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Abstract

This paper presents an investigation on the self-focusing of a cosh-Gaussian laser beam in the
thermal quantum plasma (TQP) by taking into account the effects of relativistic nonlinearity.
An appropriate nonlinear Schrödinger equation has been solved analytically by applying
the variational approach. The self-focusing and the self-phase modulation are examined
under a variety of parameters. The self-trapping of a cosh-Gaussian laser beam is further stud-
ied at various values of the decentered parameter, b with different absorption levels, k′i.
Numerical analysis shows that these parameters play a vital role in propagation characteristics.
The significant contribution of the quantum effects to enhance the self-focusing and minimize
the longitudinal phase has been observed. Further, a comparison has been made with the clas-
sical relativistic (CR), the relativistic cold quantum (RCQ), and the thermal quantum (TQ)
regimes. The self-focusing is found to occur earlier and is strongest for the case of TQP in
the present analysis.

Introduction

Technological development in the field of laser physics has ushered a new era where highly
intense lasers are available. The interaction of these intense laser radiations with plasma
has been known to produce various nonlinear phenomena such as self-focusing, self-
phase modulation (SPM), harmonic generations, etc. Theoretical and experimental
study of these nonlinear phenomena is an active area of research due to its importance
in potential applications such as plasma-based accelerators (Sarkisov et al., 1999), inertial
confinement fusion (ICF) (Tabak et al., 1994; Regan et al., 1999), ionospheric modifica-
tion (Guzdar et al., 1998; Gondarenko et al., 2005), and other applications (Askar’yan,
1962; Parashar et al., 1997; Honda et al., 2000; Liu and Tripathi, 2001; Mulser and
Bauer, 2004; Gupta and Suk, 2007; Hora, 2007; Winterberg, 2008; Uhm et al., 2012). In
order to practically realize these applications, it is important that a laser beam should
propagate hundreds of Rayleigh lengths. The development of high-intensity laser beams
makes the investigations of such nonlinear effects feasible. When high power intense
laser beam/pulse propagates through a plasma medium, many instabilities and nonlinear
phenomena such as the SPM, the filamentation instability, the group velocity dispersion
(GVD), the finite pulse effects, and the relativistic and ponderomotive self-focusing
effects, become important. Therefore, it is important to study analytically and numerically
some of these effects. This leads us to understand physical insight of basic and fundamen-
tal processes.

Among the fundamental processes, the self-focusing and self-trapping are genuinely non-
linear phenomena which have become a fascinating field in the modern plasma physics
research. For the first time, these two mechanisms were reported by Askar’yan (1962) and
Chiao et al. (1964), respectively, and had been focus of attention for nearly five decades
because of their relevance to a number of newly discovered processes. The self-focusing is a
process in which a beam of light comes to focus as consequences of a nonlinear response
of a material medium. In a nonlinear medium, a high power electromagnetic beam creates
a refractive index profile across its cross-section corresponding to its own intensity profile.
The refractive index of the medium increases with the beam intensity. As a result, the beam
focuses of its own. In laser–plasma interaction, the generic process of the self-focusing of
laser beams (Chiao et al., 1964; Kelley, 1965; Sodha et al., 1974, 1976; Milchberg et al.,
1995; Saini and Gill, 2006; Yu et al., 2007; Gill et al., 2010a, 2010b, 2010c, 2011; Kaur
et al., 2010, 2011; Mahajan et al., 2010) has been focus of attention as it affects many other
nonlinear processes. It plays crucial role in the beam propagation.
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The self-focusing of laser beams in different plasma environ-
ments using a fundamental Gaussian beam has been confined
mostly to the classical regimes. With the advent of ultra-high-
intensity laser pulses, the study of laser–plasma interactions has
undergone a paradigm shift. The relativistic nonlinearity is a fun-
damental nonlinear effect which occurs in highly intense field.
This nonlinearity is particularly interesting when laser power is
sufficiently large. The electric field associated with high power
laser pulses leads to a quiver motion of electrons of the order
of the speed of light in vacuum. The quiver motion of electrons
leads to their expulsion from the region of high intensity. The
expulsion due to ponderomotive force sets up a space charge
field that retards electrons and eventually a quasi-steady state is
reached. The effect of quiver motion of electrons modifies the
refractive index. The transverse gradient of the nonlinear refrac-
tive index is responsible for the relativistic self-focusing (Zhou
et al., 2011; Patil et al., 2012; Niknam et al., 2013; Bokaei and
Niknam, 2014). The relativistic self-focusing is counterbalanced
by the tendency of the beam to spread because of diffraction. In
the absence of nonlinearities, the beam will spread substantially
in a Rayleigh length, Rd (∼ka20), where k is the wavenumber and
a0 is the spot size of laser beam.

