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We study the dynamo instability for a Kazantsev–Kraichnan flow with three velocity
components that depend only on two dimensions u= (u(x, y, t), v(x, y, t), w(x, y, t))
often referred to as 2.5-dimensional (2.5-D) flow. Within the Kazantsev–Kraichnan
framework we derive the governing equations for the second-order magnetic field
correlation function and examine the growth rate of the dynamo instability as a
function of the control parameters of the system. In particular we investigate the
dynamo behaviour for large magnetic Reynolds numbers Rm and flows close to being
two-dimensional and show that these two limiting procedures do not commute. The
energy spectra of the unstable modes are derived analytically and lead to power-law
behaviour that differs from the three-dimensional and two-dimensional cases. The
results of our analytical calculation are compared with the results of numerical
simulations of dynamos driven by prescribed fluctuating flows as well as freely
evolving turbulent flows, showing good agreement.

Key words: dynamo theory, MHD and electrohydrodynamics, MHD turbulence

1. Introduction
Dynamo instability refers to the amplification of magnetic fields by the flow of

a conducting fluid. It is responsible for the existence of magnetic fields in most
astrophysical bodies. In most situations the driving flow is turbulent and this prevents
an analytical treatment of the problem. Thus most studies are restricted to large-scale
numerical simulations or simplified models. A simple flow that can be treated
analytically is the Kazantsev–Kraichnan flow. This model considers the kinematic
dynamo instability driven by a random velocity field that is homogeneous, delta
correlated in time and Gaussian distributed. It was first examined by Kazantsev
(1968) for the dynamo instability and was independently studied by Kraichnan (1968)
for the problem of passive scalar advection. Physically, the delta-correlated time
behaviour models the fast varying turbulent scales of the velocity field. Under these
assumption the problem can be simplified to a one-dimensional eigenvalue problem,
the eigenvalue of which gives the growth rate of the magnetic energy.

The Kazantsev–Kraichnan flow has been widely studied for three-dimensional
isotropic flows. Since the velocity field is Gaussian distributed its statistics is entirely
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given by the second-order correlation function. The correlation function gij(r) of
the velocity field is defined as 〈ui(x + r, t)uj(x, t′)〉 = gij(r)δ(t − t′) where due to
homogeneity the function gij is independent of x. The first study by Kazantsev
considered a flow for which the correlation function scales like |gii(r)| ∼ rζ with ζ

being the Hölder exponent. He found the existence of dynamo instability in the range
1<ζ 6 2 for large Rm. Flows with Hölder exponents ζ < 2 correspond to rough flows
and model the turbulent scales while flows with ζ = 2 correspond to smooth velocity
fields that model the viscous scales where the nonlinearities are in balance with the
viscous dissipation. Since then various authors (Ruzmaikin & Sokolov 1981; Novikov,
Ruzmaikin & Sokoloff 1983; Falkovich, Gawdzki & Vergassola 2001; Schekochihin,
Boldyrev & Kulsrud 2002; Vincenzi 2002) have considered velocity fields with both
a turbulent inertial range and a viscous-scale cutoff at various limits of the system.
For smooth flows ζ = 2, Chertkov et al. (1999) calculated the higher-order moments
and multipoint correlation functions by means of a Lagrangian approach. Geometric
properties of the advected field were examined by Boldyrev & Schekochihin (2000)
and the effect of nonlinearities were examined in Boldyrev (2001). More recently the
predictions of the model as well as the nonlinear behaviour have been examined by
means of three-dimensional numerical simulations (Schekochihin et al. 2004; Iskakov
et al. 2007; Mason et al. 2011).

There is a major difference between a two-dimensional (2-D) flow and a
three-dimensional (3-D) flow concerning the dynamo instability. 2-D flows do not
lead to a dynamo instability for any value of the magnetic Reynolds number as shown
by Zeldovich (1957). This is also true in the 2-D Kazantsev model that has been
examined in detail by Schekochihin et al. (2002) and more recently the evolution of
a 3-D magnetic field by a 2-D flow was examined by Kolokolov (2016). A careful
analysis of the time evolving solution indicates that in two dimensions, the energy of
any initial magnetic field localized in the wavenumber space will grow exponentially
due to the increasing number of excited modes, even if the energy amplitude of
each individual mode decreases. This behaviour persists until the length scale of the
magnetic field becomes comparable to the dissipation scale, after which dissipation
becomes effective and the total magnetic energy decays. The decaying magnetic
field spectrum forms a power-law behaviour with an exponent k2. In contrast in the
three-dimensional case for sufficiently large Rm an initial magnetic field localized
in space has growing number of excited modes and each mode grows in time. The
magnetic energy spectra in 3-D has a power-law k3/2 behaviour.

In this paper we are interested in developing the Kazantsev model for a flow where
the velocity field takes the form u = (u(x, y, t), v(x, y, t), w(x, y, t)), meaning it has
three components but depends only on two dimensions. Such flows are referred in the
literature as 2.5-D flows. They can be considered as the limiting case of a very fast
rotating system for which, according to the Taylor–Proudmann theorem (Proudman
1916; Taylor 1917), the flow becomes two-dimensional due to the Coriolis force that
suppresses fluctuations along the direction of rotation. These 2.5-D flows are some of
the simplest flows that give rise to the dynamo instability and have been extensively
studied for smoothly varying flows (Roberts 1972; Galloway & Proctor 1992). Our
interest lies in turbulent flows that have been examined recently at various contexts
Smith & Tobias (2004), Tobias & Cattaneo (2008), Seshasayanan & Alexakis (2016)
where the dynamo instability driven by a turbulent 2.5-D flow has been studied in
detail. In Seshasayanan & Alexakis (2016) it was shown that both helical and non-
helical 2.5-D flows can lead to a dynamo instability. For the helical flow and for
small Rm the instability can be explained by an α effect. The α effect is a mean field
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effect where the small-scale magnetic field and the small-scale velocity field interact
to amplify the magnetic fields at large scales. For the non-helical flow however the
α coefficient is zero and it does not provide an explanation for the observed dynamo
growth rates. Thus this dynamo remains theoretically unexplained.

The main purpose of this work is to examine analytically the dynamo instability
for the non-helical flow for the Kazantsev–Kraichnan model of a 2.5-D flow. We first
derive a system of equations that govern the second-order correlation function of the
magnetic field. This leads to a linear system of equations and an eigenvalue problem
which is then solved for a model velocity field that we consider. This allows us to
explicitly calculate the growth rate and the spectral behaviour of the most unstable
modes. We restrict to the case of smooth velocity fields with a correlation function
that scales like r2 at small scales.

The rest of the article is constructed in the following way. Section 2 describes the
governing equations on which this study is based. We set-up a model flow to be
studied in § 3. The dynamo instability properties of this model flow are examined in
§§ 4 and 5. Section 6 describes the spectral behaviour of the most unstable eigenmode.
In § 7, we compare the analytical results with the results from numerical simulations.
Finally in § 8 we conclude the study and give some future perspectives.

