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Abstract. A homeomorphism f of a manifold M is called H1-transitive if there is a
transitive lift of an iterate of f to the universal Abelian cover M̃ . Roughly speaking,
this means that f has orbits which repeatedly and densely explore all elements of H1(M).
For a rel pseudo-Anosov map φ of a compact surface M we show that the following are
equivalent: (a) φ is H1-transitive, (b) the action of φ on H1(M) has spectral radius one
and (c) the lifts of the invariant foliations of φ to M̃ have dense leaves. The proof relies
on a characterization of transitivity for twisted Zd -extensions of a transitive subshift of
finite type.

1. Introduction
There are many ways to characterize the complexity of a dynamical system on a manifold
M . In this paper we focus on the characterization of H1-transitivity. A homeomorphism f
is called H1-transitive when, roughly speaking, it has orbits which repeatedly and densely
explore all of the elements of first homology. As is natural and commonly done, we
formalize this notion by ‘unwrapping’ the manifold by passing to a covering space. For
H1-transitivity the appropriate lift is to the universal Abelian cover M̃ which is the covering
space whose automorphism group is equal to H1(M; Z). Translations of orbits lifted to M̃
correspond to motion around homologically non-trivial loops in M . Thus, we adopt the
following definition.

Definition 1.1. A homeomorphism f : M→ M is called H1-transitive if there is a lift g̃ of
an iterate of f to the universal Abelian cover M̃ such that g̃ has an orbit which is dense
in M̃ .

Our main concern here is with a particular class of maps, rel pseudo-Anosov
homeomorphisms of surfaces. These maps are an essential piece of Thurston’s
classification of isotopy classes of surface homeomorphisms and have many nice
dynamical properties including a symbolic description by a transitive subshift of finite type.
Rel pseudo-Anosov maps are characterized by the existence of a transverse pair of (mildly)
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singular, invariant foliations, each equipped with a transverse measure which expands or
contracts under the map. Every non-trivial leaf of these foliations is dense in the surface
M2. For this class of maps we have the following equivalence between (a) the dynamical
property of H1-transitivity, (b) an algebraic condition on the spectral radius ρ(φ∗) of the
induced action of the map φ on H1(M2) and (c) a topological condition on the invariant
foliations when lifted to the universal Abelian cover.

THEOREM 1.2. Assume that φ : M2
→ M2 is a rel pseudo-Anosov map. The following

are equivalent:
(a) φ is H1-transitive;
(b) ρ(φ∗)= 1;
(c) there is a leaf of the lifted foliation F̃ u

which is dense in the universal Abelian
cover M̃.

The proof of this theorem depends on Theorem 11.1 which gives a number of conditions
which are equivalent to the total transitivity (all iterates are transitive) of a lifted rel pseudo-
Anosov map φ̃. These conditions include that φ̃ is topologically mixing, that the periodic
orbits of φ̃ are dense in M̃ and that ρ(φ∗)= 1 coupled with a condition on the rotation set
of the Fried quotient of (φ̃, M2). A version of Theorem 11.1 for the annulus was given
in [BGH93] and for the torus in [Par03].

The proof of Theorem 11.1 in turn depends on Theorem 10.4 which characterizes total
transitivity of a twisted skew product with group factor Zd over a base subshift of finite
type (6, σ ). The twisted skew products considered here are maps τ :6 × Zd

→6 × Zd

of the form
τ(s, n)= (σ (s), 8(n)+ h(s)),

where8 : Zd
→ Zd is the twisting isomorphism or just the twisting, and h :6→ Zd is the

height function. When the twisting is trivial (8= id) the map τ is called an untwisted skew
product or just a skew product. The ergodic theory and topological dynamics of untwisted
skew products with various bases and group components have been intensely studied for at
least 50 years (see [PP06] for some history), and their use as symbolic models for dynamics
lifted to covering spaces is well established. The transitive untwisted skew products over
subshifts of finite type with group factor Zd were characterized by Coudene [Cou04] and
those with group factor Rd by Nitica [Nit00]. Twisted skew products are themselves a
special case of the well-studied notion of a group extension (see, for example, [Men05]).

When a twisted skew product models the lift of a rel pseudo-Anosov map φ to the
universal Abelian cover, the twisting isomorphism is the action of φ on first homology, or
8= φ∗. Thus, to study maps which do not act trivially on homology we must consider
the case of non-trivial twisting. The first observation in this study is that the coarse
connection between the dynamics of a lift φ̃ to M̃ and the action of φ∗ on H1(M; R)
implies that when ρ(φ∗) > 1, there will be open sets in M̃ whose iterates under φ̃ will go
to infinity exponentially fast (see (10.5) below). Thus, ρ(φ∗)= 1 is a necessary condition
for transitivity (the case ρ(φ∗) < 1 cannot occur because φ is a homeomorphism).

The next obvious necessary condition for the transitivity of φ̃ can be informally
expressed by ‘orbits of φ̃ must go to infinity in all directions’. Gottschalk and Hedlund
were the first to notice that this condition can also be sufficient for transitivity [GH55].
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Perhaps the most common way to formalize the ‘all directions’ condition for an untwisted
skew product is to use the collection of displacements, D(τ ), of periodic orbits of the base
map (see §5.2). Here we primarily use the asymptotic average displacements as they are
more tractable under the iterations and translations of maps required here. We maintain
the usual terminology from lifted dynamics and call this average displacement the rotation
vector of an orbit. The set of all rotation vectors is the rotation set, and we formulate the
‘all directions’ condition in Theorem 7.1 by requiring that zero be in the interior of the
rotation set. This condition alone does not imply transitivity in the untwisted case, but
requires the addition of a condition, the finite lifting property, which is the analog of the
fact that the lift of a pseudo-Anosov map to any compact covering space is transitive.

The definition of the displacement set or rotation vector requires that each point in
the base be assigned a well-defined displacement in the group factor or cover. This is
only possible when the skew product is untwisted or φ∗ = id (see Remark 5.1). Thus, the
weaker hypothesis of ρ(φ∗)= 1 requires additional consideration. The first step is to note
that a classic theorem of Kronecker implies that for some N > 0, spec(φN

∗ )= {1}, where
spec indicates the spectrum (see the comment above Definition 10.3).

We call an isomorphism 9 with spec(9)= {1} a generalized shear, because over the
reals one can find a basis in which 9 is represented by its Jordan matrix of ones on the
diagonal and perhaps also some ones on the super diagonal. However, in general one
cannot conjugate to this Jordan form in SL(d, Z) and so we use instead the form given in
Lemma 9.3. Using the basis of Zd given by Lemma 9.3, we can treat a τ with generalized
shear twisting as a sequence of untwisted skew products over countable state Markov
shifts and so prove transitivity by induction. The n = 0 step of this argument requires
the transitivity of the largest quotient on which τ is untwisted. The transitivity of this
Fried quotient is obtained using Theorem 7.1 and the main induction step is handled by
Lemma 10.1.

In the last section of the paper, after proving Theorem 1.2 we comment in §11.2 on
some dynamical properties of the φ∗ = id case and in Proposition 11.6 on some topological
properties of the lifted foliations.

2. Topological transitivity and countable state Markov shifts
In this paper M is always a compact, orientable surface perhaps with boundary. All
homeomorphisms h : M→ M are orientation preserving. If there is no coefficient ring
given, homology is always with integer coefficients, and so H1(M)= H1(M, Z)∼= Zd for
some d ∈ N.

For a topological space X , the closure, interior and frontier are denoted by Cl(X),
Int(X) and Fr(X), respectively. For any map f , its image is denoted im( f ).
For a homeomorphism h of X , the forward orbit of a point x ∈ X is o+(x, h) :=
{x, h(x), h2(x), . . . }, the backward orbit is o−(x, h) := {. . . , h−2(x), h−1(x), x}, and
the orbit is o(x, h)= o+(x, h) ∪ o−(x, h).

2.1. Transitivity and mixing. A homeomorphism h is called topologically transitive or
just transitive if for every pair of open sets U1 and U2 there is an integer n ∈ Z with
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hn(U1) ∩U2 6= ∅, and h is called topologically mixing if for every pair of open sets U1

and U2 there is an integer N ∈ Z with hn(U1) ∩U2 6= ∅ for all n ≥ N . If hn is transitive
for all n > 0, then h is called totally transitive.

It is standard that if hn is transitive or topologically mixing for some n > 0, then h has
the same property. Further, topologically mixing implies totally transitive and in many
cases is equivalent to it. A standard result on transitivity is as follows.

LEMMA 2.1. Assume that h is a homeomorphism of a complete, separable metric space
X. The following are equivalent:
(a) h is transitive;
(b) there exists an orbit of h that is dense in X, Cl(o(x, h))= X;
(c) there is a dense, Gδ-subset Y ⊂ X so that y ∈ Y implies that Cl(o+(y, h))= X and

Cl(o−(y, h))= X.

2.2. Countable state Markov shifts. We recall the basic definitions and properties of
countable state Markov shifts. For more details see [Kit98]. A countable state Markov
shift is built from a countable set of states S = {1, 2, 3, . . . }. The transition matrix C
is indexed by S × S, and the entries of C are all zeros or ones and are denoted by Ci, j .
An allowable one-step transition for C is a pair of states s1 and s2 so that Cs1,s2 = 1. An
allowable n-step transition or allowable n + 1-block is a list of n + 1-states s1s2 . . . sn+1

with each pair si si+1 an allowable one-step transition. In general, if there is an allowable
transition of any length between two states a and b, we say that there is an allowable
transition between a and b, and this situation is denoted by a→ b.

The collection of bi-infinite sequences of states is SZ and the shift space, 6, defined by
the matrix C is the subspace of sequences all of whose finite blocks represent transitions
which are allowed by the matrix C or, equivalently,

6 = {s ∈ SZ | Csi ,si+1 = 1 for all i ∈ Z}.

The shift map on 6 is the left shift σ :6→6. The shift space and the shift together
constitute the countable state Markov shift which is denoted by (6, σ ). When S is a finite
set, (6, σ ) is called a subshift of finite type or a topological Markov chain.

A metric on S which gives it the discrete topology yields a product metric on SZ and a
subspace metric induced on 6. Under the resulting topology 6 is a totally disconnected,
separable, complete metric space and the shift map is a homeomorphism. If S is finite, 6
is compact, and otherwise it is not. All of the transition matrices here will have finite row
and sum columns which implies that 6 is locally compact.

The cylinder sets form a countable base for the topology of 6. A central cylinder set of
length two is

[a, b]0 := {s ∈6 | s0 = a and s1 = b} (2.1)

where a→ b is an allowable one step transition for (6, σ ).
The standard characterization of transitive subshifts of finite types also holds for

countable state Markov shifts: the system (6, σ ) is topologically transitive if and only
if it is irreducible, i.e. for any pair of states a1 and a2 there is an allowable transition
a1→ a2. Also, if (6, σ ) is transitive and has a fixed point, then it is topologically mixing
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(see [Kit98, Observation 7.2.2]). If (6, σ ) is totally transitive, then as just noted, it
certainly has a periodic point, say of period n, and so σ n is topologically mixing, and
so σ is too. Thus, for countable state Markov shifts, totally transitive is equivalent to
topologically mixing.

3. Abelian covering spaces and the rotation set
Recall that regular, connected covering spaces of the surface M are in one-to-one
correspondence with normal subgroups G G π1(M). For the cover corresponding to G,
the deck group (also called the group of cover automorphisms) is naturally identified with
the quotient π1(M)/G. We are exclusively concerned with Abelian covers. These are the
covering spaces for which the deck group is Abelian. The largest such cover corresponds to
G = [π1(M), π1(M)], the commutator subgroup, in which case the deck group is H1(M).
This covering space is called the universal Abelian cover and is denoted here by M̃ .
Any other Abelian cover can be obtained by moding out M̃ by the action of a subgroup
0 ⊂ H1(M). This quotient is denoted by M̃0 := M̃/0. Note that M̃ is a cover over M̃0

with deck group 0 and M̃0 is a cover over M with deck group H1(M)/0.
Any homeomorphism f : M→ M lifts to the universal Abelian cover. For smaller

Abelian covers, f lifts to M̃0 if and only if f∗(0)= 0, where f∗ : H1(M)→ H1(M) is
the induced action. For a cover M̃0 to which f does lift, the induced action of f∗ on the
deck group H1(M)/0 is denoted by f0 . If f̃ is a lift of f to M̃0 , a fundamental relation is

f̃ ◦ δg = δ f0(g) ◦ f̃ , (3.1)

where δg is the deck transformation corresponding to g ∈ H1(M)/0. Thus, f̃ commutes
with all deck transformations precisely when f acts trivially on H1(M)/0.