The relativistic self-focusing is not limited to low density and
high temperature plasma. Last decades have witnessed an increas-
ing interest in propagation of laser beams in dense plasmas where
the quantum effects are important (Manfredi, 2005; Shukla et al.,
2006; Shukla and Eliasson, 2010, 2011; Haas, 2011; Habibi and
Ghamari, 2012a, 2012b, 2015a, 2015b; Patil and Takale, 2013;
Patil et al., 2013a, 2013b). The combined effects of the relativistic
variation of mass and quantum correction would significantly
change the dielectric function and hence modify the nonlinear
behavior of electromagnetic wave (EMW) propagation in the
quantum plasmas. In principle, the classical plasma is identified
by virtue of high temperature and low density, while the quantum
plasma is characterized by high density and low temperature
(Shukla and Eliasson, 2010, 2011). The parameter χ = TF/T is
often used to characterize the relevance of quantum effects.
Here TF is the Fermi temperature and T is the corresponding
plasma temperature. For χ≥ 1, the quantum effects are dominant
and Fermi–Dirac distribution statistics is relevant for description
of plasma. The quantum effects can also be measured by the ther-
mal de-Broglie wavelength lB = h− /((mekBT)1/2) where h− is the
rationalized Planck’s constant, kB is the Boltzmann constant,
and me is the electron mass. Here λB is the measure of spatial
extension of the particle wave function. Thus, the quantum effects
are relevant when λB of the electrons is equal or greater than the
average inter-electron distance n−1/3

e . Further in the classical
regime, λB is small enough to ignore the overlapping of wave
functions and quantum interferences. Eliasson and Shukla
(2012) have presented a quantum relativistic model for nonlinear
interaction between the large amplitude waves and quantum plas-
mas. The relativistic effects in such plasmas arise due to an
increase in fermion number density in the case of degenerate
plasma and influence the dynamics of high power EMWs. The
plasma dielectric function for an unmagnetized and collisionless
electron quantum plasma including the fermion gas pressure
and Bohm potential has been derived by Ali and Shukla (2006).
Na and Jung (2009) extended this model to study the ponderomo-
tive magnetization in quantum plasma. The significant research
work on different aspects of nonlinear wave propagation in quan-
tum plasmas has been reported (Kremp et al., 1999; Andreev,
2000; Azechi and FIREX Project, 2006; Marklund and Shukla,

2006; Shukla et al., 2006; Shukla and Eliasson, 2007; Glenzer
and Redmer, 2009). With the progress in technology of short-
pulse and high-intensity radiation, creation and diagnosis of
dense quantum plasmas with X-ray-free electron lasers (FELs)
and modern high power lasers is possible (Peyrusse et al., 1995;
Kodama et al., 2001; Neumayer et al., 2006; Vinko et al., 2012).
Powerful X-ray sources (Landen et al., 2001; Lee et al., 2003;
Faenov et al., 2015) replaced the optical lasers in penetrating
dense or compressed matter and access the dense plasma physics
regimes with electron density of the solid. Kodama et al. (2001)
have reported that in laser-driven implosion of spherical polymer
shells, an increase in density of 1000 times relative to the solid
state (Azechi et al., 1991) has been achieved. These densities are
large enough to enable controlled fusion provided the compressed
fuel is heated to a temperature of about 108 K. The X-ray-FELs
explore matter on the scale of a few angstroms and the quantum
effects which play an important role in the degenerate electron gas
and the warm dense matter (Glenzer et al., 2007; Glenzer and
Redmer, 2009; Neumayer et al., 2010) have been measured exper-
imentally. The quantum plasmas are encountered in many envi-
ronments such as in quantum dots (Shpatakovskaya, 2006),
astrophysical systems (Opher et al., 2001), and neutron stars
(Chabrier et al., 2002). Further, it has been recognized that the
quantum mechanical effects play an important role in the intense
laser solid density plasma interaction experiments (Andreev, 2000;
Marklund and Shukla, 2006; Mourou et al., 2006). It has been
noticed that X-ray lasers and the FELs also undergo compression
(Malkin and Fisch, 2007; Malkin et al., 2007). Propagation losses,
deflection, and critical issues of relativistic ultra-intense laser–
plasma interactions along with energy transport from interaction
region to core plasma are the key issues of ICF-related research
(Kodama et al., 2001; Lindl et al., 2004; Azechi and FIREX
Project, 2006; Remington et al., 2006).

