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1. Introduction
The Fermi–Ulam ping-pong, basically introduced by Fermi [10] in 1949, serves as a
simplified model for charged particles, like a proton or an electron, which bounce off
an interstellar magnetic field at high energies. One of the central issues was to determine
whether, upon repeated bouncing, a particle can gain so much energy that its speed would
come close to the speed of light.

On a mathematical level, a common formulation of the model is as follows: consider
two vertical rackets, the left one being fixed at x = 0, whereas the right one moves
according to some law x = p(t) for a prescribed function p = p(t). The two rackets
alternately hit the particle, which impacts completely elastically and experiences no
gravity. Furthermore, the particle is assumed to travel without being accelerated between
the impacts. The successor map is f : (t0, v0) 7→ (t1, v1) and sends a time t0 ∈ R of impact
to the left racket x = 0 and the corresponding velocity v0 > 0 immediately after the impact
to their successors t1 and v1, describing in the same way the subsequent impact to x = 0.
Thus, defining the forward orbits (tn, vn)= f n(t0, v0) for n ≥ 0, the problem is to study
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the ‘escape set’
E =

{
(t0, v0) : lim

n→∞
vn =∞

}
(1.1)

of initial conditions along whose orbit the particle will become infinitely fast. Ulam was
interested in this question and conjectured [16, p. 318] an increase in velocity on the
average, i.e. he believed that escape would be the typical behavior of the trajectories.
Although the computing power at this time was low as compared to today, he however
realized that numerically such a pattern could not be seen and large fluctuations seemed
more likely to be typical. This turned out to be true in a rigorous sense and was first shown
for periodic forcing functions p(t) which are sufficiently regular, see [12, Theorem 2];
also related is [15, Part 2, Ch. 1]. The proof relies on the invariant curve theorem [13] and
yields that the velocity is bounded along every orbit. In particular, E = ∅ in this case. It
was furthermore shown in [17] that escaping orbits can exist if the periodic function p(t)
is not smooth enough; also see [11, Theorem 3.4] for C∞-examples in the case where p(t)
is not periodic. In [18], the boundedness result was generalized to quasi-periodic forcing
functions p(t) such that the frequencies satisfy a diophantine condition and once again the
proof uses an appropriate invariant curve theorem. In recent years a new approach has been
developed in the works of Dolgopyat and De Simoi [2, 3, 5, 8]. They considered periodic
forcings and some maps which can be seen as approximations of the successor map f .
Several results concerning the Lebesgue measure of E (and in some cases its Hausdorff
dimension) are obtained in these papers.

The result of [18], together with [6, Problem 4], can be viewed as a starting point for
the present paper, since it leaves open the question of what would be the typical behavior
in the quasi-periodic case if no diophantine condition was assumed. Next we state our
main result. The reader will have noticed a certain lack of precision in the definition of the
escape set. This is related to the definition of the ping-pong map D 3 (t0, v0) 7→ (t1, v1),
whose domain D is sometimes not all of R× ]0,∞[, but a proper subset. It can be shown
that this map is well defined on v > ν∗, where ν∗ = 2 max {supt∈R ṗ(t), 0}; see §5 for
more details. From now on we take D = R× ]ν∗,∞[. Then the escape set comprises
those points (t0, v0) ∈D such that:
(a) the forward orbit (tn, vn)n≥0 is complete, i.e. (tn, vn) ∈D for each n ∈ N;
(b) limn→∞ vn =∞.

THEOREM 1.1. Assume that 0< a < b and P ∈ C2(TN ) is such that

0< a ≤ P(2̄)≤ b, 2̄ ∈ TN . (1.2)

Let ω1, . . . , ωN > 0 be rationally independent and consider the family of quasi-periodic
forcing functions

p2̄(t)= P(θ1 + tω1, . . . , θN + tωN ), 2̄ ∈ TN , t ∈ R. (1.3)

Let E2̄ denote the escape set for the ping-pong map with forcing function p(t)= p2̄(t).
Then, for almost all 2̄ ∈ TN , the set E2̄ ⊂ R2 has Lebesgue measure zero.

