a last step is needed, which, instead, requires non-constructive means and
makes, then, thewhole proof non-constructive. Both additive groups (Q,+)and (R,+),
enriched with the usual multiplication by a rational number, can be regarded as vector
spaces over the field (Q,+, ·), and this is also the case for the product

∏

i∈I (Q,+).
When

∏

i∈I (Q,+) and (R,+) are so regarded, it is however not plain that they have a
basis, unless Zorn’s lemma is appealed to, since this lemma allows to prove that every

44 A group monomorphism is an injective group homomorphism, i.e. an injective map ì from
a group (G, ∗) to another group (H, ⋆), such that ì (x ∗ y) = ì (x) ⋆ ì (x) for any x, y inG.

45 See §6.1, above.
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vectorial space has a basis.46 The non-constructive step of the proof just consists, then,
in appealing to this lemma for proving that

∏

i∈I (Q,+) and (R,+) have a basis.
This makes it possible to appeal to a new theorem ensuring that, if a vector space

has several distinct bases, all of them have the same cardinality—which is, then, to be
regarded as the dimension of this space. For vector spaces with finite bases, this is quite
easy to prove.47 For vector spaces whose generating sets are infinite, as

∏

i∈I (Q,+) and
(R,+), the proof ismore entangled, but can still be given constructively. In this case, the
theorem can indeed be viewed as an immediate corollary of another theorem asserting
that the cardinality of any generating set of a vector space V that can be regarded as
the direct sum of an infinite family {Vë∈Λ} of non-zero vectorial sub-spaces is greater
or equal to the cardinality of the set of indices Λ ([9], chap. II, prop. 23, cor. 2).
Provided that two vector spaces on the same field (both having bases) are isomorphic

if (and only if) they have the same dimension,
∏

i∈I (Q,+) and (R,+), when regarded
as vector spaces over (Q,+, ·), have the same dimension, and thus are isomorphic.
This obviously entails that the group monomorphism (6.2) results in a new group
monomorphism

(R,+) −→ ΣN,

which makes ΣN contain a copy of (R,+), as was required to be proved.
If this proof is granted, together with the existence both of an infinite countable

set D—as N or the set formed by the E⊘-abstracta—and of the symmetric group ΣD
on this set, the conclusion follows that there is (at least) a totally ordered, dense
and Dedekind-complete subgroup of ΣD. Let (MD, ◦, <) be such a subgroup of ΣD.
Claiming that (MD, ◦, <) is a domain of magnitudes in agreement with definition
(3.6′) is the same as claiming that the triple (MD,⊔,PD) satisfies the open formula
‘[P (Y) ∧ ∀R [XR⇔ ð (Y) (R)]]’ entering the right-hand side of this definition, with
‘MD’ as a value of ‘X’ and ‘PD’ as a value of ‘Y’, provided that: any binary relation
R has the propertyMD if and only if it is inMD, and the propertyPD only if it has
the propertyMD; ‘⊔’ denotes the same operation on the binary relations that are in
MD as that denoted by ‘◦’; and, for any R,S inMD,PDR ⊔ S– if and only if S < R,
so that PDR if and only if 0MD < R—where 0MD is, of course, the neutral element
of (MD, ◦, <), namely the identity relation. To make this claim sensible, we have, of
course, to grant that these conditions ensure the existence of the two second-level
properties MD and PD, which requires third-order comprehension. Supposing it is
admitted, Karrass and Solitar’s result provably establishes that, under the admission
of the existence of D and ΣD, there is a nonempty domain of magnitudes, namely the
ordered group defined by the triple (MD,⊔,PD), since it entails that the properties
PD andMD are such that P (PD) and ∀R

[

MDR⇔ ð(PD) (R)
]

, so thatM (MD).

46 By speaking of basis of a vector space, we more precisely mean, here, a Hamel basis. Let
V be a vector space on a field F. An Hamel basis of V is a set BV of linearly independent
vectors in V, such that for any vector v in V there is a (unique) finite subset {v1, v2, ... vk} of
BV such that v = a1v1 + a2v2 + ···+ akvk , where a1, a2, ...,ak are elements of F.

47 A simple combinatorial argument allows to prove that the cardinality of any set of linearly
independent vectors is smaller or equal to the cardinality of whatever generating set. Insofar
as a basis of a vector space is a set of linearly independent vectors that generates the whole
space, from this it immediately follows that two bases cannot have different cardinality, since,
if they did, there would be a set of linearly independent vectors whose cardinality is greater
than that of a generating set.
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This being granted, it is, then, easy to prove that there are as many distinct binary
relations in such a domain as distinct ratios defined on it according to EP∗, namely that
these ratios are continuously many. In other terms, the ordered pairs [R,S] of binary
relations, the first of which has MD and the second PD, form continuously many
distinct equivalence classes according to the equivalence relation on the right-hand
side of EP∗, under the replacement of both ‘X’ and ‘Y’ with ‘PD’.

