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On high-frequency sound generated by
gust–aerofoil interaction in shear flow
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A theoretical model is constructed to predict the far-field sound generated by
high-frequency gust–aerofoil interaction in steady parallel shear flow, including the
effects of aerofoil thickness. Our approach is to use asymptotic analysis of the Euler
equations linearised about steady parallel shear flow, in the limits of high frequency
and small, but non-zero, aerofoil thickness and Mach number. The analysis splits
the flow into various regions around the aerofoil; local inner regions around the
leading and the trailing edges where sound is generated and scattered; a surface
transition region accounting for the curvature of the aerofoil; a wake transition
region downstream of the aerofoil; and an outer region through which the sound
propagates to the observer. Solutions are constructed in all regions, and matched
using the principle of matched asymptotic expansions to yield the first two terms in
the expansion of both the amplitude and the phase of the far-field pressure. Result are
computed for the particular case of scattering of a gust by a symmetric Joukowski
aerofoil placed in symmetric Gaussian parallel shear flow. The introduction of mean
shear is shown to have a significant effect on the far-field directivity and on the total
radiated power.
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1. Introduction
The fundamental problem of sound generation by aerofoils in flow is of great

importance to the understanding of aircraft noise. One significant acoustic source,
from within the aeroengine, corresponds to blade–blade interaction, when the wakes
from a forward blade row or structural element interact with a downstream blade
row. This is seen to be one of the key components of the total sound levels (Peake
& Parry 2012), and has received much attention. For instance, for a vortical wave
(a so-called gust) interacting with a single aerofoil, computational schemes, such
as those of Hixon et al. (2006) and Allampalli et al. (2009), have been developed
to solve the full nonlinear Navier–Stokes or Euler equations for thin aerofoils with
an incident gust of low- to mid-range frequency; while analytical models include
those of Myers & Kerschen (1997) and Tsai (1992) for high-frequency gust–aerofoil
interaction. The latter models have been related to the noise generated by a gust
interacting with a cascade of aerofoils by Peake & Kerschen (1997, 2004). These
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analytic models use Goldstein’s rapid distortion theory formulation of the scattering
problem, (Goldstein 1978a). Bodony (2009) has also used Goldstein’s formulation,
but to develop a computational scheme for predicting noise generation by entropic
disturbances interacting with a symmetric aerofoil. This is highly relevant to turbine
noise. A second acoustic source connected with aerofoil–flow interaction, which
has perhaps received less attention, arises from the airframe at take-off or approach
conditions, whereby the deployed wing flaps might interact with the engine exhaust
flow to produce noise (Mengle et al. 2007; Semiletov et al. 2013).

In much of the work on gust–aerofoil interaction noise it is assumed that the
background flow is uniform far upstream. However, it is quite possible that the
background flow contains significant mean shear: in the internal aeroengine context
this might be caused by the wake of a large structural element upstream, or by
the non-uniform flow entering the aeroengine due to incidence or other installation
effects; while in the context of flap-exhaust noise, the bypass/jet exhaust flow is highly
sheared. We therefore believe that including the effects of mean shear in gust–aerofoil
calculations is important. In a key paper (Goldstein 1978b), the interaction of a gust in
a steady two-dimensional background shear flow with a zero-thickness, zero-incidence
semi-infinite flat plate is calculated for the first time. Since then, this theory has been
extended in two directions. First, by Goldstein (1979) who considered the case of
unidirectional, transversely sheared mean flow carrying gusts which interact with
semi-infinite flat plates, and then by Goldstein, Afsar & Leib (2013), who were
particularly concerned with jet–edge interactions. One feature of these papers is that
the base flow is parallel and does not change in the streamwise direction, so that
scattering by bodies which modify the mean flow, i.e. non-zero thickness aerofoils,
is not included. Second, by Atassi & Grzedzinski (1989) who allow for aerofoil
thickness by considering a non-parallel potential mean flow, plus a small steady
vortical perturbation. This allows them to study the interaction of gusts with a
realistic aerofoil leading edge in the presence of weakly sheared mean flow. The aim
of the current paper is to extend both these strands of work by considering (weakly)
non-parallel shear flow with significant mean vorticity, thereby allowing us to model
noise generation by gusts interacting with a non-zero thickness aerofoil in mean flow
with significant shear.

In order to be able to complete an analytically based solution a number of
assumptions are required. We will suppose that the aerofoil is thin, with thickness
parameter denoted by ε � 1, and that the reduced frequency of the incident gust
is high, denoted by k� 1. The preferred limit εk = O(1) is imposed, as in Myers
& Kerschen (1997) and Tsai (1992). We also assume that the flow is relatively
low speed (such as the speeds experienced during aircraft approach), with typical
Mach numbers being O(ε1/2). We believe that these limitations still allow us to
study cases of practical interest, especially since the high-frequency regime remains
challenging for computational aeroacoustics. A significant step in our analysis involves
transformation from Cartesian coordinates, (x, y), to pseudo-velocity potential and
streamfunction coordinates, (φ, ψ), where φ is defined such that surfaces of constant
φ are everywhere normal to the mean streamlines. This has the advantage that the
aerofoil is mapped onto a flat plate, allowing the boundary conditions to be applied
more readily. We then use the method of matched asymptotic expansions (Van Dyke
1975) to split the problem into several asymptotic regions around the aerofoil (shown
in figure 1); local inner regions which scale as O(k−1) about the leading and trailing
edges of the aerofoil; a transition region whose thickness scales as O(k−1/2) along
the upper and lower surfaces of the aerofoil accounting for the effects of aerofoil
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FIGURE 1. Asymptotic regions around the aerofoil (a) in (x, y) space; (b) in (φ,ψ) space.
leading- and trailing-edge inner regions, (i) and (iv), scale as O(k−1), and the width of the
transition regions, (iii) scales as O(k−1/2). The outer region (ii) is O(1). We solve for (i)
in § 4, then solve for a leading-edge contribution to (iii) in § 5. Region (iii) is solved for
in § 6, and the trailing-edge contribution to (ii) along with regions (iv) and (v) are solved
for in § 7.

thickness; an acoustic outer region which describes the propagation into the far
field; and a wake transition region of thickness O(k−1/2) downstream. The solution
is determined in each region, and matched to surrounding regions using Van Dyke’s
matching rule (Van Dyke 1975). Our aim is to obtain the first two terms in both the
amplitude and the phase in each region.

The paper is organised as follows. In § 2 we describe the formulation of the
problem, and apply our coordinate transformation to the linearised Euler equations
governing the gust–aerofoil interaction. In § 3 we outline the method used to obtain
the evolution of the gust through the shear flow; this is based on the Goldstein
(1978b) parallel-shear gust solution, but with a correction term to account for the
effects of the aerofoil thickness on the steady flow. In § 4 we solve the governing
equations in the inner leading-edge region. This inner solution is then matched to a
leading-edge far-field solution in § 5, and the transition solution to account for the
zero normal velocity boundary condition on the aerofoil surface is constructed in § 6.
Rescattering at the trailing edge is considered in § 7. Results for the far-field acoustic
directivity are presented in § 8.

2. Formulation and governing equations
We consider a thin symmetric aerofoil aligned parallel to the x axis, with surface

y=±εy(x), 06 x6 2. Here, lengths have been non-dimensionalised using the aerofoil
semi-chord b∗ (∗ denotes dimensional quantities). The aerofoil sits in a mean shear
flow of velocity U, which is aligned parallel to the aerofoil chord at infinity (velocities
are non-dimensionalised using U∗∞, the uniform mean flow speed at infinity in the
transverse direction, and we explicitly exclude the case U∗∞ = 0). We work in the
orthogonal (φ, ψ) coordinate system, where ψ is the non-dimensional mean-flow
stream function and φ is the non-dimensional pseudo-velocity potential, chosen such
that surfaces of constant φ and ψ are orthogonal. The origin in (φ, ψ) space is
located at the leading edge of the aerofoil. This coordinate system has the advantage
of mapping the aerofoil surface onto the flat plate ψ = 0, 0 6 φ 6 φe, where φe
must be calculated from the mean-flow solution. Far upstream the steady shear flow
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velocity is U0(ψ)eφ , where eφ is the unit vector in the φ direction, and the shear
profile U0(ψ) is a given function (with the property that U0 → 1 as ψ → ±∞).
The presence of the thin aerofoil distorts the incident mean flow, and we write the
total mean velocity as

(
U0(ψ)+ εq(φ, ψ)+O(ε2)

)
eφ . The local Mach number is

denoted M(ψ), which takes the value M∞ as ψ → ±∞; in what follows we shall
be considering low-Mach-number flow only, with M = O(ε1/2). This means that the
steady flow around the aerofoil can be determined to O(ε) using incompressible
thin-aerofoil theory, and it follows that (see Thwaites 1960)

q(z)= U0(0)
π

Re
[∫ 2

0

dy(x)/dx
z− x

dx
]
, (2.1)

where z = φ + iψ . Furthermore, the corrections to the otherwise uniform steady
pressure, density and sound speed due to the presence of the aerofoil are of
O(εM2

∞)=O(ε2), and to O(ε) are therefore ignored.
Let the incident gust have typical amplitude which is much less than ε, allowing

linearisation about the mean flow, and dimensional frequency ω∗. In what follows
we non-dimensionalise time using b∗/U∗∞, to give non-dimensional hydrodynamic
frequency ω = ω∗b∗/U∗∞, and we also introduce the non-dimensional acoustic
frequency k = ωM∞, where M∞ = U∗∞/c

