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ABSTRACT

We use mean–variance hedging in discrete time in order to value an insurance
liability. The prediction of the insurance liability is decomposed into claims de-
velopment results, that is, yearly deteriorations in its conditional expected values
until the liability is finally settled.We assume the existence of a tradeable deriva-
tive with binary pay-off written on the claims development result and available
in each development period. General valuation formulas are stated and, under
additional assumptions, these valuation formulas simplify to resemble famil-
iar regulatory cost-of-capital-based formulas. However, adoption of the mean–
variance framework improves upon the regulatory approach by allowing for po-
tential calibration to observedmarket prices, inclusion of other tradeable assets,
and consistent extension to multiple periods. Furthermore, it is shown that the
hedging strategy can also lead to increased capital efficiency.
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1. INTRODUCTION

Market consistent valuation of insurance liabilities is a fundamental feature of
new regulatory directives, as exemplified by the Swiss Solvency Test [23] and
Solvency II, see [10]. Broadly speaking, regulatory valuation techniques dis-
tinguish between liabilities that can be replicated in deep, liquid and transpar-
ent markets and liabilities for which this is not possible. For the former type
of liabilities, following standard financial arguments, the market values equal
the initial costs of the replicating portfolios. For the latter, the market values
are postulated as the sum of the expected present value of the liabilities and
a market value margin that is set using cost-of-capital arguments. Thus, an ex-
plicit link is induced between capital assessment and valuation for regulatory
purposes.
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The application of the above regulatory principle is not straightforward.
First, the cost-of-capital rate used is a rather arbitrary, exogenously specified
constant figure. Second, liabilities cannot be readily classified as perfectly repli-
cable or completely non-replicable. It is usually the case that a liability can only
be partly hedged and it is not entirely clear how the regulatory valuation ap-
proach should proceed in this case. A recent effort to reconcile cost-of-capital
principles with replication arguments is given by Möhr [16], who obtains Sol-
vency II valuation formulas as a special case. Third, given the long-term nature
of many insurance liabilities, it is not clear what a multi-period extension of
cost-of-capital valuation principles should be. Salzmann andWüthrich [20] and
Wüthrich andMerz [26] investigate alternative multi-period versions of cost-of-
capital valuation and show that conceptually consistent approaches can become
computationally very expensive.

In this paper, valuation via mean–variance hedging of liabilities in discrete
time is proposed; in particular, we use the solution in terms of sequential re-
gression of Černý and Kallsen [3]. Mean–variance hedging identifies the self-
financing trading strategy that minimizes the quadratic deviation between the
investment portfolio and the insurance liability at maturity. The general theory
of mean–variance hedging is surveyed by Schweizer [21]. For more recent de-
velopments, we refer the reader to Černý and Kallsen [2] and references therein.
Insurance applications of mean–variance hedging have been more common in
life insurance where products demonstrate a higher dependence on instruments
traded in financial markets, see Thomson [24], Dahl andMøller [5], and Delong
[7]. Application to non-life insurance (see Delong and Gerrard [8]) is less fre-
quent due to the greater difficulty in identifying suitable tradeable instruments.

However, the development of markets in insurance-linked securities, such as
cat-bonds and weather derivatives, generates the possibility of at least partially
hedging (non-life) insurance liabilities that are exposed to specific risks, such as
those arising from natural catastrophes. We do not review the large literature on
such securities and their markets here, but refer toDoherty [9] andCummins [4].
Indicatively, we mention the progress that has been made in understanding the
statistical behavior of observed cat-bond prices (Papachristou [19]) and attempt
to derive reinsurance prices that are consistent with them (Haslip and Kaishev
[12]).

Mean–variance hedging is related to other incomplete market pricing meth-
ods that have been applied to insurance. In particular, the discrete time risk-
minimization approach of Föllmer and Schweizer [11] determines locally opti-
mal trading strategies. However, these are not necessarily self-financing as they
allow the injection of capital at fixed times. For insurance applications of risk-
minimizing hedging strategies in continuous time, see Møller [17, 18]. An al-
ternative approach has been to derive, via indifference arguments, market con-
sistent versions of traditional actuarial premium calculations rules, such as the
variance and standard deviation premium principles, see Schweizer [22].

We adopt a mean–variance hedging framework that considers a terminal
liability (ultimate claim). Motivated by stochastic claims reserving methods in
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non-life insurance, the liability is decomposed into its expected value and claims
development results representing yearly deteriorations (or improvements) in the
liability’s prediction using conditional expected values based on the latest infor-
mation available (Merz andWüthrich [14]).We then assume that the liability can
be partially replicated by a tradeable instrument that pays 1 monetary unit in
each period in the case that the claims development result exceeds a given thresh-
old. Thus, investing in the derivative is a form of buying protection, loosely
equivalent to issuing simple 1-year bonds that are subordinated to the insurance
liabilities. In addition, we allow for the possibility of investing in a risk-free asset
and in a number of stocks. The analysis thus predicates on the assumption that a
derivative as described above can be traded or indeed (its complement) issued by
the liability holder.While buying the former will not always be a feasible option,
issuing the latter is a possibility for several insurance operators. Furthermore,
the valuation formulas can be seen as worst-case scenario valuation over the set
of similar derivatives written on risks that are only partially correlated with the
liability at hand (e.g. index-triggered cat-bonds).

General valuation formulas are derived for multiple time periods, multi-
ple tradeable assets and general asset dynamics. Simplifying assumptions lead
to more transparent and practical formulas: if (a) asset returns have state-
independent one-period Sharpe ratios, and (b) asset returns and claims develop-
ment results are uncorrelated across different time periods, the market value of
the liability is decomposed into valuations of the individual claims development
results. Each of those can be written as a weighted sum of a Tail-Value-at-Risk
(TVaR) measure applied to the claims development result and of capital asset
pricing model (CAPM)-type terms corresponding to the other tradeable assets.
If it is further assumed that only the derivative is tradeable, the valuation for-
mula becomes very similar to multi-period cost-of-capital formulas found in
Salzmann and Wüthrich [20].

While, in their simplest form, the valuation formulas obtained bear a strong
similarity to the regulatory approach, their interpretation is different. Thus, we
illustrate a potential set of alternative assumptions on which (regulatory) valua-
tionmay be based. The benefit of this approach is, firstly, to allow in a consistent
manner the extension of liability valuation formulas to include multiple assets,
partial replication, and multiple time periods. Secondly, by making explicit the
assumptions needed to obtain simple and practically useful valuation formulas,
it becomes transparent what the price paid for such simplification is.

