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Abstract
For each uniformity k≥ 3, we construct k uniform linear hypergraphs G with arbitrarily large maximum
degree � whose independence polynomial ZG has a zero λ with |λ| =O

( log�

�

)
. This disproves a recent

conjecture of Galvin, McKinley, Perkins, Sarantis, and Tetali.
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1. Introduction
A hypergraph G= (V , E) is a set of vertices V together with a set of edges E⊂ 2V . A hypergraph
is k-uniform if every edge has size k. The degree of a vertex v ∈V , denoted by d(v), is the number
of edges it appears in; in a hypergraph with maximum degree �, each vertex appears in at most �
edges.

An independent set in G is a set of vertices I ⊂V such that I contains no edge. Let I(G) denote
the family of all independent sets in G. The independence polynomial of G is defined by

ZG(λ)=
∑

I∈I(G)
λ|I|.

This polynomial plays an important role in mathematics, physics and computer science [1, 3,
4, 7–10]. A key property for understanding this polynomial is the largest radius of a disk-shaped
zero-free region(ZFR), a region inCwhere ZG has no zero.We refer the reader to the introduction
of [2] for a survey of how knowledge of the zeros of ZG can lead to interesting results about
independent set.

When G is a graph with maximum degree �, the ZFRs for ZG are well-understood [6, 8].
Specifically, Shearer [8] showed that ZG has no zero inside the disk |λ| < (�−1)�−1

�� , and this bound
is the best possible.

In a recent paper [2], Galvin, McKinley, Perkins, Sarantis and Tetali studied the zeros of ZG
when G is a general hypergraph with given maximum degree �. They showed that ZG has no zero
inside the disk |λ| < ��

(�+1)(�+1) . Furthermore, for each uniformity k≥ 2, they constructed a family
of k-uniform hypergraphs with arbitrarily large maximum degree� such that ZG has a zero λwith
|λ| <Ok

(
log�

�

)
, thereby showing that their bound is tight up to a logarithmic factor if we place

no additional assumption on G.
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A hypergraph is linear if each pair of edges intersect in at most one vertex. The aforementioned
constructions in [2, Section 4] are far from linear, since they contain edges that intersect in (k− 1)
vertices. In [2, Conjecture 3], Galvin, McKinley, Perkins, Sarantis and Tetali conjectured that their
lower bound on the maximum radius of the zero-free disk for ZG can be improved under the
additional assumption that G is linear.

Conjecture 1.1. For each k≥ 2, there exists a constant Ck > 0 such that the following is true. If G
is a k-uniform, linear hypergraph with maximum degree � and if

|λ| ≤ Ck�
− 1

k−1

then ZG(λ) �= 0.

This conjecture is motivated by results on asymptotic enumeration in [5]. Galvin, McKinley,
Perkins, Sarantis and Tetali verified this conjecture when G is a hypertree [2, Theorem 4],

In this note, we disprove Conjecture 1.1 in any uniformity k≥ 3. Our counterexample shows
that the radius of the disk-shaped ZFR |λ| < ��

(�+1)(�+1) is tight up to a logarithmic factor even if
we assume that G is a k-uniform linear hypergraph.

Theorem 1.2. For each uniformity k≥ 3 and� > 100k2, there exists a k-uniform linear hypergraph
G with maximum degree �, such that ZG has a negative real zero λ with λ ∈ [− 6k log�

�
, 0].

2. The counterexample
We begin by describing a general construction.

Definition 2.1. Let G= (V , E) be a hypergraph. We define SG as the hypergraph whose vertex set is
V � E, and whose edge set is {e∪ {e} : e ∈ E}.
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v2 v3

(a)

A graph G.

v1

v2 v3

e1

e3

e2

(b)

The 3-uniform hypergraph SG.

We begin by showing a basic property of SG.

Proposition 2.2. If G= (V , E) is a (k− 1) uniform linear hypergraph with maximum degree �,
then SG is a k uniform linear hypergraph with maximum degree �.

Proof. Each edge in SG has the form e∪ {e} for some e ∈ E, and |e∪ {e}| = |e| + 1= k. So SG is k
uniform.

For any pair of distinct edges e1 ∪ {e1} and e2 ∪ {e2} in SG, we have

|(e1 ∪ {e1})∩ (e2 ∪ {e2})| = |e1 ∩ e2| ≤ 1.

Thus SG is linear.
Finally, each vertex in V has the same degree in G and SG, while each element in E has degree

1 in SG. Therefore, the maximum degree of SG is the same as the maximum degree of G. �
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In the next two lemmas, we give an explicit formula for the independence polynomial ZSG of
SG and prove that it has a zero close to the origin whenever G satisfies a mild expansion property.

Lemma 2.3. Let G= (V , E) be a hypergraph. For each set of vertices S⊂V, let E(S) denote the edges
of G with at least one vertex in S, and write e(S)= |E(S)|. Then we have

ZSG(λ)=
∑
S⊂V

λ|V|−|S|(1+ λ)e(S).

Proof. Classifying the independence sets of SG based on their intersections with V ⊂V(SG), we
have

ZSG(λ)=
∑
S⊂V

∑
I∈I(SG) : I∩V=V\S

λ|I|.

