
Expl Agric. (2005), volume 41, pp. 109–120 C© 2005 Cambridge University Press

DOI: 10.1017/S0014479704002364 Printed in the United Kingdom

THE FACTORIAL FIELD EXPERIMENT

By S. C. PEARCE†

Institute of Mathematics and Statistics, University of Kent, Canterbury, Kent CT2 7NF,

United Kingdom

(Accepted 02 August 2004)

SUMMARY

Factorial experiments are described and the importance of interactions emphasized with suggestions about
how they should be interpreted. A distinction is made between factors introduced only to see if they will
provoke an interaction and those actually under study. Split-plot designs receive special attention. Factorial
experiments often involve a large number of treatments and ordinary block designs may be ineffective in
controlling environmental variation. If factors have few levels, as in exploratory experiments, the usual
device for reducing block size is confounding, which is explained along with single-replicate experiments,
partial replication and hidden replication. Alternatively, non-orthogonal designs and analysis of data by
nearest-neighbour and spatial methods might prove useful. The need for randomization and the role of
significance are discussed. It is pointed out that interactions can sometimes be avoided by transformation
of the variate.

FA C TO R S A N D I N T E R A C T I O N S

In factorial experiments the range of treatments under study is constructed from all
possible combinations of two or more sets of treatments, known as factors. For example,
there might be six ‘treatment-combinations’ formed from two fungicides and three
times of spraying. Often the intention is to study the interactions between the factors;
in this instance, the best time for spraying might depend upon the fungicide used. In
another experiment, there might be 15 treatment-combinations formed by using five
nitrogenous fertilizers, each at three dosages, and it might emerge that some fertilizers
are better not used in large amounts. Such experiments have been in use for a long
time. The first exposition of the analysis of variance was illustrated by Fisher (1925),
though a thorough statistical examination had to wait until the classic paper of Yates
(1935).

The opportunity to assess interactions between factors is not always valued by
agronomic experimenters, who sometimes regard them as mathematical abstractions
that have little to do with practical issues, but really they lie at the heart of a biological
approach. Anyone who declared that a certain treatment would have a stated effect
on crop weight irrespective of variety, season, soil conditions or weather would be
regarded as impossibly naı̈ve. There are always conditions and they are expressed as
interactions.

† Email: pearceclifford@aol.com

https://doi.org/10.1017/S0014479704002364 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479704002364


110 S. C . P E A RC E

Table 1. The derivation of the elements of an interaction given the treatment means. The data come from a glasshouse
experiment in which T1, T2 and T3 represent successive times for transplanting into the field and H1, H2, H3 and
H4 are rooting hormones. The data represent growth during a fixed time after transplanting and are means from two

replicates.

T1 T2 T3 Means

Data and means
H1 12.0 15.0 17.5 14.83
H2 18.0 21.5 15.5 18.33
H3 18.0 20.5 19.5 19.33
H4 17.5 19.5 25.0 20.67
Means 16.38 19.13 19.38 18.29

Interaction
H1 − 0.92 − 0.67 1.58
H2 1.58 2.33 − 3.92
H3 0.58 0.33 − 0.92
H4 − 1.26 − 2.01 3.24

Form of an interaction

Sometimes the form of the interaction is not obvious. Table 1 sets out data from
a greenhouse experiment in which there were two replicates of twelve treatments
resulting from two factors (Clarke, 1980). Seedlings were transplanted to the field on
three occasions, T1, T2 and T3, after treatment with four rooting hormones, H1, H2,
H3 and H4. Data represent growth in a fixed period after transplanting. Both main
effects were significant as was the interaction.

The form of the interaction is not, perhaps, obvious but it usually becomes so
when its elements are isolated. First, it is necessary to evaluate the main effects. That
is done by subtracting the general mean from each of the factor means. For the
hormones that gives −3.46, 0.04, 1,04, 2.38 respectively. If the factor had no effect,
each of these figures would be zero apart from experimental error. In any case, they
should sum to zero. Significance is judged by finding the probability of such values
arising from experimental error alone. The error variance was 4.29, which makes the
probability about 1 in 40, so the hormone effect must be judged significant. For the
times of transplanting the corresponding values are −1.91, 0.84 and 1.09. (The sum
is not exactly zero on account of rounding errors.) Again, the values must be judged
significant, the probability being less than 1 in 100.

