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We investigate how compressibility affects the turbulent statistics from a Lagrangian
point of view, particularly in the parameter range where the flow transits from the
incompressible type to a state dominated by shocklets. A series of three-dimensional
simulations were conducted for different types of driving and several Mach numbers.
For purely solenoidal driving, as the Mach number increases a new self-similar region
first emerges in the Lagrangian structure functions at sub-Kolmogorov time scale and
gradually extends to larger time scale. In this region the relative scaling exponent
saturates and the saturated value decreases as the compressibility becomes stronger,
which can be attributed to the shocklets. The scaling exponent for the inertial range
is still very close to that of incompressible turbulence for small Mach number, and
discrepancy becomes visible when the Mach number is high enough. When the driving
force is dominated by the compressive component the shocklet-induced self-similar
region occupies a much wider range of time scales than that in the purely solenoidal
driving case. Regardless of the type of driving force, the probability density functions
of the velocity increment collapse onto one another for the time scales in the new
self-similar region after proper normalization.
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1. Introduction

Compressible turbulence is of great relevance in many natural phenomena and
engineering applications, such as in supersonic interstellar turbulence (Padoan &
Nordlund 2002; Scalo & Elmegreen 2004; McKee & Ostriker 2007; Federrath et al.
2010; Hennebelle & Falgarone 2012) and in the flow around hypersonic aircraft.
While incompressible turbulent flows are characterized by the nonlinear interactions
among vortices within a wide range of scales (Frisch 1995), compressible turbulence
is even more complex due to the appearance of the shocklet structures (Samtaney,
Pullin & Kosović 2001; Pan, Padoan & Kritsuk 2009; Wang et al. 2011). Substantial
progress has been made recently in better understanding compressible turbulence, such
as the scaling and statistics (Kritsuk et al. 2007; Schmidt, Federrath & Klessen 2008;
Wang et al. 2012), and two-point correlations (Galtier & Banerjee 2011; Wagner et al.
2012; Banerjee & Galtier 2013). It is now believed that an inertial energy cascade
also exists in compressible turbulence (Aluie 2011; Aluie, Li & Li 2012; Kritsuk,
Wagner & Norman 2013; Wang et al. 2013a).

Turbulent statistics are known to be intermittent, and the structure functions exhibit
anomalous scaling (Frisch 1995), which has also been observed in compressible
turbulence (Kritsuk et al. 2007; Schmidt et al. 2008; Galtier & Banerjee 2011;
Wagner et al. 2012). For incompressible turbulence, Lagrangian study, i.e. investigation
of statistical properties by following particles advected by turbulence, has provided
many interesting and valuable results in the past few years (Toschi & Bodenschatz
2009). For very weakly compressible turbulence with Mach number of order 0.3, both
the Eulerian and the Lagrangian statistics are very close to those of the incompressible
flow (Benzi et al. 2008, 2010). Recent research at much higher Mach number,
however, has revealed that the compressibility has a pronounced influence on the
statistics (Konstandin et al. 2012; Yang et al. 2013).

The statistics of compressible turbulence depends not only on the flow parameters
such as the Mach number and the Reynolds number, but also on the nature of
the external driving force. Federrath (2013) conducted numerical simulations at
very high Mach number of order 17 for both solenoidal (divergence-free) driving
and compressive (curl-free) driving. Compressive driving produces a much more
intermittent density distribution than solenoidal driving. Similar behaviour has been
reported at lower Mach number of order 5 in Konstandin et al. (2012), in which the
authors discovered that the structure functions have more intermittent scalings for
compressive driving than solenoidal driving. More interestingly, the results revealed
that the Lagrangian statistics show stronger intermittency than the Eulerian ones but
have weaker dependence on different types of forcing. While for ideal gas turbulence
purely driven by a solenoidal force at a Mach number of approximately 1 the structure
functions of the whole velocity are very close to those of the incompressible case,
the structure functions of the compressive velocity component exhibit much stronger
intermittent scalings (Wang et al. 2012).