In Section 2, the simple single-period and single-asset case is introduced and
the corresponding valuation formulas are derived. We also show that the hedg-
ing approach used may lead to a more efficient use of capital, which is a positive
side effect of the replication strategy. In Section 3, general results for the multi-
period andmulti-asset case are presented and valuation formulas are derived for
specific cases. Simple numerical examples illustrate the analysis. Finally, brief
conclusions are given in Section 4.

Throughout the paper, we assume that the (conditional) second moments of
all random variables considered exist.
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2. SINGLE-PERIOD AND SINGLE-ASSET CASE

2.1. Preliminaries

We start with a toy model to illustrate the key ideas of the paper. A single period
is consideredwith two time points t = 0 and t = 1. There is an insurance liability
H ≥ 0 that has to be met at time t = 1. At time t = 0, the insurer of H invests a
total amount of v monetary units in order to replicate H as closely as possible.
All assets and liabilities are considered in discounted units and there are two
tradeable assets: a risk-free asset with price 1 at time t = 0 and pay-off 1 at time
t = 1 and a risky asset with price S0 at t = 0 and pay-off S1 at t = 1. The risky
asset’s excess return is denoted by X1 = S1/S0 − 1.

Capital ϑ1 is invested in the risky asset (ϑ1/S0 units are bought) at time t = 0
and the remainder of the initial wealth v − ϑ1 is invested in the risk-free asset.
This asset portfolio generates value at time 1 given by v + ϑ1X1. The optimal
initial wealth V0 and investment ξ1 in the risky asset with respect to a quadratic
loss function are calculated by minimizing the quadratic deviation between the
liability and the asset portfolio’s pay-off. That is,

(V0, ξ1) = arg min
(v,ϑ1)

E((v + ϑ1X1 − H)2). (1)

Since V0 corresponds to the initial cost of replicating H as closely as possible
w.r.t. the quadratic loss, we will throughout this paper identify V0 with the mar-
ket consistent value of H at time 0.

Standard arguments yield the solution to optimization problem (1) which
reads as

ξ1 = Cov(X1, H)

Var(X1)
, (2)

V0 = E(H) − Cov(X1, H)

Var(X1)
E(X1). (3)

In this simple setting, the value of V0 reflects the CAPM price of H, where the
risky asset with pay-off S1 plays the role of the market portfolio.

In the sequel, the risk measures Value-at-Risk (VaR) and TVaR are used
extensively. For a random variable Zwith continuous distribution function and
a security level α ∈ (0, 1), they are defined in the common way, see for instance
McNeil et al. [13],

VaRα(Z) = inf{z ∈ R : P(Z≤ z) ≥ α} , (4)

TVaRα(Z) = 1
1 − α

∫ 1

α

VaRβ(Z)dβ = E (Z| Z≥ VaRα(Z)) . (5)

For the latter identity to hold true, we need to assume that Z has a continuous
distribution function, see Lemma 2.16 in McNeil et al. [13].
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2.2. Valuation formulas

Now, a particular choice for the risky asset is made. For given random variable
Z1 and threshold d1, we define

S1 = 1D1 with D1 = {Z1 ≥ d1}. (6)

Assume p1 = E(S1) = P(D1) ∈ (0, 1) and S0 = q1 ∈ (p1, 1) which implies
X1 = 1D1/q1 − 1.

There are two ways of considering such pay-offs in an insurance market.
First, S1 may be the pay-off from an index-linked insurance derivative (such as
a weather derivative or an industry loss-triggered cat-bond) with Z1 playing the
role of the relevant index. The derivative considered will be such that Z1 is a
reasonable proxy for the liability H, hence we will require that Z1 is positively
correlated with H. In particular, the risky asset S1 pays a positive return on
the event D1 associated with a large loss in H. Probability p1 then is the real-
world probability of such an event and q1 is its risk-neutral probability implied
by market prices. The condition q1 > p1 is explained by S1 playing the role of
reinsurance for large losses. While q1 ≤ p1 would theoretically be possible, in
practice the assumption generally holds that the cost of protection against an
adverse event is higher than its expected value, due to risk aversion of the risk
bearer.

Alternatively, consider the case that the holder of the liability H sponsors
a catastrophe bond, with D1 being the triggering event. The bond structure is
such that the holder of H pays 1 monetary unit at time 1 if Dc

1 takes place and
0 units if D1 occurs. Let 1 − q1 be the price of the bond. Then, if the sponsor
issues ϑ1/q1 bonds, the gains from the trade are −ϑ1

q1

(
1Dc

1
− (1 − q1)

) = ϑ1X1.
The solution to problem (1) now gives the optimal level of debt ϑ1 that should be
issued. The bond will be constructed so as to maximize the correlation between
the trigger Z1 and the liability H. In particular, if an indemnity trigger is used,
perfect positive correlation between Z1 and H can be achieved (see Papachristou
[19]); otherwise, so-called basis risk remains.

For the tradeable asset (6), (3) and the identity Var(S1) = p1(1 − p1) yield

V0 = E(H) + q1 − p1
1 − p1

[
E (H|Z1 ≥ d1) − E(H)

]
. (7)

Formula (7) can be further refined by choosing the indemnity-based trigger
Z1 = H−E(H) (the threshold d1 can now be interpreted as d1 = VaR1−p1(H)−
E(H)). Assuming that H has a continuous distribution function, formula (7)
becomes

V0 = E(H) + q1 − p1
1 − p1

[
TVaR1−p1(H) − E(H)

]
. (8)

Therefore, valuation takes place according to a simple rule: “expected value plus
a percentage of the excess of TVaR over the expected value”.
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Even when the derivative is not indemnity-triggered (i.e. H and Z1 are
not perfectly correlated), (8) can still be interpreted as a conservative up-
per bound on the value given in (7). To see this observe that the vectors
(H, 1{H≥E(H)+d1}) and (H, 1{Z1≥d1}) have the same marginals, but the elements
of the former are comonotonic. Hence E(H1{H≥E(H)+d1}) ≥ E(H1{Z1≥d1}) im-
plies TVaR1−p1(H) ≥ E (H|Z1 ≥ d1), where the first inequality follows from
Proposition 6.2.6 in Denuit et al. [6]. With this in mind, from now on we will
always identify Z1 with H− E(H).

Formula (8) bears a close resemblance to valuation formulas used under sol-
vency regimes such as Solvency II and the Swiss Solvency Test, where themarket
consistent value of a liability is set equal to its expected value plus a risk loading
deriving from a cost-of-capital charge, see EuropeanCommission [10] and Swiss
Solvency Test [23]. If the regulator prescribes a translation invariant regulatory
risk measure ρ to support adverse events, the market consistent value under the
cost-of-capital method equals

VCoC
0 = E(H) + λ [ρ(H) − E(H)] , (9)

where λ is the cost-of-capital rate. In Solvency II jargon, the quantity
λ [ρ(H) − E(H)] is termed market value margin.