2. The model
We consider a 2.5-D flow of the form u(x, y, t) = (ux, uy, uz) which can also be

written in terms of the streamfunction ψ(x, y) as u = ∇ × (ψ êz) + uzêz = u2D + uzêz
where z is the invariant direction. The Kazantsev–Kraichnan ansatz considers the
velocity field to be delta correlated in time, Gaussian distributed, its statistics is
entirely governed by the second-order correlation function. We further consider that
the velocity field is homogeneous and 2-D isotropic in the plane x, y. Isotropy in two
dimensions means that the statistics of the velocity field is invariant under rotations
around the z-axis. The correlation function of two components of the velocity field
ui, uj at points x+ r, x can be written as,

〈ui(x+ r, t)uj(x, t′)〉 = gij(r)δ(t− t′). (2.1)

Independence of gij on x emerges from homogeneity.
The general form of an isotropic second-order correlation function gij(r) for a 2.5-D

flow (see Oughton, Rädler & Matthaeus (1997)) is given by,

gij(r) = gLL(r)δij − (gLL − gNN)

(
δij − rirj

r2

)
+ (gZ(r)− g2D(r)− g′2D(r)r)δ

i3δj3

+ gc(r)
(
δi3 rj

r
− ri

r
δj3

)
+ gp(r)

(
ε3jpδi3 rp

r
− ε3ipδj3 rp

r

)
, (2.2)

where δij is the Kronecker delta tensor and ε ijk is the Levi-Civita tensor. The indices
i, j take the values 1, 2, 3. All the quantities depend only on two dimensions in space,
hence we have used a projected coordinate r = (x, y, 0) = (r1, r2, r3) in (2.2). The
derivative of gij(r) with respect to r3 = z is zero. The prime on a scalar function g′
denotes the derivative with respect to r. The functions gLL, gNN, gc, gp, gZ are scalar
functions that depend only on r and are defined as,

gLL(r)= 〈(er · u)(u′ · er)〉T, gZ(r)= 〈(ez · u)(u′ · ez)〉T,
gc(r)= 〈(ez · u)(u′ · er)〉T, gp(r)= 〈(ez · u)(u′ · (ez × r̂))〉T,

gNN(r)= 〈((ez × er) · u)(u′ · (ez × er))〉T,

 (2.3)
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where r̂ is the unit vector along r direction. u is the velocity field at a point x + r
at time t, u′ is the velocity field at a point x at time t′, the symbol 〈 〉T denotes
both time average and ensemble average. Physically the quantity gLL measures the
longitudinal autocorrelation function of the 2-D velocity field. The quantity gNN
gives the transverse autocorrelation of the 2-D velocity field. gc and gp are the
cross-correlation between the 2-D velocity field and the vertical velocity field. The
function gZ gives the autocorrelation of the vertical velocity field. In particular the
function gp is related to the helicity of the velocity field. Since we consider a velocity
field that is non-helical, we take gp(r) = 0. The incompressibility condition for the
velocity field ∂xux + ∂yuy = 0 implies for the correlation function, gij

,i = gij
,j = 0, where

the subscript ,i in gij
,i denotes differentiation of gij with respect to ri. This implies,

gNN(r)= gLL(r)+ g′LL(r)r, (2.4)
gc(r)= 0, (2.5)

leaving two functions gLL(r), gZ(r) that determine fully the second-order velocity
correlation function.

Due to the invariance of the velocity field along z-direction the perturbations
of the magnetic field can be decomposed into Fourier modes of the form B =
b(x, y, t) exp(ikzz). The complex vector field b is governed by the induction equation
which can be written as,

∂tb+ (∇×ψ êz) · ∇ b+ uzikzb= b · ∇ (∇×ψ êz + uzêz)+ η (∆− k2
z )b, (2.6)

where η is the magnetic diffusivity. The solenoidal condition for the magnetic field
∇ · B= 0 gives,

∂xbx(x, y, t)+ ∂yby(x, y, t)=−ikzbz(x, y, t) (2.7)

where b = (bx, by, bz). The evolution of the magnetic field can be quantified by
considering the second-order correlation function defined as,

H ij(r, t)= 〈(bi(x+ r, t))†bj(x, t)〉, (2.8)

where the symbol † denotes the complex conjugate. As shown in the appendix A,
given that the velocity field is mirror symmetric and the governing equation is of the
form (2.6), we only need to look at the mirror symmetric part of the magnetic field.
This is because the induction equation in the absence of a mirror asymmetric part
in the velocity field leads to a decoupled equation for the mirror symmetric and the
mirror asymmetric part. Thus we only need to concentrate on the mirror symmetric
part of the magnetic field neglecting magnetic helicity similar to most studies of
Kazantsev model in 3-D, see however Subramanian (1999), Boldyrev, Cattaneo &
Rosner (2005), Malyshkin & Boldyrev (2010), where a helical flow is considered
and the magnetic helicity is present. The general form of the magnetic correlation
function for a non-helical complex field can be written as,

H ij(r, t) = HLL(r)δij − (HLL(r)−HNN(r))
(

δij − rirj

r2

)
+ (HZ(r)−HNN(r))δi3δj3

+ i Hc(r)
(
δi3 rj

r
+ ri

r
δj3

)
. (2.9)
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where HLL,HNN,Hc,HZ are scalar real functions that only depend on r and are defined
as,

HLL(r, t)= 〈(er · b†
)(b′ · er)〉T, Hc(r, t)= 〈(ez · b†

)(b′ · er)〉T,
HNN(r, t)= 〈((ez × er) · b†

)(b′ · (ez × er))〉T, HZ(r, t)= 〈(ez · b†
)(b′ · ez)〉T,

}
(2.10)

where b is the magnetic field at a point x + r at time t and b′ is the magnetic field
at a point x at time t. This general form can be derived by writing the magnetic
field in terms of scalar functions and then writing the two point correlation function
in terms of these scalar functions (see Oughton et al. (1997)). The function HLL is
the longitudinal autocorrelation function of the 2-D magnetic field and HNN is the
transverse autocorrelation function of the 2-D magnetic field. The function Hc is the
cross-correlation function of the 2-D magnetic field with the vertical magnetic field
bz. HZ is the autocorrelation function of vertical magnetic field bz. The solenoidal
condition of the magnetic field (2.7) for the correlation function implies,

H ij
,i − ikzH

3j = 0, H ij
,j − ikzH

i3 = 0, (2.11a,b)

which gives the set of following relations for the scalar correlation functions,

kzHZ(r)=H′c(r)+
Hc(r)

r
, (2.12)

−kzHc(r)=H′LL(r)+
HLL(r)−HNN(r)

r
. (2.13)

When kz= 0 we get Hc= 0 and HNN =HLL+ rH′LL. If the magnetic field is 2.5-D, the
magnetic correlation function H ij becomes real and it simplifies to a form similar to
the velocity correlation function gij.

