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Combustion noise is scale-free: transition from
scale-free to order at the onset of
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We investigate the scale invariance of combustion noise generated from turbulent
reacting flows in a confined environment using complex networks. The time series
data of unsteady pressure, which is the indicative of spatiotemporal changes happening
in the combustor, is converted into complex networks using the visibility algorithm.
We show that the complex networks obtained from the low-amplitude, aperiodic
pressure fluctuations during combustion noise have scale-free structure. The power-law
distributions of connections in the scale-free network are related to the scale invariance
of combustion noise. We also show that the scale-free feature of combustion noise
disappears and order emerges in the complex network topology during the transition
from combustion noise to combustion instability. The use of complex networks enables
us to formalize the identification of the pattern (i.e. scale-free to order) during the
transition from combustion noise to thermoacoustic instability as a structural change
in topology of the network.

Key words: pattern formation, turbulent reacting flows, wave–turbulence interactions

1. Background

Combustion noise is generated by unsteady combustion processes in propulsion
and power-producing systems. Combustion noise is considered as a pollutant. Unlike
other chemical pollutants, combustion noise is found to have a direct impact on the
listeners (Strahle 1978). Noise can cause physiological changes and even impede
the efficiency of the listeners. Exposure of such noise for longer times can even
lead to physiological disorders such as hearing loss and interrupted sleep (Dowling
& Mahmoudi 2015). Combustion noise is identified to be an important source of
noise in industrial furnaces, aero and land-based gas turbine engines. Control of
noise emission is of critical importance in view of the increased public concern and
increasing stringent regulations.

Combustion noise arises due to the unsteady burning of reacting gases, producing
volumetric expansion and compression of fluid near the flame zone. The first explicit
analysis of the source of combustion noise was performed by Bragg (1963). He
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modelled the flame as a distribution of monopole sound sources of combustion
noise. The flame propagation is described as a locally laminar process and the effect
of turbulence is included through the wrinkled flame surface area. However, Bragg’s
model was based on heuristic arguments and does not rigorously follow the principles
of fluid mechanics. A more rigorous analysis was then performed by Strahle (1971)
who closely followed Lighthill’s theory of aerodynamic noise. An excellent review of
the advancements in understanding the sources of combustion noise can be found in
Dowling & Mahmoudi (2015).

Spectral analyses of combustion noise generated from open turbulent flames have
shown that the acoustic energy spectrum of combustion noise is broadband and
involves power-law scaling. Abugov & Obrezkov (1978) showed that the combustion
noise spectrum exhibits power-law scaling with a scaling exponent of −5/2 in the
frequency range of 2–10 kHz. Belliard (1997) also arrived at the power-law scaling
with a similar exponent. In the low-frequency range, the acoustic power spectrum
is found to have f β dependence and in the intermediate- and high-frequency range,
the power spectrum is given by f−α (Rajaram & Lieuwen 2009), where α and β

are positive numbers. The power-law scaling (f−α) in the high-frequency side of the
acoustic power spectrum was shown to have a P(ω)∼〈|q(ω)|2〉 behaviour, where P(ω)
is the acoustic power and q(ω) is the heat release rate fluctuations (Rajaram 2007).
Clavin & Siggia (1991) and Clavin (2000) related the power law in the acoustic
power spectrum of combustion noise to the Kolmogorov spectrum of turbulence. The
existence of power laws is an indication of scale invariance that is often seen in
physical systems (Lovejoy & Schertzer 1986; Davis et al. 1996; Lesne & Laguës
2011).

In practical combustors, flames exist in confined environments. The confinement
modes preferentially amplify the sound emitted from the flames at time scales close
to their natural time scales (frequencies) and, hence, lead to multiple peaks in the
acoustic power spectrum (Chiu & Summerfield 1974; Kumar 1975; Strahle 1978;
Hegde, Reuter & Zinn 1988). As a consequence of these peaks in the acoustic power,
the scale invariance of combustion noise in a confined environment is hard to discern
in the power spectrum.

Further, positive coupling of the heat release rate fluctuations from combustion with
the acoustic field in the combustion chamber can lead to large-amplitude pressure
oscillations called thermoacoustic instabilities (also known as combustion instabilities)
in the community. A review of acoustically coupled combustion-driven oscillations
can be found in Dowling & Stow (2003). In addition to acoustics and combustion,
vortices that are shed due to hydrodynamics play a key role in driving thermoacoustic
instability (Schadow et al. 1989; Coats 1996). The vortices shed, grow and impinge at
the combustor walls at the instability frequency and the heat release rate fluctuations
closely follow the vortex history (Rogers 1956; Yu, Trouve & Daily 1991).

Most of these studies individually investigate and contrast the states of the system
during its stable operation (combustion noise) and full-blown combustion instability
(Smith & Zukoski 1985; Poinsot et al. 1987; Yu et al. 1991). However, studies
focusing on the transition to combustion instability in a turbulent combustor from a
stable regime (combustion noise) in response to the systematic variation of operating
conditions of the combustor remain very few in number.

Traditionally, combustion noise and combustion instability are treated as acoustic
phenomena driven by combustion. Recently, tools from dynamical systems and
complex systems theory are used to understand and quantify the dynamical changes
in thermoacoustic systems. Gotoda and co-workers used nonlinear time series analysis
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Combustion noise is scale-free 227

to describe the onset of combustion instability and blowout in a model gas turbine
combustor (Gotoda et al. 2011, 2012, 2014).