∗
∞. We suppose k is large, with preferred

limit k=O(ε−1). The unsteady velocity, pressure and density are written in the form

{u, v, p, ρ}(φ, ψ, t)= {u, v, p, ρ}(φ, ψ)e−iωt, (2.2)

and we make the one further assumption that the flow is isentropic, which means
that the pressure and density fluctuations are connected by ρ =M2

∞p. The idea now
is to substitute this unsteady perturbation into the equations of mass and (inviscid)
momentum conservation, linearised about the steady base flow. In order to transform
these equations into (φ, ψ) space, we use the well-known results for orthogonal
curvilinear coordinates, see for example Batchelor (1967, Appendix 2). The metric
elements, given by Finnigan (1983), for (φ, ψ)-space are

hφ = ζ |U|, hψ = |U|, (2.3a,b)

where ζ is defined by
Ω

|U|2 =
∂ log ζ
∂ψ

, (2.4)

and Ω=−∇2
xψ is the mean vorticity (∇x denotes the differential operator with respect

to non-dimensional physical coordinates). This leads to

−iωu+ ζ |U|2 ∂u
∂φ
−Ωv + ζ |U| ∂p

∂φ
=−uζ

∂

∂φ

( |U|2
2

)
, (2.5a)

− iωv + ζ |U|2 ∂v
∂φ
+ |U| ∂p

∂ψ
= vζ ∂

∂φ

( |U|2
2

)
− 2v

(
Ω + ∂

∂ψ

( |U|2
2

))
, (2.5b)

− iωρ + ζ |U| ∂u
∂φ
+ |U| ∂v

∂ψ
+ ζ |U|2 ∂ρ

∂φ
= v

|U|
(
Ω + ∂

∂ψ

( |U|2
2

))
+ uζ

∂|U|
∂φ

(2.5c)

for the two momentum and one mass equations, respectively.
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Since we are considering the case of a parallel shear flow disturbed by a thin
aerofoil, we make the expansions

ζ |U|2 =U0(ψ)+ εN1(φ, ψ), (2.6a)

Ω =−U0
dU0

dψ
+ εN2(φ, ψ), (2.6b)

ζ |U| = 1+ εN3(φ, ψ), (2.6c)

where the first term on the right in each case is the parallel flow result and
N1,2,3 = O(1) are the aerofoil corrections. We note immediately that introducing
the thin aerofoil into the inviscid parallel mean flow does not alter the mean vorticity,
so that N2 ≡ 0. However, the remaining corrections, N1,3, are non-zero and must be
determined from the solution for the mean flow. Furthermore, note that the right-hand
sides of (2.5) are O(ε), which we shall denote by εN4,5,6, respectively. This allows
us to rewrite (2.5) in the form

− iku+M(ψ)
∂u
∂φ
+ M(ψ)

M∞

dM
dψ

v + εσ1(φ, ψ)=−M∞
∂p
∂φ
, (2.7a)

− ikv +M(ψ)
∂v

∂ψ
+ εσ2(φ, ψ)=−M(ψ)

∂p
∂ψ

, (2.7b)

−ikM∞p+ ∂u
∂φ
+ M(ψ)

M∞

∂v

∂ψ
+M(ψ)M∞

∂p
∂φ
+ εσ3(φ, ψ)= 0, (2.7c)

where

σ1(φ, ψ)=−M∞

(
N4 −N1

∂u
∂φ
−N3

∂p
∂φ

)
, (2.8a)

σ2(φ, ψ)=−M∞

(
N5 −N1

∂v

∂φ
− q

∂p
∂ψ

)
, (2.8b)

σ3(φ, ψ)=−
(

N6 −N3
∂u
∂φ
− q

∂v

∂ψ
−N1M2

∞
∂p
∂φ

)
. (2.8c)

In order to complete our solution, we introduce the Fourier transform with respect to
φ,

F(α, ψ)= 1
2π

∫ ∞
−∞

e−iαφf (φ, ψ) dφ, (2.9)

with capital letters denoting transformed functions. Now taking the Fourier transform
of (2.7) and rearranging, we obtain a single equation for the transformed pressure in
the form

1
M

∂

∂ψ

(
M
∂P
∂ψ

)
+ 2α

k− αM
dM
dψ

∂P
∂ψ
+ M2

∞
M2

(
(k− αM)2 − α2

)
P= εΣ(α, ψ), (2.10)

where

Σ(α, ψ)=−Σ2

M
− i(k− αM)

M∞
M2

Σ3 − 2αdM/dψ
M(k− αM)

Σ2 − iαM∞
M2

Σ1. (2.11)

Recall that Σi denotes the Fourier transform of σi. Equations (2.7) and (2.10) are key
results, and the rest of this paper is concerned with determining their solution.
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3. Form of the incident gust
The form of the incident gust in parallel shear flow has been given by Goldstein

(1978b). Our flow is weakly non-parallel, thanks to the presence of the aerofoil, and
this effect appears in two ways in (2.7): first, in the use of (φ, ψ) coordinates, which
captures the curvature of the mean streamlines, and second in the presence of the
terms σ1,2,3 representing the interaction of the unsteady flow with the non-uniform
mean flow. Even so, Goldstein’s method and solutions can be applied in our case, and
we need only briefly outline his approach and state the key results here. Although the
equations we have presented already are valid for arbitrary mean shear distributions,
M(ψ), at this point we restrict attention to the case in which M(ψ) is a symmetric
function, which will simplify both the form of the gust and our subsequent acoustic
calculations. We also suppose that the shear layer has a single maximum or minimum
at ψ = 0, which limits the number of critical layers where M(ψ)= k/α, and makes
the construction of the gust solution easier.

Let a triple of Fourier-transformed solutions to (2.7) be denoted Z = {P, U, V}.
Equation (2.7) has two linearly independent solutions; one of them will be denoted
Z1 say, and we construct a second linearly independent solution, Zout say, which has
the property that it consists of only outgoing waves as ψ→±∞. These two solutions
must typically be computed numerically for a given mean shear profile, however we
shall be able to calculate an asymptotic approximation for Zout which is sufficient to
obtain the acoustic solution. Thanks to the symmetry of the shear layer, both solutions
can be written in the form

Z∗(α, ψ)= {P∗(α, |ψ |), (sgnψ)U∗(α, |ψ |), V∗(α, |ψ |)}. (3.1)

The gust solution is now written as

ζg(φ, ψ)e−iwt = {pg(φ, ψ), ug(φ, ψ), vg(φ, ψ)}e−iwt, (3.2)

and we simply state the Goldstein (1978b) result for the transverse gust velocity vg
here,

vg =
∫ ∞
ψ

eikφ/M(η)Ω̃(η)

[
V1(k/M(η), ψ)− γ (η)Vout(k/M(η), ψ)

U1(k/M(η), η)

]
dη

−
∫ ψ

−∞
eikφ/M(η)Ω̃(η)γ (η)

Vout(k/M(η), ψ)
U1(k/M(η), η)

dη for ψ > 0. (3.3)

In (3.3) we have γ (η)= Γ ±+ (k/M(η)) for η≷ 0 with

Γ ±+ (α)=
P1(α, 0±)Vout(α, 0−)− V1(α, 0±)Pout(α, 0−)

Pout(α, 0+)Vout(α, 0−)− Pout(α, 0−)Vout(α, 0+)
, (3.4)

and η is a function defined as the inverse of f (ψ)= k/M(ψ) (note that this is well-
defined since we consider symmetric a shear flow with a single turning point at ψ=0),
so

ψ = η±(k/M(ψ)) for ψ ≷ 0. (3.5)

In (3.3), the function Ω̃(ψ) is an arbitrary vorticity distribution that is fixed by the
form of incident gust at upstream infinity. Given the symmetry of our problem we
shall choose to work solely in the upper half-plane, ψ > 0, from this point on.
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We mention that whilst the general form of the solution (3.3) is taken directly from
Goldstein’s work, the actual value of the solution is different, because terms dependent
on Z1 and Zout rely on the solutions to our perturbed governing equations, rather than
Goldstein’s flat-plate equations. The assumptions in Goldstein (1978b) are consistent
with our perturbed equations, which ensures we are able use this form of the gust
solution.

At this point we will expand the unsteady flow quantities, and their Fourier
transforms, in the form

f = f 0 + ε√kf 1 +O(ε). (3.6)

This choice of expansion is inspired by the work of Myers & Kerschen (1997) for an
aerofoil in uniform flow, who showed that the leading effect of the aerofoil shape on
the amplitude of the unsteady flow is to introduce an O(ε

√
k) correction. This effect

arises from the interaction between the incident gust and the large mean-flow gradients
close to the leading edge (with the flow at the leading edge being represented by
an inverse square-root singularity in thin aerofoil theory). This interaction produces
the O(ε

√
k) term both close to the leading edge and throughout the flow. We now

expand the gust solution (3.3) in the form vg(φ, ψ)= v0
g(φ, ψ)+ ε

√
kv1

g(φ, ψ)+O(ε),
and expressions for v0,1

g (φ, ψ) are given in appendix A. In the next section we will
describe how the gust interacts with the leading-edge region to generate sound.