48 For shortness and
simplicity, let us sketch this proof with reference to EP. Its rephrasing with respect to
EP∗ is only a matter of laborious routine.
Consider the first of the three disjoints forming the right-hand side of EP. Suppose

that there be three binary relations R, S, and S′ that havePD and are such that

S ⊏PD
S′,

∀Nx, y
[

xR ⊏PD
yS⇔ xR ⊏PD

yS′
]

.

If there were, then, another binary relation T such that S′ coincided with S ⊔ T, it
would follow that

∀Nx, y
[

xR ⊏PD
yS⇔ xR ⊏PD

y (S ⊔ T)
]

,

which is impossible because of the Archimedeanicity of (MD, ◦, <). This proves that,
for whatever binary relation R that hasPD, there are as many distinct ratios R [R, S]
(where S is a binary relation that hasPD) as binary relations that havePD, namely
continuously many such ratios. Consider a binary relation R′ that has PD and is
distinct from R. Because of the completeness of positive classes, there is one and only
one binary relation S that also hasPD such that

∀Nx, y
[

xR ⊏PD
yS⇔ xR′

⊏PD
yS

]

,

which shows that there as many pairs of binary relations R and S that havePD, such
that the ratio R [R,S] is the same as R [R,S], as binary relations that havePD, and
there is no pair of binary relationsR′ and S ′ that havePD such that the ratioR [R

′, S ′]
is distinct from all ratios R [R, S], where S is a binary relation that hasPD.
Insofar as an analogous argument also applies,mutatismutandis, to the second of the

three disjoints forming the right-hand side of EP, and the third of these disjoints only
concerns ordered pairs of binary relations whose first element is the identity relation
and makes all ratios whose denominator is such relation identical, this is enough to
conclude that the cardinality of the set {R [R,S] :MDR ∧ PDS} is the same as that
of {R :MDR}, namely 2

ℵ0 , as was to be proved.
Hence, defining real numbers as R-abstracta over a domain of magnitudes entails

the existence of at least 2ℵ0 such numbers, since there is just one real number for any
equivalence class induced by the right-hand side of EP or EP∗ on a single domain of
magnitudes. To prove that there are just 2ℵ0 , recall that, as observed in §5.3 above, from
EP or EP∗ it follows that, if there were several such domains, for any R- abstractum
on one of those domains, there would just be one R-abstractum on the others that is
identical with it, which entails that, if there were several domains of magnitudes, the
R- abstracta on one of them would be just the same objects as the R-abstracta on the
other.

48 Notice that from the conditions above, it immediately follows that ð (PD) (R) if and only if
MDR.
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§7. Logicality and arithmeticity. Given all the previous considerations, we can
finally tackle twomajor questions concerning the definition of reals in FMR or FMR′:
(i) Is there a strong enough sense in which this definition is logical? (ii) Is this definition
independent of natural numbers and their theory? Insofar as it seems difficult to
imagine a consistent definition which is closest to Frege’s envisaged one, the answer
to these questions is relevant to assess Frege’s achievements as well: Was Frege’s plan
for defining real numbers as ratios of magnitudes compatible with a logicist program,
inconsistency apart? Was it in line with the basic idea that real and natural numbers
are essentially independent objects? The question is not only a historical one, it has
also a contemporary philosophical relevance: Is a neologicist program concerning real
analysis, making it both logical and independent of the arithmetic of natural numbers,
envisageable along Frege’s original indications? In what follows we will suggest a
negative answer to all these questions.49

All of them boil down to two issues: whether FMR or FMR′ can be taken to be
logical systems, independent of a previous definition of natural numbers (likely got
through FA); whether an existence proof of nonempty domains of magnitudes and
of real numbers as defined in FMR or FMR′ is compatible with the logicality and
arithmeticity of these definitions.

7.1. About the definition of domains of magnitudes. Insofar as FMR and FMR′ are
obtained by adding some new axioms to L2PCA

2
∆10
, we will begin by investigating

whether this latter system is genuinely logical and independent from the natural
numbers. Both issues also apply to our definition of domains of magnitudes within it.
Likely, no one would question its independence from the natural numbers. The

considerations advanced in §4 seem, moreover, to support its logicality.50 Still,
admitting that L2PCA

2
∆10
indeed has these features is not enough for concluding that

our definition of domains of magnitudes is, in turn, independent of natural numbers
and logical in some more significant sense than the simple and quite weak one of being
formulated within a logical system. There are two concerns, here.
The first is that, even in a logical system, it seems possible to define items whose

logical nature is suspect. In [29] and [31], Panza already raised the question in relation
both to natural numbers and magnitudes, as originally defined by Frege as appropriate
extensions. Surely, according to our reformulation of Frege’s definition, magnitudes
are no more extensions, but rather binary first-level relations. Still, apart from the
identity relation, the relations forming such domains are not identified as particular
relations somehow precisely defined; they are rather characterized as possible places
in whatever system exemplifying a certain structure. This makes this definition define
domains of magnitudes, but not magnitudes as such, which is perfectly in line with
Frege’s remark quoted in §2. Hence, all that the definition fixes is the structure of a
domain of magnitudes, not its content, which is to be given independently of it.