During the past few years, theoretical work on the quantum
plasmas has staged an impressive comeback due to their tendency
to behave as an active nonlinear medium. Ali and Shukla (2006)
presented analytical and numerical studies of potential distribu-
tions around a moving test charge in quantum plasmas. They
used quantum hydrodynamic (QHD) and Poisson equations to
obtain the potential, which depends on the dielectric susceptibil-
ity of quantum plasmas. Ren et al. (2007) derived the dispersion
relation of linear waves in uniform cold quantum plasma (CQP)
using the QHD with the magnetic field of the Wigner–Poisson
system. The quantum effects on the magnetization due to ponder-
omotive force are investigated by Jung and Murakami (2009). The
results showed that the quantum effects cause the magnetization
and cyclotron motion in quantum plasmas. The temperature
effects on the nonstationary Karpman–Washimi ponderomotive
magnetization are investigated in quantum Fermi plasmas by
Na and Jung (2009). It has been observed that the frequency
dependence on the ponderomotive magnetization diminishes
with an increase in the Fermi temperature. Hefferon et al.
(2010) studied the beam dynamics of a Gaussian laser pulse prop-
agating through quantum plasma. They applied a quantum fluid
model and Maxwell’s equations for the beam dynamics and the
quantum dielectric response (Jung and Murakami, 2009; Na
and Jung, 2009) to derive a nonlinear Schrödinger equation for
the electromagnetic (EM) field envelope. The results showed a
longitudinal compression and stronger beam localization due to
quantum effects. Habibi and Ghamari (2012a) studied the self-
focusing of an electromagnetic Gaussian beam in an inhomoge-
neous CQP. A better self-focusing with higher oscillations is
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obtained because of the quantum effects and upward density pro-
file. In addition to the ramp density profile, the role of relativistic
nonlinearity on nonstationary self-focusing of intense laser beam
in the CQP has been reported in another investigation (Habibi
and Ghamari, 2012b). Stronger self-focusing at the rear part of
the pulse is obtained. Further, Patil et al. (2013a, 2013b) have
studied the self-focusing of a Gaussian laser beam in the relativ-
istic cold quantum (RCQ) plasma. Additional self-focusing
using the CQP has been observed in comparison with the classical
relativistic (CR) case. Similar results were reported by the re-
lativistic self-focusing of a Gaussian laser beam in collisional
quantum plasma by Zare et al. (2015). Improved focusing of a
cosh-Gaussian laser beam in the CQP using higher order paraxial
ray approximation (PRA) is presented in a recent investigation by
Habibi and Ghamari (2015a). Further, they studied the significant
enhancement in the relativistic self-focusing of a cosh-Gaussian
laser beam in dense plasmas using the ramp density profile
(Habibi and Ghamari, 2015b). They used modified refractive
index of an inhomogeneous CQP with quantum correction in
the relativistic regime. In relatively recent studies, the stationary
self-focusing of a Gaussian laser beam in the relativistic thermal
quantum plasma (TQP) has been studied in detail (Patil and
Takale, 2013). Patil and Takale (2014) further provided the evi-
dence of strong self-focusing in the TQP as compared with the
case of the CQP. The relativistic self-focusing of ultra-high-
intensity X-ray laser beams using upward density profile in the
warm quantum plasma is reported by Habibi and Ghamari
(2014). It is observed that the quantum effects enhance the self-
focusing of laser beams.

There are several approximate analytical approaches to
describe the effects of self-focusing such as the PRA (Sodha
et al., 1974, 1976), the moment theory approach (Firth, 1977;
Lam et al., 1977), and the source-dependent expansion (SDE)
method (Sprangle et al., 2000). Each of these theories has limita-
tions in describing completely the experimental/computer
simulation results. Most of the investigations related to the self-
focusing are based on Wentzel–Kramers–Brillouin (WKB)
approximation and PRA given by Akhmanov et al. (1968) and
developed by Sodha et al. (1976). This theory being local in char-
acter overemphasizes the field closest to the beam axis and lacks
global pulse dynamics. Furthermore, it also predicts the unphys-
ical phase relationship (Karlsson et al., 1991). However, study of
certain moments is done by the moment theory approach. The
moment theory is not applicable for the beams of all types of irra-
diance and it also lacks the phase description. It has also been
pointed out that the PRA is not applicable when high power
laser beams are used (Subbarao et al., 1998). Another global
approach is the variational approach (Firth, 1977; Anderson
and Bonnedal, 1979), though crude to describe the singularity for-
mation and collapse dynamics, it is fairly general in nature to
study the propagation of laser beam and also correctly predicts
the phase.

Several research investigations on the self-focusing of laser
beams have been confined to the cylindrically symmetric
Gaussian beams symmetry (Akhmanov et al., 1968; Esarey
et al., 1997; Sharma et al., 2004), a very few have been reported
on Hermite-sinusoidal-Gaussian (HSG) laser beams in the turbu-
lent atmosphere (Baykal, 2004), Hermite–Gaussian beams (Takale
et al., 2009), and Hermite-cosh-Gaussian (HChG) laser beams
(Belafhal and Ibnchaikh, 2000; Patil et al., 2010). Apart from
these, great interest has been evinced in the cosh-Gaussian

beams. This is due to the fact that the propagation properties
of the cosh-Gaussian laser beams have important technological
issues as these beams possess high power in comparison with
that of a circular Gaussian laser beam. A review of the literature
highlights the fact that the propagation characteristics of the
cosh-Gaussian laser beams in the TQP have not been studied
to a significant extent. The objective of the present research
work is to investigate the self-focusing of a cosh-Gaussian
laser beam in the relativistic TQP by making use of the varia-
tional approach.

This paper has been structured as follows: in the section Basic
formulation, a brief description of the effective plasma permittiv-
ity is given and the evolution equations governing the beam width
parameter and the longitudinal phase are derived. In the section
Self-trapping, authors have studied the self-trapped mode, and
the section Numerical results and discussion is devoted to discus-
sion. The stability characteristics of cosh-Gaussian laser beams are
studied in the section Stability criterion of beam dynamics.
Conclusions of the present analysis are presented in the last
section.