Here TN denotes the N -torus and C2(TN ) consists of those functions P =
P(θ1, . . . , θN ) which are 1-periodic in each variable θi and of class C2. Furthermore,
θ̄ = θ + Z.
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Remarks 1.2.
(a) We emphasize again that besides being rationally independent there is no further

assumption on the frequencies. In particular, it is not needed that ω = (ω1, . . . , ωN )

satisfies a diophantine condition.
(b) In the periodic case N = 1, the theorem applies to yield the conclusion for p(t)=

P(tω1). Even this gives something new as compared to the results in e.g. [12,
Theorem 2], since only P ∈ C2 has to be assumed. On the other hand, the conclusion
that the escape set has Lebesgue measure zero is weaker than the statement that the
velocity is bounded along every orbit.

(c) It is natural to ask whether Theorem 1.1 could be generalized to an almost-periodic
setup or, even further, to arbitrary skew products, in the sense that py(t)= P(gt (y))
for the forcing functions, where gt : Y → Y is a flow on a space Y which preserves a
measure µ; in the quasi-periodic case Y = TN , gt (2̄)= (θ1 + tω1, . . . , θN + tωN )

and µ is the Haar measure. We have considered the almost-periodic case, but do not
have a definite answer at the moment. We are grateful to the referee for pointing out
this possible generalization.

Before we are going to outline the proof of Theorem 1.1, we include a simple example
in order to illustrate its application.

Example 1.3. Let z ∈ R be a Liouville number, for instance z =
∑
∞

j=1 10− j !. For a ∈ R,
introduce

pa(t)= 3+ sin(2π(a + t))+ sin(2π zt) (1.4)

and denote by Ea the escape set (1.1) for the ping-pong map with the forcing function
p(t)= pa(t). Then, for almost all a ∈ R, the escape set Ea ⊂ R2 has Lebesgue measure
zero.

To see this, it suffices to define P(θ1, θ2)= 3+ sin(2πθ1)+ sin(2πθ2) and ω = (1, z)
as well as

p̃a,b(t)= 3+ sin(2π(a + t))+ sin(2π(b + zt))

for a, b ∈ R, where we introduced one more parameter b as compared to (1.4). Then
pa(t)= p̃a,1(t), P ∈ C∞(T2) and ω is rationally independent. Hence, Theorem 1.1
applies and shows that for almost all (a, b) ∈ R2, the escape set Ẽa,b ⊂ R2 for the ping-
pong map with the forcing function p(t)= p̃a,b(t) has Lebesgue measure zero. This yields
the claim on the Ea = Ẽa,1 by Fubini’s theorem, using that Ẽa,b and Ẽa+τ,b+zτ have the
same Lebesgue measure for all τ ∈ R. Note that here ω does not satisfy a diophantine
condition.

To prove Theorem 1.1, all the techniques related to invariant curve theorems will no
longer be applicable and one has to come up with new methods. The basic strategy will
be to show that most orbits are recurrent and so they are not contained in the escape set.
This starting point suggests the use of Poincaré’s recurrence theorem, since the map f
preserves the measure v dtdv. However, we are dealing with a dynamical system on a
space of infinite measure and thus an extension of Poincaré’s theorem will be needed.
Consequently, an important role in the proof will be played by the following lemma, which
is basically due to Dolgopyat [7, Lemma 4.1].
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LEMMA 1.4. Let (X, F , µ) be a measure space and suppose that the map T : X→ X is
one-to-one and such that the following holds:
(a) T is measurable, in the sense that T (B), T−1(B) ∈ F for B ∈ F;
(b) T is measure preserving, in the sense that µ(T (B))= µ(B) for B ∈ F; and
(c) there is a set A ∈ F such that µ(A) <∞ with the property that almost all points

from X visit A in the future.
Then for every measurable set B ⊂ X almost all points of B visit B infinitely many times
in the future (i.e. T is infinitely recurrent).