If there is no interaction each combination of factors should give a mean equal to:

General mean + the two relevant main effects.

Thus, the mean for the combination of H1 and T1 should be:

18.29 − 3.46 − 1.91 = 12.92

It is, in fact, 12.00, or 0.92 less than expected. The elements of the interaction are
presented in the lower part of Table 1. The probability that they have arisen by chance
lies somewhere between 1 in 20 and 1 in 40. They suggest that the relative responses to
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the herbicides were different at T3 than at T1 and T2. That conclusion is confirmed
by ignoring data from T3 and using only T1 and T2 to perform the calculations
again, when it will emerge that all elements of the diminished interaction lie in the
range ± 0.38. They could well have arisen by chance and provide no evidence of any
interaction.

Some alternatives

There are occasions when interactions are not very meaningful. For example, if the
factors represent different amounts of nitrogen and potassium in a fertilizer mixture,
there may well be an interaction but the results are better expressed by fitting a
response surface and finding its maximum.

Again, when one factor is ‘qualitative’, e.g. comparison of substances, and the
other ‘quantitative’, interactions can be confusing. For example, there might be two
fertilizers, A and B, applied in single and double applications, and an untreated control.
There are five treatments, 0, A1, A2, B1 and B2. (If the control is to provide a basis
from which the others are to be judged it might be wise to double its replication.)
Some writers have recommended estimating the interaction from A1, A2, B1 and
B2. There is no need to do so because there must be one. It cannot be supposed
that the difference between the two substances will be the same whatever the level
of application, however large or small that may be. The best way forward may be to
compare the response curves for the two substances.

Classes of factors

Factors are of two kinds. They may represent the subject of enquiry, in which case
they can be called ‘substantive’, or they may have been included only to see if they
will cause an interaction if one exists, in which case they are ‘provocative’.

For example, in an experiment on the control of a fungal disease, the first factor
might be four different concentrations of a fungicide, and the second two varieties,
chosen because they have different resistance to the disease under study. The object of
the experiment is to find the optimal spraying treatment, so that factor is substantive.
The varieties have been included to see if they affect the result, so they are provocative.
So far from being under investigation, they were chosen for properties that were well
understood.

Relationships between effects

The interaction of two factors, A and B, is written A × B. There is no need to
consider their order. If A affects the response to B then B will affect the response to
A. Further, if A × B depends upon the level of C, there is a three-factor interaction,
A × B × C, and the response to C will depend upon the particular combination of
levels of A and B. The same can be said of A × C and B and of B × C and A. All
these statements are equivalent. This progression to higher order interactions can be
extended indefinitely.
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Hidden replication

To return to the design with four levels of a spray substance in conjunction with two
varieties; if the data analysis indicates an interaction it would be necessary to report
eight means for each quantity studied. However, if there were no evidence of interac-
tion, it would be possible to merge the results over varieties and present only four. They
would have a smaller standard error on account of the doubled replication. In designing
the experiment, however, it would be unwise to rely on the ‘hidden replication’,
as the pioneers called it, because an interaction is possible, though not expected.
Suppose, however, that there was a third factor, would anyone expect a three-factor
interaction? If not, it would safe to use hidden replication in the estimation of the two-
factor interactions. The cautious might object, but where there are four or more factors
most experimenters would be prepared to ignore the higher order interactions and use
them to increase the effective replication. They could also include the sums of squares
attributed to these high order interactions in the estimation of experimental error.

The interpretation of three-factor interactions

With high order interactions, the estimation of, for example, sums of squares
is a matter of mathematics and presents few problems. The difficulty lies in their
interpretation, i.e. their biological implications.

Three-factor interactions do arise, though usually with one or more of their
associated two-factor interactions. If there is only one, e.g. if A × B exists as well
as A × B × C but not A × C or B × C, the first step is to explore the nature of A × B
and then to consider the combination of A and B as a single factor and to enquire as
to its interaction with C.