4. Leading-edge inner solution
Here we investigate the sound generated by the interaction of the gust with the

leading edge of the aerofoil (region (i) in figure 1). We move to a leading-edge inner
coordinate system, (Φ, Ψ ) = (kφ, kψ), recalling that k � 1 is the high-frequency
parameter, and write the scattered pressure as pa(Φ, Ψ )= p0

a(Φ, Ψ )+ ε
√

kp1
a(Φ, Ψ )+

O(ε), with the suffix a denoting that this part of the solution contains the acoustic
field generated by the gust–aerofoil interaction. The leading-order solution, p0

a(Φ, Ψ ),
represents the effect of the blocking of the transverse momentum of the incident
gust by the solid aerofoil surface approximated as a flat plate, while the perturbation
p1

a(Φ, Ψ ) represents the effects of thickness.
In the inner region the magnitude of the perturbation to the mean velocity, q, is

determined by substituting inner (polar) variables into (2.1) and expanding, to give

q(R, θ)=− i
√

k

2
√

R
cos

θ

2
. (4.1)

Note how the perturbation to the mean flow, which is of size O(ε) in the outer region,
has been promoted to size O(ε

√
k) in the inner region, thanks to the presence of

the inverse square-root singularity at the leading edge. This is what gives rise to the
expansion (3.6).

4.1. General solution for inner leading-edge acoustic pressure
In this inner region it appears that the aerofoil is a semi-infinite flat plate Φ>0,Ψ =0,
and hence we use the Wiener–Hopf method (Noble 1998) to solve for the leading-edge
inner acoustic solution. We write the solution as

pa(Φ, Ψ ) = sgn(Ψ )
∫ ∞
−∞

eiαΦ/kA(α)Pout(α, |Ψ |)dα, (4.2a)
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va(Φ, Ψ ) =
∫ ∞
−∞

eiαΦ/kA(α)Vout(α, |Ψ |)dα, (4.2b)

demanding outgoing-wave behaviour at infinity. We also enforce the boundary
conditions that va = −vg on Φ > 0, Ψ = 0 (in order to cancel the incident gust
transverse velocity on the aerofoil surface), and that the pressure is continuous across
Ψ = 0 for Φ < 0. These two conditions lead to the integral equations∫ ∞

−∞
eiαΦ/kA(α)Vout(α, 0)dα =−vg(Φ, 0) for Φ > 0 (4.3a)∫ ∞

−∞
eiαΦ/kA(α)Pout(α, 0)dα = 0 for Φ < 0. (4.3b)

The solution to this Wiener–Hopf problem is described in detail in appendix B, and
we write

p0,1
a (Φ, Ψ )=

∫ ∞
0

p0,1
a (Φ, Ψ | η)dη, (4.4)

where the expression for p0,1
a (Φ,Ψ |η) can be found in appendix A. We have therefore

found the first two terms in the inner region.
When evaluating the far-field pressure, rather than integrating over η as required by

(4.4), we follow Goldstein (1978b) and simply evaluate our expressions for p(φ,ψ | η)
at η= 0. This is motivated by the assumption that the gust vorticity distribution, Ω̃ , is
sharply peaked at η= 0, so that the integration is dominated by the contribution from
η = 0. A sharp peak of vorticity at η = 0 is characteristic of turbulent shear layers;
see Goldstein (1978b) for further details.

4.2. Outer limit of the inner solution

4.2.1. Solution for P0

Taking (2.10) to O(1) gives an equation for the Fourier transform of the leading-
order pressure, P0;

∂2P0

∂ψ2
− 2M′α
αM − k

∂P0

∂ψ
+ M′

M
∂P0

∂ψ
+ M2

∞
M2

[
(αM − k)2 − α2

]
P0 = 0. (4.5)

All of the terms in (4.5) balance provided α=O(k), and we therefore define β ≡ α/k
with β=O(1). This is a valid scaling of α in the inner region, since the Fourier phase,
−iφα, can then be written as −iΦβ in inner variables, allowing for O(1) variations
in Φ to be analysed. In inner coordinates, (4.5) becomes to leading order

∂2P0

∂Ψ 2
+ M2

∞
M2

0

[
(βM0 − 1)2 − β2

]
P0 = 0, (4.6)

where M0 = M(0) is the Mach number in the inner region. Equation (4.6) has an
outgoing-wave solution

P0
out(α, Ψ )=C0(α) exp

[
i
√
(1− αM0/k)2 − (α/k)2 M∞

M0
|Ψ |
]
, (4.7)
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where

C0(α)= c

[(
1− αM0

k

)2

−
(α

k

)2
]−1/4

(4.8)

and c is an arbitrary constant. The reasons we include the factor defined in (4.8) are
two-fold. First, the factor is included in order to match with the form of solution used
by Goldstein (1978b) in parallel shear flow: Goldstein developed a WKB solution
and the factor appears there as the usual WKB amplitude. Second, the factor is
included in order to recover the leading-order directivity known to be present in
leading-edge scattering of both vorticity and sound; we will return to this point later
in this subsection.

Taking the form of solution (4.8), substituting into (A 2a) and using the method of
stationary phase (Bender & Orszag 1978), we find that the outer limit of the inner
acoustic solution is

p0
a(r, θ | η)∼−

(
i

2πkr

)1/2 sin θeikrλ0(θ)

(1−M2
0 sin2 θ)3/4

Ω̃(η)Q̃0(η)M(η)
1− β0M(η)

κ0(k/M(η))+C0(kβ0)

κ0(kβ0)+V0
out(kβ0, 0)

,

(4.9)
where (r, θ) are polar coordinates in (φ, ψ)-space centred on the leading edge. We
note that the arbitrary constant, c, is cancelled out in the term C0/V0

out in light of (B 5).
In (4.9) we have introduced the phase function, λ, defined as

λ(β,M)= β cos θ + M∞
M

√
(1−Mβ)2 − β2, (4.10)

which has the point of stationary phase

βs(M)=− 1
1−M2

M − cos θ√
cos2 θ + M2

∞
M2

sin2 θ −M2∞ sin2 θ

 . (4.11)

The functions λ0(θ) and β0(θ) are defined as

λ0(θ)= λ(β0,M0), β0 = βs(M0). (4.12)

The steady Mach number takes the value M0 throughout the inner region, and the
phase in (4.9) is therefore given by (4.10) and (4.11) with M =M0. Furthermore in
(4.9), the function κ0

+(η) arises from the Wiener–Hopf solution of the inner problem,
see (B 5), while the function Q̃0(η) appears in the form of the incident gust and is
defined following (B 14).

We now return to the question of the choice of the factor in (4.8). We know from
Tsai (1992) and Ayton & Peake (2013) that the leading-order outer solution for gust–
aerofoil and sound–aerofoil interaction in uniform steady flow has directivity cos θ/2.
In steady shear flow, sound is produced at the leading edge both by the scattering
of the vortical gust (as in Tsai 1992), and by the scattering of the gust self-noise
(similar to Ayton & Peake 2013). Throughout the inner region the mean shear does not
appear, and the mean flow is simply uniform with Mach number M0, and the cos θ/2
directivity must therefore be recovered in the outer limit of the inner solution in the
present problem too. In fact, our choice of C0(α) gives

P0 ∝ cos(θ/2)
(
1−M0/2+ (3+ cos 2θ)M2

0/4+O(M3
0)
)
, (4.13)

confirming the required directivity.
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4.2.2. Solution for P1

Taking O(ε
√

k) terms in (2.10) and converting to inner coordinates gives an
equation for P1;

∂2P1

∂Ψ 2
+ M2

∞
M2

0

(
1− 2M0β − β2(1−M2

0)
)

P1 =Σ(α, Ψ ). (4.14)

Here we have used the fact that to leading order Σ(α, Ψ ) ≡ √kΣ(α, kψ), which
follows from the inverse square-root singularity of the steady flow at the leading edge.

We solve (4.14) using the Green’s function

G(Ψ , Ψ ′) = M0

2iM∞
√

1− 2M0β − β2(1−M2
0)

× exp
(

i
√
(1−M0β)2 − β2

M∞
M0
|Ψ −Ψ ′|

)
, (4.15)

which represents the desired outgoing wave field, to yield

P1
out(kβ, Ψ ) =

∫ ∞
0

M0 exp
(

i
√
(1−M0β)2 − β2

M∞
M0
|Ψ −Ψ ′|

)
2iM∞

√
(1−M0β)2 − β2

Σ(kβ, Ψ ′) dΨ ′

+C1(β) exp
(

i
√
(1−M0β)2 − β2

M∞
M0
|Ψ |
)
. (4.16)

From (2.11) we know that each term in Σ(α, Ψ ) will have a phase function√
(1−M0β)2 − β2(M∞/M0)|Ψ | (since each σi is proportional to a linear combination

of u0, v0 and p0), and further, since Q is symmetric and Ω is antisymmetric with
respect to ψ , we know that Σ is symmetric with respect to ψ . Setting

Σ̂(α, Ψ )=Σ(α, Ψ ) exp
(

i
√
(1−M0β)2 − β2

M∞
M0
|Ψ |
)
, (4.17)

so that Σ̂ is phase-less in the variable Ψ , and completing the Ψ ′ integral in (4.16),
we find that the outer limit of the inner solution is

P1
out(kβ, kψ)∼ (d(kβ, kψ)+C1(kβ)

)
exp

(
i
√
(1−M0β)2 − β2

M∞
M0
|Ψ |
)
, (4.18)

where d(kβ, Ψ ) is given by

d(kβ, kψ)= iΣ̂(kβ, kψ)M0

k
(
(1−M0β)2 − β2

)
M∞

. (4.19)

Following the same arguments as in the previous subsection, we choose C1(kβ) =
C0(kβ), and then repeating the method of stationary phase to invert the Fourier
transform yields an outer expansion for p1

a in the form
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p1
a(r, θ | η)∼ −

(
i

2πkr

)1/2 sin θeikrλ0(θ)

(1−M2
0 sin2 θ)3/4

Ω̃(η)Q̃0(η)M(η)
1− β0M(η)

κ0(k/M(η))+C0(kβ0)

κ0(kβ0)+V0
out(kβ0, 0)

×
[

Q̃1(η)

Q̃0(η)
+M′(η)

(
P1

out(k/M(η), 0)
P0

out(k/M(η), 0)
− V1

out(k/M(η), 0)
V0

out(k/M(η), 0)

)

+ 1
C0(kβ0)

(d(kβ0, kψ)− d(kβ0, 0))

]
, (4.20)

where β0 and λ0 are given in (4.12). Comparing (4.20) and (4.9), we see that p1
a

is obtained by multiplying p0
a by the correction factor given in square brackets in

(4.20). This correction factor has arisen from two separate effects; the first two sets
of terms inside the square brackets in (4.20) arise from the distortion of the incident
gust by the non-uniform mean flow round the aerofoil; while the third set of terms,
involving the function d(kβ, kψ), arises from the source terms in (2.10), i.e. from the
interaction between the leading-order scattered field and the non-uniform mean flow
near the leading edge. The correction term in (4.20) will have the important effect
of introducing constructive and destructive interference between the two leading-edge
fields p0

a and p1
a, and we return to this point in § 8.