Given the velocity correlation functions gij it is possible to derive the governing
equation for H ij starting from the induction equation (2.6). The governing equation
for H ij leads to triple product correlations of velocity and magnetic fields. The triple
product can be written in terms of second-order correlation functions of the velocity
and the magnetic field by using the Furutsu–Novikov theorem (Furutsu 1963; Novikov
1965). This theorem uses the fact that the velocity field is Gaussian distributed. Due to
the solenoidal conditions (2.12), (2.13) only two equations are required to completely
determine the magnetic correlation function H ij that we here chose to be HLL,Hc. The
governing equations then read

∂tHLL − (2η+ gLL(0)− gLL)

[
H′′LL + 3

H′LL

r

]
+ k2

z (2η+ gZ(0)− gZ)HLL =−g′′LLHLL

− g′LL

(
2H′LL + 3

HLL

r

)
− 3kzHc g′LL +

2
r
(2η+ gLL(0)− gLL)kzHc, (2.14)

∂tHc − (2η+ gLL(0)− gLL)

[
H′′c +

1
r

H′c −
1
r2

Hc

]
+ k2

z (2η+ gZ(0)− gZ)Hc =−kzg′ZHLL.

(2.15)
The details of the derivation are given in the appendix A. The quantity gLL(0) is the
total energy of the velocity field in 2-D while the quantity gZ(0) is the total energy
of the velocity in the z direction. These terms, gLL(0), gZ(0), depend on the frame of
reference from which they are measured and do not modify the dynamo instability.

We identify three special cases which do not lead to a dynamo instability.
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632 K. Seshasayanan and A. Alexakis

(i) When kz= 0 the equations simplify to the 2-D Kazantsev model which does not
give rise to the dynamo instability as shown in previous studies (see for example
Schekochihin et al. (2002)). This means that kz 6= 0 is required in order to have
a dynamo instability.

(ii) When the third velocity component is zero uz = 0 then gZ = 0. This leads to the
function Hc no longer being driven/coupled to HLL. In the presence of diffusivity
in the long-time limit Hc would decay to zero. Alternatively we can show that
the governing equation for the vertical magnetic field is an advection–diffusion
equation without any forcing. Thus the vertical magnetic field bz decays in the
long-time limit. In the absence of Hc the equations governing HLL become again
the 2-D Kazantsev equations and hence HLL would also decay in the long time
limit.

(iii) The case when there is no shear in the 2-D flow gLL= gLL(0) does not lead to a
dynamo instability. The component bz can be amplified by the stretching of bx, by

by uz. But it can be seen from the induction equation that the magnetic fields
components bx, by are advected by uz and dissipated by the Ohmic dissipation
with no amplification from the stretching term. Thus both bx, by decay in the
long-time limit which makes bz to decay in the long-time limit. These special
cases fall under the Zeldovich anti-dynamo theorem for 2-D flows. Hence the
velocity field has to have all the three components and kz 6= 0 in order for the
existence of the dynamo instability in the long-time limit.

In the next section we will consider a model flow where we calculate the form for
the functions gLL(r), gZ(r). We then proceed to study the dynamo instability driven by
this model flow in terms of the other control parameters of the system.

3. Model flow

We consider a smooth isotropic and homogeneous velocity field given in terms of
the streamfunction ψ and the vertical velocity uz as,

ψ(r, t)= ζ1(t) sin
(

k0

2
[sin(φ1(t))x+ cos(φ1(t))y] + φ2(t)

)
, (3.1)

uz(r, t)= ζ2(t) cos
(

k0

2
[sin(φ1(t))x+ cos(φ1(t))y] + φ2(t)

)
. (3.2)

φ1(t), φ2(t) are random variables which are uniformly distributed over [0, 2π] and
render the flow homogeneous and isotropic. ζ1(t) and ζ2(t) are random variables that
are Gaussian distributed in time with 〈ζ1(t)ζ1(t′)〉 =Θ1δ(t− t′), 〈ζ2(t)ζ2(t′)〉 =Θ2δ(t−
t′) and 〈ζ1(t)ζ2(t′)〉 = 0. The wavenumber k0 defines a typical length scale for the
velocity field. This is a simple single wavenumber flow that is both isotropic and
homogeneous. The correlation function of the velocity field is calculated to be,

gij(r) = k0Θ1

4

−δij
J′0
(

k0
r
2

)
r

+
(

δij − rirj

r2

)J′0
(

k0
r
2

)
r

− k0

2
J′′0
(

k0
r
2

)


+ Θ2

2
J0

(
k0

r
2

)
δi3δj3, (3.3)
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where J0 is the Bessel function of the first kind and J′0 stands for its derivative. The
functions g2D, gZ are then,

g2D(r)=−k0Θ1

4r
J′0
(

k0
r
2

)
, gZ(r)= Θ2

2
J0

(
k0

r
2

)
. (3.4a,b)

The small r behaviour of these functions is,

g2D(r)=g2D(0)−D1r2+E1r4−O(r6), gZ(r)=gZ(0)−D2r2+E2r4−O(r6), (3.5a,b)

where g2D(0)= k2
0Θ1/16, gZ(0)=Θ2/2,D1= k4

0Θ1/512,D2= k2
0Θ2/32. At small scales

the velocity field is smooth and behaves like g2D ∼ r2, gZ ∼ r2.
We note that D1 has dimensions of inverse time and defines the dynamical time

scale τd ≡ 1/D1 that we will use to non-dimensionalize our system. Accordingly the
magnetic Reynolds number is defined as the ratio of the diffusion time scale 1/ηk2

0
to the dynamical time scale Rm≡D1/(k2

0η)= k2
d/k

2
0 where kd is the dissipation length

scale for the magnetic field kd ≡ k0
√

D1/η= k0
√

Rm. A third dimensionless parameter
can be defined by the ratio of the vertical velocity field gradients to the planar velocity
field gradients that we will quantify as Dr =D2/D1. The quantity Dr depends on the
ratio of the amplitudes of k2

0Θ1 and Θ2 given as Dr = 16Θ2/(Θ1k2
0). Thus the non-

dimensionalized control parameters are, the wavemode kz/k0, the magnetic Reynolds
number Rm and Dr.