A main insight is that in many situations it can be beneficial to apply this result
with X =U , the set of unbounded orbits of a given dynamical system. The advantage
derived from this choice is that the property of future visits has to be checked only
for unbounded orbits. The time/velocity coordinates (t, v) will be replaced by the
angle/energy coordinates (2̄, E), where 2̄= (θ̄1, . . . , θ̄N ), i.e. the new phase space will
be TN

× ]0,∞[. Our main abstract result, Theorem 3.1 below, deals with maps which are
defined on TN

× ]0,∞[ and provides a quite general method for constructing a suitable
‘section’ A of finite measure as is required in Lemma 1.4(c). The construction of A is done
in Lemma 4.1 and the set’s geometry has to be carefully adapted according to a function,
called W , which is supposed to satisfy an estimate of the type

W ( f (2̄, E))≤W (2̄, E)+ c(E),

where c : ]0,∞[→ R is a decreasing and bounded function such that limE→∞ c(E)= 0.
At first sight this function is reminiscent of a discrete Lyapunov function, but it will

be more accurate to interpret it as a generalized adiabatic invariant. For large energy E
the quantity W can decrease freely, while any growth has to be very slow. Thus, the
construction of A can be reduced to finding the function W . Since W (2̄, E)= P(2̄)2 E
is such an adiabatic invariant for the ping-pong map [11, 17], the argument can finally be
closed. We expect that Theorem 3.1 will have several further applications in other quasi-
periodic problems.

2. Measure-preserving embeddings
First we need to fix some notation. Let TN

= (R/Z)N denote the standard N -torus, which
is an additive quotient group. Vectors in RN are denoted by 2= (θ1, . . . , θN ) and the
corresponding class in TN is 2̄= (θ̄1, . . . , θ̄N ). The invariant (Haar) measure µTN is
unique after the normalization µTN (TN )= 1. On the contrary, there are many invariant
metrics on TN . We will use the quotient metric ‖2̄‖ =min{|2+ z| : z ∈ ZN

} for 2̄ ∈
TN , where | · | is a fixed norm on RN . The distance between 2̄1, 2̄2 ∈ TN is given by
d(2̄1, 2̄2)= ‖2̄1 − 2̄2‖. With the above definitions, the map 2̄ 7→ 2̄+ ϕ̄ preserves the
measure and the distance; here ϕ̄ is a fixed element of TN .

Let rationally independent ω1, . . . , ωN > 0 be chosen. Then (for N > 1) the map

ι : R→ TN , ι(t)= (tω1, . . . , tωN ),

is a monomorphism of topological groups and the image ι(R)⊂ TN is dense. In the case
N = 1, the map i is an epimorphism of groups. The flow

8 : R× TN
→ TN , 8t (2̄)= 2̄+ ι(t),
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preserves the measure µTN and is ergodic. For 2̄ ∈ TN , we will also need the maps

ι2̄ : R→ TN , ι2̄(t)=8t (2̄)= 2̄+ ι(t). (2.1)

In what follows, we will work on the phase space TN
× ]0,∞[ with coordinates (2̄, r).

The product map given by (ι2̄ × id)(t, r)= (ι2̄(t), r) will appear in many places. As the
measure on the phase space, we will take the product measure µTN ⊗ λ, where λ denotes
the Lebesgue measure on the real line.

Now we consider maps

f :D ⊂ TN
× ]0,∞[→ TN

× ]0,∞[, (2̄1, r1)= f (2̄, r),

which are defined on some open set D. It will always be assumed that f is continuous
and one-to-one. The proof of the following lemma is a well-known consequence of the
theorem on the invariance of the domain; see [4, §§ IV.7 and VIII.1].

LEMMA 2.1. The range D̃ = f (D) is open and the inverse map

f −1
: D̃ ⊂ TN

× ]0,∞[→ TN
× ]0,∞[, (2̄, r)= f −1(2̄1, r1)

is continuous as well.

In fact, f :D→ D̃ is a homeomorphism and, in particular, both f and f −1 are Borel
measurable. We will say that f is a measure-preserving embedding if in addition

(µTN ⊗ λ)( f (B))= (µTN ⊗ λ)(B) (2.2)

holds for all Borel sets B ⊂D.

Remarks 2.2.
(a) It should be noted that the relation (µTN ⊗ λ)( f −1(B))= (µTN ⊗ λ)(B) may fail if

B is not contained in D̃; here f −1(B) is understood to be the preimage of B under
f . The simple example D = TN

× ]0,∞[, f (2̄, r)= (2̄, r + 1), B = TN
× ]

1
2 , 2[,

f −1(B)= TN
× ]0, 1[ illustrates this fact.