The situation is more difficult if A × C exists also. One approach is to note that A
has given rise to a significant interaction whenever it occurs, i.e. with B, C and B × C,
so it has brought about a radical change in conditions. The analysis of variance can
then be calculated anew. The main effect of A can remain, but it has become necessary
to calculate the effects of B, C and B × C for each level of A separately. With a design
in randomized complete blocks, this is quite easy. One method is to analyse all data at
the first level of A in isolation, then those at the second and so on. The sum of squares
and degrees of freedom can be transferred to the original analysis and the rest can be
discarded. It will be found that both the degrees of freedom and the sums of squares
have the same totals as in the original analysis.

Finally, there is the case when all three of the associated two-factor interactions are
significant. This is indeed difficult and admits of no general solution. The best course
in writing a report is simply to present the means for all the treatment-combinations
and to draw attention to anything that the author can discern. Some readers may be
more percipient.

Split-plot designs

Some combinations of factors raise difficulties in the field. Some, such as spraying,
are more easily applied to compact areas, while others, like sowing, are more easily
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carried out on strips. Some are difficult to apply to small plots but there is no problem
with others. Indeed, some, such as depth of ploughing, may require large plots to be
meaningful. Also, interpollinating varieties have to be dispersed evenly. To minimize
such problems, recourse is sometimes made to designs with split-plots. Blocks are
formed and divided into ‘main plots’ for the application of factors suited to such
dimensions. Then the main plots are divided into ‘subplots’ to which the other factors
are applied. The analysis of variance has to be divided into two parts, one for the
study of main plots within blocks; the other of subplots within main plots. Convenient
though this scheme is, it requires caution. In general, the main plot treatments will
be estimated less precisely than those on subplots. For one thing, they are compared
within blocks whereas the subplot treatments are compared within main plots, which
are smaller and so can be more effective in the control of environmental variation.
Also, in the main plot analysis there will usually be markedly fewer degrees of freedom
for the estimation of error.

If factor M is applied to main plots and S to subplots, their interaction, M × S, will
be found in the subplot analysis. Its interpretation requires care. If the responses
to S are compared for each level of M, all the relevant differences lie between
subplots in the same main plots and their standard errors are derived solely from
the subplot error. If, however, comparison is made between responses to M within
each level of S, both errors are involved and larger standard errors are to be expected.
For that reason, there is an advantage if the factors on main plots are provocative
and those on subplots substantive, but this consideration can conflict with allocating
factors to main plots or subplots for reasons of practicality. The solution might be to
have plots of only one size even if that does call for more land than was originally
expected.

Where both analyses will be required, it is possible to affect their relative sensitivities
by the shape of the main plots. Their role is ambiguous. In the main plot analysis,
they are used as plots, which means that within each block they should be as similar
as possible. That is to say that they should be long and narrow and formed across
fertility contours so as include as many kinds of soil as possible. In the subplot analysis,
on the other hand, they act as blocks. Consequently they should be compact, so
that soil differences lie between them and not within them. These considerations
are clearly incompatible and the designer has to choose between using long narrow
subplots, which will favour the main plot analysis, or compact so as to favour the
other.

Block size

The main difficulty with factorial designs comes from the large number of treatment-
combinations. If a factor has four levels, a simple design can cope. If there are two
such factors, there are 16 treatment-combinations, which call for blocks too large to
be completely successful. Three such factors give 64 treatment-combinations; if each
were represented by only a single plot that single replicate would be larger than many
complete experiments. This situation has no parallel except in the testing of new strains
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from a breeding programme, but statistically that is quite different because there is
no structure between the new strains whereas here there is the structure essential
to a useful interpretation of results. The problem is to avoid blocks so large that
they are ineffective in controlling environmental variation within the experimental
area.

When nearest-neighbour methods were first attracting attention, Bartlett (1938)
suggested that they presented a possible solution. The present time is, perhaps, the
occasion to reconsider his suggestion (Pearce, 1998). Also, the introduction of spatial
methods of controlling variation, i.e. those that assume a pattern of environmental
variation, offer another way forward (Dyke et al., 1982; Cullis and Gleeson, 1991). A
further possibility is to use non-orthogonal designs, i.e. ones in which each block
contains only a selection of the treatments. A lot of effort has been expended
on evolving such designs in which all comparisons are estimated with about the
same efficiency, though it has been suggested (Pearce, 1963,1983) that they might
also be useful when the contrasts differ in importance. There are several kinds of
non-orthogonal design that fit factorial experiments very well, e.g. those that are
group-divisible. However, the main thrust of study to reduce block size has been in
confounding, which will be described next.