All of the above results provide useful knowledge about how the compressibility
affects the intermittency in turbulent flow. However, it is still not clear how the
turbulent statistics respond as the Mach number approaches unity from a smaller value.
Since this regime corresponds to the transition from an incompressible flow to a flow
state where the compressibility starts to affect the flow properties, investigation in this
regime will provide valuable insights into the effects of compressibility on turbulent
statistics. In the present study we conduct a series of numerical simulations in the
aforementioned regime with different driving forces. We focus on the Lagrangian
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Case f s: f c Mt Rλ τη TE

S045 1:0 0.45 159.7 0.060 1.087
S075 1:0 0.75 159.3 0.062 1.093
S104 1:0 1.04 152.9 0.063 1.107
C069 1:4 0.69 130.4 0.058 1.218

TABLE 1. Parameters of the numerical simulations. Columns from left to right: case name,
the ratio of the solenoidal force to the compressible force, the turbulent Mach number, the
Taylor microscale Reynolds number, the viscous time scale and the integral time scale. In
the case names the leading letter indicates purely solenoidal driving (S) or the driving force
dominated by the compressive component (C), and the following three digits indicate the
Mach number.

structure functions (LSFs) by tracking passive tracers advected by turbulence. The
pth order LSF is defined as Sp(τ )= 〈[δu(τ )]p〉, where δu(τ )= u(t + τ)− u(t) is the
increment of a Cartesian component of tracer velocity over a time lag τ .

Before we proceed to the results, we would like to point out that recently there
were debates on the physical meaning of single-particle LSFs and the existence of
inertial scalings in those LSFs (Falkovich et al. 2012; Lanotte et al. 2013). Some
alternatives to traditional LSFs have been proposed in the past few years (e.g. Huang
et al. 2013; Lévêque & Naso 2014). Nevertheless, LSFs have been extensively used
in the Lagrangian study of turbulence and have provided useful information about
the intermittent statistics of turbulence, e.g. see the review of Toschi & Bodenschatz
(2009) and numerous references therein. Furthermore, in the current study LSFs will
serve as a tool to highlight the difference between compressible and incompressible
flows, and the effects of the strength of the compressibility.

This paper is organized as follows. In § 2 we will briefly describe the numerical
simulations and flow fields. In § 3 the intermittency will be discussed by using
Lagrangian statistics. Finally, conclusions will be given in § 4.

2. Numerical simulations

Three-dimensional compressible turbulence for an ideal gas is simulated in a
periodic box of (2π)3 by using a hybrid scheme (Wang et al. 2010). Namely, for
the convective term an eighth-order compact scheme is used in the smooth region
away from the shocklets and a seventh-order weighted essentially non-oscillatory
scheme is used near the shocklets. For time advancing we employ an explicit
low-storage second-order Runge–Kutta method. The flow is driven by a large-scale
force which can be applied to both solenoidal and compressive components of the
velocity field. More details about the numerical method are reported in Wang et al.
(2013a). Four cases are simulated with different driving forces and turbulent Mach
numbers Mt=Urms/c, where Urms is the root-mean-square (r.m.s.) value of the velocity
magnitude and c is the mean speed of sound. The resolution is fixed at 5123. The
parameters for the simulations are listed in table 1. Cases S045, S075 and S104
are driven by purely solenoidal forces. They have different values of Mt and similar
Taylor microscale Reynolds numbers Rλ. Case C069 is driven by a combination of
compressive and solenoidal forces with a ratio of 4:1.

A Lagrangian module has been developed for particle tracking (Yang et al.
2013). For each case, after the flow reaches the statistically steady state, a million
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FIGURE 1. Contours of log(ρ/ρ0) on the midplane of the domain for (a) case S045,
(b) case S075, (c) case S104 and (d) case C069. Due to the small density variation in
case S045, the colour map in (a) has half of the value range compared with the others.