The valuation formulas (8) and (9) are structurally similar, both satisfying
the rather pragmatic criterion of making an allowance for extreme tail events
in the value of liability H via a (tail) risk measure. However, they are derived
using different economic arguments and thus are different in significant ways.
In (9), λ is an exogenously given constant, while q1−p1

1−p1
in (8) is a potentially ob-

servable and market-sensitive quantity. In (9), ρ(H) corresponds to the capital
requirement for H, while the risk measure TVaR1−p1(H) is not associated with
the assets held. In particular, for the optimal portfolio held, the investment in
the risky asset would also be reflected in the regulatory capital requirement; this
is a point to which we return in Section 2.3.

Example 1. The findings of Papachristou [19], who performed statistical anal-
ysis of catastrophe bond spreads at the time of issue, allow us to get a feel-
ing for the potential range of the quantity q1−p1

1−p1
. In particular, the behavior of

the “multiple” is studied, that is, the ratio of the spread to the annualized ex-
pected loss which in our simple model can be identified with the probability
p1. It is found that the multiple tends to decrease in p1, reflecting a higher risk
premium for protection against extreme events. Furthermore, it is shown how
the multiple changes with time and responds to insurance events, e.g. a rise is
observed after Hurricane Katrina in 2006. For the period of 2003–2008 studied
and the sample of bonds considered, the multiple for bonds with p1 = 1% has
tended to fluctuate between about four and eight. This implies that the spread

rB = E[1Dc1 ]

1−q1 − 1 = 1−p1
1−q1 − 1 > 0 ranges from 4% to 8% and, consequently, q1−p1

1−p1
varies from 3.8% to 7.4%. Interestingly, the range contains the cost-of-capital
rate λ = 6% favored by regulators, see TP.5.25 in [10]. �
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2.3. Hedging and capital efficiency

The arguments presented above focused on deriving a risk-sensitive valuation
formula as an alternative to what is proposed in current insurance regulation.
However, we did not consider the change in portfolio risk after investment in
the derivative with pay-off S1 = 1D1 . This is an issue worth considering since
the buyer of such a derivative would be interested in reducing the risk on the
book and thus freeing up economic capital.

Let the solvency capital requirement be determined by a translation invari-
ant risk measure ρ, such that ρ(H−v) = ρ(H)−v for all v ∈ R and all random
variables H under consideration. Denote by G1 the value of the optimal invest-
ment portfolio (V0, ξ1) of (1) at time 1, i.e. G1 = V0 + ξ1X1. Then, trading in the
derivative frees up capital as long as the cost V0 of the trading strategy and the
capital requirement for the hedged loss H − G1 add up to less than the capital
requirement for the unhedged loss H:

V0 + ρ(H− G1) ≤ ρ(H) ⇔ ρ(H− (G1 − V0)) ≤ ρ(H). (10)

Noting that the portfolio that generates G1 has initial price V0, (10) states that
investment in the portfolio can reduce the solvency capital requirement under
the risk measure ρ, which looks similar to the indifference price for G1 in an
expected utility framework.

Nonetheless, it is by no means obvious that inequality (10) will generally
be satisfied, since the trading strategy is formulated to replicate the liability H
as closely as possible in a quadratic norm and not specifically to minimize the
capital requirement described by the riskmeasure ρ. Some situations where (10)
holds are characterized in Proposition 1 stated below.

Proposition 1. Assume that H has a continuous and strictly increasing distribu-
tion function on R+ and let the risk measure ρ be either VaRα or TVaRα at secu-
rity level α ∈ (0, 1). Define k = 1

1−p1
TVaR1−p1(H− E(H)). We have k > 0, and

inequality (10) holds if and only if

q1k ≤ ρ(H) − ρ(H− 1D1k). (11)

In particular, the following hold:

(i) Assume that VaR1−p1(H) − k > 0. If α < 1 − p1 is small enough, such that
VaRα(H) ≤ VaR1−p1(H) − k, then:
- For ρ ≡ VaRα, there is no q1 ∈ (0, 1) such that inequality (10) holds.
- For ρ ≡ TVaRα, inequality (10) holds for all q1 ∈ (p1,

p1
1−α

).
(ii) If α > 1 − p1 is large enough, such that VaRα(H) − VaR1−p1(H) ≥ k,

then, for either of ρ ≡ VaRα and ρ ≡ TVaRα, inequality (10) holds for all
q1 ∈ (p1, 1) and the freed-up capital equals

ρ(H) − V0 − ρ(H− G1) = (1 − q1)k. (12)
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Proof. Note that both VaR and TVaR are translation invariant and that
k > 0 by the properties of TVaR (e.g. see Property 2.4.5 in Denuit et al. [6]). We
have

G1 − V0 = ξ1X1 = Cov(X1, H)

Var(X1)
X1 = 1D1 − q1

1 − p1
TVaR1−p1(H− E(H))

= (1D1 − q1)k.

It follows that ρ(H−(G1−V0)) = ρ (W)+q1k,whereW = H−1D1k. Thus, the
freed-up capital can bewritten as ρ(H)−ρ(H−(G1−V0)) = ρ(H)−ρ(W)−q1k,
so that to satisfy inequality (10) we need requirement (11).

Let d = d1 + E(H), which implies D1 = {H ≥ d} and VaR1−p1(H) = d. We
have for w ∈ R

P (W ≤ w) = P (W ≤ w, D1) + P
(
W ≤ w, Dc

1

)
= P (d ≤ H ≤ w + k) + P (H ≤ min {w, d}) .

Continuity of the distribution function F of H and k > 0 immediately imply

P (W ≤ w) =
⎧⎨
⎩
F(w), w ≤ d − k,
F(w + k) − F(d) + F(w), d − k < w < d,

F(w + k), d ≤ w.

It is easily seen that the distribution of W is also continuous and strictly in-
creasing. Moreover, when VaRα(H) ≤ d − k (corresponding to Case i), it is
VaRα(W) = VaRα(H). On the other hand, when VaRα(H) ≥ d + k (corre-
sponding to Case ii), we have P(W ≤ VaRα(H) − k) = P(H ≤ VaRα(H)) = α,
such that VaRα(W) = VaRα(H)−k. We now deal with the two cases separately.

