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Abstract In the study of the spectra of algebras of holomorphic functions on a Banach space E, the
bidual E′′ has a central role, and the spectrum is often shown to be locally homeomorphic to E′′. In
this paper we consider the problem of spectra of subalgebras invariant under the action of a group
(functions f such that f ◦ g = f). It is natural to attempt a characterization in terms of the space of
orbits E′′/∼ obtained from E′′ through the action of the group, so we pursue this approach here and
introduce an analytic structure on the spectrum in some situations. In other situations we encounter
some obstacles: in some cases, the lack of structure of E′′/∼ itself; in others, problems of weak continuity
and non-approximability of functions in the algebra. We also define a convolution operation related to
the spectrum.
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1. Introduction

In 1973, Nemirovskii and Semenov [13] initiated the study of functions on �p which are
invariant under the permutation of variables, and the problem of their approximation by
symmetric polynomials. Their results were generalized to the setting of rearrangement-
invariant function spaces by González et al. [12]. Alencar et al. [1] studied the spectrum
of the subalgebra of the ball algebra on �p of functions which are invariant under permuta-
tion of variables. Chernega et al. [7] studied permutation-invariant functions of bounded
type, and particularly the spectrum of this algebra and convolution operations on the
spectrum. Aron et al. [6] considered the general situation, where given a group G of
linear automorphisms of a Banach space E and an algebra H of holomorphic functions
on E, the algebra of group-symmetric functions

HG = {f ∈ H : f ◦ g = f for all g ∈ G}
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is studied. In several examples, symmetric functions were shown to arise as compositions
of finite-variable functions with a small set of symmetric functions. Little was said regard-
ing the relationship between the spectrum M of H and the spectrum MG of HG, but it
was proved that the restriction mapping ρ : M −→ MG is surjective.

Algebras of general holomorphic functions (which can be viewed as the case G = {I})
and their spectra, on the other hand, have been extensively studied, by Aron et al. [5]
and by Aron et al, among others [3]. A central element in the theory is the Aron–Berner
extension [2]: every holomorphic function f over an open subset of E can be extended
to f , holomorphic on an open subset of the bidual E′′ of E, giving rise to evaluation
characters outside the space E, and bringing into play the bidual and its properties.
Thus E′′ has an important role in all descriptions of M.

As we shall see below, if f ∈ HG, f ◦ g′′ = f for all g ∈ G, so f(z) = f(w) whenever
w = g′′(z). Thus we expect the role of E′′ to be replaced by the orbit space E′′/∼ obtained
from E′′ through the action of G. Our intention is to describe the spectrum MG locally
in terms of E′′/∼. We explore this possibility and find some positive results as well as
some obstructions.

The paper is organized as follows. In the second section, we describe some aspects of
the orbit space; in particular, we identify areas of this space which are homeomorphic
to open subsets of E′′. The third section is the core of the paper. Here we introduce
a mapping πG : MG −→ E′′/∼ and—in some situations—are able to introduce an ana-
lytic structure on MG. We find that lack of weak continuity and non-approximability of
holomorphic functions, together with the absence of algebraic structure—and sometimes
even of analytic structure—in E′′/∼, are important obstacles. For some restricted areas of
MG we can dispense with approximability conditions. As in [5,7], we use a convolution
operation on MG. We end this section with the study of another convolution operation
involving affine operators over E′′. In the last section, we mention a few examples and
connections with prior work in [4].

2. The orbit space E′′/∼

In what follows, E will be a Banach space, U ⊂ E an open subset and H an alge-
bra of holomorphic functions defined on U (i.e. H could be Hb(E), H(E), A(BE),
H∞(BE), etc.). Also, G will denote a group of linear automorphisms of E which leave
U fixed.

For each g ∈ G we consider the bitranspose operator g′′ : E′′ −→ E′′. G thus acts on
E′′ by

G× E′′ −→ E′′ given by (g, z) �→ g′′(z) = z ◦ g′.
We denote by E′′/∼ the orbit space of this action, i.e. the quotient of E′′ by the
equivalence relation z ∼ w ⇔ w = g′′(z) for some g ∈ G, and call q the quotient map
q : E′′ −→ E′′/∼. We will also write [z] = q(z). We consider in E′′/∼ the quotient
topology.