3.1. Subgroups of finitely generated Abelian groups. If 0 ⊂ Zd is a rank k subgroup,
then there is a basis {u1, . . . , ud} of Zd and positive integers a1, . . . , ak , so that

{a1u1, . . . , akuk} (3.2)

is a basis for 0. This is usually given as a simple consequence of the Smith normal form
(for example, [New72]). This fundamental fact implies that 0 is co-finite, i.e. the quotient
group Zd/0 is finite, if and only if 0 has rank d. In this case it follows that if K is the
order of Zd/0, then KZd

⊂ 0 and further, if we form a matrix M using a basis for 0 as
the columns, then the order of Zd/0 is |det(M)|.

For a subset X of an Abelian group G, let 〈X〉 be the subgroup generated by X , and the
positive semigroup generated by X is

〈X〉+ = {nx | n ∈ N, n > 0, and x ∈ X}.

It is easy to see that if G is a finite Abelian group and X is a subset, then 〈X〉+ = 〈X〉.
The subgroup 0 ⊂ Zd is called pure if whenever g ∈ 0 is divisible in Zd , it is divisible

in 0, i.e. if g ∈ Zd and mg ∈ 0 for some m 6= 0, then g ∈ 0. Thus 0 is pure if and only if
the integers a j in (3.2) are all equal to one, and 0 is pure if and only if the quotient Zd/0

is torsion-free or trivial. Also, the subgroup 〈g〉 generated by a single element g of Zd is

https://doi.org/10.1017/S0143385708000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000783


1422 P. Boyland

pure if and only if g is indivisible in Zd . In addition, if 0 is pure in Zd , then it is always
a summand, i.e. there is a subgroup H ⊂ Zd with Zd

= 0 ⊕ H (this and all direct sums in
this paper are internal). Equivalently, if 0 is pure, then any basis of 0 can be extended to a
basis of Zd . Finally, since any subgroup H of Zd is free and thus isomorphic to some Zk , if
0 ⊂ H and 0 is pure in H (g ∈ H with mg ∈ 0 with m 6= 0 implies g ∈ 0), then any basis
of 0 can be extended to a basis of H . For a subset X of an Abelian group G, let P(X)
denote the smallest pure subgroup of G which contains X . The group P(X) is commonly
called the purification of X .

3.2. The Fried cover. Fried pointed out in [Fri83, Fri86] that for many dynamical
applications it is best to work with covering spaces on which all lifts of f commute with all
deck transformations. Such a cover is necessarily Abelian [Fri83, Lemma 1]. From (3.1)
it follows that for such a cover f must act like the identity on the deck group and that the
largest such cover corresponds to the subgroup F ′ := im( f∗ − id)⊂ H1(M).

The deck group of this cover, the quotient H1(M)/F ′, will frequently have torsion.
For most of our applications we work only with the torsion-free part. Letting F be the
purification of F ′, F := P(F ′), we see that the largest cover with a free deck group on
which all lifts commute with the deck has deck group H1(M)/F . It is easy to check that
f∗(F)= F and so f always lifts to this cover. This leads to the following.

Definition 3.1. Given a compact surface M and homeomorphism f : M→ M , the Fried
cover, M̃F , of ( f, M) is the covering space corresponding to the subgroup of H1(M) given
by F = P(im( f∗ − id)).

Remark 3.2. Note that Zd/ im( f∗ − id) is finite if and only if det( f∗ − id) 6= 0 using the
first paragraph of §3.1. This determinant is non-zero if and only if 1 is not an eigenvalue
of f∗. Thus, the Fried cover deck group Zd/P(im( f∗ − id)) is non-trivial if and only
if 1 ∈ spec( f∗). When Zd/P(im( f∗ − id)) is trivial, by convention, the Fried cover is
itself M .

3.3. Rotation sets. In this section we recall the generalized rotation vector of orbits of a
homeomorphism f . This notion has its origins in Schwartzman’s asymptotic cycles and is
now a common tool (see, for example, [Boy94, §11] and the introduction of [Jen01]). The
definition requires a covering space which has torsion-free deck group and on which all
lifts of f commute with all deck transformations. Thus, it is natural to use the largest such
cover, namely the Fried cover given in Definition 3.1. Assume that 1 is an eigenvalue of f∗
and so the deck group, H1(M)/F , of the Fried Cover M̃ is non-trivial, i.e. H1(M)/F = Zd

for d > 0.
The definition of the rotation vector requires a means of measuring displacements in

the Fried cover which is compatible with the deck action. If H1(M)= Zk , a standard
construction yields a continuous map on the universal Abelian cover β̃ ′ : M̃→ Rk with
β̃ ′ ◦ δn(x̃)= β̃ ′(x̃)+ n for all n ∈ Zk . We give one way to perform the construction.
Pick a set of generators and a basis n1, . . . , nk for H1(M) and a corresponding co-basis
c1, . . . , ck for H1(M; Z), i.e. ci (n j )= δi j (Kronecker delta). Now treat ci as an element
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of H1
DR(M, R) and assume that it is represented by the closed one-form ωi . Lift ωi to

ω̃i on M̃ , and fix a basepoint z̃0 ∈ M̃ . The i th coordinate of β̃ ′ is β̃ ′i (z̃)=
∫
γ̃
ω̃i , where

γ̃ is any smooth arc in M̃ from z̃0 to z̃. We then project β̃ ′ to obtain an equivariant map
β̃ : M̃F → Rd .

Now for a given lift f̃F of f to the Fried cover M̃F and an x ∈ M , pick a lift x̃ ∈ M̃F of
x and n ∈ Z and let

B(x, n)= β̃( f̃ n
F (x̃))− β̃(x̃). (3.3)

Since f̃F commutes with the deck group of M̃F and β̃ is equivariant, this definition is
independent of the choice of x̃ , but it does depend on the choice of f̃ . It is immediate that
B is an additive dynamic cocycle over (M, f ). We let rot(x, f̃F ) be the element of Rd ,

rot(x, f̃F ) := lim
n→∞

B(x, n)

n

when the limit exists, and define the rotation set in Rd as

rot( f̃F )= {rot(x, f̃F ) | x ∈ M}.

It is immediate that
rot(δn ◦ f̃ q

F )= q rot( f̃F )+ n, (3.4)

for all q ∈ Z and n ∈ Zd . Since B(x, 1) is continuous on M , it is bounded and thus is in
L1 of any f -invariant probability measure. This implies by the point-wise ergodic theorem
that the rotation vector exists almost everywhere with respect to such measures.

Given a homeomorphism f of M and a lift f̃ to the universal Abelian cover M̃ , there is
a unique lift f̃F of f to the Fried cover which is the projection of f̃ . Define

rotF ( f̃ )= rot( f̃F ). (3.5)

By convention if the Fried cover is trivial we let rotF ( f̃ ) be the empty set.

4. Twisted skew products
Twisted skew products over subshifts of finite type provide a symbolic model for the lifts
of rel pseudo-Anosov maps to Abelian covers. For the inductive arguments based on
Lemma 10.1 we also need to consider a countable state Markov chain as the base shift.

Definition 4.1. A twisted skew product is constructed from:
(a) a countable state Markov shift (6, σ ) called the base shift;
(b) a finitely generated Abelian group G called the group component;
(c) a function h :6→ G called the height function which is required to be constant on

central cylinder sets of length two, and so h(s)= h(s0, s1);
(d) and an isomorphism 9 : G→ G called the twisting automorphism.
The twisted skew product built from these ingredients is the map τ :6 × G→6 × G
given by

τ(s, g)= (σ (s), 9(g)+ h(s)). (4.1)

In the special case when the twisting isomorphism 9 = id, the map τ is called a
skew product or, for emphasis, an untwisted skew product. The group component most
commonly considered here is G = Zd and in this case the twisting automorphism 9 is
given by a twisting matrix A ∈ SL(d, Z).
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Remark 4.2. Condition (c) in the definition of a twisted skew product was adopted so
that the skew could be easily identified with a countable Markov shift as in §4.2. In the
somewhat more general case when h depends on length (`+ 1)-blocks, one can pass to the
`-block presentation of (6, σ ) (see [Kit98, p. 27]), and the corresponding height function
will depend on length-two central blocks. Since G is a discrete group, when h is continuous
on a subshift of finite type, there will always be an ` with h constant on central length `
cylinder sets.

Skew products as just defined are also called G-extensions of the countable state
Markov shift (6, σ ). The height function h is also commonly called the cocycle since
in the untwisted case it generates an additive cocycle over (6, σ ) as in §5.2 below. We
sometimes call a skew product a twisted or untwisted extension of the base shift as is
appropriate.

The iterate of a twisted skew product is itself a twisted skew product. Specifically, if τ
is as in (4.1), then

τ k(s, g)= (σ k(s), 9k(g)+ ĥ(k)(s)), (4.2)

where

ĥ(k)(s)=9k−1(h(s))+9k−2(h(σ (s)))+ · · · +9(h(σ k−2(s)))+ h(σ k−1(s)).

In particular, the twisting automorphism of τ k is 9k .
Note that G acts by addition on the second component of6 × G. For a g ∈ G, we write

this action of g as
Tg(s, g′)= (s, g + g′). (4.3)

A simple calculation shows that

τ ◦ Tg = T9(g) ◦ τ (4.4)

which is the obvious analog of (3.1). Thus, τ commutes with the action of G if and only if
9 = id, i.e. when τ is an untwisted skew product.

4.1. Quotients, the finite lifting property and the Fried quotient. Many of the standard
constructions for covering spaces with a deck group G such as quotients and subcovers
have analogs for twisted skew products with group component G. Given a twisted skew
product τ as in (4.1), if 0 ⊂ G is a subgroup with 9(0)= 0, then τ descends to a twisted
skew product τ0 :6 × (G/0)→6 × (G/0), defined by

τ0(s, g + 0)= (σ (s), 9(g)+ h(s)+ 0). (4.5)

Further, the projection π : G→ G/0 induces a semiconjugacy, id×π , from τ to τ0 . Thus,
in particular, if τ is transitive, so is any quotient τ0 .

More generally, if 01 ⊂ 02 ⊂ G are two 9-invariant subgroups, then it is easy to check
that

0 // 02/01 //

��

G/01 //

��

G/02 //

��

0

0 // 02/01 // G/01 // G/02 // 0
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commutes, where the vertical maps are the natural maps induced by 9. Thus, the induced
skew product on 6 × (G/01) is semiconjugate to that on 6 × (G/02) and, furthermore,
the Noether isomorphism (G/01)/(02/01)∼= G/02 induces a conjugacy of the twisted
skew products on 6 × (G/01)/(02/01) and 6 × (G/02).

Rel pseudo-Anosov homeomorphisms have a very useful property which was pointed
out and used by Fried [Fri82a]. These maps are transitive and their lift to any covering
space with finite deck group is also transitive. We now define the analogous property for
a twisted skew product. We restrict ourselves now to the case where the group component
of the skew product is a free Abelian group Zd .

Definition 4.3. The skew product τ :6 × Zd
→6 × Zd with twisting automorphism, 9,

is said to have the finite transitivity property (ftp) if for every 9-invariant, co-finite
subgroup 0 ⊂ Zd the quotient map τ0 :6 × (Zd/0)→6 × (Zd/0) is transitive.

Note that if τ has the ftp then so does any quotient. This follows from the conjugacy
induced by the Noether isomorphism given above. Note also that the base shift is itself a
quotient of τ and so when τ has the ftp, its base shift is always transitive.

Using (4.4) and (3.1), untwisted skew products correspond to covering spaces on which
all lifts commute with the deck group. As with covering spaces, it is often useful to pass
to a quotient on which the projection is untwisted. The construction given here is the exact
analog of that for covering spaces given in §3.2. Specifically, if τ is a twisted skew product
with group component Zd and twisting isomorphism 9, the largest untwisted quotient
corresponds to the 9-invariant subgroup F ′ = im(9 − id), and the largest untwisted
quotient with torsion-free group component corresponds to the purification F = P(F ′).

Definition 4.4. If τ is a twisted skew product with group component Zd and twisting
isomorphism 9, the Fried quotient of τ is the quotient τF for F = P(im(9 − id)).