49 In [40], Simons has stressed the crucial differences between Frege’s logicism for natural
numbers and his views on real ones. Without undermining his arguments—which take
however for granted the usual reading of Frege’s logicism for natural numbers, which we
rather take as questionable under many respects: See [29] and [31]—we follow another
strategy here: we frontally attack the idea that Frege’s envisaged definition of real numbers
might be taken as logical in any substantial sense.

50 But see footnote 5, on this matter.
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As such, this might even be taken as an argument for its logicality, if, contra Frege,
it is admitted that logic has no content. But it makes the second concern crucial.
As already claimed, whereas an existence proof of nonempty domains of magnitudes
cannot be provided within L2PCA

2
∆10
(as well as within FMR and, a fortiori, FMR′),

it is indispensable for making our definition of real numbers sensible. So, proving,
necessarily outside these systems, the existence of a nonempty domain of magnitudes
is an essential part of this very definition (even if this is not required to formulate
the definition of domains of magnitudes themselves), not only of a model-theoretical
enquiry on it. This makes both the logicality and the arithmeticity of the definition
crucially and questionably depend on the means, external to FMR and FMR′, needed
for conducting such an existence proof. Two major issues arise.
The first is that it seems plausible to require that a genuinely logical definition not

be in need of an external existence proof of the items it defines—or of other associated
ones. Since such a definition should purportedly ensure the existence of these items by
merely showing that, if there were none, some logical, or innocent enough, truths would
not be true after all. This is indeed allegedly the case of the neologicist existence proof
of natural numbers51—which we mimicked in the existence proof of the E⊘-abstracta,
in §6.2 above. One might argue that this is too demanding. However, a distinction
should be drawn between definitions that are logical in this demanding sense, and
others that are not or cannot be so. This would be enough for concluding that neither
our definition of real numbers in FMR or FMR′, nor that of domains of magnitudes
in L2PCA

2
∆10
, can pretend to be logical in the same sense in which neologicists claim

their definition of natural numbers is.52

This leads to the second issue: once admitted that the neologicist’s proof-pattern does
not apply, and that this prevents our Fregean definitions of domains of magnitudes and
real numbers to be logical in the above demanding sense, the question arises whether
these definitions might nevertheless be deemed logical in some less demanding sense.53

51 To see it, consider the argument proving the existence of 0 that we have detailed at the
beginning of §6 above. The concept [x : x 6= x] exists not only by predicative, but also
by logical comprehension, as well as logic is enough to get that [x : x 6= x] ≈ [x : x 6= x],
and HP is so for getting that 0 = 0, which could not be true if 0 did not exist. The same
pattern allows to prove the existence of each natural number, provided that comprehension
be extended to formulas involving the operator ‘#’. So, 1 is proved to exist, for example,
since, if it did not, it would be false that 1 = 1, which follows, in agreement with HP, from
‘[x : x = 0] ≈ [x : x = 0]’, which follows, in turn, by logic, from the existence of the concept
[x : x = 0], ensured by comprehension applied to the formula ‘x = # [x : x 6= x]’. On the
other side, the existence of the totality of numeral numbers is proved by proving, by HP and
impredicative comprehension, the successor axiom, which would be false, if these numbers
did not exist.

52 In fact, neologicists usually take their definition of natural numbers to be analytic, though not
logical. Still, we made clear from the very beginning why we do not endorse this distinction
here—see §1 above. Let us notice, however, that the argument just advanced is emblematic
of the reason we advanced to justify our attitude. Since, if this distinction were admitted,
this argument should allow to conclude also that our definition of real numbers is no more
analytic in the same sense in which neologicists take their definition of natural numbers to
be so.