Basic formulation

The present model is set up in an unmagnetized and collisionless
TQP considering the relativistic nonlinearity. Assuming wave
propagation in the z− direction, the electric vector of laser
beam E satisfies the following wave equation:

∂2E
∂z2

+∇2
⊥E + v2

c2
1E = 0 (1)

which may be derived directly from Maxwell’s equations by
neglecting the term ∇(∇ × E). The effective dielectric constant
of homogeneous gaseous plasma can be expressed as:

e = e0 +F(EE∗ ) (2)

where e0 = 1− (v2
p/v

2) and Φ are the linear and nonlinear parts
of the dielectric constant respectively. v2

p = 4pn0e2/m0 is the
plasma frequency and e and m0 are charge and rest mass of elec-
tron, respectively.

Starting by considering the dielectric constant in an unmagne-
tized and collisionless electron quantum plasmas including the
Fermi gas pressure term as well as the Bohm potential effect
caused by the collective interactions (Ali and Shukla, 2006; Na
and Jung, 2009):

e = 1− v2
p

gv2
1− d

g
− b

( )−1

(3)

where b = k2v2Fe/v
2, vFe = √(2kBTFe/m0) is the Fermi speed,

d = 4p4h2/m2
0v

2l4, g = √
1+ aEE∗ is the relativistic factor

with a = e2/m2
0v

2c2, and λ is the wavelength of the laser used.
It may be mentioned that simple expressions can be found only
in the limiting cases: T≫ TFe (corresponding to the classical
regime) and T≪ TFe (corresponding to the fully degenerate quan-
tum plasma case). A smooth transition cannot be achieved in a
straightforward manner (Manassah et al., 1988) using dimen-
sional arguments. However, the thermal speed becomes meaning-
less in very low temperature limit and should be replaced by the
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Fermi velocity. The nonlinear part of the dielectric constant can
be written as:

F(EE∗ ) = v2
p

v2
1− 1

g
1− d

g
− b

( )−1
[ ]

(4)

The amplitude of the electric field of laser beam is given by:

E = c(r, z)exp[i(vt − kz)]

where ψ(r, z) is a complex function of its argument. Substituting
the above expression for E into Eq. (1), one may neglect ∂2ψ/∂z2
and obtain the envelop equation governing the propagation of the
beam in nonlinear media as shown below:

−2ik
∂

∂z
+∇2

⊥ +v2

c2
v2
p

v2
1− 1

g
1− d

g
−b

( )−1
( )( )[ ]

c(r, z) = 0

(5)

where ∇2
⊥ = ∂2

∂r2
+ 1

r
∂

∂r
.

Equation (5) is a nonlinear parabolic partial differential equa-
tion. The variational approach, which has rigorous basis, is
employed here to investigate nonlinear wave propagation. The
exact solution to Eq. (5) is not available and we therefore seek
numerical or approximate analytical methods. Further, we choose
the latter using a powerful variational method that has been
used in several similar investigations (Anderson and Bonnedal,
1979; Gill et al., 2010a, 2010b, 2011; Kaur et al., 2010, 2011;
Mahajan et al., 2010). Following the procedure of Anderson
and Bonnedal (1979), we reformulate Eq. (5) into a variational
problem corresponding to a Lagrangian L to make (δL/δz) = 0.
Solving Eq. (5) is equivalent to making a certain function an
extremum. Lagrangian L corresponding to Eq. (5) is given by:

L = ik c
∂c

∗

∂z
− c

∗ ∂c

∂z

( )
− ∂c

∂r

∣∣∣∣
∣∣∣∣

[ ]2

+ v2
p

c2
−(d+ b)a|c|2 + 0.5(a|c|2)2 d− 1

2

( )[

+b

4
(a|c|2)2 − 1

12
d(a|c|2)3

]
(6)

Thus, the solution to the variational problem

d

∫1
−1

∫1
−1

Ldrdz = 0 (7)

also solves the nonlinear Schrödinger Eq. (5). We use the cosh-
Gaussian field distribution ansatz for the amplitude ψ as trial

function:

c(r, z) = c0(z)
2

exp
b2

4
− 2kiz

( )

× exp − r
a(z) +

b
2

( )2
[ ]

+ exp − r
a(z) −

b
2

( )2
[ ]( )

× exp(iq′(z)r2 + if(z))
(8)

where a(z) is the beam width of the Gaussian amplitude distribu-
tion, ψ0 is the amplitude at the central position, ki is the absorp-
tion coefficient, b the decentered parameter, also termed the
normalized modal parameter, q′(z) is the spatial chirp, and φ(z)
is the phase of laser beam. Using the expression for ψ as trial
function into the Lagrangian L of Eq. (6) and after integrating
L, we obtain:

, L . =
∫1
−1

Ldr (9)

The reduced variational problem is obtained by solving the
integration in Eq. (9) using some standard integrals to get:

, L . = ika
√
p

8
√
2

e−4kiz(b2 + 8) c0
∂c∗

0

∂z
− c∗

0
∂c0

∂z

( )

+ k|c0|2
32
√
2
dq′

dz
a3
√
pe−4kiz(b2 + 8)

+ k|c0|2
4
√
2
df
dz

a
√
pe−4kiz(b2 + 8)

− |c0|2
4
√
2
e−4kiz

√
p

2
a
+ b4

2a
+ 2q′2a3 + q′2b2a3

4

[
− 7b2

4a

]

