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We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic
Boussinesq equations that describes the propagation of inertia–gravity internal waves
through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic
method to isolate wave field evolution over intervals much longer than a wave period,
assumes the wave field has a well-defined non-inertial frequency such as that of the
mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic
flow have comparable spatial scales and neglects nonlinear wave–wave dynamics.
As a result the hydrostatic wave equation is a reduced model applicable to the
propagation of large-scale internal tides through the inhomogeneous and moving
ocean. A numerical comparison with the linearized and hydrostatic Boussinesq
equations demonstrates the validity of the hydrostatic wave equation model and
illustrates how the model fails when the quasi-geostrophic flow is too strong and the
wave frequency is too close to inertial. The hydrostatic wave equation provides a first
step toward a coupled model for energy transfer between oceanic internal tides and
quasi-geostrophic eddies and currents.
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1. Introduction

Oceanic internal tides are inertia–gravity waves with tidal frequencies generated
when tides slosh the rotating and stratified ocean over underwater hills and mountains.
While tides are planetary-scale surface waves forced by the gravitational pull of
the Sun and Moon (Balmforth et al. 2005), internal tides are freely propagating,
subsurface internal waves that have smaller 100 km horizontal scales and are strongly
modulated by ever-changing oceanic eddies and currents (Rainville & Pinkel 2006;
Zaron & Egbert 2014).

† Email address for correspondence: glwagner@mit.edu
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Internal tides are an energetic component of motion almost everywhere in the
Earth’s ocean. Their strength, unpredictability and rapid fluctuation means internal
tides regularly contaminate temporally sparse data intended to observe more persistent
flows (Munk 1981; Ponte & Klein 2015). Their strength betrays intrinsic importance,
as well: the terawatt or so that internal tides draw from surface tides (Egbert & Ray
2000) slows the spinning of the Earth, contributes to the outward drift of the Moon
and may drive the mixing and lifting of abyssal water that determines the ocean’s
density stratification.

The explicit connection between internal tides and the evolution of oceanic
stratification is obscure. According to a small number of observational (St Laurent &
Nash 2004; Klymak et al. 2006; Alford et al. 2011) and model-based (Carter et al.
2008) estimates, somewhere between 8 %–40 % of the total energy transferred to
internal tides dissipates locally and drives mixing at generation sites. The rest escapes
into low-mode waves that propagate across ocean basins toward fates unknown.
Because oceanic stratification and circulation are sensitive to the horizontal and
vertical distribution of tide-driven turbulent mixing (Melet, Legg & Hallberg 2016),
the long-range propagation, eventual dissipation and total contribution to interior
diapycnal mixing of internal tides should be understood to ensure accurate prediction
of the evolution of Earth’s climate.

The characterization of long-range internal tide propagation and dissipation is
confused by the non-stationary component of the internal tide, which Ray & Zaron
(2011) estimate contributes 25 % of the total internal tide sea surface height signal
at mode one and 50 % or more at higher modes. Both this space–time variability
and the transfer of internal tide energy to small vertical and horizontal scales are
driven by interactions between internal tides and shifting currents and eddies (Zaron
& Egbert 2014; Ponte & Klein 2015; Dunphy et al. 2017). For example, Zaron &
Egbert (2014) use realistic simulations to conclude that horizontal density gradients
associated with quasi-geostrophic flows are primarily responsible for scattering internal
tides propagating away from the Hawaiian ridge.

Scattering processes may in turn extract energy from quasi-geostrophic eddies
and currents. Energy transfer between general-frequency internal waves and quasi-
geostrophic flow is suggested by the thought experiment by Bühler & McIntyre (2005)
and the Polzin (2010) analysis of data taken during the 1978–1979 POLYMODE Local
Dynamics experiment. For near-inertial waves, energy transfer with quasi-geostrophic
flow is implied by asymptotic energy conservation laws derived by Xie & Vanneste
(2015) and Wagner & Young (2016), and is explicitly demonstrated by the wave-
mediated enhancement of dissipation observed in simulations by Taylor & Straub
(2016) and Barkan, Winters & McWilliams (2017) and by the direct interior transfer
observed via Lagrangian filtering in a simulation by Shakespeare & Hogg (2017). The
analogous transfer of energy between non-inertial internal tides and quasi-geostrophic
flows is less explored, and has implications both for large-scale dynamics as well as
the energy available for wave-driven ocean mixing.

Motivated by the need to better understand interactions between internal tides
and quasi-geostrophic flow, we derive the time-averaged ‘hydrostatic wave equation’,
exhibited in (1.5), which describes the propagation of three-dimensional, hydrostatic
internal waves through arbitrary density stratification and time-varying quasi-
geostrophic mean flow. We use a multiple time scale asymptotic method to reduce
hydrostatic Boussinesq dynamics to the slow evolution of the wave field over time
scales much longer than a wave period. The hydrostatic wave equation does not
restrict the relative spatial scales of waves and flow and thus, like the near-inertial
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Internal tides in quasi-geostrophic flow 781

equation derived by Young & Ben Jelloul (1997), is applicable to oceanic scenarios
where internal waves and quasi-geostrophic flows coevolve on horizontal scales of
50–200 km (Chelton, Schlax & Samelson 2011; Ray & Zaron 2016; Rocha et al.
2016). The hydrostatic wave equation facilitates analysis of wave–mean interactions by
distilling the wave dynamics into a single time-averaged equation and comprises a first
step toward a model for the coupled evolution of internal tides and quasi-geostrophic
flow.

The approximations used to derive the hydrostatic wave equation are intermediate
between the more severe reductions of geometric optics that permit ray tracing and
the more mild assumptions required to linearize wave dynamics around arbitrary mean
flows. The ray tracing employed by Rainville & Pinkel (2006) and wave evolution
equations derived in § 4 and the beginning of § 7 in Salmon (2016), for example,
require mean flows that vary on spatial scales much larger than a single wavelength.
This approximation is usually inappropriate for the low-mode oceanic internal tide.
On the other end of the spectrum of approximations is the ‘coupled-mode shallow
water’ model developed by Kelly et al. (2017), in which the hydrostatic Boussinesq
equations are linearized around a mean flow of arbitrary scale and strength. The
coupled-mode model is more general than the hydrostatic wave equation, but consists
of three equations and resolves rapid oscillations on tidal frequencies. In contrast, the
hydrostatic wave equation is a single equation that filters tidal-frequency oscillations
by restricting attention to quasi-geostrophic mean flows.

The asymptotic models that most resemble the hydrostatic wave equation are
the spectral models derived by Bartello (1995) from the Boussinesq equations and
by Warn (1986) and Ward & Dewar (2010) from the shallow water equations.
Like the hydrostatic wave equation, these models assume weak nonlinearity so that
first-order terms describe linear wave propagation and second-order terms describe
wave advection and refraction by quasi-geostrophic flow. Unlike the hydrostatic
wave equation, however, the spectral models apply a projection onto wave modes
and a resonance condition to obtain a set of ordinary differential equations for the
evolution of discrete wave modes that exactly satisfy the linear dispersion relation.
The hydrostatic wave equation instead is formulated in physical space and, crucially,
describes parts of the wave field that deviate from the linear dispersion relation.

In the hydrostatic wave equation, the ocean’s dynamic pressure field p is
decomposed into a quasi-geostrophic component and a wave component with the
single frequency σ , so that

p= f (ψ + e−iσ tA+ eiσ tA∗), (1.1)

where ψ(x, y, z, t) is the quasi-geostrophic streamfunction, A(x, y, z, t) is the
complex amplitude of the wavy pressure field oscillating with frequency σ and
f = 4π sin φ/(sidereal day) is the constant local inertial frequency at latitude
φ. The pressure field in (1.1) is a special solution to the rotating, hydrostatic
Boussinesq equations justified when initial conditions or forcing excite a combination
of σ -frequency and quasi-geostrophic motion. For the semidiurnal lunar tide, for
example, σ ≈ 2π(12.42 h)−1

≈ 1.405× 10−4 s−1.
The hydrostatic wave equation is derived by assuming that weak nonlinear

interactions drive the slow evolution of ψ and A over time scales much longer
than f−1. In consequence, the dominant linear terms in the hydrostatic Boussinesq
equations (2.1)–(2.5) imply that A in (1.1) satisfies the approximate constraint

DA≈ 0, (1.2)
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where the ‘dispersion operator’ D is

D def
= ∂2

x + ∂
2
y︸ ︷︷ ︸

def
=1

− α ∂z
f 2

N2
∂z︸ ︷︷ ︸

def
=L

. (1.3)

In (1.3) N(z) is the buoyancy frequency at depth z associated with an arbitrary
background density stratification and we have defined the horizontal Laplacian 1 and
vertical derivative operator L. The non-dimensional parameter

α
def
=
σ 2
− f 2

f 2
(1.4)

is the wave Burger number.
The dispersion constraint in (1.2) is tantamount to a statement that A approximately

obeys the hydrostatic dispersion relation. For example, for a plane wave in constant
density stratification with horizontal and vertical wavenumbers k and m, the constraint
DA = 0 implies that α = (Nk/fm)2 gives the scaled and squared aspect ratio of the
wave field, so that through (1.4) its frequency satisfies the hydrostatic dispersion
relation σ 2

= f 2(1+ α)= f 2
+ (Nk/m)2. Equation (1.2) additionally implies that A has

negligible available potential vorticity, or ‘APV’, defined for small Rossby number
flows by Q= N−2

[vy − ux + ∂z( fb/N2)], where u and v are horizontal velocities and
b is buoyancy. Equation (1.2) thus maintains the distinction between waves and flow
that Wagner & Young (2015) show is a fundamental property of APV.