A few cautionary remarks are in order. The first is that u′′(z) = v′′(z) does not imply
that u = v. In fact, since all g are linear, we have g′′(0) = 0 for any g ∈ G. We will
therefore pay special attention to points z ∈ E′′ for which g′′(z) = z implies g = I. The
second remark is that E′′/∼ has no algebraic structure, as the equivalence relation ∼ does
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not respect sums. An alternative to E′′/∼ (with algebraic structure) would be the dual
space (E′

G)′, where E′
G = {γ ∈ E′ : γ ◦ g = γ for all g ∈ G} = E′ ∩HG. This is a Banach

space, but in many cases it is far too small for our purposes: E′
G does not separate points

of E′′/∼.
We will say that a point z ∈ E′′ is regular if there exists a neighbourhood U of z such

that g′′(U) ∩ U = ∅ for all g �= I. Clearly, the set of regular points is open in E′′. Also, if z
is regular, its isotropy group Gz = {g ∈ G : g′′(z) = z} is trivial. We are interested in the
set of regular points because on that set q is locally one-to-one. We have the following.

Remark 2.1. If z ∈ E′′ is regular, q is a local homeomorphism at z.

Proof. The map q : E′′ −→ E′′/∼ is continuous by definition of the quotient topology.
It is also open, as if V ⊂ E′′ is open, q(V ) is open if and only if q−1(q(V )) is open, but

q−1(q(V )) = {g′′(w) : g ∈ G and w ∈ V }
=

⋃
g∈G

g′′(V ),

and all g′′ are surjective and thus open by the open mapping theorem. Now we need
only see that q is one-to-one near z. Since z is regular, it has a neighbourhood U with
g′′(U) ∩ U = ∅ for all g �= I. Thus, if w1 and w2 are in U and q(w1) = q(w2), w2 = g′′(w1)
for some g ∈ G, and w2 ∈ g′′(U) ∩ U . Thus, g = I and w1 = w2. �

We note that in some cases (for example, if G is finite), z is regular whenever its
isotropy group Gz = {g ∈ G : g(z) = z} is trivial. This is not true in general, however,
and may be false even for a compact group. For instance, take G = S1, the unit sphere in
C, E = C and the action (λ, z) �→ λz. Then the isotropy groups are trivial for all non-zero
z; however, E′′/∼ � [0,∞) is not locally homeomorphic to C. This example also shows
that on subsets not homeomorphic to open subsets of E′′, the orbit space E′′/ ∼ may or
may not have analytic structure. In fact, E′′/ ∼ may not be Hausdorff, as is shown by
the following example.

Example 2.2. We take G (as in [6]) to be the group of operators on E = c0 generated
by γm : c0 −→ c0,

γm(ej) =

{
ωmej if j = m

ej otherwise,

where ωm = e2πi/m. Now consider the following elements of E′′ = �∞:

a = (ω−1
1 , ω−1

2 , ω−1
3 , . . . , ω−1

n , . . .)

I = (1, 1, 1, . . . , 1, . . .).
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Their orbits Ga and GI are disjoint, for I �∈ Ga. However, I ∈ Ga. Indeed, for any ε > 0,
let m be large enough that |1 − ω−1

k | < ε for all k > m. Then if we let

gm(x) = (ω1x1, ω2x2, ω3x3, . . . , ωmxm, xm+1, . . .),

‖I − gm(a)‖ = ‖(0, 0, 0, . . . , 1 − ω−1
m+1, 1 − ω−1

m+2, . . .)‖
= sup
k>m

|1 − ω−1
k | < ε.

Taking into account the proof of Remark 2.3, this shows that E′′/ ∼ is not Hausdorff.

In the following remark, we consider the strong operator topology (SOT) on G, i.e.
gi −→ g if and only if gi(x) −→ g(x) for each x ∈ E.

Remark 2.3. If G is SOT-compact, E′′/∼ is Hausdorff.

Proof. Let A1 and A2 be open subsets of E′′/∼ and note that A1 ∩A2 = ∅ if and only
if q−1(A1) ∩ q−1(A2) = ∅. Thus, to separate two distinct [z] and [w] in E′′/∼, we must
separate the orbits of z and w in E′′. Since G is endowed with the SOT topology, for
every x ∈ E′′, the mapping

G −→ E′′ such that g �→ g′′(x)

is continuous. Thus, when G is compact, the orbits

Gz = {g′′(z) : g ∈ G} and Gw = {g′′(w) : g ∈ G}

are disjoint compact sets and may be separated by disjoint open subsets of E′′. �

We define, as in [6], the action of G over M

G×M −→ M (g, ϕ) �→ ϕg where ϕg(h) = ϕ(h ◦ g),

and let Vg = {ϕg : ϕ ∈ V }. In the next section, we will recall from [5] the topology defined
on M and the (continuous) map π : M −→ E′′ such that π(ϕ)(γ) = ϕ(γ) for all γ in E′.
Define ϕ ∈ M to be regular if it has a neighbourhood V such that Vg ∩ V = ∅ for all
g �= I.