Case
(i) Assume d − k > 0 and choose VaRα(H) ≤ d − k.
1. First, let ρ ≡ VaRα. Then VaRα(H − 1D1k) = VaRα(W) = VaRα(H), such
that condition (11) cannot be satisfied for any q1 > 0 (note that k > 0).
2. Now, let ρ ≡ TVaRα. Observe that the vectors (H, 1{H≥VaRα(H)}) and
(H, 1{W≥VaRα(W)}) have the same marginals, but the elements of the former are
comonotonic. This implies inequality E(H1{H≥VaRα(H)}) ≥ E(H1{W≥VaRα(W)}),
which follows from Proposition 6.2.6 in Denuit et al. [6]. Consider now, using
VaRα(W) = VaRα(H),

TVaRα(H) − TVaRα(W) = 1
1 − α

[
E(H1{H≥VaRα(H)})) − E(W1{W≥VaRα(W)})

]
≥ 1

1 − α

[
E(H1{W≥VaRα(W)})) − E(W1{W≥VaRα(W)})

]
= k

1 − α
E(1D11{W≥VaRα(W)})
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= k
1 − α

P(H ≥ max{d, k+ VaRα(H)})

= k
1 − α

P(H ≥ d) = p1
1 − α

k.

Hence, by (11) it is sufficient to have q1 ≤ p1
1−α

for inequality (10) to hold.
Case (ii) Assume VaRα(H) ≥ d + k which gives VaRα(W) = VaRα(H) − k.
1.First, let ρ ≡ VaRα. The freed-up capital equals VaRα(H)−VaRα(W)−q1k =
k− q1k, which proves the stated result.
2.Now, consider ρ ≡ TVaRα. For β ∈ [α, 1),monotonicity implies VaRβ(H) ≥
VaRα(H) ≥ d + k. Therefore, VaRβ(W) = VaRβ(H) − k for all β ∈ [α, 1) and
by the integral identity for TVaR given in (5), the freed-up capital statement
immediately follows from VaRβ(H) − VaRβ(W) − q1k = k− q1k.

Case (i) of Proposition 1 refers to the case where the security level α is so
low that the risk reduction effected by the derivative is not reflected in the VaR
measure, due to the risk measure’s insensitivity to the extreme tail of the dis-
tribution of H. Thus, investing any amount in the derivative incurs a cost with
no apparent benefit. When TVaR is used, the extreme tails are reflected in the
risk measurement and the benefit from investing in the derivative is recognized,
as long as the derivative is not too expensive (q1 is not too high). On the other
hand, Case (ii) refers to the situation where the security level α is very high such
that under all scenarios considered by the risk measure, the derivative produces
a pay-off of 1 monetary unit, which is always higher than the price q1 < 1. Con-
sequently, a capital saving is always produced. However, the freed-up capital, as
seen in (12), depends on the price q1. Thus, if q1 is close to its lowest level p1,
there is no market risk premium for the derivative and the freed-up capital is
maximized. On the contrary, if q1 is close to 1, the market considers the event
of the derivative paying as nearly certain, such that the derivative becomes very
expensive, and investing in it produces only a small capital reduction.

Of course, in many cases it will be −k < VaRα(H) − VaR1−p1(H) < k, a
case not fully characterized in Proposition 1. The following numerical example
shows that for realistic parameter choices, investment in the derivative will tend
to be capital efficient.

Example 2. Let H be log-normally distributed such that E(H) =
100, Var(H) = 202. We consider two cases of the derivative, with p1 = 0.01
and p1 = 0.05. For illustrative purposes, we follow again Papachristou [19],
choosing for p1 = 0.01 (resp. p1 = 0.05) a multiple of 6 (resp. 4), leading to
q1 = 0.066 (resp. q1 = 0.208).

Table 1 summarizes the quantities needed for the valuation of the liability
H according to (8), as well as the value k = 1

1−p1
TVaR1−p1(H− E(H)) appear-

ing in Proposition 1. While for p1 = 0.05, the risk measure TVaR1−p1(H) is
substantially lower, this is compensated by a higher ratio q1−p1

1−p1
, such that the

liability H has a higher market value V0 for p1 = 0.05.
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TABLE 1

VALUATION OF A LOG-NORMAL LIABILITY WITH
E(H) = 100, Var(H) = 202.

p1 0.01 0.05
q1 0.066 0.208
TVaR1−p1 (H) 166.56 147.95
q1−p1
1−p1

0.057 0.167
V0 103.77 107.99
k 67.23 50.47

FIGURE 1: Maximum q1 such that inequality (10) is satisfied.

It is easy to check that for all security levels α ∈ [0.99, 0.999] (a plausible
range for regulatory risk measurement), we have VaRα(H) − VaR1−p1(H) ∈
(0, k). From (11), the maximum value of the price q1 that leads to freeing up
capital is given by the relation q1 ≤ (

ρ(H) − ρ(H− 1D1k)
)
/k, where ρ ≡ VaRα

or ρ ≡ TVaRα. The maximum such level of q1 is plotted in Figure 1 against the
security level α of the regulatory risk measure used for α ∈ [0.99, 1). It is seen
that in each case the value of q1 is well below the plotted curves, such that for
the plausible range of security levels α, investment in the derivative indeed frees
up capital. �

3. THE MULTI-PERIOD AND MULTI-ASSET CASE

3.1. Preliminaries

We extend the previous setup to a model with several assets traded over mul-
tiple time periods. We consider a finite time horizon T ∈ N and a finite set
of trading dates T = {0, 1, . . . ,T}. The filtered probability space is denoted
by (�, P,F, F) with finite and discrete time filtration F = (Ft)t∈T such that
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F0 = {∅, �} and F = FT. The corresponding conditional expectations, vari-
ances, and covariances are denoted by Et(X) = E(X|Ft), Vart(X) = Et(X2) −
Et(X)2, Covt(X,Y) = Et(XY) − Et(X)Et(Y) for t ∈ T .