A distinctive feature of the hydrostatic wave equation is that the equality in (1.2) is
approximate rather than exact, which means the hydrostatic wave equation describes
the near-resonant dynamics of parts of the wave field that does not exactly satisfy the
linear dispersion relation. After introducing the hydrostatic Boussinesq equations in § 2
and developing up the asymptotic and multiple time expansion in the beginning of § 3,
our derivation takes the key step toward this description in § 3.3 by ‘reconstituting’
(Roberts 1985) the leading-order equation, DA= 0, with the first-order equation that
describes the nonlinear interaction of ψ and A. Additional heuristic but well-motivated
modifications described in § 4 then lead to the final form the of the hydrostatic wave
equation,

EAt + J(ψ, EA)+ iασDA+ J(A,Dψ)−
2iσ
f 2
[J(ψx, iσAx − fAy)+ J(ψy, iσAy + fAx)]

+
iσ
f

[
∇h · (Dψ∇hA)−D

(
αf 2

N2
ψzAz

)
+ ∂z

(
αf 2

N2
ψzDA

)]
= 0, (1.5)

where ∇h
def
= ∂xx̂+ ∂yŷ is the horizontal gradient, the Jacobian is J(a, b)= axby − aybx

and the operator E is

E def
=
α

2
[1+ (4+ 3α)L]. (1.6)

The hydrostatic wave equation (1.5) describes the slow evolution of hydrostatic
internal waves with a pressure field given by (1.1), in three-dimensional quasi-
geostrophic flow with streamfunction ψ(x, y, z, t) of arbitrary spatial scale and
non-uniform background stratification with buoyancy frequency N(z).
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Internal tides in quasi-geostrophic flow 783

A peculiar aspect of the hydrostatic wave equation in (1.5) is that it does not
conserve either energy or the wave action defined by Bretherton & Garrett (1968),
which contrasts with the analogous ‘YBJ’ equation developed by Young & Ben
Jelloul (1997) describing the linearized propagation of near-inertial waves through
quasi-geostrophic flow. We demonstrate and discuss this non-conservation law of (1.5)
in § 5.

We address both the correctness of the derivation and the applicability of (1.5)
to oceanic flows in § 6 by comparing 60 numerical solutions to (1.5) with solutions
to the hydrostatic Boussinesq equations linearized around decaying two-dimensional
barotropic turbulence. The comparison reveals the accuracy of (1.5) for reasonable
parameters and also illustrates how the model fails when the wave frequency is
near inertial or when the mean flow is too strong. We conclude by discussing the
physical implications and potential applications of the hydrostatic wave equation and
its relatives in § 7.

2. The hydrostatic Boussinesq equations and ‘wave operator form’
The hydrostatic, rotating Boussinesq equations with constant inertial frequency f

are

ut + u · ∇u− fv + px = 0, (2.1)
vt + u · ∇v + fu+ py = 0, (2.2)

pz = b, (2.3)
bt + u · ∇b+wN2

= 0, (2.4)
ux + vy +wz = 0. (2.5)

The hydrostatic approximation made in (2.3) is sensible for motions with large
horizontal scales and small vertical scales, which implies that vertical velocities and
vertical accelerations are relatively small. For motions of frequency σ , the continuity
equation (2.5) and linear terms in the buoyancy equation (2.4) imply that

w∼
H
L

u and b∼
N2

0

σ
w∼

N2
0 H
σL

u, (2.6a,b)

where H and L are the characteristic vertical and horizontal scales of the σ -frequency
motion and N0 is the characteristic magnitude of the buoyancy frequency profile
N(z). In consequence, the assumption that wt/b � 1 that underlies the hydrostatic
approximation is valid for motions with frequency σ when

wt

b
∼

(
σ

N0

)2

� 1. (2.7)

In appendix A the hydrostatic Boussinesq equations (2.1)–(2.5) are manipulated into
‘wave operator form’,

∂t[∂
2
t L+ f 2(1+ L)]p = −f 2(∂t∇h + f∇⊥) · (u · ∇)u

− ∂z
f 2

N2
(∂2

t + f 2)(u · ∇pz). (2.8)

In (2.8), the operators 1 and L are defined in (1.3), while

∇h = ∂xx̂+ ∂yŷ and ∇⊥
def
=−∂yx̂+ ∂xŷ. (2.9a,b)
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The left-hand side of (2.8) is the hydrostatic internal wave operator acting on p,
while the right-hand side collects nonlinear terms. Equation (2.8) proves useful for
the asymptotic development that follows, in which the nonlinear right-hand side terms
are assumed small so that the left-hand side linear terms that dominate the dynamics
over short time scales provide a complete description of the dynamics of the linear
wave field.

3. The hydrostatic wave equation
We perform an asymptotic reduction of the hydrostatic Boussinesq equations (2.1)–

(2.5) assuming that the solution is a weakly nonlinear combination of σ -frequency and
slowly evolving quasi-geostrophic motion. The relative magnitude of nonlinear terms
in (2.1)–(2.5) is measured by

ε
def
=

U
fL
∼

u · ∇u
fv
� 1, (3.1)

where U is a typical velocity scale and L is a typical length scale. We use the same
length scale L to characterize the wave field and the quasi-geostrophic flow. This
prescription both ensures that our description holds when waves and quasi-geostrophic
flow have comparable spatial scales, and permits further reduction for fixed ε under
the assumption that waves or quasi-geostrophic flow have widely differing spatial
scales. Note that when U and L characterize quasi-geostrophic flow ε is the Rossby
number, whereas when U and L characterize the wave field ε is a measure of wave
nonlinearity.

With ε � 1, the weak nonlinear advection of momentum and buoyancy described
by (2.1)–(2.5) drives dynamics on slow time scales much longer than f−1. To capture
this we propose the two-time expansion

∂t 7→ ∂t̃ + ε∂τ , (3.2)

where t̃ ∼ f−1 is the fast time scale of wave oscillations and τ ∼ L/U = (εf )−1 is
the time scale of slow nonlinear wave evolution. The two-time expansion in (3.2)
transforms the wave operator that acts on p in (2.8) into

(∂t̃ + ε∂τ )[(∂
2
t̃ + 2ε∂t̃∂τ + ε

2∂2
τ )L+ f 2(1+ L)]

= ∂t̃[∂
2
t̃ L+ f 2(1+ L)] + ε∂τ [3∂2

t̃ L+ f 2(1+ L)] +O(ε2). (3.3)

We isolate the slow evolution of hydrostatic internal waves over the long time scales
of τ by expanding u, b and p in ε, so that p becomes, for example,

p= ε p1 + ε
2p2 + · · · . (3.4)

We develop the expansion by examining the hydrostatic Boussinesq equations (2.1)–
(2.5) order by order in ε.

3.1. At leading order: linear dispersion and geostrophic balance
The leading-order terms in the hydrostatic Boussinesq equations in (2.1)–(2.5) are

u1t̃ − fv1 + p1x = 0, (3.5)
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v1t̃ + fu1 + p1y = 0, (3.6)
p1z = b1, (3.7)

b1t̃ +w1N2
= 0, (3.8)

u1x + v1y +w1z = 0, (3.9)

while the leading-order terms from the wave operator equation (2.8) are

∂t̃[∂
2
t̃ L+ f 2(1+ L)]p1 = 0. (3.10)

We assume the leading-order solution to (3.10) can be written as the sum of a quasi-
geostrophic streamfunction and a wave field with frequency σ , so that

p1 = f (ψ + e−iσ t̃A1 + eiσ t̃A∗1). (3.11)

Both A1 and ψ depend on x and the slow time τ and have streamfunction units, so
that ∇⊥A1 and ∇⊥ψ have units of velocity. Equations (3.5) and (3.6) imply that ψ
obeys geostrophic balance.

Equation (3.10) implies that A1 obeys the linear σ -frequency dispersion constraint:

−iσ f 3
[1− αL︸ ︷︷ ︸

=D

]A1 = 0, (3.12)

where α = σ 2/f 2
− 1 is the wave Burger number and D =1 − αL is the dispersion

operator defined in (1.3). When σ = 2f , D = 1 − 3L is the operator that appears
conspicuously in the 2f equation of Wagner & Young (2016).

Equation (3.7) implies that

b1 = f (ψz + e−iσ t̃A1z + eiσ t̃A∗1z), (3.13)

and (3.8) subsequently yields

w1 =
iσ f
N2
(e−iσ t̃A1z − eiσ t̃A∗1z). (3.14)

By merging ∂t̃(3.5)+ f (3.6) with ∂t̃(3.6)− f (3.5) we obtain a single vector equation
for horizontal velocity u1h = u1x̂+ v1ŷ,

(∂2
t̃ + f 2)u1h =−(∂t̃∇h − f∇⊥)p1, (3.15)

which we solve given p1 in (3.11). The leading-order velocity field is thus related to
ψ and A1 through

u1

v1

w1

=
−∂y

∂x

0

ψ − 1
αf


iσ∂x − f ∂y

iσ∂y + f ∂x

−
iσαf 2

N2
∂z

 e−iσ t̃A1 +
1
αf


iσ∂x + f ∂y

iσ∂y − f ∂x

−
iσαf 2

N2
∂z

 eiσ t̃A∗1, (3.16)

where we have used σ 2
− f 2
= αf 2. More properties of the leading-order solution to

(3.5)–(3.9) are given in § B.1.
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786 G. L. Wagner, G. Ferrando and W. R. Young

3.2. At second order: slow wave evolution

The O(ε2) terms in the wave operator equation (2.8) are

f 3(1+ L)ψτ + f [f 21− (3σ 2
− f 2)L][e−iσ t̃A1τ + eiσ t̃A∗1τ ]

+ [∂2
t̃ L+ f 2(1+ L)]p2t̃ =RHS(ψ, A1). (3.17)

In (3.17), RHS(ψ, A1) is short for the O(ε2) nonlinear terms in (2.8) evaluated using
the leading-order solution and defined by

RHS(ψ, A1)
def
=−f 2(∂t̃∇h + f∇⊥) · (u1 · ∇)u1 − ∂z

f 2

N2
(∂2

t̃ + f 2)(u1 · ∇b1). (3.18)

Equation (3.17) describes the slow evolution and propagation of A1, quasi-geostrophic
evolution and nonlinear wave dynamics that generate both quasi-steady mean flows
and wave harmonics with frequency 2σ .