passive tracers are seeded uniformly and advected by the background flow. The flow
information at the exact locations of particles is obtained by a trilinear interpolation of
the values at surrounding grid points. The particle locations are then updated by using
the same time-marching scheme as the Eulerian solver. The trilinear interpolation is
adequate in our simulations because (1) our mesh size is slightly smaller than the
Kolmogorov scale and (2) linear interpolation may avoid any unphysical oscillation
near shocklets where the flow quantities change abruptly. The flow then evolves for a
time period of approximately 11TE. Here, TE =√3L/urms is the large-eddy turnover
time, where L is the integral length scale. During the last 8TE, two sets of tracer
data are stored. One set of data covers the whole 8TE period with a sampling rate of
approximately 0.1τη, where τη = (ν/ε)1/2 denotes the Kolmogorov time scale, with ν
being the mean kinematic viscosity and ε the energy-dissipation rate per unit mass.
Another set of data consists of several segments, all of which last a time period of
0.4τη and are separated by TE/3 from one another. Within each segment the sampling
rate is approximately 0.01τη. From the former dataset we calculate the Lagrangian
statistics for large time scales, which are usually averaged over a time period of
approximately 5TE and include in total 4 × 107 data points. The statistics of small
time scales are calculated from the latter dataset, which covers a time period of
approximately 3TE and contains 107 data points.

In figure 1 we show the contours of the logarithm of density log(ρ/ρ0) on one slice,
where ρ0 is the mean density. For case S045 with solenoidal driving at the smallest
Mach number, the density is non-uniform but no distinct shocklet is observed. As
the Mach number increases, the inhomogeneity of the density is enhanced and the
shocklets become stronger. These shocklets are still localized in space, i.e. the size
of the shocklets is much smaller than the domain size. For case C069 with hybrid
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driving, the morphology of the shock structures is totally different from those with
solenoidal force. Large-scale shocks develop and extend through the entire domain.
The flow field is divided into blocks by these large shock structures, and within each
block the variation of density is relatively weak.

3. Lagrangian statistics

Different force schemes have profound influences on the behaviour of the LSFs,
as illustrated in figure 2, where we plot the LSFs up to the sixth order. For case
S045, the LSFs are quite similar to those of the incompressible turbulence, since at
such a low Mach number the compressibility effect is negligible, which has also been
confirmed by simulations with different numerical schemes (Benzi et al. 2008). As Mt

increases, the LSFs at τ > 10τη show no visible changes. However, a new self-similar
region emerges below the Kolmogorov time scale and expands as Mt increases. For
case C069, the LSFs exhibit a self-similar region in the range 0.2τη < τ < 8τη and
saturate for larger τ . The shape is very similar to those at higher Mt (Konstandin et al.
2012). All of these results indicate that for the Mach number considered here a purely
solenoidal driving only has notable effects on the LSFs at short time scale, while a
compressive driving can change the behaviour of the LSFs from the sub-Kolmogorov
time scale to much larger scales.

We performed an extended self-similarity (ESS) analysis (Benzi et al. 1993) and
calculated the local slope χp=d log(Sp(τ ))/d log(S2(τ )). In figure 3 we plot the curves
of χp for p = 4 and 6. All of the curves approach the dimensional non-intermittent
value p/2 as τ decreases to zero. This confirms that our Lagrangian simulation has
sufficient time resolution. For case S045, the curve shares similar characteristics to
those for incompressible turbulence (Arnèodo et al. 2008; Biferale et al. 2008; Toschi
& Bodenschatz 2009). A dip appears at approximately τ ≈ 3τη, which is caused by
small-scale vortex filaments (Biferale et al. 2005; Bec et al. 2006). We refer to this
as the vortex dip. Interestingly, a new dip emerges at sub-Kolmogorov time scale and
becomes deeper when Mt increases, as shown by the curves of cases S075 and S104.
Meanwhile the vortex dip becomes shallower and eventually invisible in the curve of
case S104. Thus, a new type of intermittency develops at small time scale when the
compressibility is strong enough. For case C069, the situation is totally different. As
τ increases from small time scale, χp quickly drops to near unity and stays at this low
value over a relatively wide range of time scales, and then slowly increases before the
LSFs saturate. This new dip, starting from sub-Kolmogorov time scale, will be referred
to as the shocklet dip. We will show below that it can be related to shocklets.