Remark 2.4. If π(ϕ) is regular, then ϕ is regular.

Proof. Suppose that π(ϕ) is regular, and take U a neighbourhood as in the definition.
Let V = π−1(U). Then V is a neighbourhood of ϕ. Note now that π(Vg) = g′′(π(V ));
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indeed, for all γ ∈ E′

π(ψg)(γ) = ψ(γ ◦ g)
= (ψ ◦ g′)(γ)
= g′′(π(ψ))(γ).

Thus, if Vg ∩ V �= ∅,
∅ �= π(Vg ∩ V ) ⊂ π(Vg) ∩ π(V )

= g′′(π(V )) ∩ π(V )

= g′′(U) ∩ U
and g = I. �

Note that where π is a local homeomorphism, for example, if E is symmetrically regular
(see [5]), the converse also holds.

3. The structure of MG

In this section, we consider the problem of analytic structure on the spectrum of HG. We
will compare the spectrum with the orbit space E′′/ ∼ via a mapping

πG : MG −→ E′′/ ∼ .

We will introduce a topology on MG and under some conditions prove local injectivity of
πG. This will provide analytic structure to parts of MG over areas of E′′/ ∼ which have
such structure. As mentioned above, some subsets of E′′/ ∼ may lack analytic structure.

We begin by addressing the relationship between G-symmetry and the Aron–Berner
extension [2]. Let G′′ = {g′′ : g ∈ G} and denote the Aron–Berner extension of f by f .
Recall [2] that any function holomorphic on an open set U ⊂ E may be extended to f
holomorphic on an open subset of E′′ containing U . This open subset in general depends
on f . If f ∈ Hb(E), f is defined on all of E′′, producing an extension morphismHb(E) −→
Hb(E′′), and an analogous situation occurs for H∞(B). However, in general, there may
not be an open subset of E′′ to which all f ∈ H extend. Thus, the following proposition
is to be understood for individual functions h.

Proposition 3.1. For all h ∈ H and g ∈ G, the Aron–Berner extension of h ◦ g is

h ◦ g = h ◦ g′′.
Also, f is G-symmetric if and only if f is G′′-symmetric.

Proof. We first see that h ◦ g = h ◦ g′′: let F = h ◦ g′′. In order to use the criteria in
[14], we compare F with h ◦ g.
(i) F = h ◦ g over E: for any x ∈ E,

F (x) = h(g′′(x)) = h(g(x)) = h(g(x)).
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(ii) For any x ∈ E, DF (x) = D(h ◦ g′′)(x) = Dh(g′′(x)) ◦ g′′ = Dh(g(x)) ◦ g′′, but since
g(x) ∈ E, Dh(g(x)) is w∗-continuous, and g′′ is w∗ − w∗-continuous, so DF (x) is
w∗-continuous.

(iii) Let z ∈ E′′ and suppose that xα w∗-converges to z. Note that g′′(xα) w∗-converges
to g′′(z). Now, since h is the Aron–Berner extension of h,

DF (z)(xα) = Dh(g′′(z))(g′′(xα)) −→ Dh(g′′(z))(g′′(z)) = D(h ◦ g′′)(z)(z)
= DF (z)(z).

Thus, by [14], h ◦ g = h ◦ g′′.
Now, if f is G-symmetric, for all g ∈ G we have

f ◦ g′′ = f ◦ g = f,

and if f is G′′-symmetric,

f ◦ g = f ◦ g′′ = f,

and restriction to E gives f ◦ g = f . �

This implies that for all f ∈ HG, one may define (at least on some open subset of E/∼),

f̃ : E′′/∼ −→ C by f̃([z]) = f(z),

where f is the Aron–Berner extension of f . This is well defined, as if [w] = [z] and
w = g′′(z), f(w) = f(g′′(z)) = (f ◦ g′′)(z) = f ◦ g(z) = f(z). For this reason, we will try
to model MG over E′′/∼.

Consider the action of G on the spectrum of H:

G×M −→ M (g, ϕ) �→ ϕg

where ϕg(h) = ϕ(h ◦ g). We denote by Oϕ = {ϕg : g ∈ G} the orbit of ϕ and by ρ the
restriction map ρ : M −→ MG, which is known to be surjective [6].

In general, the orbit Oϕ is contained in the fibre ρ−1(ρ(ϕ)) and may be strictly smaller.
We will suppose that the equality Oϕ = ρ−1(ρ(ϕ)) holds; this is equivalent to asking that
HG ‘separates orbits’, i.e. if ψ �∈ Oϕ, then ψ(f) �= ϕ(f) for some f ∈ HG.