Recently, Nair et al. (2013) suggested that the stable regime of a combustor
with turbulent flow does not correspond to a fixed point. They suggested that the
low-amplitude aperiodic pressure fluctuations during the stable operation of the
combustor (known as combustion noise in the community) are deterministic and
have chaotic behaviour. During thermoacoustic instability, the acoustic pressure is
characterized by large-amplitude, self-sustained, periodic oscillations. In contrast with
chaos, these periodic oscillations represent order. The transition from combustion
noise to order (i.e. periodic oscillations) happens via intermittency; a state composed
of bursts of large-amplitude periodic oscillations, amidst regions of low-amplitude
chaotic fluctuations (Nair et al. 2013; Nair, Thampi & Sujith 2014).

Currently, we know that transition from combustion noise to combustion instability
is associated with change in acoustic amplitude spectrum from one which is broad
with shallow peaks to one with sharp peaks at acoustic instability modes (Nair &
Sujith 2014; Nair et al. 2014). However, there is some vagueness associated with
this definition as it is difficult to define what constitutes a shallow peak or a sharp
peak. To arrive at a better definition, the pattern emerging during this transition from
chaos to order via intermittency needs to be identified and formalized. This involves
formalizing the process of pattern discovery (Barabasi 2011).

Further, Nair & Sujith (2014) have shown that combustion noise displays a
multifractal signature and this disappears at the onset of thermoacoustic instability.
A fractal time series has portions that look similar to the whole time series and
have a non-integer dimension. In a multifractal time series, fluctuations of different
amplitudes scale differently. Multifractality of combustion noise confirmed the absence
of a single characteristic scale in thermoacoustic systems (Nair & Sujith 2014) and
reflects the complex nature of the dynamics involved in combustion systems that
arises due to the nonlinear interaction between combustion, flow and duct acoustics.

Complexity is a characteristic of real physical systems. Our day-to-day dynamical
systems, for example, economic systems, our language or biological systems are
‘complex’ systems, because a great number of interacting elements are involved. The
behaviour of a thermoacoustic system, for example, arises from a variety of factors
such as molecular mixing, turbulent transport that involves a wide range of scales,
chemical kinetics and acoustic wave interaction etc., giving rise to a rich variety of
dynamics, giving rise to the possibility of chaotic fluctuations on the one hand to
ordered periodic oscillations on the other hand.

Despite the many differences in the nature of complex systems, they often
display similar dynamical behaviour. The traditional reductionist approach which
attempts to analyse a complex system in terms of its constituent elements, hits its
limit in explaining these similarities in fundamentally different physical systems
(Barabasi 2011). In this context, a new approach to science has emerged in recent
years that investigate how interaction between parts (or elements) gives rise to the
collective behaviour of the system. This approach is defined as complex systems
approach, where a complex system is reviewed as a system with ‘multiple interacting
components whose behaviour cannot be simply inferred from the behaviour of the
components’ (http://www.necsi.edu).

Complex network approach represents complex systems as large-scale networks
with complex heterogeneous structures and provides a comprehensive understanding
of complex connectivity patterns in the dynamical systems. Statistical theory of
complex networks is a tool very recently devised to study complex systems (Lesne
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& Laguës 2011). The main goal is to formulate quantities to quantitatively describe
the topological aspects of the dynamical systems.

Dramatic advances have been made in the past few years in the field of complex
networks since the discovery of small-world network by Watts & Strogatz (1998) and
scale-free network by Barabási & Albert (1999). Watts & Strogatz (1998) proposed
a network model, where starting with a regular topology, with the random addition
of few links, the average distance between nodes reduced drastically. Such a network
is known as small-world network. The small-world network model is successful
in describing the transition from regular to random topology, popularly known as
the Watts and Strogatz (WS) model. Both small-world and random networks follow
exponential distribution of connectivity in the network. Later, in 1999, Barabási &
Albert (1999) discovered that most of the real-world networks such as the Internet,
World Wide Web and scientific collaboration networks have a heavy-tailed distribution
of connectivity with no characteristic scale; such networks are called ‘scale-free’
networks. Surprisingly, despite their differences, most of the complex systems such as
biological systems (Alm & Arkin 2003; Barabasi & Oltvai 2004), World Wide Web
(Barabasi, Albert & Jeong 1999; Albert, Jeong & Barabasi 2000) and power grids
(Arianos et al. 2009; Chen et al. 2010; Pagani & Aiello 2014) possess scale-free
topological structure.

Time series data are the reflection of the underlying spatiotemporal dynamics of
any system. For example, the time series data of fluctuating quantities measured
in the flow are shown to have direct correlation with the features of flow patterns
in two-phase flows (Rouhani & Sohal 1983; Das & Pattanayak 1993). In nonlinear
sciences, complex networks are used to understand the dynamics underpinning the
time series data (Zhang & Small 2006; Lacasa et al. 2008; Donner et al. 2010).
A general framework has been developed to transform time series into complex
networks and vice versa (Strozzi et al. 2009). This dual vision enables us to visualize
the information hidden in the dynamics of a time series as different structures in the
corresponding complex networks.