The quasi-geostrophic streamfunction ψ evolves due to its advection of quasi-
geostrophic potential vorticity, q according to the ordinary quasi-geostrophic equation,

qτ + J(ψ, q)= 0, where q def
= (1+ L)ψ. (3.19)

The independence of q from A1 in (3.19) requires the assumption that waves and
flow share common velocity and length scales, and thus have similar ‘amplitudes’ as
measured by the single parameter ε. A simple derivation of equation (3.19) is given
in Wagner (2016, chap. 1.2) under the same assumption that waves and flow have
similar amplitudes, using available potential vorticity and a two-time expansion.

We focus on the slow evolution of σ -frequency motions by multiplying (3.17) with
eiσ t̃ and averaging the result in t̃ over a wave period 2π/σ . The average is denoted
with an overbar and defined by

φ̄(τ )=
σ

2π

∫ τ+(π/σ)

τ−(π/σ)

φ(τ , t̃) dt̃, (3.20)

for any quantity φ(τ , t̃). This average has the property that e2iσ t̃A∗1= 0 and Ā1=A1, for
example, because A1 does not depend on the fast time t̃. In consequence, the operation
eiσ t̃(3.17) isolates terms in (3.17) proportional to e−iσ t̃, yielding

f [f 21− (3σ 2
− f 2)L]A1τ − iσ f 3DA2 = eiσ t̃RHS. (3.21)

In forming (3.21) we assume that p2 takes the form

p2 = f (e−iσ t̃A2 + eiσ t̃A∗2)+ · · · , (3.22)

where the dots represent unimportant steady and 2σ -frequency parts of p2, and A2 =

f−1eiσ t̃p2 is the O(ε) correction to A1.
The bookkeeping required to parse RHS for terms proportional to e−iσ t̃ and thus

identify the right-hand side of (3.21) is detailed in appendix B. After multiplying
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by α/f , the result is

α

f
eiσ t̃RHS = (σ 2

+ f 2)J(ψ, 1A1)+ (αf )2J(ψ, LA1)+ f 2J(A1,Dψ)

− 2iσ [J(ψx, iσA1x − fA1y)+ J(ψy, iσA1y + fA1x)]

+ iσ f
[
∇h · (Dψ∇hA1)−D

(
αf 2

N2
ψzA1z

)
+ ∂z

(
αf 2

N2
ψzDA1

)]
. (3.23)

With (3.23) the major algebraic challenge in deriving the hydrostatic wave equation
is behind us.

Two different approaches may now be used to develop a wave evolution model
from the leading-order equation (3.12) and first-order equation (3.21). One approach
is to move into the spectral space associated with eigenfunctions or ‘wave modes’
of the operator D. In this approach the first step is then to project the leading-order
equation (3.12) onto wave modes, which defines the spectral components of A1 and
solves (3.12) exactly. Next, projecting the first-order equation (3.21) onto wave modes
eliminates DA2 and isolates the slow evolution of those spectral components of A1.
This strategy was employed, for example, by Warn (1986), Bartello (1995) and Ward
& Dewar (2010). We take a different approach, however: reconstitution.

3.3. Reconstitution
Rather than solve the leading-order equation (3.12) exactly, we instead reconstitute
the asymptotic expansion by adding (3.12) to the first-order equation (3.21) to obtain
a single equation for the total wave amplitude A= ε A1 + ε

2A2. After multiplying by
α/εf and rearranging terms, the result is

−α[f 21− (3σ 2
− f 2)L]Aτ + iασ f 2DA

+ (σ 2
+ f 2)J(ψ, 1A)+ (αf )2J(ψ, LA)+ f 2J(A,Dψ)

− 2iσ [J(ψx, iσAx − fAy)+ J(ψy, iσAy + fAx)]

+ iσ f
[
∇h · (Dψ∇hA)−D

(
αf 2

N2
ψzAz

)
+ ∂z

(
αf 2

N2
ψzDA

)]
=O(ε3f 4). (3.24)

Excepting the two terms that involve DA, all terms on the left-hand side of (3.24)
scale with αf 21Aτ ∼ ε2f 4. The residual on the right-hand side of (3.24) thus implies
the error incurred during reconstitution is O(ε) and of same magnitude as terms
already neglected by the perturbation expansion. In this sense, (3.24) is asymptotically
equivalent to the original hydrostatic Boussinesq equations.

Here, the consequence of reconstitution is that the leading-order equation (3.12) is
not exactly satisfied, so that DA 6= 0 in general. As a result, equation (3.24) describes
the evolution of wave modes with frequencies slightly different than σ ; or in other
words, equation (3.24) describes both resonant and near-resonant interactions between
ψ and A. This expansion of the descriptive power of (3.24) is an advantage of the
method of reconstitution and is analogous, as explained by Roberts (1985), to the
improvements bestowed by reconstitution on other asymptotic models such as the
nonlinear Schrödinger equation for surface waves and the Navier–Stokes equations.
Because the dispersion terms iαf 21A and iα2f 2LA in iαf 2DA are the largest in (3.24)
by ε−1, solutions to (3.24) still approximately satisfy DA ≈ 0 so that A remains
tethered to the σ -frequency hydrostatic dispersion relation when ε� 1 and α=O(1).
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4. Remodelling

Equation (3.24) achieves the goal of this paper and provides a valid description
of the propagation of hydrostatic waves through quasi-geostrophic flows. Yet
several shortcomings either limit the range of its validity or prevent its practical
implementation. Its principal shortcoming is that the operator acting on Aτ on the
first line of (3.24) cannot be inverted in general. The second shortcoming is that
(3.24) is not Galilean invariant: its form is not preserved under translation by a
uniform velocity implied by the two transformations ψ 7→ −Uy + Vx + ψ and
∂τ + U∂x + V∂y 7→ ∂τ . The lack of Galilean invariance hampers the description of
Doppler shifting of wave field frequency by relatively uniform quasi-geostrophic flow
by (3.24).

We address these issues by modifying the model by adding two small O(ε3f 4)

terms proportional to DAτ and J (ψ,DA) to (3.24). While this addition does not
change our estimated magnitude of the residual on the right of (3.24), it generates a
worrisome side effect: we are now confronted with a ‘plethora of permissible forms’
for the hydrostatic wave equation, in the words of Roberts (1985), which correspond
to different and seemingly equally valid choices for the two additional O(ε3f 4) terms.

We resolve this ambiguity by adding a third physically motivated constraint
that the additional terms must improve the approximate dispersion relation of the
hydrostatic wave equation. We satisfy the dispersion improvement criterion by
selecting the small additional terms so that a Taylor expansion of the hydrostatic
wave equation’s dispersion relation matches a Taylor expansion of the hydrostatic
Boussinesq dispersion relation to as high an order as possible. Dispersion improvement
is sought by Trulsen & Dysthe (1996) and Thomas, Smith & Bühler (2017) using
slightly different methods to increase the accuracy of reduced equations for surface
gravity waves and near-inertial waves, respectively, and Thomas (2017) show that
a directly analogous modification improves an asymptotic model for acoustic waves.
We posit that this improvement of the hydrostatic wave equation follows the advice
of Roberts (1985) to choose a reconstituted equation with ‘the most direct connection
to the original full equations’.

4.1. An improved approximation to linear dispersion

We first modify (3.24) by adding the linear term cαf 2DAτ , where c is a constant
determined by fitting the dispersion relation of the resulting equation to the exact
dispersion relation implied by the hydrostatic Boussinesq system. This improvement
to (3.24) produces an equation that more faithfully describes exact linear dispersion
when DA 6= 0.

After dividing by α, the linear terms in the modified equation (3.24) + cαf 2DAτ
that remain when ψ = 0 are

[f 2(c+ 1)D− 2σ 2L]Aτ − iσ f 2(1− αL)A= 0. (4.1)

Assuming the spectral representation A ∼ eikx−iςτhnz(z), where k is a horizontal
wavenumber, ς is the deviation in wave frequency from σ , and hn are the hydrostatic
vertical modes that solve the eigenproblem

f 2

N2
hnzz + κ

2
n hn = 0, with hn = 0 at z=−H, 0, (4.2)
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FIGURE 1. (Colour online) Comparison of the exact hydrostatic mode-n Boussinesq
dispersion relation Σ/f with the dispersion relations (σ + ς)/f implied by (3.24) and
(4.5). Σ/f is given in (4.4) while (σ + ς)/f for (3.24) and (4.5) is given by (4.3) with
c= 0 and c=−3/2, respectively. All three are plotted in the main figure versus k/κn

√
α

on a logarithmic x-axis. A grey dotted line shows the asymptote at k/κn
√
α=
√

2(1+ α−1)
where the dispersion relation implied by (3.24) is undefined. The inset shows the fractional
error (σ + ς −Σ)/Σ versus k/κn

√
α.

leads to the linear dispersion relation implied by (4.1),

σ + ς = σ +
σ f 2(k2

− ακ2
n )

2(σκn)2 − f 2(c+ 1)(k2 − ακ2
n )
. (4.3)

The dispersion relation in (4.3) is an expansion of the exact vertical mode-n
hydrostatic dispersion relation,

Σ =±f

√
1+

k2

κ2
n

, (4.4)

around the wavenumber combinations k= κn
√
α that correspond to Σ = σ .