4.2. Twisted skew products, countable state Markov shifts and lifted transitions. A
twisted skew product can be identified with, or more precisely is conjugate to, a countable
state Markov shift in a natural way. Given τ as in (4.1), assume that the states of
the base shift 6 are S = {1, 2, 3, . . . }. Define the states of a new countable Markov
shift as Ŝ = S × Zd , and the allowable one-step transitions for the new shift Ŝ are
(a, n)→ (b,m), where a→ b is allowable for 6 and m=9(n)+ h(a, b). Now let
6̂ ⊂ ŜZ be the collection of sequences from ŜZ all of whose transitions are allowable
and σ̂ be the left shift on 6̂. The conjugacy between (6̂, σ̂ ) and (6 × Zd , τ ) is given by
(. . . , (s−1, n−1), (s0, n0), (s1, n1), . . . ) 7→ (s, n0). We often identify a skew product and
its corresponding countable state Markov shift with little further mention.

Given an allowable one-step transition a→ b for (6, σ ), the lifted or induced transition
for τ starting at g ∈ G is

(a, g)→ (b, 9(g)+ h(a, b)). (4.6)

More generally, if a→ c is an allowable n-step transition, its lifted transition for τ is
constructed by concatenating the lifts of each one-step transition.

After identifying a skew product with a countable state Markov shift the criterion for
transitivity given in §2.2 can be used. Thus, τ is transitive if and only if for any states (a, n)
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and (b,m), there is an allowable transition (a, n)→ (b,m). Equivalently, τ is transitive if
and only if for any (a, n) and (b,m), there is s ∈6 and an n > 0 so that s0 = a and sn = b
and τ n(s, n)= (σ n(s),m).

5. Untwisted skew products
In this section we review some of the standard constructions associated with untwisted
skew products.

5.1. Lifting untwisted transitions and transitivity. For untwisted skew products lifted
transitions transform nicely under the action of G from (4.3). In this case,

(a1, g1)→ (a2, g2) implies (a1, g1 + g)→ (a2, g2 + g), (5.1)

for all g ∈ G. This implies, in particular, that if (s, 0) is a periodic point for τ , then for all
g ∈ G, (s, g) is too. In addition,

(a1, g1)→ (a2, g2) and (a2, g3)→ (a3, g4) imply (a1, g1)→ (a3, g4 + g2 − g3).

(5.2)
If τ is untwisted, we thus have that τ is transitive if and only if for any j, k ∈ S and m ∈ Zd ,
there is an allowable transition ( j, 0)→ (k,m).

5.2. The height cocycle and the displacement set. A main tool in the study of untwisted
skew products is the cocycle giving the total height or displacement of an orbit in the group
component. This object has many names and notation, including the Fröbenious element
and the total displacement. In the covering space context it gives a coordinate for the
Abelian Nielsen class of a periodic point (see [Boy94]) or the twisted Lefschetz coefficient
(see [Fri83]).

Given an untwisted skew product τ with height function h, let

h(s, n)= h(s)+ h(σ (s))+ · · · + h(σ n−1(s)),

and so for any g ∈ G,
τ n(s, g)= (σ n(s), g + h(s, n)).

Note that we are ‘overloading’ the symbol h. Other common notation for h(s, n) includes
hn(s) and h(n)(s). The notation we choose emphasizes the valuable and frequently used
fact that for an untwisted skew product the height function h induces an additive cocycle
over the base shift (6, σ ):

h(s, n + m)= h(s, n)+ h(σ n(s), m).

Remark 5.1. It is worth noting here an important difference between twisted and untwisted
skew products. If η is a twisted skew product, then one can define an additive G-valued
cocycle for η itself by E((s, g), n)= π2(τ

n(s, g))− g where π2 is projection onto the
group factor. However, this will only descend to a cocycle on the base shift 6 when the
value of E is independent of the element g ∈ G and by virtue of (4.4), this only happens
when 9 = id, i.e. when η is untwisted. This basic fact is the reason that twisted skew
products present additional difficulties over untwisted skew products.
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For untwisted skew products a special role is played by the value of the cocycle
on periodic points of the base shift. Given an untwisted skew product τ , define the
displacement set D(τ ) as

D(τ )= {h(p, n) | p ∈ Fix(σ n), n > 0}. (5.3)

For future reference we note that if p ∈ Fix(σ n), then h(σ k(p), n)= h(p, n) for all k.
In the situation described in §4.1 where 01 ⊂ 02 are subgroups of Zd , then the natural

map π : Zd/01→ Zd/02 yields a simple relationship between the displacement sets of
τ01 and τ02 . Specifically, if the height functions of τ01 and τ02 are h1 and h2, respectively,
then for a periodic point p ∈6, we have h2(p, n)= π(h1(p, n)). It then follows that

〈D(τ02)〉+ = π(〈D(τ01)〉+),

〈D(τ02)〉 = π(〈D(τ01)〉)= 〈D(τ01)〉/(〈D(τ01)〉 ∩ 02). (5.4)

5.3. The rotation set. Given an additive cocycle it is natural to compute the asymptotic
average values. In the case of the displacement cocycle this average is the analog of the
rotation vector of a lifted homeomorphism and so for the sake of uniform terminology we
use that name here.

We continue to restrict to the case of an untwisted skew product τ and in addition we
require that the group factor be torsion-free, Zd . If the height cocycle for τ is h(s, n), for
s ∈6 define its rotation vector as the vector in Rd given by

rot(s)= lim
n→∞

h(s, n)

n
, (5.5)

if the limit exists. For any invariant probability measure µ on (6, σ ) if the height function
is integrable with respect to µ (h ∈ L1(µ)), then by the point-wise ergodic theorem the
limit in (5.5) exists almost everywhere with respect to µ. The collection of all rotation
vectors for τ is called the rotation set and is denoted by

rot(τ )= {rot(s) | s ∈6}.

Note that for a p ∈ Fix(σ k), rot(p)= h(p, k)/k, and for all q > 0 and p ∈ Zd ,

rot(Tp ◦ τ
q)= q rot(τ )+ p, (5.6)

where Tp is the action of p given in (4.3).
As noted in Remark 5.1, the height function does not descend to a cocycle on the base

shift when a skew product in non-trivially twisted. Thus, in the twisted case there is not
generally a usable notion of rotation vector. However, valuable information on the twisted
skew product can be obtained using the rotation set of the largest torsion-free quotient on
which τ descends to an untwisted skew product. In analogy with Definition 3.5 we have
the following.

Definition 5.2. If τ is a twisted skew product, let rotF (τ )= rot(τF ), where τF is the Fried
quotient of τ defined in §4.4. When Zd/F is the trivial group we adopt the convention that
rotF (τ )= ∅.

https://doi.org/10.1017/S0143385708000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000783


1428 P. Boyland

6. Symbolic models for lifted pseudo-Anosov maps
6.1. Pseudo-Anosov maps. We briefly review a few properties of rel pseudo-Anosov
maps of relevance here. For more information see [FLP91, CB88]. A pseudo-
Anosov homeomorphism φ of a surface M is characterized by the existence of a pair
(F u, µu), (F s, µs) of transverse, φ-invariant measured foliations, one expanding and the
other contracting. A homeomorphism φ of a compact surface M is called pseudo-Anosov
relative to the finite set A if it has all of the usual properties of pseudo-Anosov maps but,
in addition, its invariant foliations have one-prong singularities on the set A. For brevity
of terminology, if φ is pseudo-Anosov relative to some finite (or empty) set, it is called rel
pseudo-Anosov.

A rel pseudo-Anosov map always has a Markov partition containing a finite number
of rectangles {R1, . . . , Rk}. By subdividing the partition if necessary we may assume
that for each i, j , the intersection Ri ∩ φ(R j ) has at most one component. The transition
matrix C is a k × k matrix defined by Ci j = 1 if Ri ∩ φ(R j ) 6= ∅ and Ci j = 0 otherwise.
Let 6 denote the subshift of finite type constructed from the matrix C ; this subshift is
always transitive (irreducible) and topologically mixing. There is a semiconjugacy α from
(6, σ ) to (M, φ) which is bounded to one, is bijective on dense, Gδ sets and the image
of a cylinder set in 6 is a topological disk in M , and thus the pseudo-Anosov map is also
transitive and topologically mixing.

6.2. Twisted skew products corresponding to a lifted pseudo-Anosov. We now describe
the construction of a twisted skew product which is a symbolic model for the lift of the
pseudo-Anosov map φ to an Abelian cover. The process is quite standard, but we need
some details of the construction below. In addition, the case when φ is not isotopic to the
identity does not seem to have been described previously in the literature.

Assume now that φ is a rel pseudo-Anosov map of the compact surface M with universal
Abelian cover M̃ with Markov partition, transition matrix C , subshift of finite type (6, σ ),
and semiconjugacy α as in §6.1 A skew product corresponding to the lift φ̃ will have
base shift (6, σ ), group factor H1(M)= Zd , and twisting automorphism φ∗. The height
function h measures how much a lifted rectangle moves in the cover and is defined as
follows.

Fix a fundamental domain M̃ ′0 for M̃ and one lift R̃ j of each rectangle R j such that
R̃ j ∩ M̃0 6= ∅ for all j and ∪R̃ j is a connected set. Let M̃0 = ∪R̃ j . Note that M̃0 is also
a fundamental domain for M̃ . Now since C is a (0, 1) matrix, if a→ b is an allowable
one-step transition for 6, we have

φ̃(R̃a) ∩ δn(R̃b) 6= ∅ (6.1)

for exactly one n ∈ Zd . Define h :6→ Zd as constant on a length two cylinder set [a, b]0
by h(s)= n for all s ∈ [a, b]0, where n ∈ Zd is the unique deck element for which (6.1)
holds.

Using (3.1), changing the chosen fundamental domain from M̃0 to some δm(M̃0) will
change the height function h by a constant to h′ = (φ∗ − I )(m)+ h. In addition, a given
rel pseudo-Anosov map is modeled by many (closely related) subshifts of finite type. Thus,
there are actually many skew products which correspond to φ̃.
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6.3. The semiconjugacy. We now construct a semiconjugacy α̃ from (6 × Zd , τ ) onto
(M̃, φ̃). In making the construction it is initially easier to work with the countable
state Markov shift described in §4.2 which is naturally conjugate to τ . Recall that
this shift (6̂, σ̂ ) has states Ŝ = {1, 2, . . . , k} × Zd and so sequences ŝ ∈ 6̂ are given as
ŝ = . . . , (s−1, n−1), (s0, n0), (s1, n1), . . . . Define α̃ : 6̂→ M̃ by

α̃(ŝ)=
⋂
j∈Z

φ− j (δn j (Rs j )). (6.2)

The basic properties of the Markov partition for φ coupled with (3.1) ensure that the
intersection in (6.2) consists of exactly one point, α̃ is continuous, onto, bounded to one
and α̃ ◦ σ̂ = φ̃ ◦ α̃. Further, α̃ is bijective on dense, Gδ sets and the image of a cylinder set
in 6̂ is a topological disk in M̃ . Since the cylinder sets form a basis for the topology of M̃ ,
α̃ is transitive or topologically mixing if and only if φ̃ has these properties.

As in §4.2 we can identify the Markov model for τ with τ and so we can also consider
the semiconjugacy from (6 × Zd , τ ) to (M̃, φ̃). We also denote this semiconjugacy as α̃.
With this identification the construction of α̃ gives that for each n ∈ Zd ,

α̃(6 × {n})= δn(M̃0). (6.3)

6.4. Dynamical correspondence of skew product and lifted pseudo-Anosov. Using §§6.3
and 3.3 we now have maps

6 × Zd α̃ // M̃
β̃ // Rd . (6.4)

An understanding of the metric properties of these maps is necessary to compare the
dynamics of τ and φ̃ on these unbounded spaces. Recall that a map between pseudo-
metric spaces q : (X, d)→ (X ′, d ′) is called a quasi-isometry if there are numbers a > 1
and b > 0 with

1
a

d(x1, x2)− b ≤ d ′(q(x1), q(x2))≤ ad(x1, x2)+ b

for all x1, x2 ∈ X . A quasi-isometry yields a correspondence of the metric structure on
‘large scales’.

Define a pseudo-metric d1 on 6 × Zd using the norm on the group component,
d1(t, t ′)= ‖π2(t)− π2(t ′)‖. For a topological metric d on the surface M , let d̃ be its
lift to the universal Abelian cover. As a consequence of (6.3), α̃ : (6 × Zd , d1)→ (M̃, d̃)
is a quasi-isometry. In addition, the map β̃ ′ : M̃→ Rd from §3.3 is also a quasi-isometry
from (M̃, d̃) to Rd with the standard metric. Thus, all of the natural equivariant methods
of measuring large-scale displacements on 6 × Zd and M̃ are comparable.