Note that whilst Σ , as defined in (2.11), has appeared in our solution through (4.19),
we only need to calculate the inner limit of Σ in order to establish (4.20). This is
in exact parallel to the work of Myers & Kerschen (1997) and Tsai (1992), who
found that in a uniform stream the leading contribution of the volume terms only
appears close to the leading edge where the mean flow gradients are large. Therefore,
to calculate the outer limit of the inner leading-edge solution we only need to find
the correction terms Ni, i= 1, . . . , 6 appearing in (2.7) close to the aerofoil. We first
note that, since U =U0(ψ)+ εq(φ, ψ), we have

N1 = q+U0N3, (4.21)

while by using (2.4) we obtain the relation
q

U2
0

dU0

dψ
+ ∂q
∂ψ

1
U0
= ∂N3

∂ψ
. (4.22)

In the leading-edge inner region, (4.22) can be integrated to yield

N3 = q
U0(0)

, (4.23)

where an arbitrary function of φ has been set to zero to ensure consistency with
N2 = 0. It therefore follows that N1 = 2q. The quantities N4,5,6 can be found
immediately from expressions we have obtained for ζ , q and Ω , with

N4 = u0
∂q
∂φ
, N5 = v0

∂q
∂φ

(1− 2U0(0)) , N6 = ∂q
∂φ

(
v0 + u0

U0(0)

)
, (4.24a−c)

again all evaluated in the inner region.
In summary, we have determined the first two terms in the outer limit of the inner

pressure field, given by (4.9) and (4.20) which are integrated in (4.4). As mentioned
previously, we assume the vorticity distribution is sharply peaked at η= 0, allowing us
to use Laplace’s method to evaluate (4.4). We will write the sum of these two terms
in the form

Pl(θ)√
kr

exp(ikrλ(β0)), (4.25)

and we will match this expression onto the outer solution in the next section.
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5. Leading-edge outer solution
In this section we determine the leading-edge contribution to the acoustic pressure

in the far field. The sound generated by the gust–aerofoil interaction in the leading-
edge inner region, as determined in the previous section, propagates through the outer
region, denoted by region (ii) in figure 1, and is distorted by the mean shear. The
acoustic field of a point source in a mean shear has been determined by Durbin (1983),
and we use those results here.

The outer solution which matches with the outer limit of the inner solution takes
the form

pl = s(r, θ)Pl(θ)√
kr

exp(ik%0 + ikε%1). (5.1)

Here Pl(θ) is the directivity of the inner solution as it emerges into the outer region,
as defined in (4.25). The factor s(r, θ) is the scaling factor derived by Durbin (1983)
to account for the distortion of the pressure amplitude due to variation in the ray tube
area through the shear, and is given by

s(r, θ)=
(

1−M2
0

1−M2
0 sin2 θ

)1/4

 M −M
∂σ1

∂φ

M0 −M0
∂σ1

∂φ

∣∣∣∣
r→0

(λ√1−M2
0 cosµ′

∂µ′

∂µ

)−1/2

.

(5.2)
In (5.2), µ is the local ray angle (and µ′ is its value at the leading edge), see Durbin
(1983) equation (26b), while λ is the local ray speed, see Durbin (1983), following his
equation (16). A factor in s(r, θ) involving the local sound speed, present in Durbin
(1983), has been set to unity for our low-Mach-number flow. Note that s(r, θ)→ 1
as r→ 0, while in the limit r→∞, s(r, θ)→ s(θ), where the latter can easily be
calculated from (5.2).

We determine the first two terms phase terms, %0,1, in (5.1) by substituting the
ansatz (5.1) into an equation formed by rearranging (2.7) into a single equation for
p. We then take the real parts of the resulting equation at the first two asymptotic
orders to form two eikonal equations for %0,1. In what follows we will only require
the acoustic pressure in the far field (i.e. r → ∞), and we therefore write down
expressions for the phase terms which are valid there. The first eikonal equation can
easily be solved to give the first phase term in the form

%0 = krλ(β∞,M∞)≡ krλ∞(θ), (5.3)

where β∞ = βs(M∞).
The second eikonal equation is more complicated, since it includes contributions

from the terms σ1,2,3 in (2.7), which arise from the interaction between the leading-
order unsteady flow and the steady-flow non-uniformity caused by the presence of the
aerofoil. After some algebra we find that the second eikonal equation is

∂%1

∂φ
+ ∂%

1

∂ψ
= 1

2
L(φ, ψ), (5.4)

where the term L(φ, ψ) involves the terms σ1,2,3. Specifically, we introduce the
quantity

M∞σ(φ, ψ)=−ikσ3 +M
∂σ3

∂φ
− ∂σ1

∂φ
− M

M∞

∂σ2

∂ψ
, (5.5)
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which, in the light of (5.1), to leading-order in the outer region takes the form

σ(φ, ψ)= k3/2L(φ, ψ)P(θ)s(θ)√
r

eik%0(r,θ)+ikε%1(r,θ), (5.6)

where

L(φ, ψ)=
(
∂%0

∂φ

)2 [ q
U0
+
∫ ∞
ψ

2qU′0(ψ
′)

U0(ψ ′)2
dψ ′
]
+ q

(
∂%0

∂ψ

)2

. (5.7)

The solution of (5.4) can now be determined using the method of characteristics in
the form

%1(r, θ)= 1
2

∫ φ+ψ

0
L(χ, ψ) dχ, (5.8)

where χ = φ +ψ is the characteristic variable.
We have therefore completed the construction of the far-field solution for the noise

emanating from the leading edge of the aerofoil, and we write finally the acoustic
pressure as r→∞ in the form

Dl(θ)√
kr

exp
(

ikrλ∞(θ)+ 1
2

ikε
∫ φ+ψ

0
L(χ, ψ) dχ

)
, (5.9)

where the leading-edge directivity is given by Dl(θ)=Pl(θ)s(θ). We emphasise that
this solution is not valid in the mid field, where the mean flow is sheared; it is only
valid in the far field, where M ≈M∞.

6. Leading-edge transition solution

The transition solution (region (iii) in figure 1) accounts for the curvature of
the surface of the aerofoil, in a very similar manner to the case of uniform flow
considered by Tsai (1992), and corrects for the boundary condition of zero normal
velocity on the aerofoil surface that is violated by the leading-edge outer solution.
We therefore suppose the transition solution takes the form

pltr = εG(φ, ξ) exp
(

ikφ
1+M

+ 1
2

ikε
∫ φ

0
L(φ′, 0) dφ′

)
, (6.1)

where ξ =√kψ is the transition-region coordinate above the aerofoil in the direction
normal to the surface. The choice of phase in (6.1) arises from taking θ = 0
(equivalently ψ = 0) in (5.3) and (5.8).

In the transition region the leading-order expansion of (2.7) tells us that G(φ, ξ)
must satisfy

M2

M2∞

∂2G
∂ξ 2
+ 2i

∂G
∂φ
= 0, (6.2)

subject to boundary condition

− ε√k
∂G
∂ξ

exp
(

ikφ
1+M

+ 1
2

ikε
∫ φ

0
L(φ, 0)dφ

∣∣∣∣
ξ=0

)
=− ∂pl

∂ψ

∣∣∣∣
ψ=0

, (6.3)
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which enforces zero total normal velocity on the aerofoil surface. We now take the
Laplace transform of (6.2) with respect to φ, denoted by

G̃(S, ξ)=
∫ ∞

0
G(φ, ξ)e−Sφ dφ, (6.4)

to find that

G̃(S, ξ)= B(S) exp
(
−e−πi/4

√
2S

M∞
M
ξ

)
, (6.5)

where

B(S)= e3iπ/4

2
√

2S

∫ ∞
0

e−Sφ

√
φ

s(φ, 0)P(φ, 0)

(
L(φ, 0)+

∫ φ

0

∂L(φ′ +ψ, ψ)
∂ψ

∣∣∣∣
ψ=0

dφ′
)

dφ.

(6.6)

This Laplace transform can be inverted numerically to determine the transition
solution.

We mention briefly here that the terms σ1,2,3 in (2.7) occur at higher order and
do not appear in this transition solution explicitly, although they do appear implicitly
through the forcing provided by the outer solution in (6.3). Physically this is because
the dominant effects of curvature arise in the leading-edge inner region, where the
aerofoil is most curved, and not along the upper and lower arcs of the aerofoil.