− v2
p

c2
|a2c0|2
8
√
2

(d+ b)e−4kiz
√
p(b2 + 8)

+ v2
p

64c2
a(a2|c0|2)2(d− 0.5)e−b2

2−8kiz
√
p(b2 + 8)

+ v2
p

64c2
a(a2|c0|2)2be−

b2
2−8kiz

√
p(b2 + 8)

− v2
p

768c2
ad(a2|c0|2)3e−12kiz

√
p

10√
6
+ 1.5b2√

6

( )

− v2
p

768c2
ad(a2|c0|2)3e

b2
2−12kiz

√
p

3√
6
+ 6+ 3b2

4

( )
(10)

We differentiate < L > with respect to the variables ψ0 and c∗
0.

Using the Euler–Lagrange’s equations, we arrive at two equations.
Further, we multiply these two equations with variables ψ0 and
c∗
0. On adding the resultant equations, we arrive at Eq. (11).

The variation of < L >, i.e., (δ< L >/δS) = 0 where S denotes
∂c0/∂z, ∂c

∗
0/∂z, a, q′, dq′/dz etc., and following the procedure

of Anderson and Bonnedal (1979) and Saini and Gill (2006),
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we arrive at the following equations:

ika
4
√
2

c0
∂c∗

0

∂z
− c∗

0
∂c0

∂z

( )
= − k|c0|2

16
√
2
dq′

dz
a3 − k|c0|2

2
√
2
df
dz

a

+ |c0|2
2
√
2

1
(b2 + 8)

2
a
+ b4

2a
+ 2q′2a3 + q′2b2a3

4
− 7b2

4a

( )

+ v2
p

c2
|a2c0|2
4
√
2

(d+ b)e−4kiz − v2
p

16c2
a(a2|c0|2)2(d− 0.5)e−b2

2−4kiz

− v2
p

16c2
a(a2|c0|2)2be−

b2
2−4kiz

+ v2
p

128c2
ad(a2|c0|2)3e−8kiz 10√

6
+ 1.5b2√

6

( )

+ v2
p

128c2
ad(a2|c0|2)3e

b2
2−8kiz 3√

6
+ 0.75b2 + 6

( )
(11)

and

a2|c0|2 = a20A
2
0 = constant (12)

(δ<L>/δa) = 0 gives,

ik
8
√
2

c0
∂c∗

0

∂z
−c∗

0
∂c0

∂z

( )
=− 3

32
k|c0|2√

2
dq′

dz
a2

− k|c0|2
2
√
2
df
dz

+|c0|2
4
√
2

1
(b2+ 8)

−2
a2

− b4

2a2
+ 6q′2a2+ 3q′2b2a2

4
− 2b2

4a2

( )

+v2
p

c2
|a2c0|2
8
√
2

(d+b)− v2
p

64c2
a(a2|c0|2)2(d− 0.5)e−b2

2−4kiz

− v2
p

64c2
a(a2|c0|2)2be−

b2
2−4kiz

+ v2
p

768c2
ad(a2|c0|2)3e−8kiz 10√

6
+ 1.5b2

( )

+ v2
p

768c2
ad(a2|c0|2)3e

b2
2−8kiz 3√

6
+ 0.75b2+ 6

( )
(13)

(δ<L>/δq′) = 0 gives;

q′ =− k
4a

da
dz

(14)

dq′

dz
=− k

4a
d2a
dz2

+ k
4a2

da
dz

( )2

(15)

Substituting Eq. (11) into Eq. (13) and using Eqs. (14) and
(15), we arrive at the following equation for a:

d2a
dz2

= 32
k2a3(b2 + 8) 2− 7b2

4
+ b4

2

( )

+ 1
6
√
3

v2
p

k2c2a
(a2|c0|2)2d

e−8kiz

(b2 + 8) (1.5b
2 + 10)

+
√
2
6

v2
p

k2c2a
(a2|c0|2)2d

e−8kiz+b2
2

(b2 + 8) 0.75b2 + 6+ 3√
6

( )

−√
2

v2
p

k2c2a
(a2|c0|2)(d− 0.5)e−4kiz+b2

2

−√
2

v2
p

k2c2a
(a2|c0|2)be−4kiz−b2

2

(16)

Finally, the phase φ(z) of amplitude ψ0(z) is obtained by using
c0(z) = |c0|eif and also using Eq. (16):

df
dz

= 2
ka2(b2 + 8) 1− 7b2

8
+ b4

4

( )

+ 1
384
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3
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v2
p
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2 − 5
√
2
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v2
p
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× be−4kiz−b2
2

(17)

After normalization using h = cz/va20, we arrive at the follow-
ing equations for an and φ:

d2an
dh2

= 32
a3n(b2 + 8) 2− 7b2

4
+ b4

2

( )

+ 1
6
√
3

v2
pa

2
0

c2an
(a2|c0|2)2d

e−8k′ih

(b2 + 8) (1.5b
2 + 10)

+
√
2
6

v2
pa

2
0

c2an
(a2|c0|2)2d

e
−8k′ih+

b2

2

(b2 + 8) 0.75b2 + 6+ 3√
6
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−√
2
v2
pa

2
0

c2an
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b2

2

−√
2
v2
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2

(18)
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df
dh

= 2
a2n(b2 + 8) 1− 7b2
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(19)

with k′i = kiRd , k
′
i is the normalized absorption coefficient.