R E D U C T I O N O F B L O C K S I Z E

A simple example

The reduction of block size is simple when all factors have two levels, e.g., presence
or absence of some feature. Such experiments are of special value in exploration where
there have been several suggestions why plants are growing abnormally, and the need
is to try them out singly and in combination to suggest a way forward. To take the
example of only two factors, A and B, there will be four treatments-combinations,
which will be called 1, a, b and ab. Then, using the method of contrasts the ‘main
effect’ of A is given by the contrast (−1, 1, −1, 1). That is to say, a difference is taken
between those treatments in which A is present and those in which it is not. Similarly
the main effect of B is given by (−1, −1, 1, 1). The interaction of two effects is found
by multiplying them out, which gives

(− 1 × − 1, 1 × − 1, −1 × 1, 1 × 1) = (1, − 1, − 1, 1).

These three effects represent all the ways in which four things can be divided into two
pairs. The third is clearly the interaction because it calls for the comparison of
treatments 1 and ab with a and b. If there is no interaction it would not matter
whether the factors were applied together or separately, so the two pairs should give
the same total result within the limits of experimental error.

If the interaction proves to be large the two main effects are of little use. They
give the mean effect of each factor averaged over two different conditions. What is
needed now are the ‘particular effects’. That of factor A in the absence of B is given by
(−1, 1, 0, 0) and in its presence by (0, 0, −1, 1). Similarly the particular effects of
factor B are (−1, 0, 1, 0) and (0, −1,0,1).
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More than two factors

There is no reason to stop at two factors. Let there be three, A, B and C, leading to
eight treatments 1, a, b, ab, c, ac, bc and abc. The three main effects are represented by
the contrasts:

A (−1, 1, −1, 1, −1, 1, −1, 1)
B (−1, −1, 1, 1, −1, −1, 1, 1)
C (−1. −1, −1, −1, 1, 1, 1, 1)

The three two-factor interactions are given by:

B × C (1, 1, −1, −1, −1. −1. 1. 1)
A × C (1, −1. 1, −1, −1, 1, −1, 1)
A × B (1, −1, −1, 1, 1, −1, −1, 1)

It will be seen that any of these is the interaction of the other two and that is for a good
reason. Consider, for example, the interaction of A × B and B × C. Since all elements
of the contrast for the main effect of B are either + 1 or −1, all elements of B × B
equal + 1, so A × B × B × C = A × C. This happens whenever a main effect with two
levels occurs twice in an interaction.

The contrast for the three-factor interaction is found by multiplying out those for
all the main effects, i.e A × B × C. It is (−1, 1, 1, −1, 1, −1, −1, 1).

Confounding

As more factors are introduced, the blocks increase in size to the point where
they would be of little use in reducing the effect of local variation. If an interaction
is thought most unlikely to exist, the device of confounding becomes available and
will be exemplified using A × B × C, described above, to reduce size of blocks from
eight plots to four but doubling their number, thus leaving the total number of plots
unchanged. Half the new blocks will be assigned the treatments a, b, c, abc, which will
be allocated at random within it, and the other half, 1, bc, ac, ab. It is clear that the
difference between the two sorts of block corresponds to the three-factor interaction,
which will no longer appear in the analysis of variance, which is ‘intrablock’, i.e.
concerned with plots within blocks, though it can be ‘recovered’ by comparing the
two kinds of new block. However, the ‘interblock analysis’, as it is called, is likely to
be rather uninformative, partly because there will be few degrees of freedom for the
estimation of experimental error. One the other hand, the intra-block analysis contains
the other contrasts and remains effective.