We also need to compare the corresponding linear structures on the group factor of
6 × Zd and on the vector space Rd . Specifically, the construction of α̃ and β̃ yields for all
(s, n) ∈6 × Zd ,

|β̃ ◦ α̃(s, n)− n| ≤
√

d (6.5)

(the
√

d is the diameter of the unit cube in Rd ).
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Passing to Fried quotients, if H1(M)/F = Zk , then the maps in (6.4) descend to

6 × Zk
α̃F // M̃F

β̃F // Rk,

with α̃F a semiconjugacy from τF to φ̃F . Both α̃F and β̃F are quasi-isometries of the
projected pseudo-metrics and the analog of (6.5) for β̃F ◦ α̃F holds as well.

The next proposition summarizes the connections between the lift of a rel pseudo-
Anosov map φ̃ to the universal Abelian cover M̃ and a corresponding twisted skew
product τ .

PROPOSITION 6.1. Assume that φ is a rel pseudo-Anosov map on the compact surface M,
M̃ is the universal Abelian cover of M, φ̃ is a lift of φ to M̃ and τ is a twisted skew product
with base shift (6, σ ) that corresponds to φ̃:
(a) (M̃, φ̃) is transitive (topologically mixing) if and only if τ is transitive (topologically

mixing);
(b) τ has the ftp;
(c) rotF (φ̃)= rotF (τ ) and these sets have dimension k = rank(Zd/F).

Proof. The proof of (a) was indicated in §6.3. To prove (b), note that if 0 ⊂ H1(M) is
co-finite and φ∗(0)= 0, then φ̃ on the universal Abelian cover descends to a φ̃0 on the
quotient cover M̃0 = M̃/0. The map φ̃0 is a lift of φ to the compact surface M̃0 and, thus,
is itself pseudo-Anosov and so φ̃0 is transitive. The semiconjugacy α̃ from (6 × Zd , τ ) to
(M̃, φ̃) descends to a semiconjugacy α̃0 from (6 × (Zd/0), τ0) to (M̃0, φ̃0) and so τ0
is transitive as remarked at the end of §6.1.

To prove (c) assume that the Fried quotient is non-trivial. Let hF be the height function
of the projection τF of τ to the Fried quotient and B be the cocycle defined by (3.3) on
the Fried cover of φ and α :6→ M be the semiconjugacy from the base shift to the map
φ on the surface. Now if α(s)= x , then by construction, α̃(s, 0) := x̃ is a lift of x . Thus
using (3.3) and the fact that α̃F is a semiconjugacy,

B(x, n)= β̃F (φ̃
n
F (α̃F (s, 0)))− β̃F (α̃F (s, 0))= β̃F ◦ α̃F (τ

n
F (s, 0))− β̃F ◦ α̃F (s, 0).

Since, by definition, hF (s, n)= π2(τ
n
F (s, 0))− π2(s, 0) and so by the Fried quotient

version of (6.5) we have that for any s ∈6 and n ∈ N,

|hF (s, n)− B(α(s), n)| ≤ 2
√

k. (6.6)

From (6.6) and the definitions of the rotation vectors it then follows directly that for
s ∈6, rot(s, τF ) exists if and only if rot(α(s), φ̃F ) does, and if they exist they are equal,
and thus the first statement in (c) follows. The assertion regarding the dimension is proved
in Remark 7.7 below. 2

7. Transitivity of untwisted skew products
The main goal of this section is to prove the following theorem which gives conditions for
transitivity of an untwisted skew product using the rotation set. It is ultimately based on
the criterion for transitivity using the displacement set provided by Coudene’s theorem 7.2
below, however the rotation set is more tractable under the iterations and translations of
maps required here.
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THEOREM 7.1. Assume that τ is an untwisted skew product with group factor G = Zd

and the base shift (6, σ ) a transitive subshift of finite type. The following are equivalent:
(a) τ is transitive;
(b) τ has the ftp and 0 ∈ Int(rot(τ ));
(c) τ has the ftp and its periodic points are dense in 6 × Zd .

7.1. Coudene’s transitivity theorem. The next theorem gives conditions on the
displacement set which ensure a untwisted skew product is transitive. While the theorem
given here is stated in more general terms than in [Cou04, Theorem 9], the method of proof
indicated there works for the version given here. We need the generalization to countable
state Markov shifts in the main induction argument below. In covering space language the
analog of this theorem was proved in [BGH93] for the case of G = Z and in [Par03] for
G = Z2.

THEOREM 7.2. (Coudene) Let τ :6 × G→6 × G be an untwisted skew product with
base shift 6 a transitive countable Markov shift and group component G a finitely
generated Abelian group. The untwisted skew product τ is transitive if and only if
〈D(τ )〉+ = G.

Remark 7.3. The analog of Theorem 7.2 for lifted measures is quite different in character.
Let τ be an untwisted skew product over the subshift of finite type (6, σ ) with group
component Zd and height function h and let µ be an ergodic, shift-invariant Gibbs measure
with

∫
h dµ= 0. Rees [Ree81] and then Guivarc’h [Gui89] showed that the lift of µ to a

τ -invariant (infinite) measure is ergodic if and only if d = 1 or 2.

7.2. The finite lifting property and transitivity. For untwisted skew products we first
obtain various conditions equivalent to the ftp using the displacement set D(τ ). Note that
for untwisted skew products by definition the twisting isomorphism 9 = Id and so the
quotient τ0 is defined for all subgroups 0 ⊂ G.

LEMMA 7.4. Assume that τ is an untwisted skew product with group factor G = Zd and
base shift (6, σ ) a transitive countable Markov shift. The following are equivalent:
(a) τ has the ftp;
(b) 〈D(τ )〉 = Zd ;
(c) for every co-finite 0, 〈D(τ0)〉+ = 〈D(τ0)〉 = Zd/0.

Proof. Since the group factor of τ0 is Zd/0, Theorem 7.2 says that τ0 is transitive if and
only if 〈D(τ0)〉+ = Zd/0. If 0 is co-finite, as remarked in §3.1, 〈D(τ0)〉+ = 〈D(τ0)〉 in
the finite group Zd/0. Thus we have the equivalence of (a) and (c). Now assume that (b)
holds: as noted in (5.4), 〈D(τ0)〉 = 〈D(τ )〉/(〈D(τ )〉 ∩ 0)= Zd/0, and so (c) follows.

Now we prove that (b) not holding implies (c) not holding. If (b) is false, then
Ĥ := 〈D(τ )〉 is a proper subgroup of Zd . It follows easily from the fundamental fact (3.2)
that there is always a co-finite H with Ĥ ⊂ H and H is not pure, and thus |Zd/H |> 1.
Again using (5.4) we have 〈D(τH )〉 = 〈D(τ )〉/(〈D(τ )〉 ∩ H)= Ĥ/Ĥ 6∼= Zd/H , finishing
the proof. 2
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Using the ftp we also get new conditions for transitivity again for untwisted skew
products.

THEOREM 7.5. Assume that τ is an untwisted skew product with group factor G = Zd

and the base shift (6, σ ) a transitive countable state Markov shift. The following are
equivalent:
(a) τ is transitive;
(b) D(τ )= 〈D(τ )〉 = 〈D(τ )〉+ = Zd ;
(c) τ has the ftp and there is a rank-d subgroup H ⊂ 〈D(τ )〉+;
(d) there exists a finite set {di } ⊂ D(τ ) so that 〈{di }〉 = Zd and 0=

∑
ai di with the ai

positive integers.

Proof. If τ is transitive, then for every n ∈ Zd and state s0 for 6, treating τ as a countable
state Markov shift, there is an allowable transition (s0, 0)→ (s0, n). This implies that
σ has a period point with displacement n. Thus, (a) implies that D(τ )= Zd , and since
obviously D(τ )⊂ 〈D(τ )〉+ ⊂ 〈D(τ )〉 ⊂ Zd , the other equalities in (b) follow. Conversely,
Theorem 7.2 shows that (b) implies (a).

Now assume that (d) holds. By hypothesis 〈{di }〉 = Zd and thus for any n ∈ Zd there
are integers bi with n=

∑
bi di . Since the given ai > 0 in (d), we may find k > 0

with kai + bi > 0 for all i . Thus, n=
∑
(kai + bi )di and so Zd

= 〈{di }〉+ ⊂ 〈D(τ )〉+,
implying that Zd

= 〈D(τ )〉+, and so τ is transitive by Theorem 7.2, showing that (d)
implies (a).

Now assume that (b) holds and so D(τ )= Zd . Let d1, . . . , dd be a basis for Zd and for
i = 1, . . . , d, let dd+i =−di . Thus, 〈{di }〉 = Zd and

∑
di = 0 as required for (d).

Now assume that (c) holds. As noted in (5.4), if πH : Zd
→ Zd/H is the projection,

then πH (〈D(τ )〉+)= 〈D(τH )〉+ and πH (〈D(τ )〉)= 〈D(τH )〉. Since H has rank d , it is
co-finite and so 〈D(τH )〉 = 〈D(τH )〉+, thus πH (〈D(τ )〉)= πH (〈D(τ )〉+). Now since we
are assuming that τ has the ftp, by Lemma 7.4 we have 〈D(τ )〉 = Zd , and so πH (Zd)=

πH (〈D(τ )〉+). Thus, for each n ∈ Zd there is a m ∈ 〈D(τ )〉+ with n+ H =m+ H . This
means that for some h ∈ H , n=m+ h. Thus, since h ∈ H ⊂ 〈D(τ )〉+, we have that
n ∈ 〈D(τ )〉+. Since n was arbitrary, 〈D(τ )〉+ = Zd and so by Theorem 7.2 again, τ is
transitive. Thus, (c) implies (a).

As remarked in §4.1, for any subgroup 0 ⊂ Zd , τ is semiconjugate to τ0 , and so if τ is
transitive, then so is τ0 . Thus, (a) coupled with (b) implies (c) using Zd itself as the rank
d-subgroup H , finishing the proof. 2

7.3. Rotation sets over subshifts of finite type. A few of the fundamental properties of
the rotation set over a transitive subshift of finite type are needed in the following. Basic
results were obtained by Fried in [Fri82b] and [Fri82a] in the context of suspension flows,
and much more detailed results were obtained by Ziemian in [Zie95] for the more general
case of the Birkhoff averages of any bounded vector-valued function (see also [MT91]).

Recall that for a subshift of finite type (6, σ ), a simple block is an allowable block
that starts and ends with the same symbol and contains no other symbol more than once.
Simple blocks are also sometimes called elementary blocks or minimal loops. A simple
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periodic point is a periodic point of σ constructed by infinite concatenation of a simple
block. Let

Dsimp(τ )= {h(p, n) | p is a simple periodic point with period n}.

It follows immediately from the definition of simple blocks that any sequence in 6

can be written as the concatenation of such blocks. In particular, a periodic point
p of period n can be constructed by concatenating simple blocks p1, p2, . . . , pk of
periods n1, n2, . . . , nk with n =

∑
p j . Thus, h(p, n)=

∑
h(p j , n j ) which implies that

〈D(τ )〉+ ⊂ 〈Dsimp(τ )〉+. Since the other implication is trivial,

〈D(τ )〉+ = 〈Dsimp(τ )〉+ and similarly, 〈D(τ )〉 = 〈Dsimp(τ )〉. (7.1)

For a linear transformation L : Zd
→ Z, let L̂ denote its linear extension to L̂ : Rd

→ R.

THEOREM 7.6. Assume that τ is an untwisted skew product with base shift a transitive
subshift of finite type and group factor Zd .
(a) The rotation set rot(τ ) is equal to the convex hull of the rotation vectors of the simple

periodic points.
(b) Assuming that 0 ∈ rot(τ ), the rotation set rot(τ ) is d-dimensional if and only if

〈D(τ )〉 is a rank d-subgroup of Zd .
(c) If τ has the ftp and 0 ∈ rot(τ ), then the rotation set rot(τ ) is d-dimensional.

Proof. For a proof of (a), see [Zie95, Theorem 3.4] and compare with [Fri82b, Lemma 3]
and [MT91, Proposition 3.2].