Self-trapping

For an initially plane wave front, a = a0 = ae, da/dz = 0, and a = 1
at z = 0, the condition d2a/dz2 = 0 leads to propagation of a
cosh-Gaussian laser beam without any change in its beam
width. This is known as the uniform waveguide propagation. If

we put
d2a
dz2

= 0 in Eq. (16), we obtain a relation between the

dimensionless initial beam width parameter (ρ0) and critical val-
ues of the intensity parameter Π (= α2|ψ0|

2). The following gene-
ral expression is obtained for determination of critical threshold
for various values of b:

32
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4
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= − 1
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2
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(a2|c0|2)2d

e−8kiz+b2
2

(b2 + 8) 0.75b2 + 6+ 3√
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2
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2

+√
2
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p
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(a2|c0|2)be−4kiz−b2

2

(20)

where ρ0 = aeω/c, is the initial dimensionless beam width param-
eter. The results are shown in the form of graphs. Such graphs are
called the critical curves and these curves characterize the self-
focusing region in the r20 −P plane. The region below the critical
curve corresponds to propagation of a cosh-Gaussian beam with
self-focusing whereas the region above the critical curve corre-
sponds to either oscillatory or steady state self-focusing of a
cosh-Gaussian beam.

Numerical results and discussion

Equations (18) and (19) are nonlinearly coupled ordinary second
order differential equations governing the normalized beam width
parameter an and the phase φ as a function of distance of

propagation η. These equations cannot be solved analytically.
Therefore, we employ numerical computational techniques to
study the dynamics of the beam. The first term on right hand
side (R.H.S.) of Eq. (18) has its origin in the Laplacian (∇2

⊥)
appearing in the evolution Eq. (5) and it leads to the diffractional
divergence of laser beam. The other terms in Eq. (18) arise due to
the relativistic nonlinear effect when laser beam of high intensity
is used. This effect arises due to the relativistic mass correction
and it depends on various factors such as the intensity parameter
(Π = α2|ψ0|

2), relative plasma density, etc. The second, third, and
the fourth terms have dependence on the cold quantum contribu-
tion δ as well as on the decentered parameter, b. However, the last
term (fifth) is dominated by the TQP whose contribution comes
from the term proportional to β which contains quantum effects
via the Fermi temperature. A similar explanation can be given for
the terms appearing in Eq. (19). The first term leads to the diffrac-
tional divergence of laser beam. The other terms in Eq. (19)
appear because of the relativistic effects. The third term has
dependence on the cold quantum contribution δ, the fifth and
the sixth terms depend on δ as well as on the decentered param-
eter, b. The contribution of the fourth term comes from the term
proportional to β which consists of the quantum effects. The last
term is proportional to β, the decentered parameter, b and Π. The
self-focusing/defocusing of laser beam is determined by the com-
peting mechanisms on the R.H.S. of Eq. (18). The normalized
beam width parameter, an < 1 corresponds to the self-focusing
and an > 1 is the result of diffractional dominance over all the
other terms leading to the defocusing of laser beam. If we set δ
and β to zero, i.e., ignoring quantum effects, one obtains a differ-
ential equation for the normalized beam width parameter in the
CR plasma. In Figure 1, the plot of normalized beam width
parameter, an as a function of the dimensionless distance of prop-
agation, η is displayed for b = 0 at different values of absorption
levels k′i considering the relativistic warm quantum plasma. In
absence of the decentered parameter, a large value of k′i is
observed to weak the self-focusing effect. An analysis of evolution
of the normalized beam width parameter as a function of distance
of propagation, η is performed at b = 0, 1, 2 for three values of
k′i with other parameters chosen as follows: a0 = 0.002 cm,
k = 0.53 × 104 cm−1, ωp = 2 × 10−6 × ω, ω = 1.778 × 1020(rad/sec),
TFe = 109 K, and λ = 0.0106 nm. Figure 2 plots an as a function
of η for b = 1 with different values of absorption levels k′i. The
beam propagates oscillatory over several number of Rayleigh
lengths. However, the situation has changed significantly in

Fig. 1. Variation of normalized beam width parameter an(η) as a function of
dimensionless distance of propagation η considering relativistic nonlinearity for
b = 0 with the following set of parameters for the various values of k′i : a0 =
0.002 cm, ωp = 2 × 10

−6 × ω, ω = 1.778 × 1020(rad/sec), k = 0.53 × 104 cm−1, and intensity
parameter, Π = 0.1. Solid curve corresponds to k′i = 0.01, dashed to k′i = 0.02, and
dotted to k′i = 0.03.
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Figure 3, where we have plotted an as a function of η for b = 2 with
varying k′i. All curves are seen to exhibit sharp self-focusing
effects.