Taking one derivative of (4.3) and (4.4) with respect to k while holding κn constant
reveals that Σk = ςk at k= κn

√
α. This means that (4.1) correctly captures the group

velocity of waves with frequency σ regardless of the value of c. We choose c =
−3/2, therefore, to match the second derivatives ςkk and Σkk so that the approximate
dispersion relation σ + ς osculates the exact dispersion relation Σ . The choice c =
−3/2 also fixes the non-invertability of the operator that acts on Aτ in (3.24). The
linear terms in the improved equation f−2(3.24)− 3αDAτ/2 that remain when ψ = 0
are then

α

2
[1+ (4+ 3α)L]Aτ + iασDA= 0. (4.5)

Figure 1 compares the raw dispersion relation implied by (3.24) and the improved
dispersion relation implied by (4.5) with the exact dispersion relation of the
hydrostatic Boussinesq system.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.509


790 G. L. Wagner, G. Ferrando and W. R. Young

4.2. Restoration of Galilean invariance
The advection terms in (3.24) have the form J(ψ, •). These ψ-dependent terms
remain when the mean flow Ux̂+ V ŷ is horizontal and uniform with streamfunction
ψ = −Uy + Vx. Using σ 2/f 2

= α + 1, the advection terms in the improved equation
f−2(3.24)− 3αDAτ/2 become

α

2
[1+ (4+ 3α)L]Aτ + J(ψ, [α + 2]1A+ α2LA). (4.6)

Adding the small term

−

(
1
2
+

2
α

)
J(ψ,DA) (4.7)

to (4.6) produces
EAτ + J(ψ, EA), (4.8)

where
E def
=
α

2
[1+ (4+ 3α)L]. (4.9)

The terms in (4.8) describe the advection of the wave quantity EA by a velocity field
associated with ψ . Galilean invariance follows from the preservation of form under
the simultaneous transformations ψ 7→−Uy+ Vx+ψ and ∂τ 7→ ∂τ −U∂x − V∂y.

The two remodelling steps produce the much improved equation

f−2(3.24)−
3α
2

DAτ −
(

1
2
+

2
α

)
J(ψ,DA), (4.10)

which rearranges into

EAτ + J(ψ, EA)+ iασDA+ J(A,Dψ)−
2iσ
f 2
[J(ψx, iσAx − fAy)+ J(ψy, iσAy + fAx)]

+
iσ
f

[
∇h · (Dψ∇hA)−D

(
αf 2

N2
ψzAz

)
+ ∂z

(
αf 2

N2
ψzDA

)]
= 0. (4.11)

For the final remodelling step, we reconsolidate the slow and fast time scale to write
(4.11) in terms of the single time scale t. The result is (1.5).

4.3. Quasi-geostrophic perturbation of the mean stratification
In §§ 4.1 and 4.2 we added small terms to (3.24) to produce the much improved
equation (4.11). Note, however, that (3.24) already contains one small term,

∂z

(
αf 2

N2
ψzDA

)
, (4.12)

which has the same magnitude as the terms neglected in constructing (3.24). We
retain the small term (4.12) because it means the remodelled equation (4.11) more
faithfully encodes the dynamics associated with a quasi-geostrophic perturbation to
the background density stratification.

This physical process is isolated by considering the case where ψ(z) depends only
on z, so that ψ has no associated flow and acts only to perturb the buoyancy frequency
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from N2 to N2
+ fψzz. In this case, the familiar vertical differential operator L defined

in (1.3) is correspondingly perturbed into

∂z
f 2

N2 + fψzz
∂z = L−∂z

f 4

N4

ψzz

f
∂z︸ ︷︷ ︸

def
=M

+O(ε2L), (4.13)

where M is the O(ε) perturbation to L. Similar to the principle that our model
should retain the Boussinesq property of Galilean invariance in the case of uniform
flow, an acceptable approximation must capture the O(ε) perturbation to the density
stratification and dispersion relation induced by fψz and M.

Now consider the simplification of (4.11) when ψ=ψ(z). First, the Jacobians on the
first and second lines of (4.11) all reduce to zero. Next, some intricate simplifications
of the third line of (4.11), aided by the non-obvious identity

∂z

(
f 2

N2
ψzLA

)
− L

(
f 2

N2
ψzAz

)
= f MA, (4.14)

eventually reduce (4.11) to

EAτ + iασ [1− α(L+M)]A= 0. (4.15)

The effect of the static streamfunction ψ(z) is reduced to a transformation of the
dispersion operator D from 1− αL to 1− α (L+M). The formation of the proper
perturbed operator L + M in (4.15) requires the participation of the small term
(4.12). The inclusion of (4.12) thus gives (4.11) a more faithful description of the
modification of internal wave dispersion by quasi-geostrophic perturbations to the
density stratification.

5. The non-conservation of wave action
Bretherton & Garrett (1968) show that the amplitudes of slowly varying waves in

inhomogeneous moving media are determined by the conservation of an adiabatic
invariant called ‘wave action’. Wave action is defined as wave energy divided by
intrinsic frequency, or the frequency of the wave field measured by an observer
moving with the local velocity of the medium. Wave action conservation shows
explicitly that wave field spatial distortions and associated shifts in frequency and
spectral content are attended by transfers of energy with the inhomogeneous medium
through which the waves propagate.

We ask whether a form of wave action is conserved by the hydrostatic wave
equation (1.5), in which case the medium is a quasi-geostrophic flow that evolves
slowly in time but varies rapidly in space. For example, when the quasi-geostrophic
flow varies slowly in both time and space, wave action is conserved (Salmon 2016)
and is used by Bühler & McIntyre (2005) to demonstrate that wave capture transfers
quasi-geostrophic energy to the ocean’s internal wave field. Also, the near-inertial
equation derived by Young & Ben Jelloul (1997), which is similar to (1.5) above,
conserves a form of wave action equal to the volume-integrated wave field kinetic
energy divided by the local inertial frequency.

In this section we show that (1.5) does not conserve wave action. Instead, the
version of wave action implied by equation (1.5), which is similar but not equivalent
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to wave energy divided by its near-constant frequency σ , evolves as a direct
consequence of wave field’s non-satisfaction of the linear equations and associated
non-adherence to a linear dispersion relation. The inhomogeneity that forces wave
action evolution originates from the term describing wave field advection by the
non-uniform quasi-geostrophic flow.

An evolution equation for wave action in the hydrostatic wave equation emerges
from the combination

1
α2σ

∫
A∗ × (1.5)+ A× (1.5)∗ dV, (5.1)

assuming that exact derivatives over the domain V integrate to zero. One useful
identity that helps to simplify (5.1) writes the operator E in terms of D,

E= 2(1+ α)1−
4+ 3α

2
D, (5.2)

and a second forms an exact derivative from one of the horizontal refraction terms in
(5.1),

A∗∇h · (Dψ∇hA)− A∇h · (Dψ∇hA∗)=∇h · [Dψ(A∗∇hA− A∇hA∗)]. (5.3)

A third identity that leads to a cancellation between two Jacobians and part of the
advection term J(ψ, EA) is∫

A∗J(ψ, 1A)+ AJ(ψ, 1A∗) dV =−
∫

A∗[J(ψx, Ax)+ J(ψy, Ay)] dV + c.c. (5.4)

Finally, we note that all the terms in (1.5) with i as factor cancel each other during
the integration in (5.1). For example, a few integrations by parts yields the identity∫

A∗J(ψx, Ay)− A∗J(ψy, Ax) dV =
∫

A∂y[J(ψx, A∗)] − A∂x[J(ψy, A∗)] dV, (5.5)

=

∫
AJ(ψx, A∗y)− AJ(ψy, A∗x) dV. (5.6)

Because (5.6) is the complex conjugate of the left-hand side of (5.5), both quantities
are real and cancel during the simplification of (5.1).

Assembling these and additional identities and using many integrations by parts
eventually produces an evolution equation for A, the wave action:

dA
dt
=

4+ 3α
2α2σ

∫
ψ[J(A∗,DA)+ J(A,DA∗)] dV, (5.7)

where

A def
=

1
2ασ

∫
|∇hA|2 + (4+ 3α)

f 2

N2
|Az|

2 dV. (5.8)

The magnitude of the residual on the right-hand side of (5.7) depends explicitly on
the fact that DA 6= 0. The residual on the right-hand side of (5.7) is smaller than the
individual contributions on the left-hand side of (5.7) by O(ε).

The wave action in (5.8) resembles, but is not equal to, Bretherton & Garrett’s
definition of wave energy divided by intrinsic frequency. The wave energy, or the
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wave-associated part of horizontal kinetic plus potential energy contained in the
leading-order solution (3.13) and (3.16), is defined in (B 10) and given by

EA
=

∫
α + 2
α2
|∇hA|2 +

f 2

N2
|Az|

2 dV. (5.9)

Subtracting (α + 4)(2α2σ)−1
∫

A∗DA dV from (5.1) and using the identity∫
A∗DA dV = α

∫
f 2

N2
|Az|

2 dV −
∫
|∇hA|2 dV (5.10)

reveals the relationship

A=
EA

σ
+
α + 4
2α2σ

∫
A∗DA dV (5.11)

between wave action A and energy EA. The difference between action in the
hydrostatic wave equation and EA/σ depends on the fact that DA 6= 0. Substituting
(5.11) into (5.7) yields an equation for the evolution of wave energy, which is not
conserved in the hydrostatic wave equation (1.5).

Curiously, models that conserve wave action can be constructed with modifications
to (3.24) that are similar to the modifications made in § 4. These action- and
energy-conserving models lack either Galilean invariance or improved dispersion.
In some exploratory simulations, a model without improved dispersion fared worse
and had a more limited regime of validity than (1.5). Without Galilean invariance the
model does not exactly describe Doppler shifting, though the consequences of such
an inaccuracy have not been explored. In § 6.6 we show that both A and EA are
nearly but not exactly conserved when a plane, vertical mode-one wave is distorted
by two-dimensional turbulence.

6. Validation
To build confidence in the validity of the hydrostatic wave equation (1.5), we

compare solutions to the linearized, hydrostatic Boussinesq equations and hydrostatic
wave equation for a suite of initial value problems. The initial value problems expose
20 vertical mode-one, horizontal plane waves with varying α to three two-dimensional
turbulent flows with varying ε. Though this parameter study neglects the effects of
vertical shear and buoyancy refraction, it nevertheless defines a region in α, ε space
where the model is accurate and provides a glimpse of how the hydrostatic wave
equation fails as ε increases or α decreases.