(b) Every measure-preserving embedding is Lebesgue measurable. This can be proved
by adapting arguments from the case of homeomorphisms; see [14, §13].

Next we have to introduce the forward iterates of f . Some care must be taken, since the
iterates will be defined on smaller and smaller domains. To this end, let

D1 =D, f 1
= f, Dn+1 = f −1(Dn), f n+1

= f n
◦ f.

Then f n is well defined on Dn and Dn+1 ⊂Dn ⊂D for all n ∈ N, as induction shows that
Dn+1 = {(2̄, r) ∈D : f (2̄, r), . . . , f n(2̄, r) ∈D}. Similarly, using (2.2), the following
result is obtained.

LEMMA 2.3. Let f be a measure-preserving embedding. Then also

f n
:Dn ⊂ TN

× ]0,∞[→ TN
× ]0,∞[

is measure preserving for each n ≥ 2.
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The set of initial conditions

D∞ =
∞⋂

n=1

Dn ⊂ TN
× ]0,∞[

will give rise to complete forward orbits. In fact, if (2̄0, r0) ∈D∞, then

(2̄n, rn)= f n(2̄0, r0), n ∈ N0,

is defined. It should be noted that it is possible that D∞ = ∅ or even Dn = ∅ for some
n ≥ 2. A complete orbit is called unbounded if lim supn→∞ rn =∞. The corresponding
set of initial data is denoted by

U =
{
(2̄0, r0) ∈D∞ : lim sup

n→∞
rn =∞

}
. (2.3)

It is Borel measurable, owing to U =
⋂
∞

m=1
⋂
∞

n=1
⋃

k≥n f −k(TN
× [m,∞[). The set of

initial data E ⊂ U which leads to escaping orbits is defined as

E =
{
(2̄0, r0) ∈D∞ : lim

n→∞
rn =∞

}
.

This set is also Borel measurable, since E =
⋂
∞

m=1
⋃
∞

n=1
⋂

k≥n f −k(TN
× [m,∞[).

3. Quasi-periodic maps
Assume now that f :D ⊂ TN

× ]0,∞[→ TN
× ]0,∞[ is as in §2 and has the special

form
f (2̄, r)= (2̄+ ι(F(2̄, r)), r + G(2̄, r)), (3.1)

where F, G :D→ R are continuous. For 2̄ ∈ TN , let

D2̄ = (ι2̄ × id)−1(D)⊂ R× ]0,∞[ (3.2)

and consider the family of planar maps { f2̄}2̄∈TN given by

f2̄ : D2̄ ⊂ R× ]0,∞[→ R× ]0,∞[,
f2̄(t, r)= (t + F(2̄+ ι(t), r), r + G(2̄+ ι(t), r)). (3.3)

Then D2̄ is open and f2̄ is continuous. Moreover, the identity

f ◦ (ι2̄ × id)= (ι2̄ × id) ◦ f2̄ on D2̄ (3.4)

implies that f2̄ is one-to-one. All forward iterates of f2̄ are defined on the set

D2̄,∞ =
∞⋂

n=1

D2̄,n ⊂ R× ]0,∞[, (3.5)

where D2̄,1 = D2̄ and D2̄,n+1 = f −1
2̄
(D2̄,n). Defining (tn, rn)= f n

2̄
(t0, r0) for n ∈ N0,

the unbounded orbits are generated by the initial conditions in the set

U2̄ =
{
(t0, r0) ∈ D2̄,∞ : lim sup

n→∞
rn =∞

}
,

whereas the ones in
E2̄ =

{
(t0, r0) ∈ D2̄,∞ : lim

n→∞
rn =∞

}
(3.6)
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will lead to escaping complete orbits. We also note the relations

D2̄,n = (ι2̄ × id)−1(Dn), n = 1, 2, . . . ,∞, U2̄ = (ι2̄ × id)−1(U),

E2̄ = (ι2̄ × id)−1(E).

The following theorem is our main abstract result on escaping orbits. Its proof will
be given in §4, whereas the application to the ping-pong problem and the proof of
Theorem 1.1 is the content of §5.