The insurance liability is represented by a non-negative, FT-measurable,
square-integrable random variable H ∈ L2(P). We assume that we have n ∈ N

tradeable risky assets with price processes represented by the n-dimensional,
F-adapted stochastic process (St)t∈T . Denote the elements of St by S(i)

t , i =
1, . . . , n and let S(i)

t > 0. Xt is then the vector of one-period excess returns with
elements X(i)

t = S(i)
t /S(i)

t−1 − 1. We assume that Et(X
(i)
t+1X

( j)
t+1) < ∞ for all i, j

and t < T, and that the returns of traded assets are linearly independent such
that the matrices

{
Et(X

(i)
t+1X

( j)
t+1)

}
1≤i, j≤n have full rank. For any vector y ∈ Rn,

y′ denotes the transpose of y.
An F0-measurable initial endowment v is given. A trading strategy ϑ =

(ϑt)t∈T \{0} is an n-dimensional and F-previsible process. The value at time t > 0
of an investment portfolio with initial endowment v and trading strategy ϑ is

Gv,ϑ
t = v +

t∑
k=1

ϑ ′
kXk. (13)

By its construction, the portfolio (13) is self-financing. Only strategies such that
Gv,ϑ
T ∈ L2(P) are admitted; for a detailed technical discussion of admissibility,

see Černý and Kallsen [3].
Directly extending the discussion in Section 2, the aim is to derive the op-

timal initial endowment and trading strategy such that the quadratic deviation
between the final portfolio value Gv,ϑ

T and the liability H is minimized. In other
words, we need to solve optimization problem:

argmin
(v,ϑ)

E0
(
(Gv,ϑ

T − H)2
)
. (14)

The solution to problem (14) is provided by Theorem 8.7 in Černý and Kallsen
[3].

Theorem 2. The process given by the recursion LT = 1 and for 0 < t ≤ T

Lt−1 = Et−1(Lt) − Et−1(LtX′
t)

(
Et−1(LtXtX′

t)
)−1

Et−1(LtXt)

is (0, 1]-valued and the probability measure P∗, defined by

dP∗

dP
=

T∏
t=1

Lt
Et−1(Lt)

,
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is well defined. LetE∗
t−1(·) denote conditional expectations underP∗. The following

processes for 0 < t ≤ T are well defined:

a∗
t = E

∗
t−1(X

′
t)

(
E

∗
t−1(XtX′

t)
)−1

,

b∗
t = a∗

t E
∗
t−1(Xt),

V∗
t−1 = E

∗
t−1

(
1 − a∗

t Xt

1 − b∗
t
V∗
t

)
, V∗

T = H,

ξ ∗
t = E

∗
t−1((V

∗
t − V∗

t−1)Xt)
′ (

E
∗
t−1(XtX′

t)
)−1

.

For initial endowment v define the trading strategy φ(v) = (φt(v)t)t∈T \{0} itera-
tively by

φt(v) = ξ ∗
t + a∗

t

(
V∗
t−1 − Gv,φ(v)

t−1

)
.

Then, the pair (V∗
0 , φ(V∗

0 )) solves the optimization problem (14).

The probability measure P∗ is termed the opportunity-neutral measure. The
opportunity-neutral measure P∗ is not a martingale measure. Switching to P∗ is
necessary in the case that asset returns are not independent in order to com-
pensate for one-period Sharpe ratios at a given time not being the same in
all states (see Černý and Kallsen [3]). In the case P∗ = P, we can keep the
same notation as in Theorem 2 after dropping the superscripts ∗ from all vari-
ables. The probability measure P∗ reduces to P if and only if the product of
bt = Et−1(X′

t)(Et−1(XtX′
t))

−1Et−1(Xt) over all t is constant (see Cerný and
Kallsen [2], Proposition 3.28). A sufficient condition for this is to require that
the maximal one-period Sharpe ratio for each time step is known at time zero,
equivalently bt is F0-measurable. Independence of asset returns is a substan-
tially stronger condition; one can for example achieve constant Sharpe ratios in
stochastic volatility models so that the returns are not i.i.d. but the bts’ remain
deterministic. Independence is a sufficient (but not necessary) condition for both
at and bt to be F0-measurable, that is, state independent. It also noted that the
more general form of Theorem 2 is given in terms of price increments rather
than returns; we use the current form (requiring St > 0) for practical reasons,
as the dynamics of asset returns, rather than prices, are typically specified.

3.2. Valuation of an insurance liability

We work toward deriving multi-period valuation formulas, generalizing those
of Section 2. First, we decompose the FT-measurable liability H ∈ L2(P) as

H = E0(H) + Y1 + · · · + YT with Yt = Et(H) − Et−1(H), (15)

where Yt is termed the claims development result, see Merz and Wüthrich [14].
The notion of the claims development result is based on the understanding that
insurance companies need to close their books after every period. At time t, they
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will book the so-called best-estimate liability Et(H), updating the previous pre-
dictionEt−1(H). The resulting adjustment of the best estimate produces a claims
development result of Yt in period t, which may be a gain or a loss. Essentially,
Yt corresponds to the single-period risk exposure of the holder of H and the
regulator asks for a risk measure to support possible shortfalls in Yt in period
t. Since the time series Y1, . . . ,YT is formed by the innovations of a martingale,
its elements are uncorrelated and have zero mean. For the rest of the paper, we
will assume that Yt has a continuous and strictly increasing distribution.

For such a decomposition of the liability H, direct application of Theorem 2
gives a general valuation formula.

Proposition 3. For H as in (15), the optimal initial endowment of Theorem 2 be-
comes

V∗
0 = E0(H) +

T∑
t=1

E
∗
0

(
t∏

i=1

1 − a∗
i Xi

1 − b∗
i
Yt

)
.

Proof. From Theorem 2, we have (noting that E
∗
t−1

(
(1 − a∗

t Xt)/(1 − b∗
t )

) =
1 and V∗

T = H),

V∗
T−1 = E

∗
T−1

(
1 − a∗

TXT

1 − b∗
T

H
)

= E0(H) +
T−1∑
t=1

Yt + E
∗
T−1

(
1 − a∗

TXT

1 − b∗
T

YT

)
,

V∗
T−2 = E

∗
T−2

(
1 − a∗

T−1XT−1

1 − b∗
T−1

VT−1

)

= E0(H) +
T−2∑
t=1

Yt + E
∗
T−2

(
1 − a∗

T−1XT−1

1 − b∗
T−1

YT−1

)

+ E
∗
T−2

(
1 − a∗

T−1XT−1

1 − b∗
T−1

1 − a∗
TXT

1 − b∗
T

YT

)
.

Iterating the process yields the required result for V∗
0 .

Now,we assume the existence of a traded insurance derivativewhichwe iden-
tify with the first traded risky asset. The derivative is written at each time t − 1
and pays 1 unit at time t, if the claims development resultYt exceeds a given high
threshold dt. Specifically,

X(1)
t = 1Dt

qt
− 1, (16)

where Dt = {Yt ≥ dt}, Et−1(1Dt ) = pt, and qt is the Ft−1-measurable price at
time t − 1 with pt < qt < 1. In fact, much of the following analysis remains
unchanged if we assume, similarly to Section 2, that the event Dt = {Zt ≥ dt},
where Zt is an (index) variable closely correlated toYt. For the sake of simplicity,
we do not pursue this route here.