4. Growth rate γ
Substituting HLL = eγ thLL and Hc = eγ thc in (2.15) we end up with an eigenvalue

problem for the growth rate of the magnetic energy γ and the eigenfunctions hLL and
hc. The boundary conditions are h′LL(0) = 0, hc(0) = 0, hLL(∞) = 0, hc(∞) = 0. The
largest eigenvalue of the system γ controls the long-time evolution of the magnetic
field correlation functions. We note that since HLL and Hc are quadratic quantities in
the magnetic field b the growth rate γ is twice the growth rate of the magnetic field.
We proceed in this section by solving the resulting system of equations numerically.
To solve the eigenvalue problem we use a Chebyshev spectral method to discretize
the domain [0, rmax], and we project the functions hLL(r), hc(r), gLL(r), gZ(r) into a
truncated basis of Chebyshev functions. The equations (2.15) in this truncated basis
can now be reduced to a linear matrix eigenvalue problem. We compute the largest
positive eigenvalue of the discretized matrix using standard linear algebra software.
We have checked the convergence of the resulting eigenvalue in terms of the number
of basis functions used and the domain size rmax.

Figure 1 shows the growth rate γ as a function of the rescaled parameter kz/kd
for different values of Rm. Dynamo instability appears at values of Rm above the
critical magnetic Reynolds number Rmc which is found to be Rmc ≈ 0.45. Close to
Rmc the instability occurs at the value kz ≈ 0.18kd ≈ 0.12k0. For larger values of Rm
the instability is found in a range of wavenumbers kmin < k < kmax. The maximum
value of kz/kd at which the dynamo instability occurs initially increases with Rm but
reaches a constant value independent of Rm for large value of Rm. We note that
kd ∝ k0

√
Rm thus the largest wavenumber kmax for which there is a dynamo instability

increases like kmax ∼ k0
√

Rm. The smallest wavenumber at which dynamo instability
occurs kmin decreases as we increase Rm. The growth rate of each mode kz increases
as we increase Rm reaching an asymptotic value at large Rm. The supreme of the
growth rate γ τd = 3 is obtained for Rm→∞ and kz→ 0. For very large Rm we see
that the curves themselves seem to reach an asymptotic behaviour which is captured
well by the black solid curve representing the growth rate in the limit of Rm→∞
that we discuss in the next section.
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FIGURE 1. (Colour online) Normalized growth rate γ τd is shown as a function of the
normalized modes kz/kd for different values of Rm. Darker shades correspond to larger
values of Rm.

5. Three limiting behaviours
In this section we look at three different limits of the control parameters.

5.1. Rm→∞, kz→ 0
The limit of very large Rm can be taken by letting the quantity η → 0 in the
(2.15). In this limiting procedure we do the following change of variables, r̃ = r kd,
t̃ = tηk2

d = t/D1. The velocity correlation functions are expanded in the following
way, g2D(r̃) = g2D(0) − ηr̃2 + O(η2r̃4), gZ = gZ(0) − Drηr̃2 + O(η2r̃4). Simplifying the
resulting equation by considering only the lowest-order terms in η we get,

γ τdhLL − (2+ r̃2)

[
h′′LL + 3

h′LL

r̃

]
+ k̃2

z (2+Dr r̃2)hLL = 2hLL

+ 2r̃
(

2h′LL + 3
hLL

r̃

)
+ 6r̃k̃zhc + 2

r̃
(2+ r̃2)k̃zhc, (5.1)

γ τdhc − (2+ r̃2)

[
h′′c +

1
r̃

h′c −
1
r̃2

hc

]
+ k̃2

z (2+Dr r̃2)hc = 2k̃zDr r̃hLL. (5.2)

Note that in this limit the growth rate does not depend on k0 or the exact form of
the flow but only on the local structure of the velocity field described by Dr. The
eigenvalues of the black solid curve in figure 1 were obtained by solving the above
set of equations. It is important to note that the above set of equations are obtained in
the limit of η→ 0 and not the case of η= 0. We find that the value of γ (kz→ 0)= 3
as Rm→∞. This value can be obtained by a matched asymptotic expansion that is
described in § 6 and in appendix D. On the other hand, for a finite Rm we see that
γ (kz→ 0)= 0. Thus we have the non-commuting limits,

3= lim
kz→0

lim
Rm→∞

γ 6= lim
Rm→∞

lim
kz→0

γ = 0. (5.3)

We mention here that the anti-dynamo theorem is still respected since it corresponds
to the second limiting procedure above.
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FIGURE 2. (Colour online) Normalized growth rate γ as a function of kz/kd for different
values of Dr mentioned in the legends for, (a) a finite Rm ≈ 1.95 × 105, (b) the case
Rm→∞. The black arrow marked 2-D shows the direction of decreasing value of the
parameter Dr. Darker shades correspond to smaller values of Dr.

5.2. Rm→∞,Dr→ 0
Taking the limit Dr→ 0 reduces the flow to a 2-D flow and from the anti-dynamo
theorem we expect the dynamo instability to disappear. In figure 2 we show γ as a
function of kz/kd for a finite Rm case on the top and for the case of Rm→∞ on the
bottom for different values of the parameter Dr as mentioned in the respective legends.
The growth rate γ and the range of unstable modes kz depend on the value of Dr. In
figure 2(a) we see that indeed for the finite Rm case as Dr is decreased the dynamo
instability disappears. This limit is pointed out in the plot by the arrow marked 2-D.
On the contrary for the case of the Rm→∞ (see figure 2b) the growth rate γ curve
reaches a non-zero asymptotic behaviour as Dr→ 0 marked in the figure by the arrow
marked 2-D. Thus we obtain another set of non-commuting limits,

0< lim
Dr→0

lim
Rm→∞

γ 6= lim
Rm→∞

lim
Dr→0

γ = 0. (5.4)

This result needs to be explained. The case of Dr= 0 is a purely 2-D flow and does
not give rise to the dynamo instability in accordance with the anti-dynamo theorem
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FIGURE 3. (Colour online) Growth rate as a function of the rescaled kz for the case of,
(a) the limit Dr→ 0 where only the infinite Rm has a dynamo effect and (b) the limit
Dr→∞ where both the finite and the infinite Rm have dynamo instability.

which is respected by the governing equations. We can capture the limit of Dr→ 0
taken after the limit Rm→∞ by applying the following rescaling,

√
Dr r̃→ ˜̃r, hc→√

Drh̃c to (5.2). The lowest order in Dr which captures the limit Dr→ 0 leads to the
following set of equations,

γ τdhLL − ˜̃r2

[
h′′LL + 3

h′LL

˜̃r

]
+ k2

z (2+ ˜̃r2)hLL = 2hLL

+ 2˜̃r
(

2h′LL + 3
hLL

˜̃r

)
+ 8˜̃rkzh̃c, (5.5)

γ τdh̃c − ˜̃r2

[
h̃′′c +

1
˜̃r h̃′c −

1
˜̃r2

h̃c

]
+ k2

z (2+ ˜̃r2)h̃c = 2kz
˜̃rhLL. (5.6)

The eigenvalues of these equations give the asymptotic behaviour of the growth
rate when first the limit Rm→∞ is taken and then the limit Dr→ 0. The resulting
eigenvalues from the above set of equations are shown separately in figure 3(a). These
results are valid provided that 1� Dr � Rm−1, but the expansion fails if Dr is the
same order as Rm−1. For values of Dr smaller than this threshold the dissipation
effects are stronger and the dynamo instability disappears.