We now prove the equivalence in (b). From (a) we know that rot(τ ) is a convex
hull in Rd with extreme points in Qd , and by assumption, 0 ∈ rot(τ ). This implies
that dim(rot(τ )) < d if and only if rot(τ ) is in the kernel of some linear L̂ which is
the extension of a linear, onto L : Zd

→ Z. Now for each simple periodic point pi of
period ni , ni rot(pi )= h(pi , ni ), and from (7.1), 〈D(τ )〉 = 〈Dsimp(τ )〉. This implies that
rot(τ )⊂ ker(L̂) if and only if 〈D(τ )〉 ⊂ ker(L). However 〈D(τ )〉 ⊂ ker(L) for some linear,
onto L : Zd

→ Z if and only if 〈D(τ )〉 has rank less than d. This proves (b).
If τ has the ftp, by Lemma 7.4 〈D(τ )〉 = Zd , and so (c) follows from (b). 2

Remark 7.7. We now give the proof of the assertion regarding the dimension in
Theorem 6.1(c). Assume that φ̃ and τ correspond and Zd/F = Zk for k > 0 (if k = 0 there
is nothing to prove). In addition, let α̃F be the projection of the semiconjugacy between φ̃
and τ to one between φ̃F and τF

If s is a periodic point for the base shift, then rot(s, τF )= p/q ∈Qk , and so
if x̃F = α̃F (s, 0), then rot(x̃F , φ̃F )= p/q also, and thus by (5.6), 0 ∈ rot(δ−p φ̃

q
F )

= rot(T−p (τF )
q). Now δ−p φ̃

q
F is a lift to M̃F of the pseudo-Anosov map φq , and so

T−p (τF )
q has the ftp. Thus, by Theorem 7.6(c), rot(T−p (τF )

q) has dimension k and so
using (3.4), so does rot(τF )= rot(φ̃F ).

The next lemma describes another property of the rotation set over a subshift of finite
type: if there is a large enough displacement in any ‘direction’ in the cover, then there is
a point with rotation vector in that direction. One consequence is a useful condition for

https://doi.org/10.1017/S0143385708000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000783


1434 P. Boyland

deciding whether zero is in the interior of a rotation set. The author learned this argument
from David Fried in 1983, and a version of it was used in [BGH93].

LEMMA 7.8. Assume that τ is a untwisted skew product with group component Zd , height
function h and base shift the transitive subshift of finite type (6, σ ). For any onto linear
functional L : Zd

→ Z, there exists a C > 0 so that if there is a point s ∈6 and a positive
integer n with L(h(s, n)) > C, then there is a period-n′ point s′ with L̂(rot(s′)) > 0, and if
there are s and n with L(h(s, n)) <−C, then there is a s′′ with L̂(rot(s′′)) < 0.

Thus, 0 ∈ Int(rot(τ )) if and only if for every linear, onto L : Zd
→ Z,

sup{L(h(s, m)) | s ∈6, m ∈ N} =∞. (7.2)

Proof. Since (6, σ ) is transitive, for each pair of symbols i, j there is an allowable
transition i→ j for σ . Define di, j ∈ Zd as the group coordinate of the lift of these
transitions to transitions for τ , so (i, 0)→ ( j, di, j ). Given L , let C1 =maxi, j {|L(di, j )|}

and C =max{2C1, 1}. Assume now that for some s ∈6 and n > 0 we have L(h(s, n)) >
C . The first n + 1-symbols s0s1 . . . sn in the given sequence s give s0→ sn . Using
the transitivity of (6, σ ), we have sn→ s0. The concatenation of these two allowable
transitions is s0→ sn→ s0 which lifts to

(s0, 0)→ (sn, h(s, n))→ (s0, h(s, n)+ dsn ,s0).

Thus, if s′ is constructed by infinite concatenation of the block corresponding to s0→

sn→ s0 and n′ is the sum of n and the length of the transition sn→ s0, then s′ is
a periodic point of period n′ and L(h(s′, n′))= L(h(s, n))+ L(dsn ,s0) > C/2. Since
rot(s′, n′)= h(s′, n′)/n′ and L̂ is linear we have L̂(rot(s′)) > C/(2n′). The construction
of s′′ is similar.

To prove the last statement of the lemma, first note that 0 ∈ Int(rot(τ )) if and only if
for every linear, onto L : Zd

→ Z there exists an r ∈ rot(τ ) with L̂(r) > 0. Assume now
that (7.2) holds for every linear, onto L : Zd

→ Z. Thus, in particular, if C(L) is the
constant depending on L given by the first paragraph of the theorem, there is a point s and
an m > 0 with L(h(s, m)) > C(L) and so there is a point s′ with L̂(rot(s′)) > 0, and so
0 ∈ Int(rot(τ )). Now conversely, assume that there exists a linear, onto L such that for all
s, there is a constant K with supm∈N L(h(s, m)) < K . Then certainly for any s for which
the rotation vector exists, we have L̂(rot(s))≤ 0, and so 0 6∈ Int(rot(τ )). 2

Remark 7.9. Note that the lemma does not say that there always exists a point s as in the
first paragraph of the statement. A trivial example is when6 is the full two-shift and h ≡ 0.

7.4. Proof of Theorem 7.1. Before giving the proof of the theorem stated at the
beginning of this section we need a small fact about convex polytopes. If {x1, . . . , xk}

is a finite set of points in Qd and zero is in the interior of their convex hull, then there are
positive integers b j with 0=

∑k
j=1 b j x j . The proof is an exercise.

Proof of Theorem 7.1. If τ is transitive, then certainly any quotient is transitive and so
τ has the ftp. To show that (a) implies (c) we must show that transitivity of a countable
Markov shift implies it has dense periodic points. This is standard: given any allowable
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block s0 . . . sn , we must find a periodic point which contains that block. Since the
shift is transitive, there is an allowable transition sn→ s0. The concatenated transitions
s0→ sn→ s0 repeated infinitely often yield the required periodic point. If 0 6∈ Int(rot(τ )),
then it follows from the second statement of Lemma 7.8 that τ is not transitive, and so (a)
implies (b).

Now assume that (c) holds. Since τ has a periodic point, certainly 0 ∈ rot(τ ) and since
τ has the ftp, by Theorem 7.6(c), rot(τ ) is d-dimensional. Thus, if 0 ∈ Fr(rot(τ )) there is
a linear, onto L : Zd

→ Z with L̂(r)≥ 0 for all r ∈ rot(τ ) and using Theorem 7.6(a), there
is a point s ∈6 with L̂(rot(s)) > 0. Thus, we may find an m > 0 with L(h(s, m)) > 2C ,
where C is the constant associated with L from Lemma 7.8. Now, since by hypothesis
periodic points of τ are dense, treating τ as a Markov shift we see that there must be
a periodic orbit t ′ of τ that begins with the block (s0, 0), (s1, n1), . . . , (sm, nm) with
n j = n j−1 + h(s j−1, s j ) and L(nM ) > 2C . Since t ′ is periodic, it must continue with
a block (sm, nm), (s′m+1, nm+1), . . . , (s′m+k, nm+k), (s0, 0) for some k > 0. Thus, if ŝ
is any allowable sequence for σ beginning with sm, s′m+1, . . . , s′m+k, s0, we have that

L(h(ŝ, k + 1)) <−C . Thus, by Lemma 7.8, there is a point s′ with L̂(rot s′) < 0, a
contradiction.

Now assume that (b) holds. Let {pi } be the finite set of simple periodic points of σ
and let d j = h(p j , k j ) where k j is the period of p j . Lemma 7.4 coupled with the fact
that 〈Dsimp(τ )〉 = 〈D(τ )〉 yields that 〈{d j }〉 = Zd . Since each rot(p j )= d j/k j ∈Qd , by
the small fact on convex polytopes given above, 0=

∑
b j rot(p j ) with all of the b j

positive integers. Thus, letting a j = b j (
∏

ki )/k j , we have 0=
∑

a j d j with all a j positive
integers, and so by Theorem 7.5, τ is transitive. 2

8. Examples
We collect some simple examples which illustrate why various hypotheses are required. In
all of these examples the base shift is the full two-shift and the skew product is untwisted.
The simple blocks of the full two-shift written as one-step transitions are 1→ 1, 0→ 0,
0→ 1→ 0 and 1→ 0→ 1. We compute rot(τ ), 〈D(τ )〉 and 〈D(τ )〉+ using the simple
periodic points as per (7.1) and Theorem 7.6(a).
(a) For η1, let the group component be Z and the height function f1 ≡ 1. Then

rot(η1)= {1}, 〈D(η1)〉 = Z and 〈D(η1)〉+ = {1, 2, . . . }. So η2 has the ftp, is not
transitive and its rotation set lacks interior and has no periodic points.

(b) For η2, let the group component be Z and the height function f2 be given
by f2(00)=−2, f2(11)= 2, f2(01)= f2(10)= 0. Then rot(η2)= [−2, 2] and
〈D(η2)〉 = 〈D(η2)〉+ = 2Z, and so η2 is not transitive and does not have the ftp.
Thus, 0 ∈ Int(rot(η2)) does not suffice to imply transitivity. Note also that under η2,
6 × Z splits into a pair of transitive subsystems,6 × (2Z) and6 × (2Z+ 1). Thus,
in particular, the periodic points of η2 are dense, but η2 is not transitive.

(c) For η3, let the group component be Z and the height function f3 be given
by f3(00)=−1, f3(11)= 1, f3(01)= f3(10)= 0. Then rot(η3)= [−1, 1] and
〈D(η3)〉 = 〈D(η3)〉+ = Z, and so η3 is transitive. However, note that η2

3 = η2 from
the previous example. Thus, η3 is transitive, but η2

3 is not.
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(d) For η4, let the group component be Z2 and the height function f4 be given by
f4(00)= (1, 0)= f4(01) and f4(11)= (0, 1)= f4(10). Then rot(η4) is the line
segment connecting (1, 0) and (0, 1) and has no interior. Also, 〈D(η4)〉 = Z2 and
so η4 has the ftp. Finally, 〈D(η4)〉+ = {(a, b) | a ≥ 0, b ≥ 0} − {(0, 0)}, and so η4 is
not transitive. This illustrates that the ftp alone does not imply that the rotation set
has interior.

9. Lemmas
9.1. Subgroup lemma. The following elementary, technical lemma will be essential in
the proof of the main induction step given in Lemma 10.1.

LEMMA 9.1. If 0 ⊂ Zd is a rank d-subgroup and w ∈ Zd is a given element, then there
exist elements g1, g2, . . . , g2d ∈ 0 and a rank d-subgroup H so that

H ⊂ 〈g1 + w, g2 + w, . . . , g2d + w〉+.

Proof. To begin with assume that we are in the special case where the given w is actually
an element of 0. Let ĝ1, . . . , ĝd be a basis for 0, and for 1≤ j ≤ d, let g j = ĝ j − w, and
for d < j ≤ 2d , let g j =−ĝ j − w. Then clearly 〈g1 + w, g2 + w, . . . , g2d + w〉+ = 0,
so in this special case the required H is just 0 itself. Henceforth, we assume that w 6∈ 0.

The strategy of the rest of the proof is to show that we may choose the elements
g1, g2, . . . , g2d ∈ 0 so that if k j = g j + w, then there are positive integers c j with

2d∑
j=1

c j k j = 0.

Thus, for any j0,
−c j0k j0 =

∑
j 6= j0

c j k j ,

and so, −c j0k j0 ∈ 〈{k j }〉+. Now obviously, c j0k j0 ∈ 〈{k j }〉+, and so

H := 〈c1k1, . . . , cdkd〉 ⊂ 〈{k j }〉+.

The last step in the proof is to show that the elements {c1k1, . . . , cdkd} are linearly
independent, yielding that H has rank d.

To implement the strategy, as noted in §3.1, if q = |Zd/0|, then qw ∈ 0. Let g1 be
primitive in 0 and in the same direction asw, that is, for some p > 0, pg1 = qw. Now also
from §3.1, 〈g1〉 is a pure subgroup of 0 and so g1 is an element of a basis {g1, g2, . . . , gd}

of 0.
Now let n0 ∈ Z be such that

n0 <−p/q < n0 + 1. (9.1)

Note that we have strict inequalities in (9.1) because w 6∈ 0. Now define elements of Zd ,

k1 = (n0 + 1+ p/q)g1 = (n0 + 1)g1 + w,

kd+1 = (n0 + p/q)g1 = n0g1 + w

https://doi.org/10.1017/S0143385708000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000783


Transitivity of surface dynamics lifted to Abelian covers 1437

and integers

A = qn0 + q + p = q(n0 + 1+ p/q),

B =−(qn0 + p)=−q(n0 + p/q).

Note that A > 0, B > 0 and a simple calculation shows that

Akd+1 + Bk1 = 0, (9.2)

and so 〈Bk1〉 ⊂ 〈k1, kd+1〉+. Thus, letting g1 = (n0 + 1)g1 and gd+1 = n0g1, this
completes the first step of the strategy when d = 1, so now assume d > 1.