6.1. The linearized hydrostatic Boussinesq equations and two-dimensional turbulence
We linearize the hydrostatic Boussinesq equations around a two-dimensional mean
flow

U(x, y, t)=−ψyx̂+ψxŷ (6.1)

by substituting u 7→ U + u in (2.1)–(2.5) and discarding terms quadratic in u and b.
These steps yield the set

ut +U · ∇u+ u · ∇U − fv + px = 0, (6.2)
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vt +U · ∇v + u · ∇V + fu+ py = 0, (6.3)
pz = b, (6.4)

bt +U · ∇b+wN2
= 0, (6.5)

ux + vy +wz = 0. (6.6)

Equations (6.2)–(6.6) describe the advection and refraction of waves by a two-
dimensional flow with Uz = ψz = 0 and thus no buoyancy field. The linearization
neglects the complications of nonlinear wave dynamics and permits a two-
dimensionalization of (6.2)–(6.6) by projection onto vertical modes. Neither viscous
dissipation in (6.2)–(6.4) nor diffusion in (6.5) is required to stabilize (6.2)–(6.6) for
any of the solutions we report.

The streamfunction ψ in (1.5) and (6.1) obeys the two-dimensional vorticity
equation with fourth-order hyperviscous dissipation,

1ψt + J(ψ, 1ψ)=−νψ12(1ψ), (6.7)

where νψ is the hyperviscosity applied to 1ψ . The solutions to (6.7) we consider
are relatively viscous and low resolution, but still exhibit characteristic features of
geophysical and two-dimensional turbulence, such as persistent coherent vortices.

6.2. The vertical mode decomposition
We restrict attention to waves with simple vertical structure by projecting (1.5) and
(6.2)–(6.6) onto the hydrostatic vertical modes hn(z) that solve the eigenproblem

f 2

N2
hnzz + κ

2
n hn = 0, with hn = 0 at z=−H, 0. (6.8)

Note that the derivative hnz satisfies L hnz = −κ
2
n hnz. The modal amplitudes of the

independent variables A, u, b, p are defined by their weighted projection onto hn or
its derivative hnz, with

Φn
def
=

∫ 0

−H
Φhnz dz forΦ = (A, u, v, p), (6.9)

and

bn
def
=

∫ 0

−H
b hn dz and wn

def
=

∫ 0

−H

N2κ2
n

f 2
whn dz. (6.10a,b)

We assume A, u, b and p satisfy free-slip, rigid-lid homogeneous boundary conditions
with Az = uz = vz = pz = 0 and w= b= 0 at z=−H, 0.

To project the hydrostatic wave equation (1.5) onto the modes hnz, we note that ψ
is two-dimensional and discard terms that depend on ψz, multiply by hnz, integrate
from z = −H to z = 0 and apply the definition of An in (6.9). We add eighth-order
hyperviscosity to the result for numerical stability to obtain

EnAnt + iασDnAn + J(ψ, EnAn)+ J(An, 1ψ)+
iσ
f
∇h · (1ψ∇hAn)

−
2iσ
f 2
[J(ψx, iσAnx − fAny)+ J(ψy, iσAny + fAnx)] =−νA1

4(1An), (6.11)
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where νA is the hyperviscosity applied to An, and the mode-wise operators En and Dn
are

En =
α

2
[1− κ2

n (4+ 3α)] and Dn =1+ ακ
2
n . (6.12a,b)

Equation (6.11) describes the horizontal propagation of a mode-n wave field with
amplitude An(x, y, t) through two-dimensional turbulence with streamfunction ψ . The
arbitrary stratification profile N(z) enters (6.11) via the eigenvalue κ2

n determined by
(6.8).

The linearized Boussinesq equations (6.2)–(6.6) are processed in similar fashion. We
project (6.2) and (6.3) onto hnz, which yields

unt − fvn + pnx =−U · ∇un − un · ∇U, (6.13)
vnt + fun + pny =−U · ∇vn − un · ∇V. (6.14)

We next combine (6.4)–(6.6) by projecting (6.6) onto hnz, integrating by parts once and
using (6.8) to yield wn =−unx − vny. Then, using pz = b to combine (6.4) and (6.5),
projecting the result onto hn, integrating by parts and substituting wn=−unx−vny leads
to

pnt +

(
f
κn

)2

(unx + vny)=−U · ∇pn. (6.15)

The three equations (6.13)–(6.15) describe the evolution of hydrostatic, vertical mode-
n waves in a two-dimensional flow U=Ux̂+ V ŷ with Uz = 0. The parameter f /κn is
the phase speed of a linear wave with mode-n vertical structure.

6.3. Initial value problems and numerical methods
We solve (6.7) simultaneously with (6.11) and (6.13)–(6.15) for a series of initial
value problems that place a horizontal plane wave with the vertical structure of a
single vertical mode into mature two-dimensional turbulence in a doubly periodic
domain. The periodic physical domain is square with dimension L= 1600 km, which
fits 16 wavelengths of a plane wave with dimensional wavenumber k0 = π/50 km−1.
In varying α from 0.1 to 2, we fix the domain size L, wavenumber k0, initial
turbulent field ψ and inertial frequency f = 10−4 s−1 while co-varying κn = k0/

√
α

and σ = f
√

1+ α with α.
The initial condition for An,

An(t= 0)= eik0xa, (6.16)

excites a rightward propagating horizontal plane wave. In (6.16) a is the constant
initial magnitude of An and k0 = π/50 km−1 is the wave field’s initial wavenumber.
The linearized nature of both (6.11) and (6.13)–(6.15) means the initial magnitude
of the wave field is arbitrary; we choose a = αf /2k0

√
α + 2 to produce an initial

maximum speed max(
√

u2
n + v

2
n)= 1 m s−1.

The initial conditions for pn, un and vn in (6.13)–(6.15) are

[pn, un, vn]t=0 =
2a
αf 2
[αf 3 cos(k0x), k0σ cos(k0x), k0f sin(k0x)] (6.17)

corresponding to the same progressive plane wave in (6.16) with the mode-n pressure
field pn = 2af cos

(
k0x− σ t

)
at t= 0.
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We generate three turbulent initial conditions for ψ by integrating (6.7) from the
random state

ψ̂(t=−T)=
Ψ eiθ
√

k2 + `2(
1+ k−1

c

√
k2 + `2

)8 , (6.18)

for a preliminary interval of length T up to t = 0. In (6.18) ψ̂(k, `, t) is the
two-dimensional Fourier transform of ψ(x, y, t) and θ(k, `) is the random initial
phase of wavenumber k, `. We choose the dimensional value kc = 64 × 2π/L in
(6.18) so that the energy spectra (k2

+ `2)|ψ̂ |2 is initially concentrated around
non-dimensional wavenumber 64. Three magnitudes Ψ in (6.18) are chosen so
the random state in (6.18) has the root-mean-square (r.m.s.) Rossby numbers
r.m.s. (1ψ/f )= (0.07, 0.1, 0.2). The resulting random states are then integrated for the
preliminary intervals T = (600, 400, 200)× 2π/f s, respectively, to produce turbulent
initial conditions ψ(t = 0) with the properties max(1ψ/f ) ≈ (0.033, 0.064, 0.14)
and max(|∇ψ |k0/f ) ≈ (0.039, 0.060, 0.12). The parameters and intervals used for
the preliminary integrations are tuned so that max(1ψ/f ) and max(|∇ψ |k0/f ) are
similar for each of the initial turbulent states, which implies that all terms in (6.11)
are of comparable importance. Hereafter we use max(1ψ/f ) ≈ (0.033, 0.064, 0.14)
as reference values for ε.

Equations (6.7), (6.11) and (6.13)–(6.15) are solved on a square doubly periodic
domain using a dealiased pseudospectral method with 2562 Fourier modes in x and y.
The ETDRK4 scheme described by Cox & Matthews (2002), Kassam & Trefethen
(2005) and Grooms & Julien (2011) is used to integrate (6.7) and (6.11) in time,
while a fourth-order Runge–Kutta scheme is used to integrate the modal hydrostatic
Boussinesq equations (6.13)–(6.15). We use the hyperviscosities νψ = 3× 108 m4 s−1

in (6.7) and νA = 1024 m8 s−1 in (6.11). Due to hyperdissipation the three turbulent
fields lose 1 %–3 % of their energy at t = 0 over the few hundred wave periods that
we consider.

6.4. Wave field evolution with α = 1 and ε ≈ 0.14
The initial turbulent field and the evolution of An in the hydrostatic wave equation
and un, vn and pn in the linearized Boussinesq equations are shown in figure 2 for
a case with wave Burger number α = 1 and Rossby number ε ≈max(1ψ/f )≈ 0.14.
Figure 2(a–c) shows the initial normalized turbulent vorticity 1ψ/f , speed |∇ψ |, and
energy spectra (k2

+ `2)|ψ̂ |2 from left to right. Turbulent vorticity is concentrated
in coherent vortices and turbulent energy in non-dimensional wavenumbers less
than
√

k2 + `2 ≈ 8. As a result, wave field spectral components experience a gradual
diffusion to nearby wavenumbers rather than the sharper reflection that a smaller-scale
turbulent field would incur. Hereafter in figures and text the wavenumbers k and `
denote non-dimensional Fourier wavenumbers normalized by 2π/L.