Also, set (as in [5]) π : M −→ E′′, given by π(ϕ)(γ) = ϕ(γ), and recall from the proof
of Remark 2.4 that g′′(π(ϕ)) = π(ϕg).

We now define

πG : MG −→ E′′/ ∼ by πG(α) = [π(ϕ)], if α = ρ(ϕ).

This is well defined, as if ρ(ψ) = ρ(ϕ), since HG separates orbits, ψ = ϕg for some g ∈ G,
and thus π(ψ) = π(ϕg) = g′′(π(ϕ)), so [π(ψ)] = [π(ϕ)].
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In [5] the convolution operation between ϕ ∈ M and z ∈ E′′ was defined by

(ϕ ∗ z)(h) = ϕ(h ◦ tz), where tz(x) = x+ z,

and it was proved that the sets Vϕ,U given by

Vϕ,U = {ϕ ∗ z : z ∈ U},
with ϕ ∈ M and U neighbourhoods of zero in E′′, form a basis for a topology in M
whenever the space E is symmetrically regular, i.e. when every continuous symmetric
operator from E to E′ is weakly compact. All reflexive Banach spaces are symmetrically
regular, as well as c0. The space �1 is not.

For the same purpose, we will consider the subsets of MG: ρ(Vϕ,U ). We note that if
ρ(ψ) = ρ(ϕ), then ψ = ϕg for some g ∈ G, and

(ψ ∗ z)(f) = (ϕg ∗ z)(f) = ϕg(f ◦ tz) = ϕ(f ◦ tz ◦ g);
however, for f ∈ HG,

(f ◦ tz ◦ g)(x) = f(g(x) + z) = (f ◦ g′′)(x+ g′′−1(z)) = (f ◦ tg′′−1(z))(x),

thus (ψ ∗ z)(f)=ϕ(f ◦ tg′′−1(z)) = (ϕ ∗ g′′−1(z))(f). Therefore, ρ(ψ ∗ z)= ρ(ϕ ∗ g′′−1(z)).
Thus, if ρ(ψ) = ρ(ϕ),

ρ({ϕ ∗ z : z ∈ U}) = ρ({ψ ∗ z : z ∈ g′′(U)}).
We can now prove the following.

Theorem 3.2. If E is symmetrically regular, the family

ρ(Vϕ,U )

with ϕ ∈ M and U neighbourhoods of zero in E′′ forms a basis for a topology on MG.

Proof. The sets ρ(Vϕ,U ) cover MG by the surjectivity of ρ. We must verify that if
β ∈ ρ(Vϕ,U ) ∩ ρ(Vψ,V ) then, for some ψ0 ∈ M and a neighbourhood W of zero in E′′, we
have

β ∈ ρ(Vψ0,W ) ⊂ ρ(Vϕ,U ) ∩ ρ(Vψ,V ).

Since β ∈ ρ(Vϕ,U ) ∩ ρ(Vψ,V ), there are ϕ0 ∈ Vϕ,U and ψ0 ∈ Vψ,V such that ρ(ψ0) = β =
ρ(ϕ0). Since ψ0 and ϕ0 are in the same orbit, ψ0 = ϕ0g

for some g ∈ G. Now consider

[Vϕ,U ]g = {(ϕ ∗ z)g : z ∈ U}.
We note that for any h ∈ H, (ϕ ∗ z)g(h) = (ϕ ∗ z)(h ◦ g) = ϕ(h ◦ g ◦ tz), but

(h ◦ g ◦ tz)(x) = (h ◦ g′′ ◦ tz)(x) = h(g′′(x+ z)) = h(g(x) + g′′(z)) = (h ◦ tg′′(z) ◦ g)(x);

thus, (ϕ ∗ z)g(h) = ϕ(h ◦ tg′′(z) ◦ g) = ϕg(h ◦ tg′′(z)) = (ϕg ∗ g′′(z))(h). Therefore,

[Vϕ,U ]g = {(ϕ ∗ z)g : z ∈ U} = {ϕg ∗ g′′(z) : z ∈ U} = {ϕg ∗ w : w ∈ g′′(U)} = Vϕg,g′′(U).
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So ψ0 = ϕ0g
∈ Vϕg,g′′(U) ∩ Vψ,V . Since E is symmetrically regular, we have, by [5], that

there is a neighbourhood W of zero in E′′ with

Vψ0,W ⊂ Vϕg,g′′(U) ∩ Vψ,V .
Then

ρ(Vψ0,W ) ⊂ ρ(Vϕg,g′′(U) ∩ Vψ,V ) ⊂ ρ(Vϕg,g′′(U)) ∩ ρ(Vψ,V ).