5.3. Rm→∞,Dr→∞
In figure 2(a) as the parameter Dr →∞ we see that the unstable kz modes move
towards smaller values. This implies that the magnetic field should be correlated over
longer distances along the z direction in order for a large uz to twist and fold the
field lines and result in the amplification of the magnetic field. A similar behaviour is
observed in the case of infinite Rm (Rm→∞), shown in figure 2(b). It is important
to note here that the growth rate γ is non-dimensionalized with D1 which is related
to the amplitude of the shear in the correlation function g2D. If the growth rate is
normalized with

√
D2

1 +D2
2 which takes into account both the shear in u2D and uz

then the normalized growth rate γ /
√

D2
1 +D2

2 = γ τd/
√

1+D2
r becomes zero in the

limit Dr →∞. In this limit there is no violation of the anti-dynamo theorem. The
maximum growth rate in figure 2 appears to be independent of Dr in the large Dr
limit. The growth rate curves for large Dr can be plotted with a rescaled kz→√Drkz
which makes the curves collapse onto each other (not shown here). Such a result can
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be obtained by expanding the (2.15) in terms of 1/Dr and solving for the lowest-order
equations which represents the limit Dr →∞. Since the steps are similar with the
previous section the resulting set of equations are not shown.

The eigenvalues of the resulting equations after taking the limit Dr→∞ are shown
in figure 3(b). In this plot we show both the finite Rm and the infinite Rm growth rates.
The behaviour of the two curves are similar except for the small kz where the finite
Rm limit looses the dynamo instability as shown in § 5.1. For fixed kz/kd, however,
the limits limRm→∞ and limDr→∞ are commuting:

lim
Rm→∞

lim
Dr→∞

γ = lim
Dr→∞

lim
Rm→∞

γ . (5.7)

6. Correlation functions and energy spectra
In this section we discuss the functional form of the correlation functions and

the spectra of the most unstable eigenmode. It is reminded that the magnetic
energy spectra of a magnetic field advected by a Kazantsev 2-D flow show the
power-law behaviour k2 for wavenumbers between the velocity wavenumber k0 and
the dissipation wavenumber kd. While in 3-D the spectrum of the unstable mode
scales like k3/2 in the same range. For the 2.5-D problem there are 3 relevant scales
kz, kd, k0. Dynamo instability is obtained only for a particular ordering of these scales.
Based on the results from the previous sections, to obtain a dynamo

√
Drkz cannot be

much larger than kd nor much smaller than k0, more precisely cmink0 6
√

Drkz< cmaxkd.
The two constants cmin and cmax are related to kmin and kmax respectively discussed in
§ 4. It is found that cmin depends on the Rm and cmax ≈ 1.6 calculated for large Rm.
We concentrate on the case of Rm→∞ where we have two scales in the system
kd, kz. First we examine the behaviour of the correlation functions hLL(r), hc(r) before
moving to the spectra of the magnetic field.

We start with (5.2), for Rm→∞ where the equations are written in terms of the
rescaled quantities r̃, k̃z. The dissipation scale rd = 1/kd is given by r̃= 1. The small
and large r̃ asymptotics of hLL(r̃), hc(r̃) are mentioned in appendix B. There are three
distinct range of scales that display different behaviour. The small r̃ corresponds to
the regime of scales below the dissipation scale r̃ � 1, the large r̃ corresponds to
the regime r̃� 1/k̃z. In between these two range of scales we have an intermediate
range of scales 1� r̃� 1/kz. The scaling in this range of scales can be obtained by
using matched asymptotics, the details of which are given in the appendix D. In this
process we also find that in the limit of k̃z→ 0 we can obtain the eigenvalue γ → 3
independent of the value of Dr, in accordance with results shown in figures 1 and 2.
The correlation functions hLL(r), hc(r) show the following scaling with the variable r
for the large Rm limit,

hLL =


1− c1r2 +O(r4) if r� 1

kd
,

c2r−1 if
1
kd
� r� 1

kz

e−c3r if r� 1
kz
,

, hc =


c4r1 if r� 1

kd
,

c5r0 if
1
kd
� r� 1

kz
,

e−c2r if r� 1
kz
,

(6.1a,b)

where c1, c2, c3, c4, c5 are related to η, kz, Dr and can be found from the calculation
in appendix D. In figure 4 we show the correlation functions hLL(r̃), hc(r̃) for k̃z =
0.005,Dr = 1. Since the equations are rescaled with kd the dissipation scale is given
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FIGURE 4. (Colour online) The correlation functions of the magnetic field hLL(r̃) in dark
blue, hc(r̃) in light brown for kz = 0.005 with Dr = 1. The black dashed lines denote
exponents that are observed in the respective range of scales.

by r̃ = 1. We can see that the behaviour of the functions hLL(r̃), hc(r̃) described in
(6.1) is well captured from the numerics.

Now with the solution of hLL(r), hc(r) we can construct the spectra using the
Wiener–Khinctine relation (see Chatfield (1989)) in two dimensions. For a function
M(r) its isotopic Fourier spectrum reads as,

M̂(k)= k
∫ ∞

0
rM(r)J0(kr) dr. (6.2)

For the magnetic field we can construct the planar magnetic field spectrum EB
2D(k)

and the vertical magnetic energy spectrum EB
Z(k). Their relations with hLL(r), hc(r)

are given by,

EB
2D(k)= k

∫ ∞
0

r(2hLL(r)+ rh′LL(r)+ rkzhc(r))J0(kr) dr, (6.3)

EB
Z(k)= k

∫ ∞
0

r
1
kz

(
h′c(r)+

hc(r)
r

)
J0(kr) dr. (6.4)

Using the behaviour of the correlation functions hLL(r), hc(r) mentioned in (6.1) we
can use the Wiener–Khintchine relation to get the behaviour of EB

2D(k), EB
Z(k) in the

regimes k � kz, kz � k � kd, k � kd. We can write the generalized spectra of the
magnetic field in the limit of large-scale separation kz� kd as,

EB
2D(k)=


k1 if k� kz,

k0 if kz� k� kd,

e−k/kd if k� kd,

EB
Z(k)=


k3 if k� kz,

k0 if kz� k� kd,

e−k/kd if k� kd.

(6.5a,b)

These predicted power laws are in agreement with the solutions of the (5.2)
displayed in figure 5. In this figure the dissipation wavenumber is unity and kz is
varied with the values mentioned in the legend. Figure 6 summarizes the form of
the unstable mode for the different range of scales in both k and r for the case of
large-scale separation kz� kd and generalized to take into account the variation in Dr.
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(a) (b)

FIGURE 5. (Colour online) Spectra of the magnetic field, (a) EB
2D(k), and (b) EB

Z(k), for
different values of kz shown in the legends. Lighter shades of blue correspond to smaller
values of kz. The parameter Dr = 1, the black lines denote power laws.

r k

(a) (b)

FIGURE 6. (Colour online) The form, (a) of the correlation functions hLL(r) in a dark
shade of blue, hc(r) in a light shade brown and (b) the spectra EB

2D(k) in a dark shade
of blue, EB

Z(k) in a light shade brown. The black dashed lines represent the different
exponents which are observed in the respective range of scales.