Figure 2(d–o) portrays the turbulent scattering of the initially planar wave field in
four snapshots at t= 2, 8, 32 and 128 wave periods. Figure 2(d–k) shows snapshots
of mode-wise wave speed,

V(x, y, t) def
=

√
u2

n + v
2
n, (6.19)

which is diagnosed from the hydrostatic wave equation solution using the leading-
order relations in (3.16). We use subscripts to differentiate between models, so that
VB is diagnosed from the linearized hydrostatic Boussinesq system (6.13)–(6.15),
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FIGURE 2. (Colour online) Scattering of a plane wave with frequency σ = f
√

2 and thus
α = 1 by two-dimensional turbulence with maximum vorticity max(1ψ/f )≈ 0.14 in the
linearized Boussinesq equations and the hydrostatic wave equation. Parameters and initial
conditions are given in § 6.3. (a–c) Show the initial turbulent vorticity, speed and energy
spectra. (d–o) Show wave field evolution in four snapshots: (d–g) shows speed VB in
the linearized hydrostatic Boussinesq system (6.13)–(6.15); (h–k) shows speed VA in the
hydrostatic wave equation (6.11); and (l–o) shows the logarithm of the spectral measure
υA from the hydrostatic wave equation. V and υ are defined in (6.19) and (6.20).

and VA from the hydrostatic wave equation (6.11). Figure 2(l–o) shows snapshots of
the normalized wave potential energy spectra

υ(k, `, t) def
=

|Ân|
2∫

|Ân|
2 dk d`

(6.20)

from the hydrostatic wave equation (6.11).
The snapshots of speed V and spectra υ reveal how wave scattering by turbulence

both smears wave energy to wavenumber magnitudes higher and lower than k0 and
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leads eventually to an isotropization of wave energy around the circle k2
+ `2
= k2

0. The
smearing of energy around k0 indicates the importance of near-resonant interactions
between waves and turbulence. At t = 2 most of the energy is concentrated at
k = k0. By t = 8 the initial stages of isotropization are underway, attended by a
focusing and concentration of wave energy in strips parallel to the original direction
of wave propagation. Focusing is generic in the scattering of parallel incident waves,
especially in the geometrics optics limit (White & Fornberg 1998; Nye 1999). As the
isotropization proceeds, random focusing gives way to almost isotropic disorder by
t= 128.

The agreement between the two models is impressive: excellent correspondence
both in the spatial structure and quantitative amplitude of wave field energy persists
to t = 128 wave periods. Interestingly, the most obvious differences in wave speed
are at the earliest time t = 2 wave periods. The pointwise comparison of wave
speed over hundreds of wave periods is a severe test of the asymptotic model, and
correspondences between wave field spectra and statistics diagnosed from the two
models for the same parameters are closer still. We find that for the parameters
explored here, such good agreement holds approximately when ε/α < 0.2. For larger
values of ε/α nonlinear advection and refraction overcome the effects of dispersion,
which consequently leads to non-small DA, disrupts the assumed ordering of terms in
the wave operator equation (2.8), and invalidates the assumptions used to derive (1.5).

6.5. Physical space and statistical comparisons across α, ε parameter space
We next explore the α, ε parameter space with 60 simulations of both the hydrostatic
wave equation (6.11) and linearized Boussinesq system (6.13)–(6.15). The 60 cases
correspond to 20 equispaced values of α between α = 0.1 and α = 2 for each of the
3 turbulent vorticity fields with ε≈ 0.033, 0.064 and 0.14. We compare physical fields
and spectra of the two models before using a bulk measure of physical space error in
solutions to the hydrostatic wave equation to compare the results in aggregate.

Figure 3 compares snapshots of wave speed V from four linearized Boussinesq and
hydrostatic wave equation solutions with α = 0.2, 0.4, 0.8 and 0.16 and ε ≈ 0.064 at
t= 10α wave periods. Figure 3(a–d) shows wave speed VB defined in (6.19) from the
linearized Boussinesq equations, (e–h) shows VA from the hydrostatic wave equation
and (i–l) shows the absolute error |VB−VA| between the two. The results show clearly
that for fixed ε the error decreases when α increases; when α= 1.6 and ε≈ 0.064 the
pointwise error in wave speed after t = 160 wave periods is almost everywhere less
than 10 % of its initial value. Despite the relatively large errors when α = 0.2, the
spatial structure of V is broadly similar between both models.

The pointwise comparison of wave speed V is a strict test of model accuracy. We
move toward less stringent statistical comparisons with figure 4, which replicates the
form of figure 3 for snapshots of the normalized spectral amplitudes υ defined in
(6.20) in terms of Ân. To estimate An from the linearized Boussinesq solution, we
observe that the definition of A in terms of p in (3.11) implies that

pnt =−iσ(e−iσ tAn − eiσ tA∗n)+ e−iσ tAnt + eiσ tA∗nt. (6.21)

Due to the slow variation of An, which implies that Ant/σAn∼ ε� 1, the parenthetical
terms in (6.21) are both O(ε−1) larger than the two rightmost terms. This implies the
approximate formula for An

An ≈
eiσ t

2f
(pn + iσ−1pnt), (6.22)
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FIGURE 3. (Colour online) A qualitative physical space comparison between snapshots of
wave speed from the linearized Boussinesq equations and the hydrostatic wave equation
for four initial value problems with wave Burger numbers α= 0.2, 0.4, 0.8 and 1.6. The
snapshots are taken at t= 10α wave periods. The initial value problems expose an initially
planar wave field to a two-dimensional turbulent flow with ε ≈max(1ψ/f )≈ 0.064 and
are described in § 6.3. (a–d), (e–h) Show wave speed VB from the linearized Boussinesq
system and VA from the hydrostatic wave equation, respectively, and (i–l) shows the
absolute error |VB − VA|.

in terms of the linearized Boussinesq variables pn and pnt. The Fourier transform of
(6.22) provides an estimate of Ân from p̂n.

Figures 4(a–d) and 4(e–h) show υB from the linearized Boussinesq system and υA
hydrostatic wave equation, scaled logarithmically. The spectral amplitudes υ for each
model are remarkably similar. Figure 4(i–l) shows the absolute difference |υB − υA|

between figures 4(a–d) and 4(e–h). Spectral errors are small and decrease with
increasing α for fixed ε.

We next isolate specific modes of model failure by moving from the non-
dimensional Cartesian spectral coordinates k, ` into the polar spectral coordinates
~, θ defined so that k = ~ cos θ and ` = ~ sin θ . We define the spectral integral
measure Υ as

Υ (~, t) def
=

∫ 2π

0
|Ân|

2~ dθ. (6.23)

Υ is similar to the one-dimensional energy spectra common to the analysis of
turbulence and the integral

∫
Υ d~ is proportional to total wave field potential energy.

Υ reveals the radial distribution of |Ân|
2 and thus measures the spatial scales in Ân

regardless of the direction of propagation of the mode k, `. To calculate Υ numerically
we interpolate Ân known at discrete k, ` values onto a 1024× 256 grid in ~, θ and
integrate |Ân|

2 over θ .
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FIGURE 4. (Colour online) Comparison of normalized potential energy spectral amplitudes
υ defined in (6.20) for the same simulations considered in figure 3. (a–d) Shows υB from
the linearized Boussinesq equations, (e–h) shows υA from the hydrostatic wave equation
and (i–l) shows the absolute difference |υB − υA|, all scaled logarithmically.

Figure 5 shows snapshots of Υ at t≈13α/ε wave periods for six cases with varying
α and ε: in (a) ε ≈ 0.064 is held constant and α is varied, while in (b) α = 0.2 is
held constant and ε is varied. In (a,b) Υ is normalized by

∫
Υ d~ from the linearized

Boussinesq solution. Figures 5(c) and 5(d) compare snapshots of VB and VA for the
case ε = 0.064 and α = 0.1. The Υ comparisons reveal aspects both of wave–flow
interaction and the errors that develop in the hydrostatic wave equation for small α/ε:
first, because exactly ‘resonant’ wave–flow interactions only redistribute energy among
wave modes with ~ = 16, the width of Υ associated with energy at off-dispersion
wavenumbers around ~ = 16 is due explicitly to near-resonant dynamics. Second,
all curves are asymmetric about the central wavenumber ~ = 16, showing that
these near-resonant interactions preferentially shift energy to higher wavenumbers.
Third, the most severe errors in Υ in the hydrostatic wave equation are associated
with an over-prediction of wave energy at very high wavenumbers. The worst case
comparison in figure 5(c,d) shows how these errors manifest as regions of spuriously
intense small-scale wave activity.

We finally aggregate all solutions by introducing two bulk metrics: the ‘integrated
error’ and ‘maximum error’. Integrated error measures the total sum of errors in
snapshots of wave speed and is defined by

integrated error def
=

∫
|VB − VA| dx dy∫

VB dx dy
. (6.24)
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FIGURE 5. (Colour online) Comparison of the polar-integrated spectral measure Υ (~)
defined in (6.23) in the linearized Boussinesq equations (solid lines) and hydrostatic wave
equation (dashed lines), both normalized by

∫
Υ d~ from the linear Boussinesq result.

(a) Compares four solutions with ε ≈ 0.064 with varying α while (b) compares three
solutions with α = 0.2 and varying ε. A dotted line indicates the wave field’s initial
wavenumber ~=16. (c,d) Show wave speed V from the two models for the case ε=0.064
and α = 0.1 to illustrate the spuriously intense small-scale features that develop in the
hydrostatic wave equation solution when α/ε is small. All snapshots are taken at t≈13α/ε
wave periods.

The maximum error defined by

maximum error def
=

max |VB − VA|

max(VB)
(6.25)

isolates the worst case relative errors in wave speed at particular locations and times.
Figure 6 shows snapshots of integrated error and maximum error for all 60 initial
value problems as a function of α. The snapshots are taken at the approximate time
t≈ 6.5α/ε wave periods. All errors decrease both as ε decreases and as α increases.
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FIGURE 6. (Colour online) Integrated and maximum pointwise error in 60 solutions to
the hydrostatic wave equation corresponding to three values of ε ≈ max(1ψ/f ) and 20
values of α. For every solution the error is computed at t ≈ 6.5α/ε wave periods. The
integrated error is defined in (6.24) and maximum error is the maximum pointwise error
in speed defined in (6.25).

The maximum error in the physical space solution is less than 10 % when ε 6 0.064
and α > 0.8, but is never less than 10 % when ε ≈ 0.14 for the range of α and time
snapshots considered. Maximum errors increases sharply for small α and are more
than 50 % when α 6 0.2 for all ε.