The total far-field acoustic pressure emanating from the leading edge is given as a
sum of the outer field determined in the previous section and the transition solution
determined in this section. The transition solution does not appear directly in the
acoustics (note from (6.5) that the transition solution decays exponentially in the
transverse direction away from the aerofoil surface). It does, however, introduce a
pressure discontinuity across the aerofoil, which must be corrected downstream of the
trailing edge across the wake. This is done by the introduction of trailing-edge inner
and transition solutions, and the inner solution matches onto an outgoing trailing-edge
acoustic field. This is described in the next section.

7. Trailing-edge inner and outer solutions

Here we determine the solution in the trailing-edge inner region and the trailing-
edge contribution to the outer region, denoted by (iv) and (ii) in figure 1, respectively.
The transition solution in the wake (region (v) in figure 1) is not required for the
acoustic far field, and is very similar to solutions found in uniform flow by Myers &
Kerschen (1997) and Tsai (1992), and will therefore not be presented here.

We shift coordinates to be aligned with the trailing edge, defining (φt, ψt) such that
(φ, ψ)= (2+ φt + εαt, ψt). Here αt =O(1) arises from the effect of thickness during
the mapping of coordinates from physical space to (φ, ψ)-space. By observing (2.1),
αt can be calculated in much the same way as was done by Tsai (1992) for uniform
flow. The transverse velocity of the incident gust solution at the trailing edge is still
given by (A1).
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7.1. Trailing-edge inner solution
We move to inner trailing-edge coordinates, (Φt, Ψt) = k(φt, ψt). The trailing-edge
inner acoustic solution, equivalent to (4.2), satisfies a dual integral equation equivalent
to (4.3), which is∫ ∞

−∞
eiαΦt/kA(α)Pout(α, 0) dα =−1p(Φt)/2, Φt > 0, (7.1a)∫ ∞

−∞
eiαΦt/kA(α)Vout(α, 0) dα =−vg(Φt, 0), Φt < 0. (7.1b)

Here all functions are written in terms of trailing-edge coordinates, α is redefined
accordingly as the Fourier transform variable with respect to φt and 1p(Φt) is the
inner approximation for the pressure jump across the trailing edge generated by the
leading-edge solution. We separate the required inner solution, pa(Φt, Ψt), into a term
that corrects the pressure jump across the trailing edge, pa,p, and a term that corrects
for the zero normal velocity condition on the surface of the aerofoil, pa,H . Using the
notation from (4.2), we require∫ ∞

−∞
eiαΦt/kAp(α)Pout(α, 0) dα =−1p(Φt)/2, Φt > 0, (7.2a)∫ ∞

−∞
eiαΦt/kAp(α)Vout(α, 0) dα = 0, Φt < 0, (7.2b)

and ∫ ∞
−∞

eiαΦt/kAH(α)Pout(α, 0)dα = 0, Φt > 0, (7.3a)∫ ∞
−∞

eiαΦt/kAH(α)Vout(α, 0)dα =−vg(Φt, 0), Φt < 0. (7.3b)

The solution of (7.2) and (7.3) is obtained using identical methods to those used at the
leading edge in § 4, and is presented in appendix C. We use the solutions for P0,1

out as
previously obtained in § 4.2, but translated to the trailing-edge inner coordinate system.
Taking the outer limit of the inner solutions, (C 1), and using the method of steepest
descents yields

pt
a(rt, θt | ηt) ∼

(
i

2πkrt

)1/2
κ0

t (kβt0)− sin θt

(1−M2
0 sin2 θt)3/4

eikrtλt 0(θt)

1− βt0M(ηt)

C0(kβt0)Ω̃(ηt)Q̃0(ηt)M(ηt)

κ0
t (k/M(ηt))−V0

out(kβt0, 0)

×
[

1+ ε√k

{
Q̃1(ηt)

Q̃0(ηt)
+M′(ηt)

(
P1

out(k/M(ηt), 0)
P0

out(k/M(ηt), 0)
− V1

out(k/M(ηt), 0)
V0

out(k/M(ηt), 0)

)

+ dt(kβt0, Ψt)− dt(kβt0, 0)
C0(kβt0)

}]

+
(

i
2πkrt

)1/2
κ0

t (kβt0)− sin θteikrtλt 0(θt)

(1−M2
0 sin2 θt)3/4

Gt,p(kβt0)P0
out(kβt0)

V0
out(kβt0)

(7.4)

as krt→∞, where λt0 is the trailing-edge equivalent of λ0, and βt0 is the trailing-edge
equivalent of β0 as defined in (4.12). The final term in (7.4) is in fact O(k−1) due
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to the scaling of the pressure jump term Gt,p. It will be shown later that the term
involving dt(kβt0, Ψt) in (7.4) is negligible to the orders retained here since in
the trailing-edge region the terms σi in (2.7) are negligible (because there is less
curvature of the streamlines at the trailing edge than at the leading edge for the
aerofoils we wish to consider, such as the Joukowski aerofoil or the NACA 4-digit
series of aerofoils). The choice of C0 is again given by (4.8), which now ensures
that the trailing-edge inner solution has a sin θ/2 directivity pattern. This is the same
directivity pattern found for sound– and gust–aerofoil interaction in steady uniform
flow in Ayton & Peake (2013) and Myers & Kerschen (1997), respectively. Once
again we know that the shear flow directivity pattern should match the uniform flow
directivity pattern to leading order, since in the trailing-edge inner region the aerofoil
only experiences the local Mach number M0. Note that at the trailing edge we only
need a match to O(M0)=O(

√
ε) (as opposed to O(M2

0)=O(ε) required for the inner
leading-edge solution (4.13)) since the trailing-edge scattered field of gust–aerofoil
interaction is O(k−1/2) smaller than the leading-edge field, and in the uniform limit
the first two terms in (7.4) tend to zero since (κ0

t (k/M(ηt))−)−1→ 0 as M(ψ)→M0.
The terms in square brackets in (7.4) represent the scattering of the pressure

associated purely with the gust in the shear flow by the aerofoil (in uniform flow
a gust is pressure-free, and these terms vanish). Whilst the contribution of these
terms appears to be the same order as the contribution of the leading-edge solution
(4.9), we in fact find that it is at least O(M) smaller due to κ0

t (k/M(ηt))− having
a singularity at ηt = 0. We mentioned at the end of § 4.1 that to evaluate the
pressure pa(r, θ) given as an integral over η of pa(r, θ | η) in (4.4), we consider
only sharply peaked vorticity distributions where contributions from η = 0 dominate.
At η = 0, κ0

t (k/M(η))− = 0, therefore before applying Laplace’s method we must
take an expansion of κ0

t (k/M(ηt))− as η→ 0. This expansion reduces the apparent
order of the first term in (7.4) by at least O(M) (the true scaling will depend on
how the vorticity distribution depends on k and η), thus the contribution from the
scattering of the gust pressure by the trailing edge is at least O(M) smaller than the
leading-edge contribution to the far-field acoustics. The final term in (7.4) accounts
for the rescattering of the leading-edge acoustic field by the trailing edge and, as
expected by comparison with the uniform flow case, is O(k−1/2) smaller than the
leading-edge solution.

We write the outer limit of the trailing-edge inner solution (once integrated by ηt
as required in (4.4)) as

1√
krt

(
MPt1(θt)+ 1√

k
Pt2(θt)

)
exp(ikrtλt 0(θt)), (7.5)

where Pt2 is formally the same order as Pl, but Pt1 could be smaller than Pl
(depending on the choice of vorticity distribution). We set Pt =MPt1 + k−1/2Pt2 .

7.2. Trailing-edge outer solution
The trailing-edge outer solution is found in an identical way to the leading-edge outer
solution, assuming a form

pt = At(rt, θt) exp(ik%0
t (rt, θt)+ ikε%t

1(rt, θt)+O(ε)). (7.6)

We find that

At(rt, θt)=Dt(θ)(krt)
−1/2, %0

t (rt, θt)= rλt∞(θt), (7.7a,b)
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where λt∞(θt) is the corresponding trailing-edge function to λ∞(θ), and %1
t is given by

the corresponding trailing-edge formulation of (5.8). We match this to the trailing-edge
inner solution by setting Dt(θt) equal to Pt(θt)st(rt, θt), where the first factor arises
from the directivity emerging from the inner region in (7.4) and the second factor
accounts for the variation in ray tube area as the sound propagates though the shear
– see (5.2). The total far-field acoustic pressure emanating from the trailing edge then
takes the form

Dt(θt)√
krt

exp
(

ikrtλt∞(θt)+ 1
2

ikε
∫ φt+ψt

0
Lt(χ, ψt)dχ

)
. (7.8)

Again, this is only valid in the far field, where the Mach number approaches M∞.