Our results indicate that two different types of self-similarities may exist at different
time scales. Thus, two relative scaling exponents can be extracted for both self-similar
regions. For case S045, only one relative scaling exponent ζp is calculated by a linear
fitting of (log(S2(τ )) log(Sp(τ ))) at 8 < τ/τη < Tmax = 20 with Tmax comparable to
TE. This region corresponds to the plateau at the scales above the vortex dip in the
χp curves, as shown in figure 3. Another relative scaling exponent ξp is calculated
by a linear fitting at 0.2 < τ/τη < 0.7 for case S075 and 0.2 < τ/τη < 1.0 for case
S104. For case C069, we only calculate ξp over the region 0.2 < τ/τη < 8.0. These
regions are marked by grey shade in figure 2. The exponents are shown in figure 4.
One may expect that ζp will recover the value of the incompressible flow as Mt

decreases to zero. This is exactly the case in our results, as shown in figure 4, where
ζp from our simulations is compared with the values reported in Benzi et al. (2010).
For cases S045 and S075 with lower Mt, ζp takes a value very close to that of the
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FIGURE 2. Even-order LSFs for (a) case S045, (b) case S075, (c) case S104 and (d) case
C069: green, p = 2; blue, p = 4; red, p = 6. The error bar is estimated by the standard
deviation of the temporary fluctuation. The dark grey shade marks the range where the
relative scaling exponent ζp is calculated and the light grey shade marks the range where
ξp is calculated.
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FIGURE 3. Extended self-similarity local slope χp for p= 4 and 6: green, case S045; blue,
case S075; red, case S104; grey, case C069. The error bar is estimated by the standard
deviation of the temporary fluctuation and is only shown at every other data point for
clarity. For case C069, χp is computed in the range of τ < 12τη before the LSFs saturate.
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FIGURE 4. Extended self-similarity relative scaling exponents up to p = 8 for ζp (red
upward triangles) and ξp (blue downward triangles) for (a) case S045, (b) case S075, (c)
case S104 and (d) case C069. The grey circles in the plots for cases S045, S075 and S104
mark the values for the incompressible case with Reλ∼ 600 (Benzi et al. 2010). For cases
S045 and C069, only the applicable exponents are shown.

incompressible case, although our simulations have smaller Reynolds numbers. For
higher Mt such as case S104, ζp is considerably higher than the incompressible value
at high order. This indicates that compressibility starts to affect the overall turbulent
statistics over a wide range of time scales.

The relative exponent ξp calculated in the new self-similar region shows totally
different behaviour compared with ζp. It is slightly larger than ζp for p= 1 and smaller
than ζp for p> 2, indicating a much stronger intermittency. It saturates when p> 4 for
cases S075 and S104. The saturated exponent ξ∞, which is calculated by averaging
ξp over p = 5–8, is approximately 1.47 for case S075 and 1.19 for case S104. For
case C069, ξp does not saturate completely but increases very slowly when p> 4. We
define ξ∞ = ξ8 ≈ 1.19 for case C069. Based on multi-fractal theory, the saturation of
the exponent suggests that the tails of the probability density function (PDF) P(δu, τ )
should collapse for different values of τ in the self-similar region when normalized
by τ ξ∞ (Benzi et al. 2008; Wang et al. 2013b). We plot in figure 5 the normalized
PDF τ−ξ∞P for case S104 within τ/τη ∈ (0.2, 1.0) and for case C069 within τ/τη ∈
(0.2, 8.0), i.e. the region where ξp is evaluated. Indeed, the tails of the normalized
PDFs collapse. It is remarkable that for case C069 the peak of the normalized PDFs
at δu= 0 decreases for several orders as τ/τη increases, while the tails are still very
close to one another for the entire range of τ/τη ∈ (0.2, 8.0).

It has been revealed that the exponents of the Eulerian structure functions saturate
due to the appearance of the front-like or shocklet structures (Benzi et al. 2008;
Wang et al. 2013b). From the Lagrangian point of view, when a passive tracer
moves through a shocklet it gains a velocity increment which is determined by the
strength of the shocklet. In a homogeneous flow, a reasonable assumption is that
the probability of a tracer encountering a shocklet is proportional to the time lag τ ,
which gives δu ∼ constant · τ . Therefore, the saturated value of the exponent should
be very close to 1 if the shocklets in the flow have similar strength and tracers only
penetrate shocklets once in the time interval considered. This argument is consistent
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FIGURE 5. Probability density functions of δu/uc
rms normalized by τ ξ∞ , where uc

rms is the
r.m.s. value of the velocity component: (a) τ/τη ∈ (0.2, 1.0) for case S104 and (b) τ/τη ∈
(0.2, 8) for case C069. The colour changes from blue to red as τ increases.

with our numerical results. For a short time interval, it is likely that tracers encounter
shocklets at most once, and thus the local relative exponent should be close to 1.
Indeed, in figure 3 we observe that with solenoidal driving force the local minimum
of χp within the shocklet dip approaches 1 as Mt increases, while the χp of case
C069 equals 1 at approximately τ = τη. For the three cases with solenoidal driving
force, the major portion of the flow field is dominated by vortical structures, and the
LSFs are similar to those of the incompressible cases at large time scales. However,
the effects of compressibility do emerge at higher Mt. With hybrid driving, however,
shocks are more pronounced and dramatically change the LSFs even at large time
lags.