6.6. The evolution of wave energy and action
We turn at last to the transfer of energy between waves and turbulence. We use
the evolution of wave action A defined in (5.8) to diagnose energy transfers in the
hydrostatic wave equation. The mode-wise version of A is

An =
1

2ασ

∫
|∇hAn|

2
+ (4+ 3α)κ2

n |An|
2 dx dy. (6.26)

An equation for the evolution of wave energy density in the linearized Boussinesq
equations follows from the combination un(6.13)+ vn(6.14)+ (κn/f )2pn(6.15), which
produces

eB
nt +∇ · (unpn +UeB

n )=−unun · ∇U − vnun · ∇V, (6.27)

where wave energy density is defined

eB
n

def
=

1
2

u2
n +

1
2
v2

n +
κ2

n

2f 2
p2

n. (6.28)

The superscript ‘B’ stands for ‘Boussinesq’. The total mode-wise wave energy EB
n

def
=∫

eB
n dV , which is not conserved in (6.13)–(6.15) due to the non-zero right-hand side

of (6.27), is therefore

EB
n =

1
2

∫
u2

n + v
2
n +

κ2
n

f 2
p2

n dx dy. (6.29)
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FIGURE 7. (Colour online) Comparison of σAn (dashed lines) and EB
n (solid lines), both

normalized by the initial wave energy EB
n (t= 0). (a) Shows three cases with α= 0.4, 0.8

and 1.6 with ε≈ 0.064 and (b) shows three cases with the same α and ε≈ 0.14. Both A
and EB are conserved to within a few per cent in all cases except α = 0.4 and ε ≈ 0.14.
Note that the panels have different y-axes.

We compare the evolution of σAn and EB
n , which are initially equal for the initial

conditions in (6.16)–(6.17) because DnAn|t=0 = 0. The product σAn and wave energy
in the hydrostatic wave equation are closely related by the identity in (5.11).

Our comparison is summarized in figure 7, which shows the evolution of σAn and
EB

n both normalized by total initial wave energy EB
n (t= 0) for three values of α= 0.4,

0.8, 1.6. Figure 7(a) corresponds to the case ε ≈ 0.064 and (b) to ε ≈ 0.14. Even in
the most nonlinear case with ε≈ 0.14 the energy of the linearized Boussinesq solution
remains within 1 % of its initial value: in other words, there is almost no transfer
of energy between waves and flow in these non-near-inertial cases. The comparison
shows also that the mode-wise wave action An is nearly conserved when ε/α is small.
The ∼10 % change in An at ε ≈ 0.14 and α = 0.4 betrays the strong increases in An
that manifest when ε/α approaches unity.

The lack of energy transfer between non-inertial waves and quasi-geostrophic flow
in our Boussinesq simulations is surprising in light of analytical (Bühler & McIntyre
2005) and observational (Polzin 2010) results and numerous analogous results for
the near-inertial case (Xie & Vanneste 2015; Taylor & Straub 2016; Wagner &
Young 2016; Barkan et al. 2017; Shakespeare & Hogg 2017). The absence of energy
transfer is possibly associated with the strong dispersivity of non-inertial waves,
which prevents the cascade of wave energy to relatively small horizontal scales
associated with energy transfer in the weakly dispersive near-inertial case. The main
qualitative impact of turbulent distortion illustrated by figure 2 appears instead to be
the development of caustic-like features from the monochromatic wave field followed
by the formation of a complex network of ‘wave dislocations’ (Nye & Berry 1974)
as the nearly sinusoidal wave field becomes isotropic. In addition, we stress that the
linearized model can only suggest the importance of energy transfer, since it does
not include the feedback onto the mean flow associated with energy transfers to and
from the wave field and thus does not describe the full dynamics of the coupled
system. A more complete assessment of energy transfer between internal tides and
quasi-geostrophic flow requires a coupled, energy-conserving model.

In summary, both the hydrostatic wave equation and the linearized Boussinesq
system exhibit weak energy transfers between waves and turbulence, and the small
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transfers in the hydrostatic wave equation are systematically larger than those
in linearized Boussinesq system. In the least accurate case in figure 7 where
(α, ε) = (0.4, 0.14), the hydrostatic wave equation has transfers of the order of
7 %–11 %, while the Boussinesq transfers are always less than 1 %. We speculate that
increasing ε will result in larger transfers, but characterization of these transfers lies
beyond our present scope.

6.7. Summary of § 6
The hydrostatic wave equation provides an accurate approximation of linearized
Boussinesq dynamics when ε/α is small, or when the wave frequency is sufficiently
far from inertial and the quasi-geostrophic flow is weak enough in combination. For
example, here the maximum error is everywhere less than 10 % when ε 6 0.064
and α > 0.8. Conversely, great care must be taken in using (1.5) when the wave
field approaches near inertial: when α < 0.5 and σ < 1.22f , maximum error in the
hydrostatic wave equation is less than 10 % only when the mean flow is very weak
and ε6 0.033. Failures of the hydrostatic wave equation are systematically associated
with too large transfers of wave energy to high wavenumbers and the subsequent
development of spuriously small spatial scales in the wave field. Yet even when
the hydrostatic wave equation does not well-predict wave field spatial structure it
may provide a decent approximation of wave field statistics such as the spectral
distribution of wave energy. Finally, for the cases we consider, waves and turbulence
exchange only small amounts of energy.

7. Discussion
This paper introduces the ‘hydrostatic wave equation’: a new reduced model for the

propagation of three-dimensional hydrostatic internal waves through quasi-geostrophic
mean flow. The hydrostatic wave equation exhibited in (1.5) is appropriate for
describing the propagation of non-inertial internal tides of arbitrary scale through
the inhomogeneous ocean. The primary virtues of the hydrostatic wave equation are
the filtering of fast wave oscillations, lack of spatial scale separation assumptions,
and description of near-resonant interactions permitted by our use of the method of
reconstitution described by Roberts (1985). This time averaging isolates nonlinear
advection and refraction on the slow time scales of quasi-geostrophic flow evolution
and permits the use of relatively large time steps in numerical solutions. Time filtering
thus facilitates both computations and theoretical analysis, such as an estimate of
internal tide scattering rates similar to that applied to Young and Ben Jelloul’s
near-inertial equation by Danioux & Vanneste (2016). The costs of filtering are the
errors that emerge when the mean flow is too strong.

The reconstitution of linear leading wave terms with the weakly nonlinear wave–
mean interaction terms is central to our derivation of a physical space hydrostatic
wave model unencumbered by spatial-scale separation assumptions. Reconstitution has
a price, however, in its discomfiting proliferation of a ‘plethora of permissible forms’
for the hydrostatic wave equation, all with the same formal asymptotic error. This
issue is resolved by adding and subtracting terms that lie ‘in the noise’ of the formal
asymptotic error to obtain a model that best reproduces the dynamics of the linearized
hydrostatic Boussinesq equations. We find, like Thomas (2017) finds in the context
of acoustic waves, that the most accurate Galilean invariant model with respect to
this criterion is the one with an improved approximation of the parent model’s linear
dispersion relation – rather than, for example, a model that conserves wave action or
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energy. This apparent superiority of accurate linear dynamics over exact conservation
laws may be notable, but further work is needed for firm conclusions.

An examination of terms in the hydrostatic wave equation (1.5) refines notions of
hydrostatic internal wave ‘advection’ and ‘refraction’. In the hydrostatic Boussinesq
system, advection and refraction are each associated with three terms in the
momentum and buoyancy equations with the form ū · ∇ũ and ũ · ∇ū for advection
and refraction respectively, where ũ and ū are wave and mean velocity fields. Yet
only part of ū · ∇ũ, for example, is associated with J(ψ,EA), which as the advection
term of (1.5) ensures Galilean invariance, has the fewest derivatives on ψ and is
the only surviving nonlinear term in the ‘Wentzel–Kramers–Brillouin (WKB)’ limit
where ψ has much larger scales than A. It is notable that the remaining parts of the
Boussinesq advection terms cannot be distinguished from refraction terms, as they
cancel and combine to produce the Jacobians on the second line of (1.5). The ‘true’
refraction terms that emerge from (1.5), with three derivatives on ψ and one on A,
are

J(A,Dψ)+
iσ
f

(
∇hA · ∇hDψ −

αf 2

N2
AzDψz

)
. (7.1)

The terms in (7.1) are largest when ψ has much smaller scales than A and are some,
but not all, of the terms associated with wave advection of quasi-geostrophic vorticity
and buoyancy fields. The metamorphosis of advection and refraction terms in the
Boussinesq system into three types of terms in (1.5) – advection terms with one
derivative on ψ and three on A, refraction terms with three derivatives on ψ and
one on A and intermediate terms with two derivatives on ψ and A each – is due
to the derivatives that operate on the nonlinear terms in the Boussinesq equations’
wave operator form (2.8). This classification of terms exposes two potential further
reductions of (1.5) – the WKB approximation justified when the mean flow has a
relatively large scale, which retains only the advection term J(ψ, EA) from (1.5), or
a ‘refractive’ approximation justified when the mean flow has a much smaller spatial
scale than the wave field that retains only the terms in (7.1) from the right-hand side
of (1.5).