7.3. Total far-field solution

The total far-field solution is obtained by summing the outer leading-edge solution,
from (4.9) and (4.20) substituted into (4.4), and the outer trailing-edge solution, from
(7.4) substituted into (4.4). In the far field, the coordinate transformation between
leading-edge and trailing-edge polar coordinates is given by

rt ≈ r− (2+ αtε) cos θ, θt ≈ θ −π+π sgn(ψ), (7.9a,b)

which allows the final solution to be expressed in terms of leading-edge variables
(r, θ). The far-field acoustic pressure can then be written as

1√
kr

(
Dl(θ)+Dt(θ)eik%s(r,θ)

)
exp

(
ikrλ∞(θ)+ 1

2
ikε
∫ φ+ψ

0
L(χ, ψ) dχ

)
, (7.10)

where Dl,t are defined in (5.9) and (7.8). In the far field, the leading- and trailing-edge
ray fields interact with a phase shift

k%s(r, θ)= k(%0
t (rt, θt)+ ε%1

t (rt, θt)− %0(r, θ)− ε%1(r, θ)). (7.11)

The contribution to the phase shift given by the difference between the leading-order
leading- and trailing-edge far-field phase terms is

k(%0
t (rt, θt)− %0(r, θ))=−(2+ αt)kλ∞(θ) cos θ (7.12)

in the far field. The O(εk) phase shift term, given by εk(%1
t − %1), is approximated by

εk
2

∫ 2

0
L(χ, ψ) dχ (7.13)

in the far field. Numerically integrating (7.13) for the cases we choose in the following
section, we find that this contribution is only non-negligible close to θ = 0 or π. Since
the directivity function close to θ = 0, π is small we shall not include (7.13) in our
final computed results.
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8. Results
In this section we present results for the far-field pressure generated by gust–aerofoil

interaction in steady shear flow. We define the far field as being a distance, r, far
enough away from the aerofoil so that the mean flow is approximately uniform, and
amplitude terms of O(1/r) are negligible compared with the O(1/

√
r) terms retained

in the asymptotic solution. Since there is no Rayleigh distance for this gust–aerofoil
problem (because no Fresnel regions are present), we choose r = 25 in all of the
following results to illustrate the far-field behaviour. We choose non-dimensional
frequency k = 10 throughout, which is close to the peak frequency in the turbulent
jet–plate interaction experiment of Davis & Pan (1993, Figure 3). Dimensionally,
k = 10 corresponds in air to a frequency of approximately 2.2 kHz for a chord of
0.5 m, which is in the range of practical interest. The analysis presented so far
is applicable to a general thin uncambered aerofoil and, subject to the restrictions
described in § 3, to a general mean shear distribution. For definiteness, we now
consider a gust interacting with a symmetric Joukowski aerofoil of thickness ε � 1
and chord length 2 in a steady Gaussian shear flow defined by

U0(y)= (U0 − 1)e−y2 + 1. (8.1)

The streamfunction for this parallel shear flow, ψ0(y) say, is simply

ψ0(y)= (U0 − 1)
√

π

2
erf(y)+ y, (8.2)

and let εψ1(x, y) be the perturbation to the streamfunction caused by the presence of
the thin Joukowski aerofoil. We first note that in our limit of low-Mach-number flow
the effects of compressibility on εψ1(x, y) do not arise to the order considered, and
we can therefore use the work of Sowyrda (1958), who considered the steady flow
round an aerofoil in incompressible shear flow. It is then straightforward to show that,
close to the leading edge of the Joukowski aerofoil,

εψ1(y)∼ εU0

(
1

2r2
sin 2θ − 1

r
sin θ

)
+O(ε3, εM0), (8.3)

while in the far field εψ1(y) → 0. An integral expression for εψ1(y) at arbitrary
positions can also be found from Sowyrda (1958), but is not required here.

In figure 2 we consider the effect of altering the strength of the mean shear,
characterised via the parameter S = (M∞ − M0)/M∞, on the leading-edge directivity.
Here we set ε = 0, so that the aerofoil reduces to a flat plate, and plot the quantity
|Dl(θ)| as defined in (5.9). When S = 0 the directivity pattern takes the familiar
form cos θ/2, which is characteristic of low-Mach-number uniform flow. Varying
S away from zero has a significant effect; when the shear is jet-like (S < 0) the
directivity is particularly reduced in the downstream direction, with little effect
upstream, whereas for wake-like shear (S> 0) the directivity is reduced predominantly
upstream. Mathematically, these directivity effects may be coming from two places;
first, in (4.9) through the terms dependent on β0; and second, from the ray–tube
area scaling factor s(r, θ) in (5.1). We have investigated the relative effects of
both sets of terms, and have found that the directivity variations seen in figure 2 are
arising primarily from the second effect of the shear increasing the ray tube area (and
therefore decreasing the pressure amplitude along the ray) in the downstream/upstream
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(a)  (b)

FIGURE 2. Leading-edge far-field acoustic pressure generated by gust–aerofoil interaction
in a background steady parallel flow around a flat plate, ε = 0, with k= 10 and varying
strengths of shear, S: (a) positive S, with M∞ = 0.3; (b) negative S, with M0 = 0.3.
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FIGURE 3. Leading-edge far-field acoustic pressure generated by gust–aerofoil interaction
in background shear flows with k= 10, around Joukowski aerofoils of varying thickness,
denoted by ε: (a) M0 = 0.29, M∞ = 0.3, S= 0.033; (b) M0 = 0.2, M∞ = 0.3, S= 0.333.

directions for S positive and negative, respectively. In this case, the effect of varying
S on the form of the incident gust being scattered, as contained within the terms in
(4.9), has less impact on the leading-edge directivity.

In figure 3 the effects of aerofoil thickness on the leading-edge directivity are
considered. For the case of very low mean shear, S = 0.033, the cos θ/2 directivity
seen in figure 2 is regained in each case. The pressure amplitude increases as thickness
increases, which not surprisingly is consistent with the results of Tsai (1992), who
considered uniform mean flow. In contrast, for the case of more significant shear,
S = 0.333, increasing the thickness from zero actually changes the shape of the
directivity. The leading-edge sound is made up of two contributions; the leading-order
term corresponding to flat-plate scattering, see (4.9), and an additive correction term
of relative size O(ε

√
k) to account for the effects of thickness in the leading-edge

region, see (4.20). The interference between these two sources in shear gives rise
to the lobular directivity pattern seen in figure 3(b). Note that the contribution from
(4.20) takes the same form as the contribution from (4.9), but with a multiplicative
correction factor which involves several effects (see the brief discussion following
(4.20)). However, the variation with observer angle θ seen in figure 3(b) can only
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FIGURE 4. Trailing-edge far-field pressure generated by gust–aerofoil interaction in
background shear flow around a Joukowski aerofoil with S = 0.333, k = 10, ε = 0.1.
The solid line denotes the total trailing-edge directivity. The dashed line denotes the
contribution from the rescattering of the leading-edge field by the trailing edge, and the
dotted line denotes scattering by the trailing edge of pressure associated with the gust.

arise from the term in this correction factor involving d(kβ0, kψ), which in turn arises
from the term on the right-hand side of (2.10), i.e. from the interaction between the
leading-order scattered field and the non-uniformity of the mean shear flow near the
leading edge. We stress that this interference within the leading-edge field is only
present in shear flow.

We must choose an upstream vorticity distribution in order to obtain quantitative
results for the trailing-edge term, Pt1 , in (7.5). We therefore choose the vorticity to
be Ω̃ ∼ e−kη2 . In figure 4 we see the relative effects of the two interactions which
make up the sound emanating from the trailing edge of the aerofoil. These two terms
are given by MPt1 and k−1/2Pt2 in (7.5). The latter term describes the sound reaching
the observer via the rescattering of the leading-edge field by the trailing edge and is
familiar, as it is the primary component of trailing-edge noise in uniform flow gust–
aerofoil interaction. However, the scattering of the pressure associated with the gust
by the trailing edge (the first term) is peculiar to shear flow interactions (since in zero
mean shear the gust is pressure-free), and as we see in figure 4 has a non-negligible
effect on the total trailing-edge contribution upstream of the aerofoil. For our chosen
vorticity distribution, MPt1 is O(k−1/4) smaller than k−1/2Pt2 in the upstream region.
Downstream of the aerofoil the effect is diminished, since the acoustic field from
the scattering of the gust pressure by the trailing edge has the characteristic sin θ/2
type directivity pattern. The two components of trailing-edge sound could in principle
interfere, as was seen at the leading edge in figure 3(b). However, modulation of the
trailing-edge directivity is not observed in figure 4 due to the disparity between the
relative magnitudes of the two components.

We now consider the total scattered acoustic pressure as the sum of leading- and
trailing-edge fields. In figure 5 we consider the far-field pressure in the two very
low shear cases S = ±0.033 for the flat plate, ε = 0. The significant modulation
of the directivity is now caused by the interference between the leading- and
trailing-edge fields, and is of course absent in the comparable plots of just the
leading-edge flat-plate field (see figure 2). We repeat these flat-plate calculations in
figure 6, but now with significant shear, and similar directivity patterns are again
observed. Note that positive shear significantly increases/decreases the sound level
in the upstream/downstream directions, respectively, and vice versa for negative
shear. This effect cannot be explained by simple ray-tracing arguments, which would
suggest that rays in positive/negative shear flow would tend to bend in the direction
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FIGURE 5. Far-field pressure at r = 25 generated by gust–aerofoil interaction in almost
uniform Gaussian shear flow, M ≈ 0.3, k= 10 and ε = 0.
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FIGURE 6. Far-field pressure at r = 25 generated by gust–aerofoil interaction in jet-like
and wake-like shear flows, at k= 10 and ε = 0.
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FIGURE 7. Far-field pressure at r= 25 generated by gust–aerofoil interaction in Gaussian
shear flows with M0 = 0.2, M∞ = 0.3 (S= 0.333) and k= 10. Thickness is varied.

of decreasing/increasing θ , see Amiet (1978). Rather, changing the shear flow is
changing the phase shift (7.12) between the leading- and trailing-edge fields, which
in turns changes the interference pattern observed in the far field.
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FIGURE 8. Far-field pressure at r= 25 generated by gust–aerofoil interaction in Gaussian
shear flow with M0 = 0.2, k= 10, ε = 0.1 and varying S.