Confounding with four or more factors

If the confounding of an interaction with three factors is thought unwise, it is surely
acceptable to confound one with four. So a larger experiment will be considered in
which there are four factors, A, B, C and D, each with two levels, giving rise to 16
treatment-combinations, viz,

1, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd.
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In the contrast for A × B × C × D, the treatments 1, ab, ac, bc, ad, bd, cd and abcd

will have elements equal to + 1 but a, b, c, abc, d, abd, acd and bcd will have −1. In
order to confound this effect the number of blocks will be doubled and the block size
reduced to eight plots. Half the blocks are chosen to be of Type I and are assigned
the treatments with + 1. Treatments with − 1 are assigned to the other blocks, which
are of Type II. (The treatments in each block must be allocated at random to the
plots.) Some may question whether the other effects are validly estimated but they are.
To take an example, consider A × B, which requires the comparison of treatments 1,
ab, c, abc, d, abd, cd and abcd with a, b, ac, bc, ad, bd, acd and bcd. On both sides of
the comparison four treatments come from blocks of Type I and four from those of
Type II, so the result is unaffected by block differences. The same applies to all the
other unconfounded effects.

The method can be taken further. Would it not be possible to reduce block size
further by confounding another interaction? Could not B × C × D also be sacrificed
so that block size can be reduced to four plots? In that contrast 1, a, bc, abc, bd, abd,
cd and acd have the element + 1 but b, ab, c, ac, d, ad, abc and abcd have − 1. The
method is to use four kinds of block. Those of Type I will contain treatments with
positive elements in both the contrasts to be confounded, i.e. 1, bc, bd and cd. Blocks of
Type II will have those with a positive element in the first contrast but a negative one
in the second, i.e. ab, ac, ad and abcd; those of Type III having a negative element in
the first but a positive one in the second, i.e. a, abc, abd and acd. That leaves Type IV
to receive those that have a negative element in each, i.e. b, c, d and bcd. Then
A × B × C × D has been confounded between blocks of Types I and II as compared
with those of Types III and IV and B × C × D has been confounded between those of
Types I and III as compared with those of II and IV. It emerges that A is confounded
between blocks of Types I and IV as compared with those of Types II and III; this
always happens. If two contrasts are confounded, their interaction is confounded also.

Conventional wisdom says that only interactions of three or more factors should be
confounded, but it is here suggested that conventional wisdom may be wrong. If A is a
provocative factor, introduced only to see if it gives rise to interactions, its main effect
does not require investigation. Its interactions are retained except for A × B × C × D.

When the number of factors exceeds three there will be interactions that are poorly
estimated and difficult to interpret and, except for special reasons, can be disregarded.
Any sum of squares associated with them can be merged with error. They do however
provide hidden replication. If it can be assumed that A × B × C × D does not exist,
then A × B × C will be estimated twice, once for each level of D. The same is true
of any other main effects and interactions involving A, B and C. Effectively, the
replication has been doubled.

Single replicate designs

Because of this hidden replication, it is sometimes sufficient to use no actual
replication at all. Usually at least six factors are needed and the method will be
illustrated with that number. A single replicate will require 64 plots, which leaves no
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degrees of freedom for error, but if it is agreed that no interactions with more than
three factors need to be considered that leaves 15 interactions with four factors, the six
with five and the single six-factor interaction, which can be merged to give an error
sum of squares with 22 degrees of freedom. Further, the three-factor interactions can
be estimated with hidden eight-fold replication. Thus, the interaction of A × B × C
can be estimated by the comparison of 1, ab, ac and bc with a, b, c, abc, but if there
is a fourth factor, D, and if A × B × C × D can be ignored, then it can be estimated
equally well by comparing d, abd, acd and bcd with ad, bd, bcd and abcd and in six other
ways. There is however a difficulty. An experiment with 64 plots will almost certainly
need blocks to control local variation, but they can be provided by confounding the
six-factor interaction to obtain two blocks each of 32 plots. If that is not enough,
four blocks, each of 16 plots, could be used by confounding A × B × C × D and
C × D × E × F together with their interaction A × B × E × F. That would reduce the
degrees of freedom for error to 19, which would still be enough.