53 We leave here apart the question of whether the neologicist definition of natural numbers
or our definition of the E⊘-abstracta are actually logical or analytical. In [28], pp. 420-423,
the point is made that the former definition might be deemed so in a quite peculiar sense,
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The question seems to have different answers according to whether it concerns the
former definition or the latter, and whether domains of magnitudes are regarded as
such or as tools for defining real numbers. If we look at the definition of domains of
magnitudes as such, and admit that L2PCA

2
∆10
be a genuine logical system, it is hard

to find any other reason than that raised above to deny its logicality. But if we look
at domains of magnitudes as tools for defining real numbers, the situation changes.
Insofar as proving the existence of nonempty such domains is essential for enabling
them to play this role, the question becomes whether the proof can be so shaped as to
make it logical, and, then, part of a logical definition of these numbers. This is, then,
the question we have to tackle, now.
Above we explored two different strategies for conducting this proof: an inflationary

and a non-inflationary one. In what follows, we will expand on them by considering
how they score with respect to the issue of logicality. Insofar as the question of the
logicality of our definition of real numbers has multiple interconnections with that of
its arithmeticity, we will also consider in the meantime whether these strategies can
make this definition non-arithmetical.

7.1.1. About the inflationary strategy. A proof following the inflationary strategy
may be deemed non-logical just because of its inflationary nature. The reason is
obvious: insofar as no proof by countable induction is possible here, such a proof
cannot but grant that the abstraction principle introducing the continuously many
objects it concerns (FP, in our case) eo ipso entails the existence of these objects, which
appears to be incompatible with its being logical, and, then, part of a logical proof.
One could object that the argument merely points out that the proof is not logical,

because it requires means other than countable induction to prove the existence of
continuously many objects, which is unfair, at best. After all, real numbers must
be continuously many, so that accepting this argument would amount to principledly
excluding the possibility of a logical definition of real numbers ensuring their existence.
The objection is not convincing. It is entirely possible that no such definition be logical.
Still, if a definition of these numbers is offered with the aim of being so, it should, at
least, avoid requiring an existence proof for continuously many objects other than the
reals. This would leave room for arguing that proving the existence of continuously
many objects is not part of its job, but should be left for further meta-theoretical
considerations. The point is, then, that the inflationary strategy is not suitable for
entering a logical definition of real numbers because it requires an existence proof of
continuously many objects other than the reals: a proof which cannot but appeal to
independent resources from those involved in the definition itself.
Another essential feature of the inflationary strategy is also relevant for the present

discussion: its delivering an arithmetical copy of the additive group of the reals as a
condition formaking their definition appropriate. Thismakes clear both its arithmetical
nature, and its essential mathematical circularity. Let us consider the two allegations
in turn.

quite different than those that are current in the discussion on logicism and neologism, and
because of a completely different argument than the neologicist’s. There is no need to come
back on this point, here. It is only important to observe that it does in no way apply to our
definition of domains of magnitudes and real numbers.
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To reply to the arithmeticity allegation, it is not enough to argue that proving
the existence of a nonempty domain of magnitudes arithmetically does not make
a definition of real numbers as ratios of magnitudes arithmetical. The fact that an
existence proof of such a domain is an indispensable part of the definition immediately
entails, indeed, that this definition can be deemed non-arithmetical only in the presence
of an existence proof of a non-arithmetical nonempty domain of magnitudes. Since, if
one could only prove the existence of arithmetical such domains, defining real numbers
as ratios on them would make them arithmetical items, after all.54

54 The point might be softened by observing that our Fregean definition of domains of
magnitudes differs from other possibly arithmetical ones for not appealing to any specific
property of the objects on which the relevant binary relations are defined. To better see this,
we can compare this definition to one mimicking Dedekind’s definition by cuts in terms of
binary relations (we thank Andrew Moshier for his suggestion). Let (O, <O) be a totally
ordered set without endpoints, whose elements count as objects. By adopting a third-order
logical system with third-order predicative comprehension, the following explicit definition
can be provided, where the index ‘O’ restricts the quantifiers to binary O-relations (i.e.,
binary relations among the elements of O) and to these very elements, respectively:

∀OR





















COR⇔












∀Ox, y [xRy ⇒ x <O y]∧

∀Ox, y, z, w [(xRy ∧ z <O x ∧ y <O w)⇒ zRw]∧

∀Ox, y [xRy ⇒ ∃Oz, w [zRw ∧ x <O z ∧ w <O y]]∧

∀Ox, y [x <O y ⇒ (∃Oz [xRz] ∨ ∃Ow [wRy])]∧

∀Ox, y, z, w [(xRy ∧ zRw)⇒ xRw]
































.