It has been recently demonstrated that complex networks can be used to distinguish
the flow patterns in gas–liquid two phase flows (Gao & Jin 2009; Gao et al. 2010)
and various regimes of turbulent jet flows (Charakopoulos et al. 2014). Detecting
the patterns or structures in the complex network obtained from a thermoacoustic
system may enable us to obtain an alternative definition and characterization of
thermoacoustic transition. In the present paper, we make a first attempt to investigate
signals generated by the interaction between acoustics, combustion and turbulence
from the complex networks perspective, with the hope that tools from the field of
complex networks can stimulate the study of combustion dynamics from an alternative
perspective.

We derive complex networks from the time series data of dynamic pressure
measured at different operating conditions in a combustor. We show that low-
amplitude, aperiodic pressure fluctuations during combustion noise in a confined
environment can be represented as a scale-free network. Scale-free network manifests
the scale invariance of combustion noise and implies that there is no single
characteristic scale in the network. A scale-free network follows a power-law
behaviour between P(k) and k (i.e. P(k)∼ k−γ , where γ is a positive number), where
k is the number of nodes connected with a given node and P(k) is the percentage
of nodes with k number of connections in a given network (Barabasi & Bonabeau
2003). This power-law distribution of the scale-free network is related to the scale
invariance of combustion noise.
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There is a loss of scale invariance at the onset of thermoacoustic instability, i.e. the
scale-free behaviour transitions to an orderly behaviour (periodic oscillations). We
show that the time series data acquired during instability (periodic oscillations)
can be represented as a regular network that has ordered topological features. In
the transition to thermoacoustic instability, the appearance of intermittent bursts of
periodic oscillations changes the topology of the complex network. We illustrate the
transition from a scale-free structure to an ordered regular structure in the topology of
the complex networks during the transition from combustion noise to thermoacoustic
instability.

The rest of the paper is organized as follows. Complex networks and methods
to extract complex networks from time series are briefly described in § 2. The
details of the experiments are provided in § 3. Representation of time series as
complex networks and the topological change from scale-free to regular during the
transition from combustion noise to thermoacoustic instability along with its physical
interpretation are discussed in § 4. The key results are summarized in § 5.

2. Extracting complex networks from the time series data
A complex network consists of nodes and connections between the nodes. Many

different methods can be used to construct a complex network from a time series.
As an example, conditions based on temporal correlation of pseudo-periodic cycles
(Zhang & Small 2006), recurrence of states in phase space (Donner et al. 2010),
visibility of nodes (Lacasa et al. 2008) are used to connect the nodes in a network. We
use the visibility graph (Lacasa et al. 2008) to represent a thermoacoustic system as a
complex network. We then show the topological changes in complex networks during
the transition from combustion noise to thermoacoustic instability via intermittency.

From the acquired data, we construct a new time series by considering only the
peaks in the time series data. The data points in the new time series are represented
as vertical bars. As an example, let x(t) be the acoustic pressure time series and p(t)
be the vector that consists of data points belonging to the crest of each cycle in the
time series. Each data point in the vector p(t) is considered as a node. Information
about the connectivity between nodes is stored in an adjacency matrix (Donner et al.
2010). As an example, if two nodes i and j are connected, Ai,j is one; otherwise Ai,j
is zero. To avoid self-connections, Ai,i is chosen as 0 in the adjacency matrix.

2.1. Visibility graph
According to the visibility condition, each data bar or data value in the time series
p(t) is considered as a node (Lacasa et al. 2008). Any two nodes are connected
when a straight line can be drawn between these two nodes without intersecting any
intermediate data bars. The method is illustrated in figure 1.

Two nodes (i and j) are connected if the intermediate nodes (i< k < j) satisfy the
following condition,

Ai,j =
1, if, pk < pi + (pj − pi)

tk − ti

tj − ti
,

0, otherwise.
(2.1)

The method discussed above is employed to extract a complex network from the
time series data of unsteady pressure measured from a combustor described in the
following section.
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(a)

(b)

FIGURE 1. Illustration of visibility graph to convert a time series into a complex network.
(a) The time series to be converted into a complex network is represented as vertical bars.
Each data point in the time series p(t) is converted into a node appearing as a black dot
in figure 1(b). If a straight line can be drawn between any two nodes (i.e. data heights i
and j) without intersecting any nodes (i< k< j) between them, nodes i and j are connected.
If two nodes are connected, a connection is drawn between them in the network as shown
in figure 1(b). (b) The complex network with nodes and connections derived from the time
series shown in figure 1(a), using the visibility condition.

3. Experiments
The experimental configurations and the unsteady pressure data presented in

the current work is the same as that described in Nair & Sujith (2014) and Nair
et al. (2014). These experiments were performed in a combustor with two different
flame holding mechanisms: a vane swirler and a circular bluff body, in a turbulent
environment (Re > 16 000). The set-up consists of a settling chamber, burner and
combustion chamber with extension ducts. The combustion chamber is 700 mm long
with a square cross-section (90 mm × 90 mm). The bluff body is a circular disk
of 47 mm diameter and 10 mm thickness, supported by a central shaft of 16 mm
diameter. For the experiments with swirler as a flame holding device, the bluff body
was replaced with swirler. The swirler composed of eight blades with a vane angle
of 40◦. The position of the flame holding device (both swirler and bluff body) can be
varied inside the combustion chamber using a rack and pinion mechanism. Liquefied
petroleum gas (LPG; composed of 60 % of C4H10 and 40 % of C3H8 by volume)
is used as the fuel. The fuel is supplied into the chamber through a central shaft
and injected 160 mm before the rear end of the bluff body through four radial
injection holes of diameter 1.7 mm. Air is supplied from a high-pressure chamber
through a moisture filter to the settling chamber. The flow rates of fuel and air
are measured using mass flow controllers (Alicat Scientific, MCR series) in terms
of standard litres per minute (SLPM standardized for air at temperature of 25 ◦C
and pressure of 143 696 psi with an uncertainty of ±0.8 % of reading +2 % of full
scale). The acoustic pressure data presented in this paper is measured at 90 mm from
the upstream end of the combustion chamber using a piezoelectric transducer with
a sensitivity of 72.5 mV kPa−1 and uncertainty of ±0.64 %. The schematic of the
set-up and further details on experimentation can be found in Nair & Sujith (2014)
and Nair et al. (2014).