Additional assumptions give rise to formulas generalizing those of Section 2.
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Proposition 4. Let X(1)
t be as in (16). Assume that at and bt are state independent

and that for any 1 ≤ i, j ≤ n and 0 < t < t + s ≤ T, it is

Et−1(X
(i)
t X( j)

t+sYt+s) = Et−1(X
(i)
t )Et−1(X

( j)
t+sYt+s), Et−1(X

(i)
t Yt+s) = 0.

Then, the optimal initial endowment of Theorem 2 becomes

V0 = E0(H) +
T∑
t=1

E0

(
1 − atXt

1 − bt
Yt

)

= E0(H) −
T∑
t=1

a(1)
t

1 − bt
E0

(
pt
qt

TVaR1−pt,t−1(Yt)
)

−
T∑
t=1

n∑
i=2

a(i)
t Cov0(X

(i)
t ,Yt)

1 − bt
,

whereTVaR1−pt,t−1 is the riskmeasure calculated with respect to informationFt−1
at time t − 1.

Proof. The uncorrelatedness assumption and normalization imply

ET−2

(
1 − aT−1XT−1

1 − bT−1

1 − aTXT

1 − bT
YT

)
= ET−2

(
1 − aTXT

1 − bT
YT

)
.

The proof of the first statement then follows from Proposition 3 working back-
ward in time. The second formula derives from

E0(X
(1)
t Yt) = E0

(
1
qt
1DtYt

)
= E0

(
pt
qt

1
pt

Et−1
(
1DtYt

))

= E0

(
pt
qt

TVaR1−pt,t−1(Yt)
)

.

The conditions of Proposition 4 correspond, loosely speaking, to the as-
sumption that the conditional expected performance of assets over each time
period is already known at time t = 0 and that assets and liabilities are uncor-
related across time periods. Then, the market value V0 of the liability H equals
its expected value plus a number of terms producing valuations of the individ-
ual claims development results Yt. Each of the latter terms can be written as a
weighted sum of the expected value of a TVaR measure applied to Yt at time
t − 1, scaled by pt/qt, and n − 1 CAPM-type terms corresponding to the other
tradeable assets. Thus, the valuation formula of Proposition 4 bears a formal
similarity to commonly used multi-period cost-of-capital formulas termed as
the split of total uncertainty approach in Salzmann andWüthrich [20] or expected
risk margin in Möhr [16]. At the same time, it generalizes them by including
further tradeable assets via standard valuation arguments.

If we do not consider any tradeable assets except the derivatives on Yt (n =
1), a further simplification arises. It is easily shown that at = pt−qt

q2t +pt−2qt pt
and

https://doi.org/10.1017/asb.2013.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.18


MARKET VALUE MARGIN VIA MEAN–VARIANCE HEDGING 315

bt = (pt−qt)2
q2t +pt−2qt pt

. Moreover, if at, bt are state independent, so are pt, qt, such
that a single-asset and multi-period valuation formula, directly generalizing (8),
is obtained:

V0 = E0(H) +
T∑
t=1

qt − pt
1 − pt

TVaR1−pt (Yt). (17)

A comment is relating due to the uncorrelatedness assumption of Propo-
sition 4. For simplicity, consider the single-asset case. Then, the propo-
sition requires Et−2(1{Yt−1≥dt−1}Yt) = 0 and Et−2(1{Yt−1≥dt−1}1{Yt≥dt}Yt) =
Et−2(1{Yt−1≥dt−1})Et−2(1{Yt≥dt}Yt). While the random variables Yt−1 and Yt are un-
correlated (due to the martingale property), this does not necessarily imply
that the pairs of random variables (1{Yt−1≥dt−1},Yt) and (1{Yt−1≥dt−1}, 1{Yt≥dt}Yt) are
also uncorrelated. Stronger assumptions on the joint distribution of the vector
(Y1, . . . ,YT) are thus required, for instance it is sufficient to assume that the
martingale innovations are independent.

Two numerical examples are now presented. In Example 3, a direct applica-
tion of Proposition 4 is given for the case of two assets and several time periods.
In Example 4, we discuss the case where at, bt are not state independent. In
particular, we assume a scenario where, though the random variables Yt are in-
dependent of each other, markets take a different view such that a high level of
Yt−1 is associated with a high market price qt for the pay-off 1{Yt≥dt}.

Example 3. In this example, we consider a long-termFT-measurable liability H
with E0(H) = 100, T = 10 years and two tradeable assets in each period. These
are a derivative with price at time t − 1 of qt and pay-off at time t of 1{Yt≥dt}
and a stock with price process S(2)

t and excess return X(2)
t . We assume that the

claims development resultsY1, . . . ,YT aremutually independent and so are their
derivative returns X(1)

1 , . . . , X(1)
T . Moreover, the pair (Yt, X(2)

t ) is defined via a
bivariate log-normal model, such that

Yt = exp
(
μt + σt Z

(1)
t

) − exp
(
μt + σ 2

t /2
)

and X(2)
t = exp

(
m+ sZ(2)

t

) − 1,

where (Z(1)
t , Z(2)

t ) follow a bivariate standard normal distribution with cor-
relation r . This implies that we can write Z(2)

t = r Z(1)
t + √

1 − r2Wt, where
(Z(1)

t , Wt) are independent standard normal variables. Note that, as required,
Et−1(Yt) = 0. The model for Yt used here is illustrative, as in a more realis-
tic application one would need to derive the dynamics of Yt from a stochastic
reserving model, see for instance Merz et al. [15].

For the derivative we use parameters pt = 0.01 and qt = 0.066 for all t,
implying that the threshold dt is always set at the 99th percentile of Yt and that
the derivative price in future periods is assumed constant. For the claims devel-
opment results, we use μt = 0.4586(T − t + 1) and σt = 0.198 for all t, such
that the standard deviation of Yt reduces over time, reflecting that uncertainty
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FIGURE 2: Yearly risk margins for different levels of correlation parameter r .

decreases with increasing information. For the stock, we use m = 0.15 and
s = 0.2. Finally, r is allowed to vary in the range (−1, 1). A positive (negative)
correlation corresponds to the situation when stock prices tend to increase (de-
crease) at times of high claims development results (motivated by economically
driven claims inflation).