In figure 7 we again consider the total far-field scattered pressure but now introduce
non-zero thickness in the case of significant shear, S= 0.333. We see that the aerofoil
thickness has a strong effect on the directivity shape in the forward arc. In particular,
for ε=0.2 note how the lobes labelled A, B, C, D have markedly differing amplitudes
(for instance, the relatively strong lobes A and C are separated by less pronounced
lobes B and D). This is in contrast to the case of zero thickness, where it can be
seen that the amplitude of the lobes in the forward arc are quite similar to each other.
This change in behaviour has arisen from the interference between the components of
the leading-edge source, as identified in figure 3(b): for zero thickness the far-field
directivity is determined by the interference between two sources, one at the leading
edge and one at the trailing edge, which leads to interference fringes of comparable
size. In contrast, inclusion of the third source (the thickness-related source at the
leading edge) modulates these interference fringes, leading to the modulated pattern
of lobes observed in figure 7.

In figure 8 we vary the strength of the mean shear S by varying M∞ while fixing
M0, and see that the directivity is again significantly affected. One key effect here is
the variation of the ray-tube area, as in figure 2, but a second effect arises, just as
in figure 7, from the additional interference effect between the leading-edge sources
(recall from the discussion of figure 3 that there is no mutual interference between
the leading-edge sources in the absence of mean shear). The angular position of the
lobes changes as we vary S, due to the variation of M∞; the location of the lobes is
determined mainly by the phase differences between waves travelling from the leading
and trailing edges, which is strongly dependent on the Mach number at infinity.

Finally, figure 9 illustrates the effect of shear strength on the total sound power
in the far field (i.e. the sound power integrated over all observer angles). For each
thickness, the sound power increases with shear strength, since an increase in shear
strength increases the self-noise component of the unsteady flow. Once in moderate
shear flow, the increase in power for thicker aerofoils is lower than the increase in
power for thinner aerofoils, illustrating that the consequence of a strong non-uniform
steady flow around the nose of an aerofoil is to reduce the effectiveness of the self-
noise component of the scattered acoustics (recall, figure 3b has also shown that the
non-uniform flow around the nose has a significant effect on the self-noise component).
At low shear strength, however, we see a different dependence of power level on
thickness. This is due to the additional competing effect of stronger gust mean-flow
interaction near the nose for thicker aerofoils. The key point to be taken away from
figure 9 is that according to our model, significant mean shear can increase the power
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FIGURE 9. Normalised total sound power, 10 log(P), versus shear strength, S, for varying
aerofoil thickness, with k = 10 and M0 = 0.2. Each result is normalised by the power
produced in uniform flow (i.e. S= 0) for the given aerofoil thickness.

level by up to 5 dB. We believe that experiments on aerofoils with non-zero thickness
in significant shear are much needed to test this prediction.

9. Conclusions
We have constructed a model for the sound generated by gust–aerofoil interaction

in background parallel shear flow, using asymptotic analysis in the limits of large
gust frequency, k, and small but non-zero aerofoil thickness and Mach number. We
have determined the first two terms in both the amplitude and the phase of the
scattered pressure in the far field. Our key finding is that including mean shear has
a significant effect, of up to 5 dB, on the power level, compared with the uniform
flow case (figure 9).

In uniform mean flow, as studied by Myers & Kerschen (1997) and Tsai (1992), the
sound is dominated by the interaction of the gust with the leading edge of the aerofoil
and the scattering of the leading-edge acoustic field by the trailing edge, with the latter
being formally O(k−1/2) smaller than the former. We have shown that this feature is
also present in shear flow, but that in addition the trailing edge itself acts as a noise
source, as it scatters the hydrodynamic pressure associated with the gust into outgoing
acoustic waves propagating to infinity. This trailing-edge noise is formally the same
order in k as the leading-edge noise, but in practice we found it to be significantly
smaller, although it is certainly non-negligible.

We have not presented results for varying k, since this does not seem to introduce
new features; as in the case of uniform flow, increasing k within our high-frequency
regime reduces the acoustic amplitude and increases the number of lobes in the
directivity. We use the preferred limit εk = O(1); the very high-frequency limit
is therefore included within this, provided we send the thickness to zero. The
low-frequency regime is not covered at all, however in that case the aerofoil would
become compact and one would expect the shear effects to be much reduced.

We have seen that changing the shear flow can have a strong effect on the
directivity. This is evident in figure 6, where we plot the far-field pressure for a
zero-thickness aerofoil for jet-like and wake-like shear. The lobed directivity pattern
arises from the phase shift associated with the differing paths from the leading and
trailing edges to the observer, and by changing the shear one can make significant
changes to this phase shift and hence to the interference pattern in the far field. We
have calculated the first two terms (specifically O(k) and O(1)) in the phase of the
leading- and trailing-edge components, and therefore effectively the first two terms
in the phase shift between them. Changing the shear base flow in fact changes the
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leading-order phase term, and therefore has a more significant effect, as witnessed
in figure 6, than for instance changing the aerofoil geometry, which will only affect
the second-order phase term. The shear width has not been varied in the presented
results; the key parameter is really the shear amplitude, S, measuring the relative
shear between the aerofoil surface and the mean flow at infinity, and we have seen
that changing S does have a significant effect.

In addition, we have identified another mechanism by which the shear modifies the
directivity, this time associated with the aerofoil thickness. This involves two stages.
First, the leading-order field from the leading edge (which is caused by the momentum
blocking of the incident gust by the aerofoil surface) and the second-order field from
the leading edge (which is O(ε

√
k) smaller than the leading-order term and is caused

by the interaction between the unsteady flow and the non-uniform mean flow close
to the thick leading edge) interfere with each other (see figure 3b). Second, this total
leading-edge field interferes with the trailing-edge field to produce a modulated far-
field directivity, see figure 7. This effect is not present in zero shear, because in that
case the two components of the leading-edge field are in phase with each other, and
the first stage of the interference does not occur.

Our theory holds for more complicated parallel shear flows than the symmetric,
single maximum/minimum case presented here, but in that case more extensive
analytical and numerical calculations would have to be included in order to produce
the far-field scattered sound pressure. Similarly, it would also be possibly to consider
asymmetric aerofoils by including the effects of angle of attack and camber on
the mean flow, the gust evolution and the sound generation, but again significant
additional complexity would be introduced. The issue of extending our work to O(1)
subsonic Mach numbers, however, seems much more difficult, not least because the
small-Mach-number limit has allowed us to complete asymptotic calculations which
otherwise appeared intractable at various points. Even so, we believe that the physical
insights we have derived have broad application in a range of areas. We are not aware
of any fully computational approaches to this problem, but given the experience of
gust–aerofoil interaction in uniform flow we believe that our approach would provide
a useful complement to fully numerical computations in the high-frequency regime.
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Appendix A
The first two terms in the transverse component of the gust velocity, vg(φ, ψ) =

v0
g(φ, ψ)+ ε

√
kv1

g(φ, ψ)+O(ε), are given by

v0
g(φ, ψ) =

∫ ∞
ψ

eikφ/M(η)Ω̃(η)

[
V0

1 (k/M(η), ψ)
U0

1(k/M(η), η)
− γ

0(η)V0
out(k/M(η), ψ)

U0
1(k/M(η), η)

]
dη

−
∫ ψ

−∞
eikφ/M(η)Ω̃(η)

γ 0(η)V0
out(k/M(η), ψ)

U0
1(k/M(η), η)

dη, (A 1a)

v1
g(φ, ψ) =

∫ ∞
ψ

eikφ/M(η)Ω̃(η)

U0
1(k/M(η), η)

[V1
1 (k/M(η), ψ)− γ 1(η)V0

out(k/M(η), ψ)

− γ 0(η)V1
out(k/M(η), ψ)−U1

1(k/M(η), η) ( V0
1 (k/M(η), ψ)
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− γ 0(η)V0
out(k/M(η), ψ))] dη

−
∫ ψ

−∞

eikφ/M(η)Ω̃(η)

U0
1(k/M(η), η)

[
γ 1(η)V0

out(k/M(η), ψ)+ γ 0(η)V1
out(k/M(η), ψ)

− γ 0(η)V0
out(k/M(η), ψ)

U1
1(k/M(η), η)

U0
1(k/M(η), η)

]
dη, (A 1b)

for ψ > 0.
The acoustic pressure generated at the leading edge is found from (4.4), using

p0
a(Φ, Ψ | η) = sgn(Ψ )

Ω̃(η)Q̃0(η)M(η)
2πi

∫ ∞
−∞

eiαΦ/kκ0(k/M(η))+P0
out(α, |Ψ |/k)

(k− αM(η))κ0(α)+V0
out(α, 0+)

dα,

(A 2a)

p1
a(Φ, Ψ | η) = sgn(Ψ )

Ω̃(η)Q̃0(η)M(η)
2πi

∫ ∞
−∞

eiαΦ/kκ0(k/M(η))+P1
out(α, |Ψ |/k)

(k− αM(η))κ0(α)+V0
out(α, 0+)

dα

+ sgn(Ψ )
Ω̃(η)Q̃1(η)M(η)

2πi

∫ ∞
−∞

eiαΦ/kP0
out(α, |Ψ |/k)κ0(k/M(η))+

(k− αM(η))κ0(α)+V0
out(α, 0+)

dα

− sgn(Ψ )
Ω̃(η)Q̃0(η)M(η)

2πi

×
∫ ∞
−∞

eiαΦ/kP0
out(α, |Ψ |/k)κ0(k/M(η))+

(k− αM(η))κ0(α)+V0
out(α, 0+)

P1
out(α, 0)

P0
out(α, 0)

dα

+ sgn(Ψ )
kM′(η)G0(k/M(η))−

2πiM(η)

(
P1

out(k/M(η), 0)
P0

out(k/M(η), 0)
− V1

out(k/M(η), 0)
V0

out(k/M(η), 0)

)
×
∫ ∞
−∞

eiαΦ/kP0
out(α, |Ψ |/k)

(k− αM(η))κ0(α)+V0
out(α, 0+)

dα. (A 2b)

The term p0
a(Φ,Ψ | η) arises from the blocking of the incident transverse gust velocity

by the solid body, whilst the terms in p1
a(Φ, Ψ | η) are effects of thickness; the first

term in (A 2b) occurs due to the gust interacting with the steady perturbation flow
around the nose of the aerofoil, the second term arises from the blocking of the chord-
wise gust velocity, and the third and final terms arise from the distortion of the sound
generated at the leading edge, p0

a(Φ, Ψ | η), by the non-uniform flow around the nose
of the aerofoil. The Q̃0,1 are defined in (B 14) below.