Let

k j =

{
g j + w for 2≤ j ≤ d,

−g j + w for 2+ d ≤ j ≤ 2d.

Thus, letting C = 2p, another simple calculation for each 2≤ j ≤ d yields

Bk j + Bk j+d + Ckd+1 = 0, (9.3)

and so summing (9.3) for j = 2 to d and adding (9.2) yields

Akd+1 + Bk1 + C(d − 1)kd+1 +

d∑
j=2

(Bk j + Bk j+d)= 0.

Thus, as noted in the second paragraph of the proof, this implies

H := 〈Bk1, Bk2, . . . , Bkd〉 ⊂ 〈g1 + w, g2 + w, . . . , g2d + w〉+.

Finally, to show that {Bk1, Bk2, . . . , Bkd} is linearly independent, it suffices to show
that {k1, k2, . . . , kd} is linearly independent over Q. If

∑
a j k j = 0, then using the

definition of k j ,

0= (a1(n0 + 1+ p/q)+ p/q(a2 + · · · + ad))g1 + a2g2 + · · · + ad gd ,

and so all a j = 0 using the linear independence of {g1, g2, . . . , gd}. 2

9.2. Nilpotent linear transformations. In the sufficient conditions for transitivity given
in Proposition 10.2 below the twisting matrix is required to satisfy spec A = {1}. It is often
technically convenient to work with the nilpotent matrix A − id in such cases. A linear
transformation T : Zd

→ Zd is said to be nilpotent of order J if T J
= 0 and T J−1

6= 0.
The same definition applies to square matrices. A nilpotent transformation of order J
generates a chain of kernels,

0= ker(T 0)⊂ ker(T )⊂ ker(T 2)⊂ · · · ⊂ ker(T J )= Zd .

It is also easy to check that

T (ker(T j ))⊂ ker(T j−1)⊂ ker(T j ). (9.4)

LEMMA 9.2. Let T : Zd
→ Zd be a nilpotent homomorphism of order J . Then there is a

direct sum decomposition Zd
= V1 ⊕ · · · ⊕ VJ with each V j 6= 0 so that for all j :
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(a) ker(T j )= V1 ⊕ · · · ⊕ V j ;
(b) T (V j )⊂ V1 ⊕ · · · ⊕ V j−1;
(c) if p j : Zd

→ V j is the projection, then (p j−1 ◦ T )|V j is injective for j > 1.

Proof. The proof proceeds by induction on the order of nilpotency J with the case J = 1
being trivial. Assume then that the result is true for all nilpotent transformations of order
less than J defined on any finite rank-free Abelian group.

For simplicity of notation let K := ker(T J−1) and T̂ = T|K . By (9.4), T̂ (K )⊂ K , and
since T̂ has order of nilpotency J − 1, by the inductive hypothesis, there is a direct sum
decomposition K = V1 ⊕ · · · ⊕ VJ−1 with each V j 6= 0 so that conditions (a), (b) and (c)
hold for all 1≤ j ≤ J − 1.

Since K is a kernel, one easily sees that it is a pure subgroup of Zd , and thus for some
subgroup VJ ⊂ Zd , Zd

= K ⊕ VJ . We now check that Zd
= V1 ⊕ · · · ⊕ VJ satisfies the

required conditions (a), (b) and (c) for all 1≤ j ≤ J .
Since ker(T J )= Zd , condition (a) is obviously satisfied. Now certainly, VJ ⊂

ker(T J )= Zd , and so by (9.4),

T (VJ )⊂ T (ker(T J ))⊂ ker(T J−1)= V1 ⊕ · · · ⊕ VJ−1,

and so condition (b) is satisfied.
Now we confirm condition (c). We have just shown that T (VJ )⊂ V1 ⊕ · · · ⊕ VJ−1.

Thus, if v ∈ VJ and pJ−1 ◦ T (v)= 0, then in fact T (v)⊂ V1 ⊕ · · · ⊕ VJ−2 = ker(T J−2),
and so T J−2(T (v))= 0, and so v ∈ ker(T J−1)= K and, therefore, v ∈ K ∩ VJ = 0. Thus,
ker(pJ−1 ◦ T|VJ )= {0}, as required. 2

9.3. Integer matrices with spectrum equal to {1}. For a linear transformation T or
a square, integer matrix A, its spectrum is denoted by spec(T ) or spec(A). We need
notation for the block description of a matrix. Given a collection of positive integers
n1, n2, . . . , n J with

∑
nα = d, the block description of type (n1, n2, . . . , n J ) of the

d × d matrix A consists of the matrices Bα,β , with 1≤ α, β ≤ J with the dimension of
Bα,β equal to nα × nβ and A = (Bα,β), or more explicitly, the (i, j)th entry of Bα,β is the
(n1 + · · · + nα−1 + i, n1 + · · · + nβ−1 + j)th entry of A.

The next lemma uses Lemma 9.2 to give a special form for a matrix A representing
a linear isomorphism S with spec(S)= {1}. The simplest case of a matrix A in the
form is lower tridiagonal with all ones on the diagonal and all non-zero entries in the
first subdiagonal.

LEMMA 9.3. If S : Zd
→ Zd is an automorphism with spec(S)= {1}, then there is a

collection of numbers n1 ≥ n2 ≥ · · · ≥ n J > 0 with
∑

n j = d and a basis of Zd such that
with respect to this basis the automorphism S is represented by a matrix A which when
written in block form of type (n1, n2, . . . , n J ) has blocks Bα,β satisfying:
(a) Bα,α = I for α = 1, . . . , J ;
(b) Bα,β = 0 for α < β;
(c) Bα,α−1 has rank nα for α = 2, . . . , J .
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Proof. Let C be the matrix representing S in the standard basis for Zd . Since by
hypothesis spec(C)= {1}, we have spec(CT )= {1} and so CT

− I represents a nilpotent
homomorphism which we denote by T . Applying Lemma 9.2 to T , we find a basis for T
or equivalently a unimodular matrix E , so that Ā := E(CT

− I )E−1 is block factored of
type (n1, n2, . . . , n J ), where n j = rank(V j ) with the V j as in Lemma 9.2 and:

(a) B̄α,α = 0 for α = 1, . . . , J ;
(b) B̄α,β = 0 for α > β;
(c) B̄α−1,α has rank nα for α = 2, . . . , J .

Finally, let A := ĀT
+ I := (ET )−1(C − I )(ET )+ I = (ET )−1C(ET ), and so A

represents S and it is easy to check that it has the required block form using the block
form of Ā. 2

9.4. Behavior of the Fried quotient under iteration. For any quotient twisted skew
product τ0 it follows easily that (τ0)k = (τ k)0 . However, for k > 0 letting F (k) :=
P(im(9k

− id)), in general one has F (1) 6= F (k). A simple example is9 =− id. Thus, the
iterate of the Fried quotient and the Fried quotient of the iterate, τ k

F and (τ k)F (k) , often act
on different spaces and thus are not equal. However, in the special case of spec(9)= {1}
we have the following result as a corollary of Lemma 9.3.

COROLLARY 9.4. If τ is a twisted skew product with twisting matrix A satisfying
spec(A)= {1}, then the iterate of the Fried quotient is the Fried quotient of the iterate,
or (τF (1))

k
= (τ k)F (k) , where F (k) := P(im(9k

− id)).

Proof. Since spec(A)= {1}, we may conjugate A so that it is in the form given
by the block factorization of Lemma 9.3. In the proof of that lemma, this block
factorization corresponds to an internal direct sum decomposition Zd

=W1 ⊕ · · · ⊕WJ

as in Lemma 9.2. As a consequence of condition (c) in Lemma 9.3, the purification of
im(A − id) is exactly F =W2 ⊕ · · · ⊕WJ , and so Zd/F is naturally identified with W1.

Denoting the block factorization of A by Bα,β , then for k > 0, a simple computation
shows that we can obtain such a factorization for Ak by taking the kth power of the block
factorization of A. Specifically, if we denote the factorization so obtained for Ak as B(k)α,β ,

then subdiagonal blocks satisfy B(k)α+1,α = k Bα+1,α for α = 1, . . . , J − 1. Thus, since

Bα+1,α has rank nα , so does B(k)α+1,α . This implies that the purification of im(Ak
− id) is

F (k) =W2 ⊕ · · · ⊕WJ for all k > 0. Thus, for all k > 0, Zd/F (k) = Zd/F which implies
that (τ k)F (k) = (τF (1))

k . 2

10. Transitivity of twisted skew products

10.1. The main induction lemma. When the twisting matrix is a generalized shear,
transitivity is proved by treating the twisted skew product as a sequence of untwisted
extensions. The main technical step in doing this is given in the next lemma.
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The simplest non-trivial case of the lemma is when τ has group component Z2, height
function h = (h1, h2), and twisting matrix

A =

(
1 0
1 1

)
. (10.1)

Thus, in coordinates,

τ(s, m, n)= (σ (s), m + h1(s), n + m + h2(s)).

We then define η on 6 × Z as η(s, m)= (σ (s), m + h1(s)). As in §4.2 we treat
η as a countable state Markov shift on 6′ =6 × Z. After letting t = (s, m) and
g(t)= g(s, m)= m + h2(s), we may write

τ(t, n)= (η(t), n + g(t)),

and so τ treated as a map on 6′ × Z is an untwisted extension of (6′, η). In this case
the lemma says that if η is transitive and τ has the ftp, then τ is transitive. Note that
no separate hypothesis in required in the shearing direction. Roughly speaking, the shear
creates a global circulation which is conducive of recurrence.

The lemma allows group components Zk and Z`, and it requires that the twisting matrix
A be (k, `)-block factored in lower triangular form with identity matrices on the diagonal
and the subdiagonal block having full rank.

LEMMA 10.1. Let η :6 × Zk
→6 × Zk be a transitive, untwisted skew product with

height function h and base shift (6, σ ) countable Markov. Let 6′ =6 × Zk and assume
that τ :6′ × Z`→6′ × Z` is an untwisted skew product given by

τ(t, n)= (η(t), n + g(t)) (10.2)

and for t = (s, m) ∈6′, the height function g is required to have the form

g(t)= g(s, m)= S(m)+ f (s), (10.3)

with f :6→ Z` constant on length-two cylinder sets and S : Zk
→ Z` a rank-`

homomorphism. If τ has the ftp, then it is transitive.

Proof. Since η is transitive, it certainly has a periodic point, say t (0) = (s′, 0) of period n0.
Now since η is untwisted, t (m) := (s′, m) is also a periodic orbit of period n0 for η. We
treat t (m) ∈6′ and a straightforward computation using (10.2) and (10.3) yields that

g(t (m), n0) = g(t (m))+ g(η(t (m)))+ · · · + g(ηn0−1(t (m)))

= g(s′, m)+ g(σ (s′), m + h(s′))+ · · · + g(σ n0−1(s′), m + h(s′, n0 − 1))

= n0S(m)+ S(h(s′)+ · · · + h(s′, n0 − 1))+ f (s′, n0).

Thus, letting w = S(h(s′)+ · · · + h(s0, n0 − 1))+ f (s′, n0), we have that im(n0S)
+ w ⊂ D(τ ). Since S has rank ` by hypothesis, im(n0S) is a rank-` subgroup of Z`.
Thus, we may apply Lemma 9.1 to im(n0S) yielding elements m1, . . . , m2d ∈ Zk and a
rank-` subgroup H , with

H ⊂ 〈n0S(m1)+ w, . . . , n0S(m2d)+ w〉+ ⊂ 〈D(τ )〉+.

Thus, by Lemma 7.5, since τ has the ftp by assumption, it is transitive. 2
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10.2. Sufficient conditions for transitivity. The next proposition uses Lemma 10.1 as
the induction step to obtain transitivity in the case when the twisting automorphism is a
generalized shear in the form given by Lemma 9.3.

PROPOSITION 10.2. Assume that τ :6 × Zd
→6 × Zd is a twisted skew product with

height function h and base shift (6, σ ) countable Markov. If the twisting automorphism9

is a generalized shear (spec(9)= {1}), the Fried quotient τF is transitive, and τ has the
ftp, then τ is transitive.

Proof. Since spec(9)= {1}, using Lemma 9.3 we can start by choosing a basis for Zd in
which 9 is represented by a matrix A with block factorization Bα,β for α, β = 1, . . . , J
as in that lemma. Further, we adopt the notation of Lemma 9.2 by assuming that the
block factorization of A corresponds to the internal direct sum decomposition Zd

=W1

⊕ · ⊕WJ with rank(W j )= n j . If p j : Zd
→W j is the projection, let h j = p j ◦ h.