7. Comparison with direct numerical simulations
7.1. White noise flows

In order to test the relevance of the theoretical results with the results of direct
numerical simulations (DNS) we consider and solve numerically the partial differential
equation (2.6) for a random Gaussian distributed flow in a finite 2-D periodic box.
We note that the 2-D periodic flow does not respect isotropy. This is true for any
finite homogeneous system, thus we will be limited to only a qualitative comparison.
We consider a random flow of the form,

ψ(x, y, t)= ζ3(t)[sin(φ3(t)) cos(kf x+ φ4(t))+ cos(φ3(t)) sin(kf y+ φ4(t))]/kf , (7.1)
uz(x, y, t)= ζ4(t)[sin(φ3(t)) sin(kf x+ φ4(t))+ cos(φ3(t)) cos(kf y+ φ4(t))], (7.2)

where ζ3(t), ζ4(t) are two Gaussian distributed random variables satisfying the
relations, 〈ζ3(t)ζ3(t′)〉 = δ(t − t′), 〈ζ4(t)ζ4(t′)〉 = δ(t − t′), 〈ζ3(t)ζ4(t′)〉 = 0. φ3(t), φ4(t)
are uniformly distributed random variables in the interval [0, 2π]. The above flow
is realized in a domain [2πL, 2πL] with kf L being the forcing wavenumber. The
above system is homogeneous and invariant under π/2 rotations. The discretized
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FIGURE 7. (Colour online) The magnetic field spectrum at one instant of time with EB
2D

(a) and EB
Z (b), for two values of kz mentioned in the legend, lighter shades correspond

to increasing values of kz. The results correspond to the fluctuating velocity field with
parameters Rm≈ 460.
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FIGURE 8. (Colour online) The contour of the magnetic field with |b2D|2 in (a) and
the real part of bz in (b). The results correspond to the fluctuating velocity field with
parameters Rm≈ 210 and kz/kd ≈ 0.35.

version of the induction equation is numerically solved with the realization of the
noise changing at each time step with the Stratonovich formulation of the noise (see
Greiner, Strittmatter & Honerkamp (1988), Leprovost (2004)).

The growth rate calculated for the magnetic field with kf = 1 is shown in figure 9(a)
for a few values of Rm. Qualitatively the results reproduce the behaviour of the
theoretical predictions. The spectra of the growing magnetic field are shown in
figure 7 for a single time realizations for a Rm≈ 460 and two values of kz mentioned
in the legend. The theoretical predictions are shown in black solid lines and they
compare well with the numerical results. The magnetic field intensity is shown in
figure 8, where (a) shows |b2D|2 = b†

xbx + b†
yby the magnetic energy in the 2-D plane

and (b) shows the real part of the vertical magnetic field bz. The magnetic field
lines are concentrated in thin filamentary structures and their size decreases as Rm is
increased.

7.2. Freely evolving flows
To test the validity of the model for more realistic flows we also compare our results
with the growth rates of freely evolving chaotic/turbulent flows. We consider a flow
driven by a non-helical forcing at a wavenumber kf = 4 that is constant in time. The
temporal behaviour of the flow and its ‘randomness’ originates purely from the chaotic
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FIGURE 9. (Colour online) The growth rate γ as a function of the normalized wavemode
kz/kd for, (a) the delta correlated flow and (b) for a time correlated flow. Darker shades
correspond to larger values of Rm.
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FIGURE 10. (Colour online) A time shot of the magnetic field spectra EB
2D (a) and EB

Z
(b) for a few different values of kz mentioned in the legend. Lighter shades correspond to
increasing values of kz. The results correspond to the kinematic dynamo problem of the
forced Navier–Stokes equation with parameters Rm≈ 1020, Re≈ 32.

dynamics of the Navier–Stokes equation. The details of the full study of this system
of equations can be found in Seshasayanan & Alexakis (2016).

The normalized growth rate γ obtained from the turbulent flow is shown in
figure 9(b) as a function of the normalized kz/kd and for different values of Rm. For
the examined flow the quantity kd = kf

√
Rm and Rm = u/(kfη), τd = 1/(ηk2

d) where
u is the root-mean-square velocity. We find a good match in terms of the behaviour
of the growth rates and its dependence on kz/kd, Rm. The spectra of the magnetic
field, EB

2D and EB
Z are also shown in figure 10 along with the black solid lines

denoting the theoretical prediction mentioned in the previous section. The spectra
shown correspond to a simulation run with the parameters Rm≈ 1020, Re≈ 32 taken
after t ≈ 100 nonlinear time scales. The theoretical predictions seem to capture well
the shape of the unstable spectra.

8. Conclusions
In this work we have examined the dynamo properties of the Kazantsev–Kraichnan

model for 2.5-D flows. The simplicity of the model allowed us to examine analytically
and in detail various limits of the system. In particular we were able to examine the
dynamo properties of the system when the system is close to certain classes of flows
that dynamo action is ‘forbidden’ by the Zeldovich anti-dynamo theorem. In particular
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our results showed that the limits kz→ 0 and Dr→ 0 (that correspond to 2-D magnetic
fields and 2-D velocity fields respectably) do not commute with Rm→∞ limit. This
implies that the large Rm results are valid provided that Rm� 1/Dr, and Rm� k0/kz
and not for the exactly 2-D case.

Our analysis also allowed us to predict the functional form of the energy spectra of
the unstable dynamo modes. Two power-law behaviours were predicted. In the range
of wavenumbers k0� k� kz the magnetic energy spectra satisfy EB

2D∝ k1 and EB
Z ∝ k3

while in the range kz� k� kd the spectra satisfy EB
2D ∝ EB

Z ∝ k0. A summary of this
behaviour is depicted in figure 6. These predictions are new and cannot be obtained
simply by dimensional analysis.

Finally we compared the theoretical results to direct numerical simulation of
homogeneous, delta-correlated, Gaussian distributed flow and freely evolving flows
based on the Navier–Stokes equations. In both the cases the growth rate curves
matched qualitatively with the model and the magnetic field spectra are in agreement
with the theoretical predicted power laws. This gives support in the relevance of these
results to more realistic flows that might occur in nature.