But note that ρ(Vϕg,g′′(U)) = ρ([Vϕ,U ]g) = ρ(Vϕ,U ), so

β = ρ(ψ0) ∈ ρ(Vψ0,W ) ⊂ ρ(Vϕ,U ) ∩ ρ(Vψ,V ). �

Theorem 3.3. If E is symmetrically regular and HG is contained in the closed
subalgebra of H generated by E′, then πG is one-to-one on the sets ρ(Vϕ,U ).

Proof. If πG(ρ(ϕ ∗ z)) = πG(ρ(ϕ ∗ w)), then [π(ϕ ∗ z)] = [π(ϕ ∗ w)]; thus, there is a
g ∈ G for which

π(ϕ ∗ w) = g′′(π(ϕ ∗ z)) = π((ϕ ∗ z)g).
Thus, for any γ ∈ E′,

(ϕ ∗ w)(γ) = (ϕ ∗ z)g(γ) = (ϕ ∗ z)(γ ◦ g).
If f is in the closed subalgebra generated by E′, (ϕ ∗ w)(f) = (ϕ ∗ z)(f ◦ g). If, further,
f ∈ HG,

(ϕ ∗ w)(f) = (ϕ ∗ z)(f ◦ g) = (ϕ ∗ z)(f).

Thus, ρ(ϕ ∗ w) = ρ(ϕ ∗ z), and πG is one-to-one. �

Our result is of course related to the weak continuity of holomorphic functions, so we
have an analogous result in those terms for evaluation maps.

Proposition 3.4. If all f ∈ HG are weakly continuous and ϕ = ex is the evaluation
at x, then πG : ρ(Vϕ,U ) −→ E′′/ ∼ is one-to-one.

Proof. By weak continuity of f ∈ HG, given ε and a, there are γ1, . . . , γk ∈ E′ such
that

|γi(b) − γi(a)| < 1 for i = 1, . . . , k implies |f(b) − f(a)| < ε.

If, as above, we have (ϕ ∗ w)(γ) = (ϕ ∗ z)g(γ) for all γ ∈ E′, and if ϕ = ex,

γ(x+ w) = γ(g′′(x+ z)).

Thus, for any γ, |γ(x+ w) − γ(g′′(x+ z))| < 1, and for any ε > 0

|f(x+ w) − f(g′′(x+ z))| < ε.

Hence, f(x+ w) = f(g′′(x+ z)) = f ◦ g(x+ z) = f(x+ z), so ρ(ϕ ∗ w) = ρ(ϕ ∗ z). �
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The following example shows the non-injectivity of πG in the absence of weak continuity
and lack of density of the algebra generated by linear forms.

Example 3.5. We take E = �2, H = Hb(�2), and consider the group G generated by
g(x) = ix. G has four elements: x �→ ix, x �→ −x, x �→ −ix and x �→ x.

Consider the 2-homogeneous polynomial P : �2 −→ C

P (x) =
∞∑
n=1

x2
n.

Note that P 2 is G-symmetric, because

(P 2 ◦ g)(x) =
[ ∞∑
n=1

(ixn)2
]2

= [−P (x)]2 = P 2(x).

By [10], there is a character ϕ ∈ M which is zero on all odd-degree homogeneous poly-
nomials, and ϕ(P ) = 1. Now, let U be a neighbourhood of zero, z ∈ U , with P (z) �= 0
and w = g(z) = iz. We have (ϕ ∗ w) = (ϕ ∗ z)g over E′, i.e. πG(ρ(ϕ ∗ w)) = πG(ρ(ϕ ∗ z)),
because since (γ ◦ tw)(x) = γ(x+ w) = γ(x) + γ(w),

(ϕ ∗ w)(γ) = ϕ(γ + γ(w)) = ϕ(γ) + γ(w) = γ(w) = iγ(z)

(ϕ ∗ z)g(γ) = (ϕ ∗ z)(γ ◦ g) = ϕ(γ ◦ g) + (γ ◦ g)(z) = γ(g(z)) = iγ(z).

However, ρ(ϕ ∗ w) �= ρ(ϕ ∗ z) as, when applied to P 2 ∈ HG, (ϕ ∗ w)(P 2) = ϕ(P 2 ◦ tw),
but

(P 2 ◦ tw)(x) = P 2(x+ w) =
[ ∞∑
n=1

(x+ w)2n

]2

=
[ ∞∑
n=1

x2
n + 2

∞∑
n=1

xnwn +
∞∑
n=1

w2
n

]2

,

so (ϕ ∗ w)(P 2) = [ϕ(P ) + 0 + P (w)]2 = (1 + P (w))2 = (1−P (z))2. Analogously, though,
(ϕ ∗ z)(P 2) = [ϕ(P ) + 0 + P (z)]2 = (1 + P (z))2, which is different, having chosen
P (z) �= 0.