The third conjunct of the right-hand side entails that no binary O-relation has the property
CO if (O, <O) is not dense. Let us suppose that it be so. Call a relation ‘CO-relation’ if it
is a binary relation having CO. We can say that any CO-relation defines a cut on (O, <O).
The collection of the CO-relations does not form a domain of magnitudes, in the sense
established above, since theCO-relations are not permutations. Still, wemight weaken Frege’s
requirement on domains of magnitudes, and take such domains as constituted by totally
ordered, dense and Dedekind-complete groups of first-level binary relations, independently
of their being permutations. The CO-relations might, then, form a domain of magnitudes if
a commutative (and associative) addition admitting a neutral element be defined on them.
To this purpose, let us suppose that an addition +O be defined on (O, <O), so as to make
(O, <O,+O) a totally ordered, Abelian and dense additive group. We can easily define an
addition +CO

on the CO-relations, by stating that

∀CO
R,S∀Ox, y

[

x
(

R+CO
S

)

y⇔∀Oz, w, v, u [(zRv∧wSu)⇒ (x<Oz+w ∧ v+u<Oy)]
]

,

where the index ‘CO’ to the first universal quantifier restricts it to these relations. The CO-
relation ZO defined by

∀Ox, y [xZOy ⇔ x <O 0O <O y]

is the neutral element of +CO
, and another CO-relation R, is deemed positive if and only if

∃Ox, y [xRy ∧ 0O <O x <O y] ,

and negative otherwise. One could, then, define an order relation ⊏CO
on the CO-relations

by stating that

∀CO
R, S

[

R ⊏CO
S ⇔ ∃

C
+
O
T

[

R +CO
T = S

]
]

,

where the index ‘C+
O
’ restricts the existential quantifier to positive CO-relations. These would

form a totally ordered, dense and Dedekind-complete group under +CO
and ⊏CO

, and,
then, a domain of magnitudes, in the previous weakened sense. One might, then, define real
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To reply to the circularity allegation, one should argue that the copy of the additive
group of the reals is just a copy, since, though structurally coincident with real
numbers, its elements intrinsically differ from them. We can imagine Frege advancing
this argument. But we can hardly follow him in this without making any working
mathematician sarcastically smile.
Let us recap. The inflationary strategy suffers from two problems: in absence of

a further existence proof of non-arithmetical domains of magnitudes, it makes real
numbers themselves arithmetical objects, after all; it requires a preliminary structural
definition of the real numbers, in order to make the planned definition of these same
numbers suitable.55

7.1.2. About the non-inflationary strategy. At least four reasons might be advanced
to argue that, in the light of the existence proof in §6.2 above, our Fregean definition
of real numbers is hardly both logical and non-arithmetical: (i) that proof is based
on the symmetric group ΣN on the natural numbers; (ii) it allows to conclude that a
nonempty domain of magnitudes exists only if it is admitted that the symmetric group
on an infinite countable set exists if this set exists; (iii) it essentially appeals to the
additive group (R,+) of the real numbers themselves; and (iv) it appeals to Zorn’s
lemma, and is, then, not constructive.
The first reason cannot be dismissed by merely observing that, in our reconstruction

of the proof, ΣN has been replaced by the symmetric group on the set of E⊘-abstracta.
Since, once ΣN is replaced in Karras and Solitar’s proof by any other symmetric group
over any infinite countable set, the problem becomes that of justifying the existence of
this set, and even its cardinality, by no appeal to N itself. That ΣN is isomorphic with
the symmetric group over any infinite countable set is, indeed, simply because any such
set can be put into a bijection with N, so that its elements can be taken either to count
as natural numbers or, at least, to be encoded by them.
The second reason is similar to one discussed above as for the inflationary strategy:

on what logical ground can we argue that the existence of a countable infinite set
entails the existence of the symmetric group over this set—or, more in general, of
an uncountable set somehow generated by it by considering at once some totality of
properties, relations or functions defined on the elements of this set? The fact that
Frege himself suggests making a similar admission, in order to prove the existence
of a nonempty domain of magnitudes, in no way makes it logically licensed. Rather,
it seems to show that the very proof Frege suggested would have actually been not
logical.
The third and fourth reasons are by far more delicate, and somehow interconnected.

Since, if a constructive proof of Karrass and Solitar’s theorem were available, one

numbers as ratios on such a group. Still, so defined, real numbers would be, structurally
speaking, nothing more than ratios on cuts-relations on the additive group of the rational
numbers, and this would make them intrinsically arithmetical items, in a much stronger
sense than the real numbers defined in FMR or FMR′, under the condition that the only
nonempty domains of magnitudes whose existence can be proved were arithmetical.