Our study was limited only for smooth non-helical flows at high magnetic Prandtl
numbers. In realistic fast rotating systems driven by convection, one must take into
considerations kinetic helicity possibly injected by the forcing or from the effect of
boundaries. Another interesting extension would be to study the dynamo instability
driven by rough flows that resembles the turbulent scales under fast rotation and
correspond to low magnetic Prandtl number flows. For the rough flows the Hölder
exponent ζ for the second-order correlation function of the velocity field should
take into account the Kolmogorov spectra of 2-D turbulence. This leads to very
interesting possibilities. For scales smaller than the forcing scale the 2-D velocity
field u2D forms a k−3 energy spectrum and would continue to follow the r2 scaling
for g2D. However the vertical velocity field that is advected like a passive scalar
and has a spectrum proportional to k−1 would have gZ ∝ r0 scaling with possible
logarithmic corrections. For scales larger than the forcing scale an inverse energy
cascade develops with a Kolmogorov energy spectrum k−5/3 for u2D while uz reaches
a thermalized distribution k1. This implies that the correlation function g2D will follow
a r2/3 scaling while the vertical scales will have a much shallower scaling. We plan
to address these possibilities in our future work.
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Appendix A. Derivation of the equations
In order to derive the (2.15) we follow a procedure similar to the one mentioned

in Schekochihin et al. (2002). We start with the index form of the induction equation
(2.6) written as,

∂tbi = bm∂mui − um∂mbi − i kz uzbi + η(∂k∂k − k2
z )b

i, (A 1)
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where ∂ i denotes the derivative with respect to the coordinate xi. Next we write the
equation for the magnetic correlation function H ij(r)=〈(bi(x+ r))†bj(x)〉, which reads
as,

∂tH
ij − 2η(∆− k2

z )H
ij = ∂k[Cikj(r, t)−Ckij(r, t)− (Cjki(−r, t))† + (Ckji(−r, t))†]

+ ikz[C3ij(r, t)− (C3ji(−r, t))† −Ci3j(r, t)+ (Cj3i(−r, t))†], (A 2)

where the quantity Ckij is the triple product average defined as Ckij(r, t) = 〈uk(x +
r, t)(bi(x + r, t))†bj(x, t)〉. This triple product average can be simplified using the
Furutsu–Novikov theorem which can be written as,

Ckij(r, t) = 〈uk(x+ r, t)(bi(x+ r, t))†bj(x, t)〉
=
∫

dx′ dt′〈uk(x+ r, t)um(x′, t′)〉
〈
δ((bi(x+ r, t))†bj(x, t))

δum(x′, t′)

〉
. (A 3)

The above expression can be simplified by using the delta-correlation property of the
velocity correlator. The term 〈(δ((bi(x+ r, t))†bj(x, t)))/(δum(x′, t′))〉 can be simplified
by taking the functional derivative of the governing equation of the two point magnetic
correlation function (bi)†bj. Integrating it with respect to time and taking the statistical
average we end up with the following,

Ckij(r, t) = 1
2 {(gkl(r, t)− gkl(0, t))H ij

,l(r, t)− gkj
,l (r, t)H il(r, t)− gki

,l (0, t)H lj(r, t)

+ ikzH
ij(r, t)(gk3(0, t)− gk3(r, t))} . (A 4)

We mention here that the Furutsu–Novikov theorem follows the Stratanovich
interpretation of the noise as compared to Ito. Substituting the last expression for the
triple point averages into the (A 4) and after some long but trivial calculation we can
find the equation for H ij(r).

Now given the equation for H ij that can be obtained from both (A 2) and (A 4), we
look at constructing the equations for scalar functions of H ij. The procedure to express
the tensor H ij in terms of the possible scalar functions is mentioned in Oughton et al.
(1997). It can then be shown that the correlation tensor H ij has the general form
written out in (2.9). We mention here that only the mirror symmetric part of the
correlation function H ij is important in the discussion. This is because the helical part
of the magnetic field is not coupled to the governing equations of the non-helical part.
One simple way to see this is to take the (A 2), now we use the form of Ckij from
(A 4). If we look at an equation governing the proper scalar function in H ij, it can be
made up of two kinds of terms. One form of the term is a product of two proper scalar
functions, more precisely a product of one proper scalar function in gij and one in H ij.
The other way is to construct it using the product of two pseudo scalar functions, one
pseudo scalar function in gij and the other from H ij. Since there are no pseudo scalar
functions in gij the pseudo scalar functions in H ij do not enter the governing equations
of the proper scalar functions in H ij. Hence we consider the magnetic correlation
function H ij made of only the proper scalar terms, HLL, HNN, HZ, Hc. Due to the
solenoidal condition we stick with two of these quantities HLL,Hc and their governing
equation derived using (A 2), (A 4) is mentioned in (2.15).
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Appendix B. Asymptotic forms for correlation functions
The small and large r forms for the correlation functions hLL(r) and hc(r) can be

obtained from their governing equations (2.15). For the case of finite Rm the small r
expression reads as,

hLL(r)= a0 − (γ + 2ηk2
z − 8D1)a0 − 4ηkzb1

16η
r2 +O(r4), (B 1)

hc(r)= b1r− (γ + 2ηk2
z )b1 − 2kzD2a0

16η
r3 +O(r5); (B 2)

here a0, b1 are constants. For the large r behaviour we have,

hLL(r)∼ e−
√
γ /2η+k2

z r, (B 3)

hc(r)∼ e−
√
γ /2η+k2

z r. (B 4)

For the case Rm→∞, we have the rescaled r̃ = rkd and k̃z = kz/kd. The small r̃
behaviours of the functions hLL(r̃), hc(r̃) obtained from (5.2) are,

hLL(r̃)= ã0 − (γ + 2k̃2
z − 8)ã0 − 4k̃zb̃1

16
r̃2 +O(r̃4), (B 5)

hc(r̃)= b̃1r̃− (γ + 2k̃2
z )b̃1 − 2k̃zDrã0

16
r̃3 +O(r̃5), (B 6)

where ã0, b̃1 are constants. For large r̃ we have,

hLL(r̃)∼ e−
√

Dr k̃z r̃, (B 7)

hc(r̃)∼ e−
√

Dr k̃z r̃. (B 8)

Appendix C. Spectra of the eigenmode
From the asymptotics we can calculate the power laws of the isotropic spectra of the

eigenmode. Using the asymptotic expression from the previous section we reconstruct
the following form for the correlation functions hLL(r), hc(r):

hLL(r)= e−
√

Drkzr
∞∑

n=0

hnr2n, (C 1)

hc(r)= e−
√

Drkzr
∞∑

n=0

gnr2n. (C 2)

Now we look for the behaviour of EB
2D(k), EB

Z(k) for k � kz and k � kd. The
intermediate range of scales when there is sufficient scale separation between kz
and kd will be dealt with using matched asymptotics. The details of the calculation
and the resulting scaling in this intermediate range are mentioned in the following
appendix section (see appendix D). Using the expression (C 2) we can obtain an
expression for EB

2D(k), EB
Z(k) in the small k� kz limit,

EB
2D(k)= c1

k
kz
+O(k3), (C 3)

EB
Z(k)= c2

k3

k3
z

+O(k3), (C 4)
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where c1 and c2 are some constants that are independent of k. For scales larger than
the dissipative scales k� kd we need to look at the small r behaviour for h2D, hZ . We
use the steepest descent method for the correlation functions in (C 2) and obtain the
following,

EB
2D(k)= e−k/kd(c̃1 +O(k−3/2)), (C 5)

EB
Z(k)= e−k/kd(c̃2 +O(k−3/2)), (C 6)

where c̃1 and c̃2 are some constants independent of k. These behaviour are well
captured in the results from the eigenvalue solver (see figure 5).