Fractional replication

The matter can be taken further. Finney (1946) explored the use of only some of the
treatments generated from a large number of factors. Suppose that there are seven.
That gives rise to 128 treatments. He proposed the use of a defining contrast, e.g.
the seven-factor interaction, to divide them into two groups, one of treatments with
an element of + 1 in the defining factor and the others with − 1. If only one group
is used the experiment needs only half a replicate, i.e. 64 plots. Its data can still be
interpreted, but there is a complication. With only half the treatments present, it is
not possible to separate an effect and its interaction with the defining contrast; the
two are said to be aliases, two names for the same thing. Consequently, if the defining
contrast is the interaction between seven factors, each main effect has as its alias the
six-factor interaction of the other treatments. That raises no difficulty. Any difference
found must almost certainly be due to the main effect. An interaction with two factors
is indistinguishable from its alias with five. Again, there is unlikely to be much doubt
as to which is the one responsible for any difference found. Three-factor interactions
however are more difficult because each has a four-factor interaction as its alias and
there may be less certainty as to which is the active one. Perhaps both are.

Adding a second defining contrast brings into existence a third, namely, the
interaction of the two already introduced. There is now a quarter replication and
each effect has three aliases. Fortunately, such complexity is rarely called for.

Confounding factors with four levels

The methods described above are readily extended to the confounding of effects
with four levels. If A has four levels, 0, 1, 2 and 3, they can be regarded respectively as
00, 01, 10 and 11, where the two digits show the levels of two factors, U and V, each
with two levels. The effect of A with three degrees of freedom can now be considered
as the aggregate of U, V and U × V, each with one.
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The approach can be illustrated by considering a single replicate of 64 treatments,
made up of three factors, A, B and C. Writing A as above, B as W, X and W × X taken
together and C as Y, Z, Y × Z, it is necessary only to confound both U × W × Y and
V × X × Z, which causes the six-factor interaction to be confounded also. The single
block of 64 plots has now become four blocks each of 16. Each of the main effects
of A, B and C can be found by summing three components and all the two-factor
interactions by summing nine, e.g. A × B with 9 degrees of freedom is made up of
U × W, U × X, U × W × X, V × W, V × X, V × W × X, U × V × W, U × V × X and
U × V × W × X. As to the 27 degrees of freedom of the three-factor interaction, three
have been confounded, leaving 24 for estimating the experimental error. There are
many similar possibilities.

Use of non-orthogonal designs

In most experiments each block contains the same set of treatments but that is not
essential. Such designs are termed ‘orthogonal’. Sometimes however difficulties with
the site and the formation of blocks makes non-orthogonality desirable, if not essential.
Another reason is the need to minimize block size. If blocks differ in their content,
some contrasts, if not all, will suffer a loss of information in the intrablock analysis,
which can sometimes be recovered by an interblock analysis. Non-orthogonal designs
exist in which the loss fits the factorial structure of the treatments, notably those that
have factorial balance or are group-divisible (Pearce, 1963; 1983).

An example is afforded by the well-known method for confounding of the interaction
in an experiment with two factors, each with three levels. (Yates, 1935). Designating
each treatment by two digits to represent the levels of the two factors (i.e. 0, 1 or 2), he
suggested replacing two blocks with nine plots by six blocks with three. In one block,
chosen at random, the treatments would be 00, 12, 21; in a second 01, 12, 20; in a
third 02; 11; 20; in a fourth 00, 11, 22; in a fifth 01, 12, 20; and in the last 02, 10, 21.
(It is, of course, possible to use further groups of six blocks to gain further replication.)
The resulting design has factorial balance and provides for partial confounding of the
interaction; information about it is divided equally between the two analyses.

It is unlikely that anyone would introduce two factors in an experiment without
being interested in their interaction, but the scheme can be modified so that the main
effects are partially confounded, leaving information about the interaction entirely in
the more sensitive intrablock analysis. To do that, the treatments should be allocated
to blocks thus: I 00, 01, 02; II 10, 11, 12; III 20, 21, 22; IV 00, 10, 20; V 10, 11,
12; and VI 02, 12, 22. This design also has factorial balance. There are many other
possibilities.

D I S C U S S I O N

Availability of software

Before embarking on an unusual design, the experimenter should enquire about
the availability of computer software to deal with the data that will arise. Most modern
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programs can cope with confounding and many with non-orthogonality but it is wise
to check.