Now it is clear that the shocklet dip in the local slope curves is related to the
shocklet structures in flow. It is worth pointing out that the vortex dip and the shocklet
dip have different shapes and respond differently to their relevant control parameters.
For incompressible flow, the location and shape of the vortex dip are universal and
have minor dependences on the Reynolds number (Arnèodo et al. 2008). The shocklet
dip reported here, on the other hand, expands over time scales as Mt increases or
shocklets become dominant. This is caused by the different natures of the extreme
velocity differences induced by vortex filaments and shocklets. For a tracer trapped
by a vortex filament, the largest velocity difference occurs at the time lag during
which the tracer travels half of the circle around the vortex filament, regardless of
the strength of the vortex filament. However, when a tracer penetrates a shocklet, the
velocity differences over a time lag are predominantly determined by the strength of
the shocklet, provided that the tracer is located on different sides of the shocklet at
the beginning and end of that time lag. As the shocklet becomes stronger, its influence
lasts for a longer time period.

4. Conclusions

In this work we reported several interesting results about the intermittent statistics
and the anomalous scaling of LSFs for compressible homogeneous turbulence, which
provide new insights into the compressibility origin of turbulent intermittency. A series
of 3D numerical simulations were conducted for different turbulent Mach numbers Mt
and different types of driving force. When the flow is purely driven by a solenoidal
force, the LSFs are very close to those of incompressible turbulence at small Mt.
For large Mt, the LSFs exhibit a new self-similar region at the sub-Kolmogorov time

786 R6-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

68
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.681


Intermittency caused by compressibility

scale, which is characterized by a saturated relative scaling exponent and is attributed
to shocklet structures. This region expands to larger time scales and the saturated
exponent decreases towards 1 as Mt increases. The behaviour of the LSFs is still very
close to that for incompressible flow at larger time scales. When Mt is high enough,
say approximately 1, compressibility starts to affect the statistics at both small and
large time scales.

The nature of the driving force also has profound influences on the LSFs. When
a driving force dominated by a compressive component is applied, very strong shock
structures emerge at relatively smaller Mt compared with the flow solely driven
by a solenoidal force, and the LSFs only have a single self-similar region ranging
from the sub-Kolmogorov time scale to much larger time scales before the LSFs
saturate. This self-similar region is caused by strong shocks, and the relative exponent
saturates for high-order LSFs. We also demonstrated that the saturation of the relative
exponent in the compressibility-related self-similar region can be explained by a
simple tracer–shocklet interaction model. Our results indicated that for time lags in
this region the PDFs of the velocity increments collapse after proper normalization,
which is consistent with multi-fractal theory; a similar phenomenon has been reported
for Eulerian statistics.

Another issue that is not discussed in the present study is the effect of the
Reynolds number, since all of our simulations have similar Reλ. Some conjectures
may be made based on the current results and their differences compared with
incompressible turbulence. For solenoidal driving with high enough Mach number,
the new self-similar region at small time scales is dominated by compressible effects,
since for incompressible turbulence one would expect no self-similar behaviour at
such small time scales. Thus, the Reynolds number should have a minor influence
on the existence of this region. For fixed Re, as the Mach number increases the new
self-similar region starts to affect the statistics at large time scales. While higher
Re indicates wider scale separation in the flow, the change of the LSFs at large
time scales may only appear at higher Mach number as Re becomes larger. When
the driving force is dominated by the compressive component, the morphology of
the shocklet is totally different from the solenoidal driving case, and compressibility
changes the LSFs from sub-Kolmogorov scales to much larger scales. The effect of
Re in such flow is not clear at this stage. More simulations with different values of
Re are needed to fully understand the effects of the Reynolds number in the future.
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