We now define a collection of spaces and untwisted skew products inductively.
Let 6(1) =6 and let τ1 :6

(1)
×W1→6(1) ×W1 be defined as τ1(s, m1)= (σ (s),

m1 + h1(s)). For j = 2, . . . , J , let6( j)
=6( j−1)

×W j−1 and τ j :6
( j)
×W j →6( j)

×

W j is defined using t ( j−1)
∈6( j) written as t ( j−1)

= (s, m1, . . . , m j−1) by

τ j (t
( j−1), m j )= (τ j−1(t

( j−1)), m j + H j (t
( j−1))),

where

H j (t
( j−1))= B j,1m1 + B j,2m2 + · · · + B j, j−1m j−1 + h j (s).

Note that τJ = τ , the given twisted skew product. Also, if for j = 1, . . . , J − 1, we let
0 j =W j+1 ⊕ · · · ⊕WJ , then9(0 j )⊂ 0 j by the form of A, and τ j is exactly the quotient
map τ0 j as defined in §4.1. Thus, since by hypothesis τ has the ftp, each τ j also has the
ftp and the base shift is transitive. As noted in the proof of Corollary 9.4, τ1 is the Fried
quotient of τ and so is transitive by hypothesis. Finally, by the block factorization of A
obtained using Lemma 9.3 each B j, j−1 is rank n j , and so each τ j extends τ j−1 as required
for Lemma 10.1. Thus, by induction, each τ j is transitive and so τJ = τ is also transitive. 2

10.3. The main symbolic theorem. Before we state our main theorem about the
transitivity of twisted skew products we recall a few more definitions and facts about an
automorphism9 of a finitely generated free Abelian group, or equivalently, the matrix that
represents it in some basis. For simplicity we just give the terminology and notation for
the matrices.

The spectral radius of A is denoted by ρ(A). Since matrix A is invertible if and only
if det(A)=±1, when A is invertible, if ρ(A) 6= 1, there must be eigenvalues of modulus
both larger and less than one. If ρ(A)= 1, the eigenvalues of A must all lie on the unit
circle. Now for an eigenvalue λ of A, certainly its minimal polynomial must be a factor
of the characteristic polynomial of A. Thus, if ρ(A)= 1, all of the algebraic conjugates
of any eigenvalue λ must lie on the unit circle. Thus, as a consequence of a theorem of
Kronecker (see, for example [Mar77, problem 11 on p. 40]), λ must be a root of unity (the
author learned this from Peter Sin whom he acknowledges with gratitude). Thus, we see
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that if A is invertible and ρ(A)= 1, then for some integer N > 0, spec(AN )= {1}. This
allows the following definition.

Definition 10.3. If A ∈ SL(d, Z) and has spectral radius equal to one, ρ(A)= 1, let N (A)
be the least positive integer with spec(AN (A))= {1}.

While many of the preceding results involved skew products with the base shift a
countable Markov chain, the main theorem concerns the case where the base shift is a
transitive subshift of finite type. This restriction is required in order to use the various
properties of the rotation set from §7.3. It is worth remarking, however, that the proof
itself uses an induction with untwisted extensions of countable state Markov shifts. It is
also worth remarking that since the alternative (b) in the theorem only requires that the
twisting matrix A has spectral radius one, we must consider τ N (A) in order to ensure that
the Fried quotient is non-trivial and the rotation set is thus defined. Alternative (b) also
contains a condition that is the analog of totally transitive for finite quotients; we say that
τ has the total ftp if τ k has the ftp for all k > 0.

THEOREM 10.4. Assume that τ :6 × Zd
→6 × Zd is a twisted skew product with

twisting matrix A, height function h and base shift (6, σ ) which is a transitive subshift
of finite type. The following are equivalent:
(a) τ is totally transitive;
(b) ρ(A)= 1, τ has the total ftp; and 0 ∈ Int(rotF (τ

N (A)));
(c) τ has the total ftp and its periodic points are dense in 6 × Zd ;
(d) τ is topologically mixing.

Proof. We first show that (b) implies (a). For simplicity of notation, let ηk = τ
k N (A).

Using (4.2) the twisting matrix of ηk is Ak N (A). By definition spec(AN (A))= {1}, and
so for all k > 0, spec Ak N (A)

= {1} also. Since by hypothesis τ has the total ftp, each ηk

also has the ftp. We now show that the Fried quotient of each ηk is transitive, and then
Lemma 10.2 will give that each ηk is transitive.

Corollary 9.4 and (5.6) yield that

rot((τ k N (A))F (k N (A)))= rot(((τ N (A))F (N (A)))
k)= k rot((τ N (A))F (N (A))).

Thus, since 0 ∈ Int(rotF (τ
N (A))) by hypothesis, 0 ∈ Int(rotF (ηk)) for all k > 0. As already

noted, each ηk has the ftp and so as remarked in §4.3, (ηk)F has the ftp for all k > 0. Thus,
since each (ηk)F is untwisted, by Theorem 7.1, each (ηk)F is transitive, finishing the proof
that each ηk is transitive. Now since ηk = (τ

k)N (A), a power of every τ k is transitive, and
so each τ k is also transitive, proving (a).

Now, conversely, assume that τ is totally transitive. If ρ(A) 6= 1, there must be an
eigenvalue λ with |λ|> 1. Assume first that λ is real and positive and treating A as
acting on Rd , let v1 ∈ Rd be an eigenvector corresponding to λ. Extend v1 to a basis
for Rd and for w ∈ Rd , let 8(w) be its first component with respect to this basis, and so
8(Akw)= λk8(w).

Since by hypothesis (6, σ ) is a subshift of finite type, h is bounded and let |8 ◦ h|< C .
Now,

τ k(s, n)= (σ k(s), Akn+ Ak−1h(s)+ · · · + Ah(σ k−2(s))+ h(σ k−1(s))), (10.4)
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and so

|8 ◦ π2(τ
k(s, n))| ≥ λk

|8(n)| − (λk−1
+ · · · + λ+ 1)C

= λk
(
|8(n)| −

C

λ− 1

)
+

C

λ− 1
. (10.5)

Thus, if n0 is such that |8(n0)|> C/(λ− 1), then |8 ◦ π2(τ
k(s, n0))| →∞ as k→∞

and so no point in the open set 6 × {n0} can have a dense, forward τ orbit, and so τ is
not transitive. The case where the eigenvalue λ is complex is similar, but now one uses
a 8 that projects onto the two-dimensional subspace associated with λ in the real Jordan
form. Thus, τ being transitive implies that ρ(A)= 1. Finally, if τ is totally transitive, then
certainly any quotient of any power is also transitive and so using Theorem 7.1, τ has the
total ftp and 0 ∈ Int(rotF (τ

N (A))), finishing the proof that (a) implies (b).
Now note that the argument just given shows that shows that if ρ(A) 6= 1, then the

recurrent points of τ cannot be dense in 6 × Zd . Thus, assuming that (c) holds, we have
ρ(A)= 1. In addition, if τ has dense periodic points, then so does any power or quotient,
so in particular, (τ N (A))F has dense periodic points and is untwisted and has the ftp by
construction. Thus by Theorem 7.1, 0 ∈ Int(rotF (τ

N (A))) proving that (c) implies (b).
The fact that transitivity implies dense periodic points was noted in the proof of

Theorem 7.1, and so (a) implies (c). The equivalence of (a) and (d) for countable state
Markov shifts is standard and was noted in §2.2, finishing the proof. 2

Remark 10.5. For future reference we note that the argument above based on (10.5) yields
that if τ is transitive, then ρ(A)= 1. In addition, an analogous argument gives that
|8(n− n′)|> (2C)/(λ− 1) implies that for any s, s′ ∈6,

|8 ◦ π2(τ
k(s, n))−8 ◦ π2(τ

k(s′, n′))| →∞,

as k→∞, where π2 :6 × Zd
→ Zd is the projection.

11. Lifted rel pseudo-Anosov maps
With the help of Theorem 4.2 we now apply Theorem 10.4 on twisted skew products to the
study of transitive lifts of rel pseudo-Anosov maps.

11.1. Necessary and sufficient conditions for total transitivity. We recall some
definitions about the invariant singular measured foliations, F u and F s , of a rel pseudo-
Anosov map. Owing to the presence of a finite number of singularities, there are several
ways to define a ‘leaf’ of the foliation. Fix one foliation, say F u , and let P be the set
comprised of the singular points of F u and the boundary components of the surface of M .
On the punctured surface M − P , F u is a non-singular foliation. Points x ∈ M − P are
called regular points and the leaf of F u containing these points is the leaf of the foliation
on M − P . Thus, the leaves containing regular points are either immersed lines in M or
immersed half-lines which ‘begin’ at a singularity. In the latter case the singular point is
said to be associated with the leaf. The leaves which contain non-regular points are called
trivial leaves. These are of two types: a singular point is consider a trivial leaf as are any
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leaves which are segments contained in the boundary of M . We also recall the dynamical
meaning of the invariant foliations. Given a topological metric d on M ,

d(φn(x1), φ
n(x2))→ 0 (11.1)

as n→∞ (respectively, n→−∞) if and only if x1 and x2 are on the same leaf of F s

(F u), or their leaves are associated with the same singularity.
In the universal Abelian cover the singular foliations lift to a pair F̃ u and F̃ s . For a

point x̃ in M̃ its leaf of F̃ u is defined as in the base or, equivalently, project x̃ to x ∈ M ,
find the leaf of x and then the leaf of x̃ is the lift of this leaf in M̃ which contains x̃ . The
analog of (11.1) also holds using any equivariant metric d̃.

THEOREM 11.1. Let φ : M→ M be rel pseudo-Anosov, M̃ is the universal Abelian cover
and φ̃ is a lift of φ to M̃. The following are equivalent:
(a) φ̃ is totally transitive;
(b) ρ(φ∗)= 1 and 0 ∈ Int(rotF (φ̃

N (φ∗)));
(c) the set of periodic points of φ̃ is dense in M̃;
(d) φ̃ is topologically mixing;
(e) there is a periodic regular point x̃ of φ̃ so that the leaf of the lifted foliation F̃ u

containing x̃ is dense in M̃.

Proof. Let τ be a twisted skew product corresponding to φ̃, and let α̃ be the semiconjugacy
given in §6.3. The equivalence of (a), (b), (c) and (d) follows from Proposition 6.1 and
Theorem 10.4.

Now assume that (a)–(d) hold and let x̃ ∈ M̃ be a periodic point for φ̃ with period n0.
Since the collection of singular points is a discrete set in M̃ and periodic points of φ̃ are
dense, we may assume that x̃ is a regular point. By hypothesis φ̃n0 and thus τ n0 have
dense forward orbits using Theorem 2.1. Treating τ as a countable state Markov shift, let
t̂ = . . . t̂−1 t̂0 t̂1 . . . be a point whose forward orbit is dense under τ n0 .

Let t = (s, n) ∈6 × Zd be a period-n0 point of τ with α̃(s, n)= x̃ . If the periodic
block of t is b = b0 . . . bn0−1, since τ is transitive we have an allowable b0→ t̂0.
Call this block c. Now form the sequence w = . . . b b b c t̂0 t̂1 . . . . By construction,
α̃(o+(w, τ n0))= o+(α̃(w), φ̃n0) is dense in M̃ . In addition, τ−n0k(w)→ t as k→∞
and so φ̃−n0k(α̃(w))→ x̃ . Thus, if L̃ is the leaf of F̃ u which contains x̃ , since x̃ is a period
n0 point we have α̃(w) ∈ L̃ and so o+(α̃(w), φ̃n0)⊂ L̃ as well, and so L̃ is dense in M̃ ,
finishing the proof that (a)–(d) imply (e).

Now assume that (e) holds and let x̃ be a regular periodic point with period n0 and its
unstable leaf L̃ dense in M̃ . We show that (b) follows by first showing that ρ(φ∗)= 1.
Assume to the contrary that ρ(φ∗) 6= 1. Since det(φ∗)= 1, this implies that φ−1

∗ has an
eigenvalue λ with |λ|> 1. Then, just as in the proof of Theorem 10.4 and using (6.5),
there is a linear functional8 : Rn

→ R and a constant C > 0 so that8(β̃(ỹ)) > C/(λ− 1)
implies that 8(β̃(φ̃k(ỹ)))→∞ as k→−∞, where β̃ : M̃→ Rd is the map constructed
in §3.3.