55 Both problems also arise if the inflationary strategy is implemented by E⊘-abstracta. As
for the first, this is obvious. As for the second, notice that these abstracta could enter the
existence proof only because of their features that make them structurally coincide with the
natural numbers.
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could hope to rely on it in order to constructively define a totally ordered, dense and
Dedekind-complete subgroup of ΣN, without recurring to (R,+).
To dismiss the third reason, and the circularity allegation that goes with it, onemight

replace Karrass and Solitar’s theorem with a more general result not involving (R,+).
A natural candidate is a result in [12], according to which, for any infinite cardinal κ,
every Abelian group of order 2κ can be “embedded into” the symmetric group of a
set of cardinality κ.56 Still, the basic idea of de Bruijn’s proof is not so different from
Karrass and Solitar’s andmakes this proof also depend on the axiomofChoice, though
avoiding appealing to vector spaces. The fact that the theorem does not specifically
involve (R,+) is, moreover, far from being an advantage in our perspective. Since it
makes this theorem unable to provide a ground for the required existence proof. For
the purpose of this latter proof is establishing that ΣN (or, more generally, the group
of permutations on a countable set) actually includes a subgroup complying with the
relevant structure, while this theoremmerely ensures that, if there is such a group, then
it can be embedded into ΣN, and can be regarded as a subgroup of it. This makes, of
course, de Bruijn’s theorem immediately entail that (R,+) can be embedded into ΣN.
This cannot but make the circularity even more evident, since it is only the existence of
R that can ensure that a subgroup of ΣN complying with the relevant structure exists.
In order to solve the issue, one should prove that ΣN includes a totally ordered, dense
and Dedekind-complete subgroup, without assuming the existence of this group. To
the best of our knowledge, this has not yet been done.
This does not mean, of course, that this result, or any other entailing it, has not

actually been proved or, even less so, that this cannot be done. The fourth reason
suggests, however, that the relevant question is not whether this has been or might be
done, but, rather, whether this can be done constructively, i.e., without appealing to a
form of the Axiom of Choice, which might hardly be taken as a logical principle. When
put in a clear mathematical form, the question is whether it is provable in ZF alone (or
in some other appropriate setting that neither presupposes nor entails the Axiom of
Choice) that ΣN contains a totally ordered, dense and Dedekind-complete subgroup,
and whether, moreover, this can be done without assuming the existence of (R,+). To
the best of our knowledge, this question also has not been answered yet.
To begin enquiring about it, one might wonder whether Karrass and Solitar’s proof

can be freed from Zorn’s lemma or any equivalent assumption. Such an assumption
enters the proof to ensure that any vector space has a basis—i.e., that such a basis exists
though it cannot be constructively displayed. This makes it relevant to observe that in
[4] Blass proves that the assumption that any vector space has a basis is (ZF-)equivalent
to the Axiom of Choice. This is still not enough to ensure that the appeal to a form of
the Axiom of Choice cannot be avoided in Karrass and Solitar’s proof, and that this
proof is, then, both non-constructive and intrinsically dependent on such an axiom.
Since what is required for this proof to work is not, properly, that any vector space has
a basis, but rather that this is so for the two relevant such spaces, i.e.,

∏

i∈I (Q,+) and
(R,+). The issue becomes, then, whether one can prove that these very vector spaces

56 This theorem was firstly published one year later than Karrass and Solitar’s ([11], pp. 560–
561 and 566), but it was then erroneously proved. The error lied with a lemma proved by
erroneously supposing that a certain arbitrary group could be non-Abelian. The proof was
later corrected and made independent of this lemma—and in fact simplified.
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have a basis without appealing to a form of the Axiom of Choice or to any other
non-constructive means. To the best of our knowledge, anew, this is still unknown.
Still, even if this could not be done, it would not follow that Karrass and Solitar’s

theorem cannot be proved without appealing to a form of this axiom. The only
occurrence of Zorn’s lemma in the previous proof is, indeed, in its very last step,
which is the only one involving vector spaces. It is, then, natural to wonder whether the
theorem could be proved by avoiding this step (and, then, presumably any reference
to vector spaces), by replacing it with another step not depending on the Axiom of
Choice or some other non-constructive assumptions.
We could imagine two scenarios. In the first, the question is whether ZF alone

is capable of proving Karrass and Solitar’s theorem: to this extent, either it is, or
the theorem is undecidable there. In the second scenario, the question is whether ZF
augmented with some axioms incompatible with the Axiom of Choice, such as the
Axiom of Determinateness,57 is capable of proving this theorem. To the best of our
knowledge, these issues have also not been settled yet.58

The conclusion to be drawn from all these remarks cannot be but prudent. Still, it
can certainly no more suggest that Karrass and Solitar’s theorem provide a basis to
argue that our Fregean definition of real numbers is logical. Since, circularity issues
aside, arguing that this theorem can enter a non-inflationary existence proof for a
nonempty domain of magnitudes, suitable for making our definition logical, would be
quite premature, at best. And it would be even more so to argue that a more general
theorem, asserting that ΣN includes an appropriate group identified without appealing
to R, can enter such a non-inflationary existence proof.