Over certain parts of the spectrum, however, πG may be one-to-one without imposing
conditions regarding approximability or weak continuity. To see this, we will use the
following barycentre operator

b : E −→ E, given by b(x) =
∫
G

g(x) dμ(g),

where μ is the Haar measure if G is compact in the SOT topology (if G is an ascending
union of compact subgroups, b can also be defined [6]). b(x) is the barycentre of the orbit
of x under the group action. Note that owing to the invariance of the Haar measure, one
has g ◦ b = b = b ◦ g for any g ∈ G, and thus also b ◦ b = b. The barycentre operator is
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continuous and linear. We use b′′ : E′′ −→ E′′ to denote its bitranspose, but will reserve
the notation b′ for the composition operator

b′ : H −→ H given by b′(h) = h ◦ b.

We note that b′ is multiplicative, and its image is contained in HG. However its image is
not HG, but a smaller subalgebra. We have the following.

Proposition 3.6. If α ∈ MG is equal to α ◦ b′, then πG is one-to-one on a neighbour-
hood of α.

Proof. Suppose α = ρ(ϕ). Then

α = α ◦ b′ = ρ(ϕ) ◦ b′ = ρ(ϕ ◦ b′)

so, for a neighbourhood U of zero in E′′, ρ(Vϕ◦b′,U ) is a neighbourhood of α in MG. The
map πG is one-to-one on this neighbourhood: suppose πG(ρ((ϕ ◦ b′) ∗ w)) = πG(ρ((ϕ ◦
b′) ∗ z)), i.e. [π((ϕ ◦ b′) ∗ w)] = [π((ϕ ◦ b′) ∗ z)]. There is then an element g ∈ G such that

(ϕ ◦ b′) ∗ w = g′′((ϕ ◦ b′) ∗ z)) over E′. (1)

Now, for all γ ∈ E′,

[(ϕ ◦ b′) ∗ w](γ) = (ϕ ◦ b′)(γ ◦ tw) = ϕ(γ ◦ tw ◦ b) and

g′′[(ϕ ◦ b′) ∗ z](γ) = (ϕ ◦ b′)(γ ◦ g ◦ tz) = ϕ(γ ◦ g′ ◦ tz ◦ b),

but for all x ∈ E,

(γ ◦ tw ◦ b)(x) = γ(b(x) + w) = γ(b(x)) + w(γ) and

(γ ◦ g′ ◦ tz ◦ b)(x) = γ(g′′(b(x) + z)) = γ(g(b(x)) + g′′(z))

= γ(b(x)) + g′′(z)(γ).

Applying ϕ,

[(ϕ ◦ b′) ∗ w](γ) = ϕ(γ ◦ b) + w(γ) and

g′′[(ϕ ◦ b′) ∗ z](γ) = ϕ(γ ◦ b) + g′′(z)(γ).

Thus, (1) implies that w(γ) = g′′(z)(γ) for all γ ∈ E′, so w = g′′(z). Now, if f ∈ HG,

[(ϕ ◦ b′) ∗ w](f) = [(ϕ ◦ b′) ∗ g′′(z)](f)

= (ϕ ◦ b′)(f ◦ tg′′(z))
= ϕ(f ◦ tg′′(z) ◦ b),
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but for any x ∈ E,

(f ◦ tg′′(z) ◦ b)(x) = f(b(x) + g′′(z))

= f(g(b(x)) + g′′(z))

= (f ◦ g′′)(b(x) + z)

= f ◦ g(b(x) + z)

= f(b(x) + z)

= (f ◦ tz ◦ b)(x),
so [(ϕ ◦ b′) ∗ w](f) = ϕ(f ◦ tz ◦ b) = (ϕ ◦ b′)(f ◦ tz) = [(ϕ ◦ b′) ∗ z](f). Thus, ρ((ϕ ◦ b′) ∗
w) = ρ((ϕ ◦ b′) ∗ z), and πG is one-to-one. �

We note that ϕ ◦ b′ is not a regular point of M, as g′′(π(ϕ ◦ b′)) = π(ϕ ◦ b′) for any g ∈ G.
The convolution (ϕ, (b′, z)) �→ (ϕ ◦ b′) ∗ z suggests a wider family of convolution

products related to affine operators on E′′—such as tz ◦ b—which we now explore.