Now since L̃ is an unstable leaf containing the periodic regular point x̃ , if I is a small
segment in L̃ with x̃ in its interior, then

⋂
j>0 φ̃

−n0 j (I )= x̃ and
⋃

j≥0(φ̃
n0 j (I ))= L̃ .

Since L̃ is dense in M̃ there are certainly ỹ ∈
⋃

j≥0(φ̃
n0 j (I )) with 8(β̃(ỹ)) > C/(λ− 1).
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Thus, 8(β̃(φ̃n(ỹ)))→∞ as n→−∞, but φ̃−n0 j0(ỹ) ∈ I for some j0 > 0 implies that
φ̃n0 j (ỹ)→ x̃ as j→−∞, a contradiction, finishing the proof that ρ(φ∗)= 1.

As in Definition 10.3, let N (φ∗) be such that spec(φN (φ∗)
∗ )= {1}. If M̃ ′ is the Fried

cover of φ̃N (φ∗), M̃ ′ = M̃/F (N (φ∗)) in the notation of §9.4. Let χ : M̃→ M̃ ′ be the
projection and φ̃′ be the projection of φ̃ to M̃ ′. Let x̃ ′ = χ(x̃) where x̃ is a period-n0

regular point with its unstable leaf L̃ dense in M̃ . If L̃ ′ is the unstable leaf in M̃ ′ which
contains x̃ ′, then certainly L̃ ′ = χ(L̃), and so L̃ ′ is dense in M̃ ′. Now as above let I ′ ⊂ L̃ ′

be a small segment with x̃ ′ in its interior and so
⋃

j>0((φ̃
′)n0 j (I ′)) is dense in M̃ ′.

Now let τ ′ be the Fried quotient of τ N (φ∗) and α̃′ the induced semiconjugacy from
τ ′ to φ̃′. Since

⋃
j>0((φ̃

′)n0 j (I ′)) is dense in M̃ ′, using that fact that α̃ is a quasi-
isometry as observed in §6.4, certainly if h′ is height function of τ ′, for every onto linear
functional L , the corresponding supremum in (7.2) is infinite. Thus, by Lemma 7.8 and
using Lemma 6.1, 0 ∈ Int(rot(φ̃′))= Int(rotF (φ̃

N (φ∗))), completing the proof. 2

Remark 11.2. When G ⊂ H1(M) with φ∗(G)= G and H1(M)/G torsion-free, the analog
of Theorem 11.1 for the cover M̃G has an almost identical statement and proof. The case
where H1(M)/G has torsion requires a more elaborate statement of condition (b), and we
leave it to the interested reader.

Remark 11.3. Rel pseudo-Anosov maps on the torus which act on homology by the skew
matrix A in (10.1) are the simplest examples of rel pseudo-Anosov maps which satisfy
the hypothesis of the theorem with φ∗ 6= id. Rel pseudo-Anosov maps in this class were
studied in [Doe97, DM97, PW]. The general notion of rotF when restricted to this torus
shear case was called the shear rotation interval by Doeff, and many of the basic properties
as in §7.3 above were proved. A fascinating explicit example of map ψ̃ on the plane which
is the lift of a rel pseudo-Anosov map in this class was given by [CG05] and analyzed
by [Mac06]. In the example rotF (ψ̃)= [0, 1], and so by Theorem 11.1, the example is not
transitive on the plane. However, for example, the theorem does imply that δ(−1,0) ◦ ψ̃

2

is transitive.

Remark 11.4. When φ is pseudo-Anosov rel a non-empty finite set, its foliations have one-
prongs and are thus non-orientable. A true pseudo-Anosov map has oriented foliations if
and only if ρ(φ∗) is equal to its dilation λ > 1 (see, for example, [BB07, Lemma 4.3]).
Thus, in the situation of Theorem 11.1, where ρ(φ∗)= 1, the invariant foliations F u and
F s are always non-orientable.

Remark 11.5. The characterization of transitive twisted skew products given in
Theorem 10.4 allows the twisting matrix to be any A ∈ SL(d, Z). For a surface
homeomorphism f whose lift is modeled by the skew product, f∗ = A has additional
structure. When the surface is closed, f∗ is symplectic and the addition of boundary
components only gives rise to permutations on H1(M). Thus, the surface dynamics
applications do not require the full force of Theorem 10.4.

11.2. The case when φ∗ = id. Most of the literature on the dynamics of lifted maps
concerns the case of maps isotopic to the identity. In this as well as the more general case
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where φ acts trivially on first homology, condition (b) in Theorem 11.1 is replaced by the
simpler condition 0 ∈ Int(rot(φ̃)).

In this case there is a fair amount known about dynamical representatives for elements
of the rotation set. For example, it follows from the results of Ziemian [Zie95] that for
each r ∈ Int(rot(φ̃)), there is a compact, φ-invariant set Yr ⊂ M , so that rot(y, φ̃)= r
for all y ∈ Yr . In addition, as a consequence of theorem of Jenkinson in [Jen01] (see
also [Kwa95]) for each such r there is a φ-invariant, ergodic, fully supported Gibbs
probability measure µr with rot(x, φ̃)= r for µr -almost every point.

In contrast, it is a simple consequence of Theorem 11.1 that when φ∗ = id the rotation
number does not exist for the topologically typical point in M . This implies that the
topologically generic point is not generic for any φ-invariant Borel measure. Here is the
argument: assume that 0 ∈ Int(rot(φ̃)). Thus, from Theorem 11.1 there is a dense, Gδ set
X0 ⊂ M so that x ∈ X0 implies that for any lift x̃ of x , the orbit o(x̃, φ̃) is dense in M̃ .
Thus, for x ∈ X0, if rot(x, φ̃) exists, it must be zero. However, now pick p/q ∈ Int(rot(φ̃))
with 0 6= p/q and let f̃ = δ−p,q ◦ φ̃

q . Using (5.6), 0 ∈ Int(rot( f̃ )) and so again using
Theorem 11.1, there is a dense, Gδ set X1 ⊂ M so that x ∈ X1 implies that if rot(x, f̃ )
exists, it must be zero and so rot(x, φ̃)= p/q . It then follows that for x in the dense,
Gδ-set X0 ∩ X1, rot(x, φ̃) cannot exist.

While there are rel pseudo-Anosov maps in every isotopy class, there are some classes,
for example the identity class, which cannot contain a true pseudo-Anosov map, i.e. one
whose invariant foliations have no interior one-prong singularities. Thurston observed that
there are many mapping classes which act trivially on H1(M) which do contain a true
pseudo-Anosov map, or in the language of his classification theorem, are pseudo-Anosov
mapping classes [Thu88]. The collection of mapping classes which act trivially on H1(M)
is called the Torelli group and its properties have been much studied (see [Joh83, Far06]
for surveys).

As dynamical systems pseudo-Anosov maps which act trivially on homology are quite
interesting, and there are many tools available for their study such as the rotation set and
twisted transition matrices [Fri86, BB]. They also have useful isotopy stable properties.
For example, if g is any homeomorphism which is isotopic to a true pseudo-Anosov φ∗
with φ∗ = id, then if φ̃ is a transitive lift to M̃ , the corresponding lift g̃ of g will always
have ‘well-travelled’ orbits, i.e. orbits that repeatedly visit every fundamental domain in M̃ .
This follows from Handel’s global shadowing theorem [Han85].

11.3. H1-transitivity. We now give the proof of Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. Fix a lift φ̃ of φ to M̃ . Assume that φ is H1-transitive, and so for
some q > 0, n ∈ Zd , we have that η := δn ◦ φ̃

q is transitive. Now η is a lift of φ̃q and so
by Theorem 11.1, ρ(φq

∗ )= 1 and so ρ(φ∗)= 1.
Now, conversely, assume that ρ(φ∗)= 1. By Theorem 6.1(c), rotF (φ̃

N (φ∗)) has an
interior. Pick p/q ∈ Int(rotF (φ̃

N (φ∗))). Now as in the proof of Corollary 9.4, we may write
Zd
=W1 ⊕W ′ with W1 naturally identified with Zd/F (k N (φ∗)), for all k > 0. Let m ∈ Zd

be m= (p, 0) with 0 ∈W ′ and so by (3.4), η′ := δ−m φ̃
q N (φ∗), has 0 ∈ Int(rotF (η

′)). Now
certainly ρ(φ∗)= 1 implies ρ(η′)= 1 and so by Theorem 11.1, η′ is transitive.
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The implication (a) implies (c) also follows from Theorem 11.1. Now assume that
(c) holds and for the sake of contradiction that ρ(φ∗) 6= 1. Fix a lift φ̃ and let τ be a
twisted skew product that corresponds to it and α̃ the semiconjugacy given in §6.3. Since
ρ(φ∗) 6= 1, using Remark 10.5, there is a non-zero linear functional 8 : Rd

→ R and a
constant C ′ > 0 so |8(n− n′)|> C ′ implies that for any s, s′ ∈6,

|8 ◦ π2(τ
k(s, n))−8 ◦ π2(τ

k(s′, n′))| →∞, (11.2)

as k→∞. However, if L̃ is a leaf of F̃ u that is dense in M̃ , certainly there are (s, n) and
(s′, n′) with α̃(s, n) ∈ L̃ and α̃(s′, n′) ∈ L̃ and |8(n− n′)|> C ′. Then by (11.2) and the
fact from §6.4 that α̃ is a quasi-isometry from the pseudometric d1((s, n), (s′, n′))= ‖n−
n′‖ to a lifted metric d̃ on M̃ , we have d̃(α̃(τ k(s, n)), α̃(τ k(s′, n′)))→∞. Thus, since α̃
is a semiconjugacy, d̃(φ̃k(α̃(s, n)), φ̃k(α̃(s′, n′)))→∞ as k→∞ in contradiction to the
fact that α̃(s, n) and α̃(s′, n′) are on the same leaf of the unstable foliation (see (11.1)). 2

11.4. The lifted foliations. In the invariant foliations associated with a rel pseudo-
Anosov map on a compact surface all non-trivial leaves are dense in M . For a H1-transitive
rel pseudo-Anosov map, for the lifted foliations the typical leaf is dense, but there are
always non-dense leaves.

PROPOSITION 11.6. Let F̃ u and F̃ s be the lifted foliations to the universal Abelian cover
M̃ of a rel pseudo-Anosov map φ : M→ M.
(a) If the lifted foliation has one dense leaf, there is a dense Gδ-set Z ⊂ M̃ so that x̃ ∈ Z

implies that the leaf of F̃ u containing x̃ is dense in M̃.
(b) Each non-trivial leaf of the lifted foliations is unbounded.
(c) The lifted foliations always has non-trivial leaves which are not dense.

Proof. The proof of (a) is a minor alteration of a standard proof: fix a countable base Un

for the topology of M̃ . For each n, let An be all of the points of M̃ which are contained
in a leaf of F̃ u which intersects Un . Since there is a dense leaf by hypothesis, it follows
immediately that each An is dense. Each An is also open as a consequence of our slightly
peculiar definition of ‘leaf’ in §11.1. Now ∩An is exactly all of the points of M̃ contained
in dense leaves, and by the Baire category theorem, ∩An is dense Gδ .

To prove (b) note that if in M̃ a non-trivial leaf was bounded, by letting 0 = NZd for N
large enough and Zd

= H1(M), the rel pseudo-Anosov map φ̃0 on the compact manifold
M̃/0 would possess a non-trivial leaf that was not dense, a contradiction.

The proof of (c) starts with the observation that if ρ(φ∗) 6= 1, then by Theorem 1.2, the
lifted foliations have no dense leaves and so (c) certainly follows. So assume now that
ρ(φ∗)= 1 and so from Theorem 1.2 we may find a g̃ which is a transitive lift of an iterate
g := φk . Now in addition assume that φ∗ = id and so g∗ = id as well. By Theorem 7.6
there is a periodic point x0 of g such that its lift x̃0 to M̃ satisfies rot(x̃0, g̃) ∈ Fr(rot(φ̃)).
Using Lemma 7.8 as in the proof of Theorem 11.1, we see that if the leaf containing x̃0

(or one of its associated leaves if x̃0 is a singularity) were dense, rot(x̃0, g̃) would not be a
boundary point of rot(g̃), a contradiction.
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In the more general situation that ρ(φ∗)= 1, use the argument in the previous paragraph
to show that the foliations in the Fried quotient of φN (φ∗) have non-dense leaves and so the
lifts of these leaves to M̃ are also not dense. 2

Remark 11.7. Under a variety of hypotheses which include the case where a rel pseudo-
Anosov φ is isotopic to the identity on a closed surface, Pollicott and Sharp show in [PS07]
that the transverse measures on the lifted foliations are ergodic.
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