4. Results and discussions
The acoustic pressure measurements during the occurrence of combustion noise

acquired from turbulent combustor with (a) a circular bluff body and (b) a swirler
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FIGURE 2. Acoustic pressure time series data acquired during combustion noise in a
combustor with (a) bluff body (Re= 1.8× 104) and (b) swirler (Re= 1.6× 104) as flame
holding device. The unsteady pressure exhibits low-amplitude, seemingly random, irregular
fluctuations. The amplitude spectrum of combustion noise from (c) bluff-body stabilized
configuration and (d) swirler stabilized configuration. The amplitude spectra of acoustic
pressure are broadband with shallow peaks in the vicinity of the acoustic modes of the
combustor.

as flame holding device are shown in figure 2(a,b). The acoustic pressure exhibits
low-amplitude, seemingly random, irregular fluctuations. The corresponding acoustic
pressure amplitude spectra (figure 2c,d) are broadband with shallow peaks near the
acoustic modes of the combustor.

Assuming linear acoustics, the sound emission at each frequency from open
turbulent flames is shown to be generated from heat release process at that frequency
(Rajaram 2007). When such turbulent flames are confined in a combustion chamber,
the confinement modes preferentially amplify the sound emitted from the flames
at time scales close to their natural time scales (frequencies) and gives rise to
the shallow peaks in the amplitude spectrum. The presence of multiple peaks in
acoustic power spectrum during combustion inside a confinement is reported in
literature (Chiu & Summerfield 1974; Kumar 1975; Strahle 1978; Hegde et al.
1988). However, combustion chamber acoustics and hydrodynamics do not lock on
during combustion noise and, hence, do not lead to the excitation of self sustained
combustion instabilities (Chakravarthy et al. 2007a; Chakravarthy, Sivakumar &
Shreenivasan 2007b).

As we have already mentioned in § 1, the acoustic power spectrum of combustion
noise from open turbulent flames involves a power-law scaling. The physical reason
for the power-law scaling in the acoustic power spectrum in combustion noise is
turbulence. Clavin & Siggia (1991) and Clavin (2000) showed that if the turbulence
have Kolmogorov spectrum, the acoustic power spectrum varies as ω−5/2. Power
laws are an indication of scale invariance often seen in physical systems (Lovejoy &
Schertzer 1986; Davis et al. 1996; Lesne & Laguës 2011).

Scale invariance is an important feature of turbulent flows (Pocheau 1994; Frisch
1995; Lesne & Laguës 2011). However, such power-law scaling is not discernable
in the amplitude spectrum for combustion noise in a confined environment (see
figure 2c,d) due to the presence of narrow peaks near the duct modes. To unveil
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the scale invariance of combustion noise in a confined environment, we employ the
statistical theory of complex networks.

4.1. Complex network representation of combustion noise
The time series data of acoustic pressure representing the dynamics of combustion
noise is mapped into complex networks using visibility algorithm which is explained
in § 2. If any two nodes (i and j) are connected Ai,j is one, otherwise Ai,j is zero.
Any node (i = 1, . . . , N, N is the total number of nodes in the network) can be
connected to a number of other nodes (j = 1, . . . , N − 1) present in the network.
The total number of nodes that are connected with a given node v is specified as
the degree of that node (kv =

∑N
i=1 Ai,v). The percentage of nodes with k number

of connections in a complex network can be represented using a distribution P(k).
The variation of P(k) with respect to k is important in distinguishing the different
types of complex networks. As an example, if the variation of P(k) with respect to k
follows a random distribution (Poisson distribution, exponential distribution, etc.), the
corresponding network is classified as a random network (Zhang & Small 2006).

The degree distribution of complex networks mapped from the unsteady pressure
time series during combustion noise acquired from (a) bluff-body configuration and
(b) swirler configuration are shown in figure 3(a,b).

As can be seen from figure 3(a,b), the degree distribution of complex networks
mapped from time series data during combustion noise has a power-law behaviour:

P(k)∼ k−γ . (4.1)

The power law exponents are measured to be γ = 2.7 for bluff-body configuration
and γ = 2.5 for swirler configuration with an uncertainty of ±0.1. For all of the data
that we obtained in the bluff-body or swirler configurations, the power law exponent
of scale-free network during combustion noise was in the range of 2.5–2.7. This
highlights the fact that the power-law exponents (γ = 2.7 and 2.5) are nearly identical
for two different (bluff-body and swirler) configurations.

From the power law trend, we discover that the complex networks obtained during
combustion noise are scale-free networks. This is the first time in thermoacoustics
literature that time series data acquired during combustion noise is represented as
scale-free network. Time series obtained from turbulent systems have been recently
represented as scale-free networks (Liu, Zhou & Yuan 2010; Charakopoulos et al.
2014).