Definition 3.7. We say an affine operator t : E′′ −→ E′′ is G-related if tG ⊂ Gt, i.e.
for every u ∈ G there is a v ∈ G such that t ◦ u′′ = v′′ ◦ t.
Examples of such operators include:

(i) all g′′ : E′′ −→ E′′, with g ∈ G;

(ii) b′′;

(iii) for any z ∈ E′′, tz : E′′ −→ E′′ given by tz(w) = b′′(w) + z.

We denote the set of all G-related operators by N(G) and note that N(G) is a semigroup
containing G. Also, any t ∈ N(G) produces a well-defined

t̃ : E′′/ ∼−→ E′′/ ∼
by setting t̃([z]) = [t(z)]. The equivalence relation s ∼ t⇔ s = g′′ ◦ t for some g ∈ G is a
semigroup congruence; thus, N(G)/G has semigroup structure.

Proposition 3.8.

(i) If ϕ ∈ M and t ∈ N(G),
(ϕ 
 t)(h) = ϕ(h ◦ t)

defines a character in M, and ϕ 
 I = ϕ.

(ii) If f ∈ HG, then f ◦ t ∈ HG; f ◦ t depends only on the class t̂ ∈ N(G)/G of t. Thus,
if α ∈ MG and t̂ ∈ N(G)/G,

(α 
 t̂)(f) = α(f ◦ t)
defines a character in MG.

(iii) If α = ρ(ϕ), then α 
 t̂ = ρ(ϕ 
 t).
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Proof. All are easy. We check only (ii): for any u ∈ G, since t ∈ N(G), there is a v ∈ G
with t ◦ u′′ = v′′ ◦ t; thus

(f ◦ t) ◦ u′′ = f ◦ v′′ ◦ t = f ◦ t.

Also, if ŝ = t̂ and s = g′′ ◦ t,

f ◦ s = f ◦ g′′ ◦ t = f ◦ g ◦ t = f ◦ t. �

Proposition 3.9. If HG is contained in the closed subalgebra of H generated by E′,
then πG is one-to-one over the set

Wα = {α 
 t̂ : t̂ ∈ N(G)/G}.

Proof. If πG(α 
 ŝ) = πG(α 
 t̂), then πG(ρ(ϕ 
 s)) = πG(ρ(ϕ 
 t)) and [π(ϕ 
 s)] =
[π(ϕ 
 t)], where α = ρ(ϕ). Thus, for some g ∈ G, π(ϕ 
 s) = g′′(π(ϕ 
 t)) = π(ϕ 
 t) ◦ g′.
Therefore, for all γ ∈ E′ we have (ϕ 
 s)(γ) = (ϕ 
 t)(γ ◦ g),

which, by definition of 
 is ϕ(γ ◦ s) = ϕ(γ ◦ g ◦ t) = ϕ(γ ◦ g′′ ◦ t),
which may be written: (ϕ ◦ s′)(γ) = (ϕ ◦ t′ ◦ g′)(γ).

Thus ϕ ◦ s′ and ϕ ◦ t′ ◦ g′ are continuous algebra morphisms which coincide on E′. Since
the closed algebra generated by linear forms contains HG, for all f ∈ HG we have

(ϕ ◦ s′)(f) = (ϕ ◦ t′ ◦ g′)(f)

which is ϕ(f ◦ s) = ϕ(f ◦ g′′ ◦ t) = ϕ(f ◦ t)
and, by definition of 
 , (ϕ 
 s)(f) = (ϕ 
 t)(f).

Then ρ(ϕ 
 s) = ρ(ϕ 
 t) and α 
 ŝ = α 
 t̂. Thus, πG is one-to-one. �

4. Examples

In the finite-dimensional setting, E = Cn is symmetrically regular and any space of holo-
morphic functions is the closed algebra spanned by the coordinate functionals. Thus, our
results in Theorems 3.2 and 3.3 apply. In [4], the algebra HG(U) and its spectrum are
studied, particularly for finite unitary reflection groups and certain subgroups of permuta-
tions. The approach is different, however, and makes use of proper holomorphic functions
g : Ω ⊂ Cn −→ Ω′ ⊂ Ck in the definition of Hg(U):

Hg(U) = {f ∈ H(U) : if z, w ∈ U with g(z) = g(w) then f(z) = f(w)}.

It is proved in [4] that if G ⊂ GL(n,C) is a finite unitary reflection subgroup, then
HG(U) = Hg(U) for some proper map g.

This point of view allows the description of HG(U) as H(Ũ) for another open subset
Ũ of Cn. For example, in the case of the symmetric group S2 of order 2 consisting of all

https://doi.org/10.1017/S0013091518000603 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000603


Spectra of algebras of group-symmetric functions 621

permutations of the set {1, 2}, Ũ is the symmetrized bidisc

G2 = {(s, p) ∈ C2 : |s− sp| + |p|2 < 1}.