We proceed by applying Proposition 4. The necessary calculations are some-
what tedious and are documented in the Appendix. For the correlation pa-
rameter values r ∈ {−0.5, 0, 0.5}, market values of H equaling V0(r) =
{111.90, 109.64, 107.69}, respectively, are obtained. In Figure 2, we plot the
market risk margin applied for each year of the liability’s run-off, that is, the

quantities
∑2

i=1
a(i)
t Cov0(X

(i)
t ,Yt)

1−bt , t = 1, . . . ,T.

We observe that the case r = 0 is equivalent to the absence of the stock
such that V0 is given by expression (17). This means that no risk in the claims
development result can be mitigated by the asset stock price process. When r =
0.5, long positions in the stock produce a natural hedging effect for the liability
as investment returns pay for claims development results. This situation, which is
desirable for the holder of the liability, decreases V0 in relation to the case r = 0.
Conversely, when r = −0.5, short positions in the stock are taken. Thus, in order
to hedge the liability, negative expected stock returns are incurred. This adverse
situation, analogous to the liability being subject to systematic risk, increases
V0 in relation to the case r = 0. It can be seen from Figure 2 that the annual
contributions to the market value of H decrease with time. This is explained by
the decay of the standard deviation of Yt in our model as t increases. �
Example 4. To avoid computational issues, we now consider a shorter term li-
ability H, with T = 2 and E0(H) = 100. In this example, there is no stock
correlated with claims development results such that the only tradeable asset
is the derivative on Y1 and Y2. Again, we assume that the claims development
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results are mutually independent and

Yt = exp
(
μt + σt Zt

) − exp
(
μt + σ 2

t /2
)
, t = 1, 2,

where Z1, Z2 are independent standard normals. The parameters of the claims
development results are μ1 = 4.586, μ2 = 4.127, σ1 = σ2 = 0.198.

We now consider a derivative with a higher probability of a pay-off than in
the previous example such that p1 = p2 = 0.05 and q1 = 0.21. However, q2 is
no longer known at time t = 0, but is instead dependent on Y1. If the derivative
produces a pay-off, themarket price of the derivative increases in the next period
(and vice versa). Specifically, we define q2 by

q2 =
{
q ≤ q1, if Y1 < d1,

q ≥ q1, if Y1 ≥ d1.

To aid comparisons, we let E0(q2) = (1 − p1)q + p1q = q1. The sensitivity of
q2 on past performance of the derivative is studied by considering three cases:
(i) q/q = 1 giving q = q = 0.21; (ii) q/q = 2 giving q = 0.2, q = 0.4; and (iii)
q/q = 4 giving q = 0.183, q = 0.730.

To calculate the market value V∗
0 , we use Theorem 2. In particular, we have

L2 = 1 and

a∗
2 = a2 = E1(X2)

E1
(
X2
2

) = p2 − q2
p2 + q22 − 2p2q2

,

b∗
2 = b2 =

(
E1(X2)

)2

E1(X2
2)

= (p2 − q2)2

p2 + q22 − 2p2q2
,

V∗
1 = V1 = E1

(
1 − a2X2

1 − b2
H

)
= E0(H) + Y1 + E1

(
1 − a2X2

1 − b2
Y2

)

= E0(H) + Y1 + q2 − p2
1 − p2

TVaR1−p2(Y2).

Hence, V∗
1 can be explicitly calculated as a function of q2, which is in turn a

function of Y1. To derive V∗
0 , we need to calculate L1 = 1−b2 and, observe that

dP
∗
0 = L1/E0[L1] dP0,

a∗
1 = E0(L1X1)

E0(L1X2
1)

and b∗
1 = E0(L1X1)

2

E0(L1X2
1)E0(L1)

,

V∗
0 = 1

E0(L1)
E0

(
L1

1 − a∗
1X1

1 − b∗
1

V∗
1

)
.

These calculations of the market value V∗
0 can be easily done by Monte Carlo

simulation. Using a simulated sample of 5 · 106 from Y1, we obtain that (i) for
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q/q = 1, it is V∗
0 =113.2; (ii) for q/q = 2, it is V∗

0 =114.2; and (iii) for q/q = 4,
it is V∗

0 =116.0.
Hence, with increasing sensitivity of q2 to the outcome of Y1, the market

value of the liability increases. Intuitively, this is clear that the uncertainty is
increased by increasing price sensitivity in q2 in terms of Y1. This case may be
more realistic in comparison to a scenario where derivative prices are unaffected
by observed losses, that is, where q2 does not depend on the outcome of Y1,
because investors react sensitively based on past observations. However, at least
for this short tail example, the increase is not particularly dramatic. �

3.3. Hedging and capital efficiency

In Section 2.3, the issue of capital efficiency was discussed in relation to the
single-period model. The relation between hedging and capital efficiency be-
comes rather convoluted in the multi-period case. The reason for this is struc-
tural. While capital requirements in insurance are typically calculated with re-
spect to a one-year time horizon, the optimal investment strategy is formulated
tominimize a quadratic error calculated at the time horizon T. In particular, the
trading strategy in each period will also reflect the performance of the portfolio
to-date, which introduces path-dependency.

Consider the simplest possible case, whereY1, . . . ,YT are independent, at, bt
are F0-measurable, and the only traded asset is the derivative on Yt. Then, from
Theorem 2, it is seen that the optimal trading strategy for initial endowment V0
is given by

φt(V0) = ξt + at
(
Vt−1 − GV0,φ(V0)

t−1

)
, where ξt = Et−1((Vt − Vt−1)Xt)

Et−1(X2
t )

.

Straightforward but tedious calculations then yield ξt = Cov0(Xt,Yt)
Var0(Xt)

. Hence, the
trading strategy φt(V0) consists of two parts: ξt, the values of which in this simple
setting are known at time 0, and at(Vt−1 −GV0,φ(V0)

t−1 ), which reflects the value of
the investment portfolio at time t. Note that ξt is essentially identical to ξ1 in
(2). Let δt = Vt−1 − GV0,φ(V0)

t−1 represent the difference between the value of the
liability and the value of the investment portfolio at time t − 1. Then, since
Et−1(Xt) ≤ 0 =⇒ at ≤ 0, in the multi-period case we adjust the trading
strategy such that, if the shortfall is δt > 0, less is invested in the risky asset and
vice versa.