Scale-free behaviour of complex network corresponding to combustion noise
represents the scale invariance of combustion noise. The power law distributions
of scale-free network are related to the fractality (scale invariance) of the original
time series (Zhang & Small 2006; Lacasa et al. 2008). For non-stationary time series,
Lacasa et al. (2009) proposed a linear correlation between the power-law exponent
and the Hurst exponent. In statistical analysis, non-stationary time series is the one
for which statistical properties (for example mean, variance, central moments, etc.)
does not remain constant in time. The acoustic pressure time series data acquired
during combustion noise is non-stationary since pressure measurements acquired at
a given instant is not only a function of the previous instant, but also depends on
the changes happening at some other locations in the reacting flow. If we crudely
apply the equation relating Hurst exponent and power-law exponent (γ = 3.1 − 2H)
given by Lacasa et al. (2009) and Ni, Jiang & Zhou (2009), we get Hurst exponent
of H = 0.2 for bluff-body configuration and H = 0.3 for swirler configuration.
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FIGURE 3. (a) Degree distributions (P(k) versus k) of the complex network during
combustion noise acquired from (a) bluff-body configuration (Re = 1.8 × 104) and
(b) swirler configuration (Re = 1.6 × 104). It is evident from figure 3(a,b), that the
degree distribution curve has a power-law behaviour highlighting that networks during
combustion noise are scale-free. The physical mechanism underlying scale-free nature
(scale invariance) of combustion noise is the turbulence involving vortices that span a
range of scales in the inertial regime. Complex networks during combustion noise acquired
from (c) bluff-body configuration and (d) swirler configuration are plotted using the Gephi
software. Nodes are shown as circles and coloured based on their degree (degree of a
node is the number of nodes connected with that node). The sizes for nodes are assigned
based on their degree. A few large nodes that are connected with highest number of nodes
(called hubs) in a network correspond to a few large vortices in the flow. It can be seen
that blue and pink coloured nodes are connected with largest number of nodes and are the
hubs in a scale-free network of combustion noise. Nodes with fewer degrees are due to the
intermediate and small-scale vortices in the flow. The complex network during combustion
noise possesses heterogeneity of degrees of nodes with no characteristic degree.

The value of the Hurst exponent (0< H = 0.2, 0.3< 0.5) implies that combustion
noise data is antipersistent. For antipersistent time series, a large data value is followed
by a small value and a small value is followed by a large value. For antipersistent
signals, the value of Hurst exponent lie between 0 and 0.5. These results on Hurst
exponent are consistent with the results reported by Nair & Sujith (2014).

The networks derived during the occurrence of combustion noise are plotted
(figure 3c,d) using the Gephi software (Bastian, Heymann & Jacomy 2009). The
nodes are shown as circles. Nodes of different degrees are shown in different colours
(degree of a node is the number of nodes connected with that node). Further, nodes
are shown in different sizes based on their degree. As can be seen from figure 3(c,d),
the complex networks during combustion noise possess heterogeneity of degrees of
nodes. There is no characteristic degree in this network which is the reason why they
are scale-free networks.

The heterogeneity in degrees of nodes can be directly linked to the physical state of
combustion noise. Turbulent reacting flows involve scales that span a range from large
scales of the order of the characteristic dimension of the flow to Kolmogorov scales.
A few large vortices in the reacting flows produce fluctuations of large magnitudes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

21
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.215


234 M. Murugesan and R. I. Sujith

which are reflected as large fluctuations of data values in the time series. As we move
towards the intermediate and small vortices, the number of small-scale, short-living
vortices increases. These high-frequency small eddies in the reacting flows produce
fluctuations of small magnitude which result in small fluctuations of data values in
the time series. Nodes that correspond to larger data values in the time series have
visibility to many other nodes that correspond to small data values in the time series.
Therefore, nodes with large data values are connected with more number of other
nodes in a network. Such nodes that are connected directly with a very large number
of other nodes in a network are called hubs.

Hubs are the key nodes in the network and only a few such hubs can be found in a
network. These hubs are the reflection of large-scale vortices in the turbulent flow. In
the degree distribution, nodes with the highest degree occur in minimum percentage
to the total number of nodes (occupies the tail portion of the power-law curve). As an
example, in a scale-free network of combustion noise (figure 3c), a few hubs (nodes
that are coloured in blue and pink) connected with a large number of other nodes can
be seen.

In contrast, nodes having small data values can see only a few of their neighbours
and are connected with only a few other nodes. These nodes with lower degrees occur
as large population and are a reflection of short-living, large number of small-scale
eddies in the flow. In the degree distribution, we can see a higher percentage of nodes
having fewer degrees. In complex networks (figure 3c), these nodes can be seen as a
large number of small size nodes with fewer connections.

The cascade of vortices of different scales leads to the absence of a single
characteristic scale and is the physical reason for the scale-free behaviour of
combustion noise. The scale invariance (i.e. power-law distribution) of combustion
noise in a confined environment is unraveled in the complex network representation
as scale-free behaviour, although such scale invariance cannot be discerned in the
amplitude spectrum.

4.2. Combustion noise to combustion instability: transition from scale-free to regular
network

The scale-free behaviour of combustion noise gives a hint that the addition of heat in
turbulent flows (corresponding to the case of combustion in turbulent flows) preserves
the scale invariance which is in fact a property of turbulent flows. However, the
transition to the onset of combustion instability from combustion noise is associated
with the change in system dynamics from one dominated by the presence of multiple
scales to one dominated by a few discrete scales. The transition in system dynamics
during this transition (combustion noise to combustion instability) for increasing flow
Reynolds number in a bluff-body stabilized turbulent combustor is illustrated in terms
of changes in the time series data of acoustic pressure (figure 4).