A set of vertices I ⊂V � E with I ∩V =V\S is independent in SG if and only if J := I ∩ E is
contained in E(S). So we have∑

I∈I(SG) : I∩V=V\S
λ|I| = λ|V\S| ∑

J⊂E(S)
λ|J| = λ|V\S|(1+ λ)e(S)

and the lemma follows. �
Lemma 2.4. Let G= (V , E) be a hypergraph with n≥ 3 vertices. Assume that n is odd. Furthermore,
assume that for some α ∈ [3 log n, n], we have e(S)≥ α |S| for any S⊂V. Then ZSG has a negative
real zero in the interval [

−3 log n
α

, 0
]
.

Proof. Set λ0 = − 3 log n
α

. As ZSG(0)= 1, it suffices to show that ZSG(λ0)< 0.
By Lemma 2.3, we have the identity

ZSG(λ0)=
∑
S⊂V

λ
|V|−|S|
0 (1+ λ0)e(S).

We isolate the term with S= ∅ and obtain

ZSG(λ0)= λ
|V|
0

⎛
⎝1+

∑
S⊂V ,S �=∅

λ
−|S|
0 (1+ λ0)e(S)

⎞
⎠

Since 0≤ 1+ λ0 ≤ eλ0 , for each S⊂V we can estimate∣∣∣λ−|S|
0 (1+ λ0)e(S)

∣∣∣ ≤ |λ0|−|S| eλ0e(S) ≤ α|S|e−3 log n·|S|.

Thus we have ∣∣∣∣∣∣
∑

S⊂V ,S �=∅
λ

−|S|
0 (1+ λ0)e(S)

∣∣∣∣∣∣ ≤
n∑

k=1

(
n
k

)
αke−3 log n·k ≤

n∑
k=1

1
k!

( α

n2
)k

.

where the second inequality uses the estimate
(n
k
) ≤ nk

k! .

We assume that α ≤ n, so
(

α
n2

)k
< 1

n for each k≥ 1. This leads to
∣∣∣∣∣∣

∑
S⊂V ,S �=∅

λ
−|S|
0 (1+ λ0)e(S)

∣∣∣∣∣∣ ≤ 1
n

n∑
k=1

1
k! <

e
n

< 1.
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Thus we conclude that

1+
∑

S⊂V ,S �=∅
λ

−|S|
0 (1+ λ0)e(S) > 0

so ZSG(λ0)< 0, as desired. �
Our main theorem is an easy corollary of this result. Indeed, for any (k− 1) uniform hyper-

graph G we can show that e(S)≥ δ(G)|S|
k−1 for any S⊂V . So when δ(G)≥ �(G)− 1, one can take

α = �(G)−1
k−1 in Lemma 2.4. We give an explicit construction of such a hypergraph.

Lemma 2.5. For any uniformity k≥ 2 and � ≥ k, there exists a k uniform, � regular linear
hypergraph Hk,� on at most 2k� vertices.

Proof. We take a prime p in [�, 2�], which exists by Chebyshev’s theorem. Let Hk,� be the
hypergraph on the vertex set V = [k]×Zp with an edge {(i, a+ id) : i ∈ [k]} for each pair (a, d) ∈
Zp × [�]. The number of vertices in Hk,� is |V| = kp≤ 2�k.

Any vertex (i, x) ∈V is contained precisely in the edges corresponding to (a, d) ∈Zp × [�]
with a≡ x− id (mod p). As there is exactly one a ∈Zp corresponding to each d ∈ [�], Hk,� is �

regular.
The size of the intersection between two distinct edges corresponding to (a, d) and (a′, d′) is

the number of solutions i ∈ [k] to the linear congruence equation a+ id ≡ a′ + id′ (mod p). As
k≤ � ≤ p, there is at most one solution i ∈ [k] to this linear congruence equation, so every pair of
hyperedges in Hk,� intersect in at most one vertex. Therefore, Hk,� is a linear hypergraph. �
Proof of Theorem 1.2. LetH =H(k−1),� be the (k− 1) uniform linear hypergraph constructed in
Lemma 2.5. If H has an even number of vertices, we remove an arbitrary vertex v of H together
with any edge containing the vertex. Thus, we obtain a (k− 1) uniform linear hypergraph H
with an odd number of vertices, maximum degree �, and minimum degree at least (� − 1). By
Proposition 2.2, G= SH is a k uniform linear hypergraph with maximum degree �.

Let n≤ 2k� be the number of vertices inH. For any vertex subset S ofH, the (k− 1) uniformity
of H implies that the number of edges in G with at least one vertex in S is lower bounded by

e(S)≥ 1
k− 1

∑
v∈S

d(v)≥ � − 1
k− 1

|S| .

By our assumptions � > 100k2 and n≤ 2k�, we can check that
� − 1
k− 1

>
�

k
> 10

√
� > 10 log� > 3 log (2k�)≥ 3 log (n).

Furthermore, we have �−1
k−1 ≤ � − 1< n. So we can apply Lemma 2.4 with α = �−1

k−1 . We conclude
that ZG has a negative real zero λ with

−λ ≤ 3 log n
(� − 1)/(k− 1)

≤ 3k log (2�k)
�

≤ 6k log�

�

where the last two inequalities follow from � > 100k2. So G satisfies the requirements of
Theorem 1.2. �
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