It is natural to ask whether given a proper holomorphic mapping g, the algebra Hg(U)
coincides with HG(U) for some group G. This question was answered in the negative in
[4, Example 5.4] taking the proper holomorphic mapping g(z) = ((z1 + z2)2, (z1z2)2).

Let us study now an example with E = c0, the Banach space of null sequences.

Example 4.1. We take G (as in Example 2.2) to be the group of operators on E = c0
generated by γm : c0 −→ c0,

γm(ej) =

{
ωmej if j = m

ej otherwise,

where ωm = e2πi/m. If Gn is the group generated by {γk : k ≤ n} then

G =
⋃
n∈N

Gn

is the union of an ascending chain of compact groups. Also, each γk preserves the norm,
so G(B) is bounded for every bounded subset B of c0. Thus, by [6, Theorem 2.5], there
exists a continuous projection operator σ : Hb(c0) −→ HbG

(c0).
Also, note that HbG

(c0) ‘separates orbits’. Indeed, if ψ �∈ Oϕ, then by [6, Lemma 4.1]
there is an f ∈ HbG

(c0) such that ψ(f) �= ϕ(f).
Since approximable polynomials are dense in Hb(c0) (see [11, Propositions 1.59

and 2.8]) and c0 is symmetrically regular, by Theorem 3.3 we have that πG : MG −→
�∞/ ∼ is locally one-to-one.

Finally, in this case it is clear that for fixed n ∈ N, every point z = (z1, . . . , zn, 0, . . .) is
regular since there exists a neighbourhood U of z such that g′′(U) ∩ U = ∅ for all g �= I.
On the other hand, the point

a = (ω−1
1 , ω−1

2 , ω−1
3 , . . . , ω−1

n , . . .)

in Example 2.2 is not regular: ‖a− γm(a)‖ = |1 − ωm| can be as small as required, for
large m.

A natural question is whether every closed subalgebra A of an algebra of group-
symmetric functions HG is also an algebra of group-symmetric functions. The answer
is in general negative, as we show in the next example.

Example 4.2. Consider in the Fréchet algebra H(C2) the subalgebra A that is
the closure in H(C2) of the algebra generated by {z1 + z2, z

2
1 , z

2
2}. It is very intuitive

that neither z1 nor z2 belong to A, but let us present a proof of this fact. Con-
sider P a polynomial generated by {z1 + z2, z

2
1 , z

2
2}. Clearly, it is a linear combination

of polynomials of the form Q(z1, z2) = (z1 + z2)mzn1 z
p
2 with m,n, p ∈ N ∪ {0}. Thus,
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Q(z1, z2) = c(1,0)(Q)z1 + c(0,1)(Q)z2 +
∑

(α,β)∈Δ,α+β≥2 c(α,β)(Q)zα1 z
β
2 with Δ a suitable

finite set and

c(1,0)(Q) =
1

2πi

∫
|λ|=1

Q(λ, 0)
λ2

dλ =

{
1 if m = 1, n = 0, p = 0
0 otherwise.

Analogously,

c(0,1)(Q) =
1

2πi

∫
|μ|=1

Q(0, μ)
μ2

dμ =

{
1 if m = 1, n = 0, p = 0
0 otherwise.

Hence P (z1, z2) = d(P )(z1 + z2) +
∑

(α,β)∈Γ,α+β≥2Γ c(α,β)(P )zα1 z
β
2 with Γ another suit-

able finite set. Now, if f ∈ A, there exists a sequence (Pk) uniformly convergent
to f on compact subsets of C2 and we have that c(1,0)(f) = limk→∞ c(1,0)(Pk) =
limk→∞ c(0,1)(Pk) = c(0,1)(f). As a consequence, zj �∈ A for j = 1, 2. Let us assume now
that there exists a group G of automorphisms of C2 such that A = HG(C2). If g ∈ G then

g(z1, z2) =
(
α β
γ δ

)(
z1
z2

)
=

(
αz1 + βz2, γz1 + δz2

)
.

Applying this to the function f(z1, z2) = z1 + z2 we will get that α+ γ = 1 and β + δ = 1.
On the other hand, applying it to the function f(z1, z2) = z2

1 we get α2 = 1 and β = 0.
Finally, for the function f(z1, z2) = z2

2 we get δ2 = 1 and γ = 0. All of these combined
imply that (

α β
γ δ

)
=

(
1 0
0 1

)
.

In consequence, G = {I}; however, A � H(C2), a contradiction.
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