7.2. Might the existence proof be avoided? The previous considerations suggest that
there is no way to prove the existence of nonempty domains of magnitudes without
wiping out both the logicality and non-arithmeticity of our Fregean definition of real
numbers. In light of this conclusion, one might suggest changing the rules of the game.
Even if there is no way to prove, by (higher-order) logic, suitable existentially innocent
abstraction principles and appropriate algebraic and/or set-theoretical constructive
arguments, that nonempty domains of magnitudes exist, still we know they do. For
we can show or prove it, for example, by empirically-tied geometric or mechanical
considerations; or, as above, by trusting non-constructive set-theoretical principles; or
by assuming that natural numbers exist and granting the previous abstraction principles
an existential import. Hence, one could argue, defining the real numbers á la Frege
within FMR or FMR′, even with no existential proof, allows one to show that ratios
on any externally given domain of magnitudes, whether intrinsically arithmetical or
not, are real numbers. Since, as we have already seen, taking a real number to be a
ratio on distinct domains of magnitudes is nothing but describing the same object in
different ways—or giving different names to it.

57 First introduced in [26], this axiom asserts that “certain infinite, deterministic two-person
games with complete information [...] are determinate, i.e., that one of the players has a
winning strategy.” See also [23], which also provides a proof of the incompatibility between
the Axiom of Choice and the Axiom of Determinateness.

58 There still might be clues on the second issue: while the Axiom of Choice entails that R, as a
vector space over (Q,+, ·), has bases, the Axiom of Determinateness entails that it has not
([23], Theorem 4.44 and Corollary 7.20)—and one might even guess that it be the same for
an infinite product of copies of (Q,+).
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The problem with this move is that applying our definition to whatever externally
given domain of magnitudes would certainly warrant that the ratios on it are real
numbers, but not that real numbers are intrinsically such ratios, let alone that they
are non-arithmetical items. If we reasoned this way, we would do nothing essentially
different from appealing to a representation theorem to draw the conclusion that
real numbers measure the magnitudes in the relevant domains, in the spirit of the
measurement theory.59 In both cases, all we do is recognize that some externally given
systems (arithmetical or not) comply with some fixed structural conditions. The fact
that these structural conditions are fixed by our definition in FMR or FMR′, or by
recurring to algebraic axioms as those of a totally-ordered complete Abelian field
(as usually supposed in measurement theory), or, again, by alternative definitions (as
Cantor’s and Dedekind’s, by Cauchy’s sequence and cuts on rationals, respectively, or
even as the one grounded on FP) makes no essential difference on this matter.
In the eyes of a Frege partisan, therewould be a crucial difference only if the existence

proof were deemed an essential, though supplementary, part of the definition itself,
as we did above. Since this would make the numbers so defined intrinsically ratios on
domains of magnitudes, and their application tomeasurement “built into” their nature
and/or their very definition, as required by the application constraint ([41], p. 325). In
this respect, the previous remarks on the arithmeticity and logicality of our definition
in FMR or FMR′ should be intended to suggest that compliance with this constraint
is incompatible not only with offering a logical definition of real numbers, as already
argued in [33], but also with defining them non-arithmetically, despite Frege’s adhesion
to the same constraint as the main source of his quest for a non-arithmetical definition
of these numbers.

7.3. About Euclid’s principle. Up to now, we have only considered the existence
proof of nonempty domains of magnitudes. Still, the indispensability and the nature
of this proof are not the only reasons suggesting that our Fregean definition of real
numbers is neither logical nor non-arithmetical. Since, once domains of magnitudes
have been defined and somehow proved to exist, the question remains open of defining
real numbers as ratios on them. In our setting, this is done by means of EP∗.60 The
questions are, then, obvious: is this principle logical? Is it actually independent of
natural numbers?
Let us start from the latter. Undoubtedly, EP depends on natural numbers, as it

explicitly quantifies over them. Still, this principle also depends on the use of other
linguistic means foreign to L2PCA

2
∆10
, by involving a piece of informal language

allowing for predicate variables like ‘xR’. The two features are connected, since
the quantification over natural numbers just operates on the individual variables

59 About the tension between considering applications of real numbers in agreement with
the measurement theory and taking them to be ratios on domains of magnitudes, see the
Hale–Batitsky discussion in [3, 21, 22]. On this matter see also [33].

60 Possibly with the help of (CA2
Σ21
), if an explicit definition like (5.2) is required.We do not want

to enter here a discussion about the logicality of (the different sorts of) comprehension. We
merely remark that the high impredicativity of (CA2