As we have already discussed in § 4.1, the acoustic pressure measured during
combustion noise is characterized by aperiodic fluctuations (figure 4a). However,
as we increase the Reynolds number further past the condition of combustion
noise, ordered periodic oscillations appear intermittently amidst regimes of aperiodic
fluctuations.

This intermediate state characterized by alternating appearances of bursts of periodic
and chaotic fluctuations is identified to be ‘intermittency’ (shown in figure 4b,c) (Nair
et al. 2014). Such an intermittent state is a dynamical state different from combustion
noise and combustion instability and is observed consistently every time during the
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FIGURE 4. As the Reynolds number is increased further past the condition of combustion
noise, intermittency is observed. Unsteady pressure time series measured in bluff-body
configuration during (a) combustion noise (Re= 1.7× 104), intermittency when (b) Re=
2.2× 104 and (c) Re= 2.5× 104. Intermittent bursts of high-amplitude periodic oscillations
amidst regimes of chaotic fluctuations last longer in time as we increase the Reynolds
number towards the condition of combustion instability. Finally, when (d) Re = 2.8 ×
104, self-sustained, high-amplitude, ordered periodic oscillations happen during full-blown
combustion instability. Transition from combustion noise to combustion instability is
reflected as a transition from chaos to limit cycle in the time series of acoustic pressure.
The accumulation of acoustic energy, reflected as growth in acoustic pressure amplitude
in the amplitude spectrum in the vicinity of acoustic instability modes, is observed during
this transition to combustion instability.
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transition from combustion noise to combustion instability and persists in time.
Intermittency is not a transient state, but a distinct state described by dynamical
systems theory.

From a dynamical systems perspective, intermittency is explained as a result of
homoclinic orbits in the phase space by Nair & Sujith (2013). A homoclinic orbit is a
trajectory in phase space in which an unstable manifold of a fixed point of the system
merges with its own stable manifold (Nair & Sujith 2013). The equilibrium state of
the system during intermittency switches between stable and unstable states in phase
space. This corresponds to the alternate switching of bursts of high-amplitude periodic
oscillations and low-amplitude chaotic fluctuations in the unsteady pressure time series
data (see figure 4b,c).

These intermittent bursts of high-amplitude periodic oscillations last longer in time
as we increase the Reynolds number towards the condition of combustion instability.
Finally, self-sustained, high-amplitude, ordered periodic oscillations happen during full-
blown combustion instability (figure 4d). Therefore, the transition from combustion
noise to combustion instability is reflected as a transition from chaos to limit cycle
(order) in the time series of acoustic pressure.

Complex networks are constructed from the time series data of acoustic pressure
acquired during this transition. The degree distributions of the complex networks
during intermittency (shown in figure 5a,b) have a power-law behaviour. This shows
that time series acquired during intermittency are also converted into scale-free
networks. The scale-free networks during intermittency are plotted with the help of
the Gephi software (Bastian et al. 2009) and as one would expect, these networks
also has no characteristic degree (figure 5d,e).

In contrast to intermittency and combustion noise, complex networks during limit
cycle oscillations (figure 5f ) exhibit increased regularity in the degrees of the nodes.
As can be seen in figure 5(c), the degree distribution map is characterized by a
few discrete points. The slight non-uniformity in degrees of the nodes (figure 5f ) is
due to the cycle-to-cycle variability in limit cycle oscillations (see figure 4d) during
combustion instability which arises from background turbulent fluctuations (Lieuwen
2002). Through extensive investigation, Lieuwen (2002) showed that such cyclic
variability does not reflect the presence of chaotic fluctuations. Rather, Lieuwen
(2002) suggested that the cyclic variability in limit cycle oscillations arise from
background disturbances with short correlation time relative to the period of limit
cycle. The imperfect limit cycle oscillations in the dynamics of turbulent combustors
are also reported and characterized by Noiray & Schuermans (2012).

To visualize results in a better manner in such ‘noisy’ situations, Nunez et al.
(2012) introduced a threshold ‘epsilon’ to visibility condition.

Ai,j =
1, if, pk + ε < pi + (pj − pi)

tk − ti

tj − ti
,

0, otherwise, where, ε= e×mean(p).
(4.2)

Here, p is the vector that consists of data values belonging to the crest of each
cycle in the time series. The time series data of acoustic pressure acquired from
the combustor possess fluctuations of different scales. This causes, peaks (i.e. crest
of each cycle in the time series) in the acoustic pressure time series to have both
positive and negative values varying in a wide range. As an example, for time series
data during combustion noise (when Re= 1.8× 104), the maximum value of the peaks
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FIGURE 5. Degree distributions of complex networks derived using visibility condition
from time series of acoustic pressure during intermittency (shown in figure 4a,b) when (a)
Re=2.2×104 and (b) Re=2.5×104. The degree distribution curves have power-law trend
showing that time series during intermittency are also converted into scale-free networks.
The networks are plotted with the help of the Gephi software (Bastian et al. 2009). As one
would expect, networks during intermittency (d,e) also have no characteristic degree. In
contrast, ( f ) network during combustion instability when Re= 2.8× 104, possess increased
regularity in degrees of nodes. However, turbulence causes imperfection in periodicity. (c)
The degree distribution map during instability is characterized by a few discrete points.

is 516.5 Pa, the minimum value of the peaks is −441.4 Pa and the mean value of
the peaks is 58.3 Pa. Therefore, the threshold ε= 0.24×mean(p) is 13.992 Pa which
is 2.7 % of maximum value of the peaks. Since the value of ε is very small with
respect to the peak amplitude; we consider that the information in the time series is
preserved with the addition of epsilon into the visibility algorithm.