Appendix B
From (4.3) we know that A(α)Pout(α, 0) is analytic in the lower half α plane.

Denote such a function by a − suffix, i.e. A(α)Pout(α, 0) = [A(α)Pout(α, 0)]−. If we
take an arbitrary minus function, κ(α)−, then

A(α)Pout(α, 0)κ(α)− =
[
A(α)Pout(α, 0)κ(α)−

]
− =G(α)−. (B 1)

We demand that κ(α)− has algebraic behaviour at infinity, and that G(α)± vanishes
at infinity. As before denote the O(1) term of any function by a superscript 0 and the
O(ε
√

k) term by a superscript 1.
Define

F(α)− =− 1
2πk

∫ ∞
0

e−iαΦ/kvg(Φ/k, 0) dΦ = F0(α)− + ε
√

kF1(α)−, (B 2)
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so
A(α)Vout(α, 0)= F(α)− + F(α)+, (B 3)

where F(α)+ is analytic in the upper half α plane, and is unknown. Expanding (B 1)
and (B 3) to O(ε

√
k) and equating at each power yields

P0
out(α, 0)κ0(α)−A0(α)=G0(α)−, (B 4a)

A0(α)V0
out(α, 0)= F0(α)− + F0(α)+, (B 4b)

to leading order, and

P0
out(α, 0)

[
κ1(α)−A0(α)+ κ0(α)−A1(α)

] + P1
out(α, 0)κ0(α)−A0(α)=G1(α)−,

(B 4c)
A1(α)Vout(α, 0)+ A0(α)V1

out(α, 0) = F1(α)− + F1(α)+, (B 4d)

to O(ε
√

k). By demanding that κ0(α)− satisfies

P0
out(α, 0)

V0
out(α, 0)

= κ
0(α)+
κ0(α)−

, (B 5)

we find that
G0(α)− =

[
F0(α)−κ0(α)+

]
− . (B 6)

This determines G0(α)− and also κ0(α)− from known quantities, P and V . Hence,

A0(α)= G0(α)−
κ0(α)−Pout(α, 0)

(B 7)

is determined.
To next order

G0(α)−

[
P1

out(α, 0)
P0

out(α, 0)
− V1

out(α, 0)
V0

out(α, 0)
+ κ

1(α)−
κ0(α)−

]
+ κ0(α)+F1(α)+ + κ0(α)+F1(α)− =G1(α)−. (B 8)

We are free to choose κ1(α)− provided we have algebraic decay at infinity. Taking
the simplest case of κ1(α)− = 0 gives

G1(α)− =
[
κ0(α)+F1(α)−

]
− +

[
G0(α)−

(
P1

out(α, 0)
P0

out(α, 0)
− V1

out(α, 0)
V0

out(α, 0)

)]
−
, (B 9)

so

A1(α)= G1(α)− − P1
out(α, 0)κ0(α)−A0(α)

P0
out(α, 0)κ0(α)−

. (B 10)

We see a priori that our condition of G vanishing at infinity is satisfied. Goldstein
(1978b) proves that G0 vanishes at infinity, and hence we only require that [κ0(α)+F1

(α)−]− tends to zero as α→∞. This is immediate if G0(α)→ 0 as α→∞, since
F1 will behave asymptotically in a similar way to F0 given the form of the velocity
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terms v0,1
g . We proceed using the same method as Goldstein (1978b); define Ri(α) for

i= 0, 1 by

vi
g(Φ/k, 0)=

∫ k/M∞

k/M0

eiαΦ/kΩ̃(η(α))Ri(α)
dη(α)

dα
dα, (B 11)

and from (B 2) we see

Fi(α)− = lim
δ→0+

1
2πi

∫ k/M∞

k/M0

Ω̃(η(α′))
α′ − α + iδ

Ri(α′)
dη(α′)

dα′
dα′. (B 12)

Using the Plemelj formula (Ablowitz & Fokas 2003) we find

Fi(α)− = Fi(α)+ − (H(α − k/M0)−H(α − k/M∞))Ω̃(η(α))Ri(α)
dη(α)

dα
, (B 13)

where H is the Heaviside function and the Fi(α)+ for i= 0, 1 are bounded at infinity
in the upper half-plane. Using (B 6) we find

G0(α)− = 1
2πi

∫ ∞
0

M(η)
κ0(k/M(η))+
k− αM(η)

Ω̃(η)Q̃0(η) dη, (B 14)

where Q̃i(η) = Ri(k/M(η)). This is the solution presented in Goldstein (1978b), in
which k is taken to have a small positive imaginary part to ensure convergence of
all of the integrals (this imaginary part is set to zero at the end of the analysis).

The solution for G1(α)− is more complicated, but is found using the same method;
we have

G1(α)− −G1(α)+ = G0(α)−

(
P1(α, 0)
P0(α, 0)

− V1(α, 0)
V0(α, 0)

)
− (H(α − k/M0)−H(α − k/M∞)) Ω̃(η(α))R1(α)

dη(α)
dα

,

(B 15a)

so

G1(α)− = 1
2πi

∫ ∞
0

M(η)
κ0(k/M(η))+
k− αM(η)

Ω̃(η)Q̃1(η) dη

+ 1
2πi

∫ ∞
0

kM′(η)G0(k/M(η))−
M(η)(k− αM(η))

(
P1(k/M(η), 0)
P0(k/M(η), 0)

− V1(k/M(η), 0)
V0(k/M(η), 0)

)
dη.

(B 16)

Appendix C

Here we present the Wiener–Hopf solutions to 7.2 and 7.3. Note that we need only
find Ap(α) correct to leading order, since the pressure jump of the leading-edge field
across the aerofoil, 1p, is an order of

√
k smaller than the gust velocity vg. We have
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p0
a,H(Φt, Ψt) = −sgn(Ψt)

∫ ∞
0

Ω̃(ηt)Q̃0(ηt)M(ηt)

2πi

×
∫ ∞
−∞

eiαΦt/kκ0
t (α)−P0

out(α, |Ψt|/k)
(k− αM(ηt))κ0

t (k/M(ηt))−V0
out(α, 0)

dα dηt, (C 1a)

p1
a,H(Φt, Ψt) = −sgn(Ψt)

∫ ∞
0

Ω̃(ηt)Q̃0(ηt)M(ηt)

2πi

×
{∫ ∞
−∞

eiαΦt/kκ0
t (α)−P1

out(α, |Ψt|/k)
(k− αM(ηt))κ0

t (k/M(ηt))−V0
out(α, 0)

dα dηt

−
∫ ∞
−∞

eiαΦt/kP0
out(α, |Ψt|/k)κ0

t (α)−
(k− αM(ηt))κ0

t (k/M(ηt))−V0
out(α, 0)

P1
out(α, 0)

P0
out(α, 0)

dα dηt

}
− sgn(Ψt)

∫ ∞
0

Ω̃(ηt)Q̃1(ηt)M(ηt)

2πi

×
∫ ∞
−∞

eiαΦt/kP0
out(α, |Ψt|/K)κ0

t (α)−
(k− αM(ηt))κ0

t (k/M(ηt))−V0
out(α, 0)

dα dηt

− sgn(Ψt)

∫ ∞
0

kM′(ηt)G0
t (k/M(ηt))+

2πiM(ηt)

×
(

P1
out(k/M(ηt), 0)

P0
out(k/M(ηt), 0)

− V1
out(k/M(ηt), 0)

V0
out(k/M(ηt), 0)

)
×
∫ ∞
−∞

eiαΦt/kP0
out(α, |Ψt|/k)κ0

t (α)−
(k− αM(ηt))κ0

t (k/M(ηt))−V0
out(α, 0)

dα dηt, (C 1b)

p0
a,p(Φt, Ψt)=

∫ ∞
−∞

eiαΦt/k κ
0
t (α)−Gt,p(α)−

V0
out(α, 0)

P0
out(α, |Ψt|/k) dα, (C 1c)

where

κ0
t (α)+κ

0
t (α)− =

V0
out(α, 0)

P0
out(α, 0)

, (C 2a)

G0(α)+ =− 1
2πi

∫ ∞
0

M(ηt)Ω̃(ηt)Q̃(ηt)

(k− αM(ηt))κ0
t (k/M(ηt))−

dηt, (C 2b)

Gt,p(α)− =
[
κ0

t (α)+Ft(α)−
]
−, (C 2c)

Ft(α)− =− 1
2πk

∫ ∞
0
1p(Φt/k)e−iαΦt/k dΦt. (C 2d)

Here ηt is the trailing-edge version of the variable η given in (3.5).
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