The variation of the normalized beam width parameter, an as
a function of the dimensionless distance of propagation, η with
various intensity parameters (Π = α2|ψ0|

2), keeping b and k′i
fixed is displayed in Figure 4. It is observed from Figure 4 that
the self-focusing takes place at lower values of Π in comparison
with the earlier investigations (Gill et al., 2011). However, there
is a substantial increase in the self-focusing with increase in Π.
Figure 5 highlights the variation of the beam width parameter
with η for the three cases of plasma. If we consider all the
terms in Eq. (18), we obtain a plot between an and η for the
case of relativistic TQP (dotted curve). If we put β→ 0, a
curve for the RCQ plasma is obtained (dashed curve). Further
if β→ 0 and δ→ 0, i.e., ignoring the quantum effects, one obtains
a curve for the CR plasma (solid curve). The results show much
higher oscillations and better self-focusing in the TQP than the
RCQ and the CR cases. Another aspect of this phenomenon
observed here is that there is a decrease in the focusing length
for the TQP in comparison with the earlier RCQ and the CR
cases. The stronger pinching effect offered by the quantum effects
enhances laser self-focusing. The largest self-focusing length
is observed in the CR regime. Further, Eq. (19) describes the
evolution of the longitudinal phase, φ(η, α2|ψ0|

2) with the dimen-
sionless distance of propagation (η) in Figure 6. The R.H.S. of
Eq. (19) is a complicated function of b, k′i, the normalized beam
width an and the intensity parameter, α2|ψ0|

2. Though we can
fix b, k′i, and α2|ψ0|

2, the evolution of the normalized beam
width parameter, an significantly affects the longitudinal phase
with η. The longitudinal phase may be positive or negative

depending upon the value of α2|ψ0|
2 and k′i. It is positive for

the present model and does not show an oscillatory character as
the R.H.S. of Eq. (19) for b = 0 depends only on α2|ψ0|

2 and k′i
maintaining a nonlinear relationship. The regularized phase,
φreg, is defined as:

freg = f(h) − f(h)|a2|c0|2=0. (21)

In the linear limit (α2|ψ0|
2 = 0), the phase will have a more rapid

growth during the propagation. But the presence of nonlinear
forces counteracts the diffraction and tends to keep the pulse
intensity higher in the plasma medium. However, the regularized
phase always has a negative value. This is a consequence of fre-
quency chirp as the time derivative of the phase will have same
sign as in the case of a conventional plane wave. Thus, the red
will always lead blue in the super continuum. This aspect of the
phase change is well presented using the variational approach
in the present investigation. Figure 7 displays the plot of the
regularized phase versus η. This feature confirms the finding of
Karlsson et al. (1992) and is contrary to the results of Manassah
et al. (1988). The latter predicted that the regularized phase may
be positive or negative during the beam propagation. This

Fig. 2. Plot of an(η) as a function of dimensionless distance of propagation η for b = 1
for the same set of parameters as in the caption of Figure 1.

Fig. 3. Variation of normalized beam width an(η) as a function of dimensionless dis-
tance of propagation η for b = 2 for the same set of parameters as in the caption of
Figure 1.

Fig. 4. Graph of an(η) as a function of dimensionless distance of propagation η for b =
1 and k′i = 0.01 at varying values of intensity parameter for the same set of param-
eters as in the caption of Figure 1. Solid curve corresponds to Π = 0.09, dashed to Π =
0.1, and dotted to Π = 0.3.

Fig. 5. Variation of an(η) as a function of dimensionless distance of propagation η for
b = 1, k′i = 0.01, and Π = 0.1 for different plasma regimes using same set of parame-
ters as in the caption of Figure 1. Solid curve corresponds to CR region, dashed to
RCQ, and dotted to TQP.
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inconsistent result stems from the fact that the PRA used by
Manasaah et al., does not correctly predict the φreg.

To further elucidate the results for delineating the underlying
physics for the propagation of a cosh-Gaussian laser beam in
the TQP, we numerically analyze the dimensionless initial
beam width parameter (ρ0) as a function of critical values of
beam power Π (= α2|ψ0|

2) for different values of b when the rel-
ativistic nonlinearity is considered. The results are depicted in
the form of graphs. The critical curves for a cosh-Gaussian
laser beam characterize the self-focusing region in the r20 −P
space. In Figure 8, r20 versus Π is plotted for two values of b,
i.e., b = 0 and b = 1. The solid curve corresponds to b = 0 and
the dashed curve to b = 1. The solid curve depicts that the
dependence of r20 for b = 0 is much weaker on the high intensity,
a result consistent with earlier calculations based on the varia-
tional approach (Anderson, 1978). The initial beam width is
much higher than the earlier investigations. Higher the value
of b, the faster is the initial decrease in r20 with Π.

Lastly, Figure 9 depicts the variation of an with η in the rel-
ativistic TQP for three different values of the Fermi tempera-
ture. It is observed that the self-focusing length decreases with
an increase in the Fermi electron temperature. A propagation
to several Rayleigh lengths is observed. Also, it occurs at
much lower value of the intensity parameter in comparison
with the earlier investigations. This is apparently a consequence
of the variational approach where the contribution of the whole
wave front is considered in the averaging process. On the other
hand, the PRA takes into account only those rays which are very
close to the beam-axis.