The degree distributions of complex networks during (a) combustion noise, (b)
intermittency and (c) combustion instability with the use of epsilon in the visibility
graph are shown in figure 6.
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FIGURE 6. Degree distributions and networks derived using visibility graph with threshold
(e= 0.24) during the occurrence of (a) and (d) combustion noise (Re= 1.8× 104), (b) and
(e) intermittency (Re= 2.2× 104) and (c) and (f ) combustion instability (Re= 2.8× 104).
The power-law exponent of degree distributions during the occurrence of (a) combustion
noise and (b) intermittency remains the same as that of networks without using a threshold.
The use of ε in the visibility condition helped in detecting the periodicity hidden in the
noisy limit cycle oscillations during combustion instability. At the onset of combustion
instability, the scale-free behaviour disappears and the network transitions into a regular
network. The regular network corresponding to the combustion instability is characterized
by a single characteristic degree. All of the nodes have the same number of links with
other nodes in the network and a discrete point appears in the plot of P(k) versus k (c).

The degree distributions of complex networks derived using the visibility condition
with ε during the occurrence of combustion noise (figure 6a) and intermittency
(figure 6b) remain qualitatively same as that of degree distributions of complex
networks derived without using ε in visibility condition during combustion noise
(figure 3a) and intermittency (figure 5a). The power-law exponents of complex
networks during combustion noise and intermittency do not change with the inclusion
of ε into the visibility condition, implying that the corresponding networks are
indeed scale-free (the degree distributions of complex networks for different values of
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FIGURE 7. Illustration of complex network derived using visibility graph from a periodic
time series. Peaks in the periodic time series are considered as nodes. All of the nodes
are of the same height and have visibility only with their neighbours. Therefore, all of
the nodes are connected only with their neighbours.

threshold are provided in appendix A). However, the main advantage of incorporating
ε into the visibility algorithm is the detection of periodicity in the time series which
is masked by the presence of irregular fluctuations in experiments.

In contrast to combustion noise and intermittency, degree distribution of complex
network during combustion instability is characterized by a single discrete point
(figure 6c). Discrete points appear in the degree distribution of a regular network. A
network is called ‘regular’ if all of the nodes in the network have the same number
of connections (Quenell 1994). The period-one time series (limit cycle) is converted
into a regular network with a single point in the degree distribution map (Quenell
1994). The situation is illustrated using figure 7.

In an example illustrated in figure 7, nodes are connected only with two of
their neighbours. Therefore, the degree (number of nodes that are connected with a
given node) of all of the nodes become two. During the occurrence of combustion
instability, all of the nodes are connected only to their neighbours. Thus, in the
degree distribution (figure 6c) of a complex network that correspond to combustion
instability, the percentage of nodes (P(k)) having degree k = 2 is 100 %, implying
that the network at combustion instability is ‘regular’.

The complex networks during (d) combustion noise, (e) intermittency and (f )
combustion instability with the use of epsilon in the visibility graph are shown
in figure 6. Nodes of different degrees are shown in different colours. The colour
code with respect to degree is provided near the corresponding complex networks in
figure 6. Further, sizes for nodes are assigned based on their degree.

The network of combustion noise and intermittency are composed of nodes of
various degrees and various sizes. Nodes are filled with various colours and the
network has no single characteristic degree. At combustion instability, all of the
nodes in the complex network have a degree of two due to the periodic oscillations
and hence the entire network is coloured in red.

The transition from combustion noise to combustion instability is shown as
transition from scale-free to regularity in complex networks topology. The physical
mechanism underlying this transition is linked with the mechanisms that cause order
to emerge in turbulent systems.

In the transition from turbulence to order, fully developed turbulent flow is shown
to be self-organizing into an ordered state through the mechanism of spectral
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condensation and inverse energy cascade (Shats, Xia & Punzmann 2005). The
turbulent energy in a broadband spectrum is redistributed to form an ordered state
at high energy level (Kraichnan 1967; Dubos et al. 2001; Shats et al. 2005). In
this spectral redistribution, the turbulent energy is shown to be accumulated in the
lowest accessible mode (Sommeria 1986; Paret & Tabeling 1998; Shats et al. 2005).
In thermoacoustic systems, during the transition to thermoacoustic instability from
combustion noise, the growth in the acoustic pressure amplitude close to the acoustic
modes of the combustor can be seen in the acoustic amplitude spectrum (figure 4f –h).
Finally, at full blown combustion instability the acoustic pressure amplitude reaches
a maximum value near the duct acoustic modes. Moreover, it is well known in the
literature that combustion instability is associated with the formation of organized
coherent vortices in the flow indicating an increase in order of the thermoacoustic
system (Smith & Zukoski 1985; Poinsot et al. 1987; Yu et al. 1991). Hence, we
conjecture that the transition from combustion noise to combustion instability may be
due to the self-organization of multiple scales in turbulence to an ordered state with
a single scale.