Randomization

In general, treatments should be allocated to plots at random to validate significance
tests, but there are occasions with factorial designs when it might be better to disperse
them over the area. One such occasion arises with split-plot designs. If all factors on
the main plots are provocative, there will be no need to carry out any tests and it might
be better to arrange that each main plot treatment had its share of fertile and less fertile
land. (Of course, that depends on the experimenter being able to discern beforehand
which were the better and worse areas.) A similar situation arises in confounding. It is
true that an interblock analysis can provide a test of confounded effects, but probably
it will be insensitive and the effects small. Some may think it better to disperse the
types of block rather than to randomize them.

The role of significance

When significance tests were first introduced, there was a tendency to report all
effects significant at the 0.05 level as if they were proven and to regard all that
failed to reach that level as non-existent. That was, of course, a mistake. The word
‘significant’ was chosen originally to imply only that the effect in question merited
serious consideration. In practice a plausible effect may carry conviction even if it
fails a significance test, while one that looks absurd may be rejected even though its
significance level is high. It should be reported nevertheless; someone else may be able
to make sense of it, even if the author cannot do so.

This rather loose approach causes difficulties in presenting results from a factorial
experiment, because the readers will not necessarily agree with the author as to what
is plausible and what is not. If an interaction is significant at some stated level it
would be wise not only to report it, despite any scepticism on the part of the author,
but to present the particular effects that would be required to interpret it in case a
reader should wish to do so. If the particular effects are known, it is easy to derive the
corresponding main effects, but the reverse process is not possible.

Estimation of error

Some may think it strange to see high order interactions merged into the error
sum of squares, yet in a design like randomized complete blocks the error is formed
from the interaction of blocks and treatments and that is generally accepted. Since
experimenters are urged to associate blocks with features of the land, e.g. depth of top
soil or exposure to wind, and since it is wise to assume that any two-factor interaction
may well exist, there is nothing new in using interactions to form the error. If the
interaction of treatments with blocks (Tr × Bl) may be regarded as error, there should
be no objection to A × Bl and even less to A × B × Bl or A × B × C. In fact, standard
errors are only guides and are rarely found with great precision. Modern writers
tend to avoid the word ‘error’ and prefer ‘residual’, i.e. they see the sum of squares in
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question simply as what is left after the treatment effects have been removed. Whatever
name is chosen, it is used to estimate the experimental error.

Interactions and choice of variate

It sometimes happens that interactions arise because of a bad choice of variate. For
example, fertilizers affect the size of plant by changing its rate of growth. If then plants
are graded before planting and the final size (e.g weight, height) is measured it could
well be found that two fertilizer elements (e.g. N and K) had interacting effects. If,
however, the size measurements are transformed to their logarithms to give growth
rates, the interaction may disappear. In any experiment, especially those with factorial
design, it is sensible to measure the underlying biological process rather than its result.

R E F E R E N C E S

Bartlett, M. S. (1938). The approximate recovery of information from field experiments with large blocks. Journal of

Agricultural Science Cambridge 28:418–27
Clarke, G. M. (1980). Statistics and Experimental Design. 2nd edn. London: Edward Arnold Limited.
Cullis, B. R. and Gleeson, A. C. (1991). Spatial analysis of field experiments – an extension to two dimensions. Biometrics

47:1449–1460.
Dyke, G. V., Smith, G. L. and Yeoman, D. P. (1982). Fourier series and response curves. Journal of Agricultural Science

Cambridge 98:119–122.
Finney, D. J. (1946). Recent developments in the design of field experiments, III. Fractional replication. Journal of

Agricultural Science Cambridge 36:184–191.
Fisher, R. A. (1925). Statistical Methods for Research Workers. Cambridge: Cambridge University Press.
Pearce, S. C. (1963). The use and classification of non-orthogonal designs (with discussion). Journal of the Royal Statistical

Society, B 126:353–377.
Pearce, S. C. (1983). The Agricultural Field Experiment. A Statistical Examination of Theory and Practice. John Wiley & Sons,

Chichester.
Pearce, S. C. (1998). Field experimentation on rough land: the method of Papadakis reconsidered. Journal of Agricultural

Science Cambridge 131:1–11.
Yates, F. (1935). Complex experiments (with discussion). Journal of the Royal Statisical Society, Suppl. 2:181–247

https://doi.org/10.1017/S0014479704002364 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479704002364