Analogously to what was discussed in Section 2.3, a plausible re-formulation
of the capital efficiency condition (10) at time t − 1 is

ρt−1

(
Yt −

(
GV0,φ(V0)
t − GV0,φ(V0)

t−1

))
≤ ρt−1(Yt), (18)

where ρt−1 is the regulatory risk measure evaluated given the information Ft−1
available at time t−1. The principle here is that the liability with respect to which
capital needs to be held during (t−1, t] is the corresponding claims development
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result Yt. Inequality (18) represents the condition that the capital required to
support Yt, minus the net gains from trading over the same interval, is less than
the capital required to support Yt, assuming that all funds are invested in the
risk-free asset. The left-hand side of inequality (18) can be written as

ρt−1(Yt − φt(V0)Xt) = ρt−1 (Yt − ξt Xt − atδt Xt) . (19)

Define k̃t = atδt + 1
1−pt

TVaRt−1,1−pt (Yt). Then, retracing the first steps in the
proof of Proposition 1, it follows that the condition for inequality (18) to hold
is, analogously to (11),

qtk̃t ≤ ρt−1(Yt) − ρt−1(Yt − k̃t1Dt). (20)

Finally, we remark that ξt corresponds exactly to the investment in the
stock under the (non-self-financing) local risk-minimizing hedging strategy of
Föllmer and Schweizer [11]. Therefore, under such a trading strategy with ex-
plicit one-period optimization targets, the present discussion of capital effi-
ciency would be much simplified.

4. CONCLUDING REMARKS

We discussed the problem of valuing insurance liabilities in discrete time
through mean–variance hedging. Key features of the proposed approach are
the decomposition of the terminal liability into claims development results and
the presence of a derivative on the claims development result in each period. In
simple cases, the resulting valuation formulas become structurally very similar
to regulatory cost-of-capital-based formulas. However, adoption of the mean–
variance framework improves upon such formulas, by introducing sensitivity to
observed market prices, the inclusion of other tradeable assets, and the consis-
tent extension to multiple periods.

The similarity between the formulas derived here and the ones used in reg-
ulation should not obscure the very different interpretations underlying them.
In our approach, the market value margin obtained (difference between market
consistent and expected values) does not correspond to the cost-of-capital, but
reflects the cost of a replication portfolio. Hence, it is conceivable that a cost-
of-capital loading may be added to the market consistent value that we obtain,
since investors need to be compensated for the frictional costs that holding cap-
ital incurs (see e.g. the discussions in Zanjani [27] and Venter [25]). The analysis
of Section 2.3 shows that the mean–variance hedging approach may also deliver
a reduction in such capital costs.

It is then useful to distinguish between the possible constituent parts of the
value of a liability. Thus, if a cost-of-capital loading is added to the (partial)
replication cost that our valuation formulas reflect, this should only represent
frictional capital costs. In particular, it should not be further increased to act as a
proxy for replication costs, as current regulatory valuation approaches implicitly

https://doi.org/10.1017/asb.2013.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.18


320 A. TSANAKAS, M.V. WÜTHRICH AND A. ČERNÝ

do. Finally, besides the cost of replication and the frictional cost-of-capital, it
is plausible that an additional risk load is applied via a performance measure,
purely to reward investors for risk taking. This need not be related to a tail risk
measure like VaR or TVaR; for example, mean–variance hedging approaches
can be adjusted to deliver a pre-specified minimal level of Sharpe ratio (Černý
[1], Section 13.2).
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APPENDIX

CALCULATIONS IN EXAMPLE 3

For the calculations shown here, it is convenient to use excess returns Xt rather than price
increments, as discussed in Section 3.1. To determine V0, we first need to calculate all terms
in

at = Et−1(X′
t) Et−1(XtX′

t)
−1 and bt = Et−1(X′

t) Et−1(XtX′
t)

−1
Et−1(Xt).

Model assumption Yt = exp(μt + σt Z
(1)
t ) − exp

(
μt + σ 2

t /2
)
provides returns

X(1)
t = 1

qt
1{Yt≥dt } − 1, X(2)

t = exp
(
m+ sZ(2)

t

) − 1,
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where Z(2)
t = r Z(1)

t +√
1 − r 2Wt and (Z(1)

t ,Wt) are independent standard normals. Therefore,
to apply Proposition 4 we need to calculate the first and second moments of Xt as well as the
covariances Covt−1(X

(i)
t ,Yt) for i = 1, 2. The first moments of Xt are given by

Et−1
(
X(1)
t

) = pt
qt

− 1 and Et−1
(
X(2)
t

) = exp
(
m+ s2/2

) − 1.

The second moments of Xt are given by

Et−1
(
(X(1)

t )2
) = 1

q2
t

pt(1 − pt) +
(
pt
qt

− 1
)2

,

Et−1
(
(X(2)

t )2
) = 1 − 2 exp

(
m+ s2/2

) + exp
(
2m+ 2s2

)
,

Et−1
(
X(1)
t X(2)

t

) = 1 − exp
(
m+ s2/2

) − pt
qt

+ Et−1

(
1
qt
1{Yt≥dt } exp

(
m+ sZ(2)

t

))
.

Let d̃t = dt + exp(μt + σ 2
t /2) = exp(μt + σt�

−1(1 − pt)), where � is the standard normal
distribution. Then 1{Yt≥dt } = 1{exp(μt+σt Z

(1)
t )≥d̃t}, such that

Et−1

(
1
qt
1{YtY≥dt } exp(m+ sZ(2)

t )

)
= 1
qt

(exp
(
m+ s2(1 − r 2)

) · g(r),

where we have defined g(r) = Et−1(1{Z(1)
t ≥(log d̃t−μt )/σt} exp(sr Z(1)

t )). From the definition of d̃t,

we obtain for r = 0 the value g(0) = pt. Denote k = (log d̃t − μt)/σt. If r > 0, we have
g(r) = exp(s2r 2/2)�( s

2r2−srk
sr ), using the properties of the log-normal distribution. If r < 0,

we have g(r) = exp(s2r 2/2)[1 − �( s
2r2−srk

−sr )].
Finally, we move to the calculation of the covariances. They are given by

Covt−1(X(1)
t ,Yt) = Et−1

(
1
qt
1{exp(μt+σt Z

(1)
t )≥d̃t } exp

(
μt + σt Z(1)

t

)) − pt
qt

exp
(
μt + σ 2

t /2
)

= 1
qt

exp
(
μt + σ 2

t /2
)
�

(
μt + σ 2

t − log d̃t
σt

)
− pt
qt

exp
(
μt + σ 2

t /2
)
,

and

Covt−1(X(2)
t ,Yt) = Et−1

(
exp

(
m+ μt + (sr + σt)Z(1)

t + s
√
1 − r 2Wt

))
− exp

(
m+ μt + (s2 + σ 2

t )/2
)

= exp
(
m+ μt + (sr + σt)

2/2 + s2(1 − r 2)/2
)

− exp
(
m+ μt + (s2 + σ 2

t )/2
)
.

This completes the required calculations. �
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