Σ21
) might make many doubt not only its

logicality, but also its licitness. Who doubts both has no other choice but rejecting definition
(5.2) and rest content with (5.2′). Who doubts only the former can either admit definition
(5.2), but take it as non-logical, or rejecting, again, this definition in favor of (5.2′).
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occurring in these predicate variables. Replacing EP with EP∗ allows avoiding both
the quantification over natural numbers and the appeal to informal language at once.
Surely, EP∗ involves no second-order predicate constant supposedly designating the
property of being a natural number. Still, this does not ensure, yet, its independence
from natural numbers, since it is far from clear that the trick used to avoid the
quantification on these numbers is actually independent of them. What might make
one suspect it is not that the right-hand side of (5.1) is just an appropriate third-order
rephrasing of the right-hand side ofHP.Hence, if it were admitted that, when applied to
finite concepts, HP is intrinsically inherent to natural numbers—not only because the
objects not complying with it are not natural numbers, but also because its assumption
ipso facto brings these latter about—one should infer that, in spite of appearance, also
EP∗ depends on these numbers. As a matter of fact, this is a strong assumption, but
one that can be made in a Fregean vein, and which might bring, then, ipso facto—that
is, independently of any consideration on the existence proof of nonempty domain of
magnitudes—to the conclusion that our definition of real numbers, whether in FMR
or FMR′, is essentially arithmetical.
Someone admitting this assumption might still argue against this conclusion by

observing that (5.1) essentially differs fromHP for being a (metalinguistic) abbreviation
stipulation, rather than an axiom providing an implicit definition of a functional
constant. This is enough, one might continue, to make EP∗ appeal to no variable
ranging on objects that might count as the natural numbers. This is unquestionably
so. However, any instance of ‘(X,X′)E (R,T,R

′, T ′)’ asserts that a certain first-level

binary relation is the same multiple of another such relation over a certain positive
class as a third such relation of a fourth one, over the same or another positive class.
This is, in turn, the same as asserting that the iterations of the composition operation
on such a relation within the former class are into a bijection with the iterations of
composition on such a relation within the latter class. If this is not the same as making
natural numbers enter into play, it is, at least, the same as making the equinumerosity
relation so. Hence, if EP∗ is not dependent on natural numbers, it seems to be, at
least, dependent on counting. There is no easy way to settle whether this is enough to
make EP∗ an arithmetical principle. Here, we just observe that this makes our Fregean
definition of real numbers, whether in FMR or FMR′, dependent on an essential
ingredient of any Fregean definition of natural numbers. Even if this, as such, does
not make our definition arithmetical, it is plausibly enough for making it much more
related to natural numbers than Frege might have desired his definition be.
Let us come, now, to the first question: can EP∗ be deemed logical? A simple way

to tackle the question might be that of choosing between two quite natural options:
either any abstraction principle is logical if it is stated through a logical language,
or it is so only because of the peculiar nature of its right-hand side. In the former
case, EP∗ is logical if L2PCA

2
∆10
is so. In the latter case, EP∗ cannot be logical on the

same grounds on which HP or a consistent version of BLV might be so. If this simple
alternative is rejected, if only for argument’s sake, what criterion might be provided to
distinguish logical abstraction principles stated in a logical language from non-logical
ones? Consistency is surely not enough. But, then, what? We cannot dwell on this
issue here. We simply contend that the burden of the proof seems to be on anyone
arguing that EP∗ is logical, despite its being essentially akin to Euclid’s definition of
proportionality, which has been considered for centuries as the cornerstone of the
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most fundamental mathematical theory on which classical geometry was crucially
grounded.

§8. Concluding remarks. Though some of them are certainly far from knock
down ones, we think we advanced enough arguments in favor of the claim that our
rendering of Frege’s envisaged definition of real numbers is neither logical nor non-
arithmetical. As our rendering is arguably the closest possible to it, this conclusion
questions the possibility that Frege’s own definition could be achieved logically and
non-arithmetically. It remains to establish whether this was actually Frege’s intent.
That Frege was aiming at a logical definition of real numbers as his main goal for

the foundation of real analysis might be questioned for several reasons.61 One of them
might be the following.
From our reconstruction, it seems to emerge that arguing for the logicality of a

definition of real numbers following Frege’s indications requires arguing that FP, or
any akin principle, is both logical and capable of delivering continuously many objects
without the assistance of any independent existence proof. But if so, then FPwould also
be enough for delivering real numbers, if not as logical objects, at least as objects defined
in a logical setting. But, then, why did Frege venture himself in a so entangled definition
whose logical nature is as suspect as that of real numbers as ratios of magnitudes?
Possibly, far from considering logicality as his ultimate aim, he overall wanted to

link real analysis to a general theory of magnitudes. This has been argued for in [33].
Or, possibly, he merely wanted to distinguish real from natural numbers, making the
former essentially independent of the latter, for their being objects of an essentially
different kind. Though the two possibilities are not incompatible with each other, our
conclusion might be taken as a piece of evidence that he could not have reached this
second aim by following the route envisaged in theGrundgesetze. The first aim remains,
which is certainly paramount from a purely mathematical perspective. If we admit that
this was, after all, his prominent goal, then our rendering of his definition might be
taken as an indication of a simple way to accomplish it.
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