Appendix D. Matched asymptotics

We are interested in finding the behaviour of the functions EB
2D, EB

Z in the
intermediate region kz � k � kd. In this process we would like to find the value
of γ in the limit of kz� kd. From the numerics we can see that the value of γ is
3 in the limit of small kz and independent of the value of Dr, see figures 1 and 3.
We are interested in the limit Rm→∞ the governing equations are given by (5.2).
Since the equation is rescaled with kd the small parameter now is k̃z� 1. The idea
here is to find the inner solution of the equation by expanding in terms of powers
of k̃z the (5.2). Then we compute the outer solution by rescaling the variable r̃ to
r̂ = √Drkzr̃. This rescaling would then provide us with a new set of equations for
the outer solution. The behaviour of the inner solution is valid in the region r̃� 1
while the outer solution is valid in the region r̃� 1/k̃z. The matching will take place
in the intermediate range of scales, to get the exponents and the eigenvalue γ .

D.1. Inner solution

We do asymptotics for k̃z�1 with hLL=H0+ k̃2
z H1+· · · and hc=Drk̃z(G0+ k̃2

z G1+·),
the equation for zeroth order in k̃z satisfies,

r̃2

[
H′′0 + 7

H′0
r̃
− (γ − 8)

H0

r̃2

]
+
[

2H′′0 + 6
H′0
r̃

]
= 0, (D 1)

r̃2

[
G′′0 +

G′0
r̃
− (γ + 1)

G0

r̃2

]
+
[

2G′′0 + 2
G′0
r̃
− 2

G0

r̃2

]
= 2r̃H. (D 2)

Now we write the homogeneous solution to the equations using hypergeometric
functions 2F1 defined as 2F1(a, b, c, d)= Γ (c)/(Γ (b)Γ (c− b))

∫ 1
0 tb(1− t)c−b−1/(1−

tz)a dt,

H0(r̃)=C1 2F1

[
3
2
−
√

1+ γ
2

,
3
2
+
√

1+ γ
2

, 2; − r̃2

2

]
, (D 3)

G0H(r̃)=C2 r̃ 2F1

[
1
2
−
√

1+ γ
2

,
1
2
+
√

1+ γ
2

, 2; − r̃2

2

]
, (D 4)

where G0=G0H+G0I with G0H the homogeneous solution and G0I the inhomogeneous
solution. G0I can be found and expressed in terms of integrals using the Wronskian.
The asymptotics for large r̃ is found to be,

G0I(r̃)=C1
1

(γ + 1)
r̃−2
√
γ+1. (D 5)
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D.2. Outer solution

For the large r̃ limit we could rescale r̂→ k̃z r̃ but in order to get rid of the dependence
on Dr at the lowest order we do the following rescaling, r̂→√Drk̃z r̃. This ends up
with the following set of equations,

γ hLL − (2Drk̃2
z + r̂2)[h′′LL + 3

hLL

r̂
] + (2k̃2

z + r̂2)hLL = 8hLL

+ 4r̂h′LL + 8
r̂√
Dr

hc + 4
r̂

√
Drk̃2

z hc, (D 6)

γ hc − (2Drk̃2
z + r̂2)

[
h′′c +

h′c
r̂
− hc

r̂2

]
+ (2k̃2

z + r̂2)hc = 2r̂
√

DrhLL. (D 7)

Since k̃z� 1 we can again expand the quantities HLL(r̂),Hc(r̂) in powers of k̃z,

hLL = [Ĥ0(r̂, γ )+ k̃2
z Ĥ1(r̂, γ , k̃z,

√
Dr)+ k̃4

z Ĥ2(r̂, γ ,
√

Dr)+ · · ·], (D 8)

hc =
√

Dr[Ĝ0(r̂, γ )+ k̃2
z Ĝ1(r̂, γ ,

√
Dr)+ k̃4

z Ĝ2(r̂, γ ,
√

Dr)+ · · ·]. (D 9)

With this expansion the equation at the leading order becomes independent of Dr with
the assumptions being Drk̃2

z � 1, k̃2
z � 1. The leading-order equations are,

(γ − 8)Ĥ0 − r̂2

[
Ĥ′′0 + 3

Ĥ′0
r̂

]
+ r̂2Ĥ0 − 4r̂Ĥ′0 = 8r̂Ĝ0, (D 10)

γ Ĝ0 − r̂2

[
Ĝ′′0 +

Ĝ′0
r̂
− Ĝ0

r̂2

]
+ r̂2Ĝ0 = 2r̂Ĥ0. (D 11)

The small r̂ behaviour of the functions Ĥ0, Ĝ0 can be obtained by expanding in
powers of r̂. By direct substitution it can be shown that a simple power-law expansion
fails for any value of γ and the expansion for small r̂ contains logarithmic corrections.

D.3. Matching
We have to rescale the inner and outer variable to match the solutions at an
intermediate range. The large r form for the inner solution reads like,

H0(r)= r−
√

1+γ
[

f1(γ )
1
r3
+ f2(γ )

1
r5
+O

1
r7

]
+ r
√

1+γ
[

m1(γ )
1
r3
+m2(γ )

1
r5
+O

1
r7

]
,

(D 12)

G0(r)= r1−√1+γ
[

f̃1(γ )
1
r
+ f̃2(γ )

1
r3
+O

1
r5

]
+ r1+√1+γ

[
m̃1(γ )

1
r
+ m̃2(γ )

1
r3
+O

1
r5

]
(D 13)

for γ 6= 3. For γ = 3 the coefficients fi, mi and f̃i, m̃i diverge. In this case the
expansion involves logarithmic corrections to the power laws. A successful matching
with the outer solution (that also includes logarithmic corrections) becomes only
possible for γ = 3. The power-law behaviours for the correlation functions are
then a direct consequence of this eigenvalue and the properties of the hypergeometric

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

61
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.614


Kazantsev model in non-helical 2.5-dimensional flows 647

functions. Thus in the intermediate region rd� r�1/kz the solution has the exponents
hLL ∼ r−1, hc ∼ √Drkzr0. Using Wiener–Khintchine we can find the corresponding
behaviour in the spectral space to be, EB

2D∼ k0+√Drkz/k2/2 and EB
Z(k)∼

√
Drkzk0/2.
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