A natural question is whether the hydrostatic wave equation can be coupled to
the quasi-geostrophic equation in a two-component wave–flow model similar to
the models derived by Xie & Vanneste (2015) and Wagner & Young (2016) for
near-inertial waves. Such a coupled model may be derived by using the leading-order
expressions in (3.16) to evaluate the wave contribution to potential vorticity, qw,
defined in equation (1.3) of Wagner & Young (2015). Evaluating qw and diagnosing
the nonlinear mean flows associated with hydrostatic waves may reveal important
analogies between nonlinear optical phenomena associated with wave dislocations
and phase singularities (Desyatnikov, Kivshar & Torner 2005) and nonlinear internal
wave evolution. And a coupled tide–flow model could elucidate the effects that
strong oceanic internal tides and tide-induced mean flows have on the energetics and
evolution of quasi-geostrophic fronts and eddies, the main reservoir of oceanic kinetic
energy and principal agent of oceanic isopycnal stirring.
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Appendix A. Wave operator form of the hydrostatic Boussinesq equations
Equations (2.1)–(2.5) can be formulated in terms of a wave operator. To obtain this

we first add ∂t(2.3) to ∂zN−2(2.4), multiply by f 2, and use (2.5) to find

f 2(ux + vy)= Lpt + ∂z
f 2

N2
(u · ∇pz). (A 1)

Subtracting ∂y(2.1) from ∂x(2.2), multiplying by f and using (A 1) yields the vertical
vorticity equation,

f ∂t(vx − uy)+ Lpt =−f∇⊥ · (u · ∇)u− ∂z
f 2

N2
(u · ∇pz), (A 2)

where ∇⊥=−∂yx̂+ ∂xŷ. Next, adding ∂x(2.1) to ∂y(2.2), using (A 1), and operating on
the result with f 2∂t leads to

∂t(∂
2
t L+ f 21)p+ ∂z∂

2
t

f 2

N2
(u · ∇pz)− f 3ωt =−f 2∂t∂x(u · ∇u)− f 2∂t∂y(u · ∇v). (A 3)

Adding (A 3) to f 2(A 2) eliminates f 3ωt and yields the wave operator form of (2.1)
through (2.5),

∂t[∂
2
t L+ f 2(1+ L)]p=−f 2(∂t∇h + f∇⊥) · (u · ∇)u− ∂z

f 2

N2
(∂2

t + f 2)(u · ∇pz), (A 4)

where ∇h = ∂xx̂+ ∂yŷ is the horizontal part of the gradient operator.

Appendix B. The part of RHS in (3.18) proportional to e−iσ t̃

In this appendix we parse the right-hand side of (3.17), or ‘RHS’, for its part
proportional to e−iσ t̃. The RHS defined in (3.18) is

RHS=−f 2(∂t̃∇h + f∇⊥) · (u · ∇)u− ∂z
f 2

N2
(∂2

t̃ + f 2)(u · ∇pz). (B 1)

In (B 1) and hereafter we drop the subscripts ‘0’ denoting leading-order fields for
clarity. All fields are leading-order, so that (u, p)= (u0, p0).

B.1. The leading-order solution
The leading-order pressure is

p= f (ψ + e−iσ t̃A+ eiσ t̃A∗), (B 2)

and the velocity u is given in (3.16). An expression more compact than (3.16) and
useful for the strenuous bookkeeping that follows is

u=∇⊥ψ −
e−iσ t̃

αf
(iσ∇α + f∇⊥)A+

eiσ t̃

αf
(iσ∇α − f∇⊥)A∗, (B 3)

where ∇⊥ =−∂yx̂+ ∂xŷ and the three-component vector operator ∇α is defined

∇α
def
= ∂xx̂+ ∂yŷ−

αf 2

N2
∂zẑ. (B 4)
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Notice that ∇α does not commute with ∂z and that ∇ · ∇α =1− αL= D. The first-
order advective derivative is

u · ∇= J(ψ, •)−
e−iσ t̃

αf
[f J(A, •)+ iσ∇αA · ∇] + c.c. (B 5)

The horizontal divergence and vertical vorticity ω def
=∇⊥ · u are

∇h · u=
iσ
αf
1(eiσ t̃A∗ − e−iσ t̃A), and ω=1ψ − α−11(e−iσ t̃A+ eiσ t̃A∗). (B 6a,b)

A third useful derivative quantity is

(∂t̃∇h + f∇⊥) · u= f1ψ −
σ 2
+ f 2

αf
1(e−iσ t̃A+ eiσ t̃A∗). (B 7)

The average energy density in the hydrostatic linear solution is

eA
=

1
2
(u2 + v2 +N−2b2), (B 8)

=
1
2
|∇hψ |

2
+

f 2

2N2
ψ2

z +
2+ α
α2
|∇hA|2 +

2i
√

1+ α
α2

J(A∗, A)+
f 2

N2
|Az|

2, (B 9)

and the total, integrated ‘wave energy’ is

EA def
=

∫
α + 2
α2
|∇hA|2 +

f 2

N2
|Az|

2 dV. (B 10)

The first term in (B 10) is total wave kinetic energy and the second term is total wave
potential energy. The Jacobian contribution to eA in (B 9) integrates to zero and thus
does not contribute to the integral quantity EA in (B 10). EA is conserved only over
short times in the hydrostatic wave equation (1.5).

B.2. Some strenuous bookkeeping
We tackle the momentum advection term in (B 1) first, which expands into

f 2(∂t̃∇h + f∇⊥) · (u · ∇)u = f 2(u · ∇)(∂t̃∇h + f∇⊥) · u
+ f 2(uxt − f uy) · ∇u+ f 2(uyt + f ux) · ∇v

+ f 2ux · ∇ut + f 2uy · ∇vt + f 2ut · ∇(ux + vy). (B 11)

Using (B 5) and multiplying by eiσ t̃α/f yields

eiσ t̃αf (u · ∇)(∂t̃∇h + f∇⊥) · u = −(σ 2
+ f 2)J(ψ, 1A)− f 2J(A, 1ψ)

− iσ f∇αA · ∇1ψ + · · · , (B 12)

where throughout this subappendix the · · · stand for terms that do not contribute to the
part of RHS proportional to e−iσ t̃. The next two terms are somewhat more involved.
We eventually obtain

eiσ t̃αf (uxt − f uy) · ∇u = 2iσ f J(ψy, Ax)

+ σ 2
∇αAx · ∇ψy − iσ f∇αAy · ∇ψy + · · · , (B 13)
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and

eiσ t̃αf (uyt + f ux) · ∇v = −2iσ f J(ψx, Ay)

− σ 2
∇αAy · ∇ψx − iσ f∇αAx · ∇ψx + · · · . (B 14)

The fourth and fifth terms in (B 11) are

eiσ t̃αf (ux · ∇ut + uy · ∇vt) = −σ
2J(ψx, Ax)− σ

2J(ψy, Ay)

+ iσ f J(ψy, Ax)− iσ f J(ψx, Ay). (B 15)

The sixth term in (B 11) has no part proportional to e−iσ t because both ut and ux+vy=

−wz oscillate with frequency σ . At last, the second term in (B 1) is

eiσ t̃∂z
αf
N2
(∂2

t + f 2)(u · ∇pz)

=−∂z
α2f 2

N2
[f 2J(ψ, Az)− α

−1f 2J(A, ψz)− iα−1σ f∇αA · ∇ψz] + · · · , (B 16)

=−σ 2αf 2

N2
J(ψz, Az)− α

2f 2J(ψ, LA)− αf 2J(Lψ, A)

+ iσ f ∂z

(
∇αA ·

αf 2

N2
∂z∇ψ

)
+ · · · . (B 17)

The extra factor of −αf 2 on the right of (B 16) comes from the relation σ 2
− f 2
=

αf 2. In passing from (B 16) to (B 17) we employ the Jacobian identity J (A, ψz) =
−J (ψz, A), distribute the z-derivative and use α + 1= σ 2/f 2.

We next collect the contributions to αRHS/f in (B 12) + (B 13) + (B 14) + (B 17)
and organize them according to whether they are multiplied by σ 2, f 2 or iσ f . We
observe a cancellation within the collection

∇αAx · ∇ψy −∇αAy · ∇ψx −
αf 2

N2
J(ψz, Az)=−J(ψx, Ax)− J(ψy, Ay), (B 18)

which, along with the identity

1J(ψ, A)= J(1ψ, A)+ J(ψ, 1A)+ 2J(ψx, Ax)+ 2J(ψy, Ay), (B 19)

permits the simplification of terms proportional to σ 2:

1
σ 2

Tσ 2 = −J(ψ, 1A)− J(ψx, Ax)− J(ψy, Ay)

+∇αAx · ∇ψy −∇αAy · ∇ψx −
αf 2

N2
J(ψz, Az), (B 20)

= −J(ψ, 1A)− 2J(ψx, Ax)− 2J(ψy, Ay). (B 21)

Next, we employ the notation D=1− αL in writing terms proportional to f 2:

1
f 2

Tf 2 = −J(ψ, 1A)+ J(1ψ, A)− α2J(ψ, LA)− αJ(Lψ, A), (B 22)

= −J(ψ, 1A)− α2J(ψ, LA)+ J(Dψ, A), (B 23)
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Finally, the terms proportional to iσ f are

1
iσ f

Tσ f = 3J(ψy, Ax)− 3J(ψx, Ay)−∇αA · ∇1ψ −∇αAx · ∇ψx −∇αAy · ∇ψy

+ ∂z

(
∇αA ·

αf 2

N2
∂z∇ψ

)
. (B 24)

Some rearrangement and combination of terms leads eventually to the identity

∇αA · ∇1ψ +∇αAx · ∇ψx +∇αAy · ∇ψy − ∂z

(
∇αA ·

αf 2

N2
∂z∇ψ

)
= J(ψy, Ax)− J(ψx, Ay)+ ∂x(AxDψ)+ ∂y(AyDψ)

−D
(
αf 2

N2
ψzAz

)
+ ∂z

(
αf 2

N2
ψzDA

)
. (B 25)

Using (B 25) to simplify (B 24) yields

1
iσ f

Tσ f = 2J(ψy, Ax)− 2J(ψx, Ay)−∇h · (Dψ∇hA)+D
(
αf 2

N2
ψzAz

)
− ∂z

(
αf 2

N2
ψzDA

)
.

(B 26)

B.3. The final tally
With (B 21), (B 23) and (B 26), we have all the pieces needed to construct RHS. We
find that

α

f
eiσ t̃RHS = −(Tσ 2 + Tf 2 + Tσ f ), (B 27)

= (σ 2
+ f 2)J(ψ, 1A)+ (αf )2J(ψ, LA)− f 2J(Dψ, A)

− 2iσ [J(ψx, iσAx − fAy)+ J(ψy, iσAy + fAx)]

+ iσ f
[
∇h · (Dψ∇hA)−D

(
αf 2

N2
ψzAz

)
+ ∂z

(
αf 2

N2
ψzDA

)]
. (B 28)
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