Further, self-organization of turbulent fluids to a high-energy ordered state is
identified to be due to the mechanism of inverse energy cascade (Sommeria 1986;
Paret & Tabeling 1998; Dubos et al. 2001; Shats et al. 2005; Xiao et al. 2009).
However, this inverse energy cascading is in contrast to conventional paradigm of
energy being transferred from large to smaller scales until the scales of dissipation.
Inverse energy cascade was first conjectured by Kraichnan (1967) who proposed
that energy in a forced turbulent fluid can cascade to larger scales. In turbulent
reacting flows, heat release rate fluctuations from combustion supply energy into
acoustics. The interaction of the generated acoustic waves with shear layer induces
the formation of vortices of different sizes. The size of vortices depends on the
hydrodynamic instability frequency matching with the acoustic instability frequency
(Schadow & Gutmark 1992). The occurrence of large-amplitude pressure fluctuations
during combustion instability is driven by periodic heat release rate fluctuations, when
heat release rate fluctuations are in phase with acoustic pressure fluctuations. This is
a necessary condition known as Rayleigh criterion (Rayleigh 1878) for self-sustained
pressure oscillations. Therefore, the process of combustion instability could possibly
be expected to be driven by the inverse cascading of energy from combustion to
large scales which are in turn decided by the matching of hydrodynamic frequency
and acoustic mode. This is in agreement with the observation of the development of
large-scale vortices driving combustion instability (Rogers 1956; Smith & Zukoski
1985; Poinsot et al. 1987; Schadow et al. 1989; Yu et al. 1991; Coats 1996). Further,
Zank & Matthaeus (1990) indicated the possibility of inverse energy cascade, wherein
energy is cascaded to long-wavelength acoustic modes from smaller scales in the
theoretical analysis of nearly incompressible flows with heat addition.

From a complex networks perspective, with a single scalar pressure measurement,
the patterns emerging during this transition are visualized as the structural changes
happening in the topology of complex networks. Further, these structural changes
can be quantified in terms of network properties. The network properties are used to
distinguish different dynamical regimes in turbulent jet flows (Charakopoulos et al.
2014) and three-dimensional fully developed turbulence (Liu et al. 2010). We have
utilized the properties of complex networks to provide early warning for the onset of
instabilities in many types of combustors and an aeroacoustic system operated in a
turbulent environment (Murugesan, Nair & Sujith 2014).
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5. Conclusions
We investigated the scale invariance of combustion noise generated from confined

turbulent flames using complex networks. We showed that acoustic pressure
fluctuations, which reflect the dynamics of combustion noise, can be represented
as a scale-free network. The power law exponent in the degree distribution of
scale-free network is related to the scale invariance of combustion noise. Scale-free
network indicates that there is no single characteristic scale in the dynamics of
combustion noise. This scale-free behaviour of combustion noise is hard to discern
from the frequency spectrum, due to the domination of duct acoustic modes. The
scale-free behaviour of combustion noise is due to the presence of turbulence. The
spatial/temporal fluctuations that range from large scales of the order of characteristic
dimension of the flow to small Kolmogorov scales in turbulent reacting flows give rise
to the complex topology and heterogeneous structure in network during combustion
noise.

This scale-free network is shown to transition into regular network during the
transition from combustion noise to combustion instability. The presence of scale-free
behaviour in combustion noise and the emergence of order from scale-freeness
at the onset of combustion instability draw attention to the possibility of spectral
condensation and inverse energy cascade which can possibly explain the emergence
of order. Complex network representation helped visualize and formulate quantities to
quantitatively describe the topological changes during this transition. The variation of
network properties can be used to provide early warning for the onset of combustion
instability. Further research on self-organization or self-evolution of complex networks
can help in developing a complex network model for thermoacoustic systems and
explore the underpinning mechanisms.
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Appendix A. Visibility algorithm with ε to investigate transition from combustion
noise to combustion instability

The degree distribution maps of complex networks derived during combustion
noise (figure 8a), intermittency (figure 8b) and combustion instability (figure 8c)
using different values of ε are shown in figure 8.

The power-law behaviour of networks during the occurrence of combustion noise
(figure 8a) and intermittency (figure 8b) remains the same and power-law exponents
do not change for different values of ε considered in the present work. This shows that
combustion noise and intermittency remain scale-free with the use of ε. However, for
increasing values of e from 0.1 to 0.24 (results are presented for values of e = 0.1,
0.15, 0.2 and 0.24 in figure 8), number of points in the degree distribution map of
complex network that correspond to combustion instability decreases along with an
exponential increase in the value of power-law exponent. For all e> 0.24, the network
during combustion instability possesses a discrete point in the degree distribution map.
Figure 8 confirms that use of epsilon helps in detecting the periodicity hidden in limit
cycle oscillation during combustion instability and does not filter the information in
the time series.
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FIGURE 8. (Colour online) Degree distribution maps of networks constructed from time
series data of (a) combustion noise (Re = 1.8 × 104), (b) Intermittency (Re = 2.2 × 104)
and (c) combustion instability (Re = 2.8 × 104) for different values of e. For all e,
combustion noise and intermittency remain to be scale-free. Use of ε helps us to detect
periodicity in time series data during combustion instability. For all e > 0.24, network
during combustion instability possess a discrete point in the degree distribution map,
indicating that corresponding network is regular. The transition from combustion noise
to combustion instability is reflected as a transition from scale-free to regularity in the
complex network’s topology.
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