Stability criterion of beam dynamics

Variational method is used in several branches of physics and
mathematics, can also be applied to study the stability charac-
teristics of the evolution of cosh-Gaussian laser beam in TQP
when relativistic effects are taken into account. The methods of
nonlinear dynamics applied to dissipative solitons (Skarka
et al., 1997, 1999; Skarka and Aleksic, 2006) can also be
used to study stability properties in the present investigation.
The Euler–Lagrange equations are the starting point to estab-
lish stability criterion. The dependent variables are disturbed
about their equilibrium values and method of Lyapunov’s
exponents (Lakshman and Rajasekar, 2003; Skarka and
Aleksic, 2006) is used. Thus, for stability characteristics of
the system, the following Jacobi determinant is constructed
from derivatives with respect to amplitude, width and curva-
ture in terms of S, F, and G where

S = dc0

dz
= −4q′|c0|

k
(22)

Fig. 6. Plot of longitudinal phase φ(η) versus dimensionless distance of propagation η
for b = 0 for the same set of parameters as mentioned in the caption of Figure 1. Solid
curve corresponds to k′i = 0.01, dashed to k′i = 0.02, and dotted to k′i = 0.03.

Fig. 7. Plot of regularized phase φreg versus dimensionless distance of propagation η
for b = 1 for the same set of parameters as mentioned in the caption of Figure 1. Solid
curve corresponds to k′i = 0.01, dashed to k′i = 0.02, and dotted to k′i = 0.03.

Fig. 8. Dependence of dimensionless initial beam width (ρ0) as a function of Π with b
= 0 and b = 1. Solid curve corresponds to b = 0 and dashed curve to b = 1.

Fig. 9. Comparison of an(η) with dimensionless distance of propagation η at different
values of electron temperature (TFe). Other parameters are same as in the caption of
Figure 1. Solid curve corresponds to TFe = 10

7 K, dashed to TFe = 10
8 K, and dotted to

TFe = 10
9 K.
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F = da
dz

= −4aq′

k
(23)

G = dq′

dz
= 4q′2
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This leads to the following characteristic equation cubic in λ:

l3 + a1l
2 + a2l+ a3 = 0 (26)

where

a1 = − 4q′

k
(27)
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In order to have Lyapunov’s stability, Hurwitz conditions must
be fulfilled, i.e., α1α2− α3 must be positive. According to the
Routh–Hurwitz criterion, a necessary and sufficient condition
for the stationary solutions to be stable is:

a1a2 − a3 . 0 (30)

Equation (26) has a pair of purely imaginary roots at a critical
point (Lugiato and Narducci, 1985):

l = +iv, v . 0 (31)

Substituting Eq. (31) into Eq. (26), we get:

v2 − a2 = 0 (32)

and

a1v
2 − a3 = 0 (33)

The critical condition of the Hopf-bifurcation is:

f = a1a2 − a3 = 0 (34)

f > 0 is a necessary condition for the stationary solution to be sta-
ble, f < 0 is a necessary condition for the Hopf-bifurcation to
emerge. It is observed that the condition f≥ 0 is satisfied for cho-
sen set of parameters in the present analysis and therefore
Hopf-bifurcation, resulting from the unstable fixed point does
not come into play and it leads to overall stability of the beam
dynamics (Wang, 1990).

Conclusions

In the present research work, authors have studied the evolution
of a cosh-Gaussian laser beam in the TQP by taking into account
the relativistic nonlinearity. An equation describing the envelope
of the EM field is set up on prior knowledge based on the quan-
tum fluid model, Maxwell’s equations, and the earlier results of
the quantum dielectric response and solved by using the varia-
tional approach. Approximate trial function for describing a
cosh-Gaussian beam is used and equations for the beam width
parameter and phase are derived and solved numerically for suit-
able set of parameters. It is observed that the combined quantum
effects and the relativistic nonlinearity lead to a stronger self-
focusing. The results are supported on the basis of comparison
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between the TQP, the CQP, and the CR regimes. The decentered
parameter plays a crucial role in the beam dynamics. It is
observed that the large value of k′i, the normalized absorption
coefficient, weakens the self-focusing effect in the absence of b.
However, an oscillatory self-focusing takes place for higher
value of the decentered parameter. The aspect of the longitudinal
phase and the regularized phase is well displayed in the form of
graphs using the variational approach in the present investigation.
Some features describing the critical curves for b = 0, 1 are also
obtained for the chosen set of parameters. A better evolution of
laser beam to several Rayleigh lengths is obtained using the vari-
ational approach as compared with the PRA. Because integration
over the whole wave front is considered in the variational
approach whereas in the PRA, only those rays are considered
which are very close to the beam axis. Further, a cosh-Gaussian
beam can handle high power in comparison with a circular
Gaussian beam, the present investigation may shed some light
on key aspects such as propagation, losses, diffraction, and critical
issues of the relativistic ultra-intense laser–plasma interaction
physics relevant to the ICF as well as the intense laser-solid den-
sity plasma experiments where the quantum effects are important.
Lastly, stability properties of beam dynamics are studied and it is
found that beam is marginally stable in the absence of any
dissipation.
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