THEOREM 3.1. Let f :D ⊂ TN
× ]0,∞[→ TN

× ]0,∞[ be a measure-preserving
embedding of the form (3.1) and suppose that there is a function W =W (2̄, r) satisfying
W ∈ C1(TN

× ]0,∞[),

0< β ≤
∂W
∂r
(2̄, r)≤ γ for 2̄ ∈ TN , r ∈]0,∞[, (3.7)

with some constants β, γ > 0, and furthermore

W ( f (2̄, r))≤W (2̄, r)+ c(r) for (2̄, r) ∈D, (3.8)

where c :]0,∞[→ R is a decreasing and bounded function such that limr→∞ c(r)= 0.
Then, for almost all 2̄ ∈ TN , the set E2̄ ⊂ R× ]0,∞[ has Lebesgue measure zero.

The following example illustrates the usefulness of Theorem 3.1.

Example 3.2. (A toy model) For N = 1 (where we write 2̄= θ̄ ), we consider the
generating function

h(θ, θ1)=−g(θ1)(θ1 − θ)
1/2, θ1, θ ∈ R, θ1 ≥ θ,

where g is 1-periodic; more precisely, we assume that g ∈ C1(T). Using the relation
r = ∂1h and r1 =−∂2h, it induces the map with lift

θ1 = θ +
g(θ1)

2

4r2 , r1 = r +
g′(θ1)g(θ1)

2r
, (3.9)

which is well defined by the implicit function theorem on a half-plane D = T× ]R,∞[
for R > 0 sufficiently large (depending upon ‖g‖C1 ). It is not difficult to prove that then
f :D→ T× ]0,∞[ is continuous, one-to-one and measure preserving. Furthermore,
D := Dθ̄ = R× ]R,∞[ is independent of θ̄ , where we take ω = 1 for ιθ̄ . Also, f has
the required form (3.1). In fact, if θ1 = θ1(θ, r) denotes the solution to the scalar equation
θ1 = θ + (g(θ1)

2/4r2) for r > R, then θ1(θ + k, r)= θ1(k, r)+ k for k ∈ Z and we can
set

F(θ̄ , r)=
g(θ1(θ, r))2

4r2 and G(θ̄ , r)=
g′(θ1(θ, r))g(θ1(θ, r))

2r
.

To satisfy (3.7) and (3.8), we can use W (θ̄ , r)= r , β = γ = 1 and c(r)= (1/2r) ‖g‖2C1 for
r ∈]R,∞[. Therefore, Theorem 3.1 applies to this example and consequently for almost
all θ̄ ∈ T the escape set Eθ̄ ⊂ R× ]0,∞[ has Lebesgue measure zero. Since N = 1, the
map ιθ̄ × id : R× ]0,∞[→ T× ]0,∞[ is onto and (ιθ̄ × id)(Eθ̄ )= E for each θ̄ ∈ T.
Moreover, ιθ̄ is Lipschitz continuous and so also the escape set E ⊂ T× ]0,∞[ has
measure zero. Note that already this is a non-trivial piece of information, since the invariant
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curve theorem is not applicable: firstly, the map is only continuous and the theorems in [13]
require more regularity. Even if we assume that g is smooth and apply some change of
variable, the results in [13] cannot be used in some cases. Namely, if we suppose that g
has a zero on {θ = θ∗}, then all the points (θ∗, r) will be fixed under the map and there are
no invariant curves with irrational rotation number.

We add one further technical result that will be needed later on in the application of
Theorem 3.1 to the ping-pong map. The proof is a straightforward calculation and hence
omitted.

LEMMA 3.3. A quasi-periodic map f of class C1 of the form (3.1) is orientation
preserving and measure preserving if and only if (1+ ∂ωF)(1+ ∂r G)− (∂r F)(∂ωG)= 1
in D, where ∂ω =

∑N
j=1 ω j (∂/∂θ j ).

It should be noted that the condition from Lemma 3.3 holds as soon as one of the planar
maps f2̄ is orientation preserving and area preserving; this observation is used below for
the case of the ping-pong map.

4. Proof of Theorem 3.1
We continue to use the general setup from the previous sections and start with an auxiliary
result.

LEMMA 4.1. Let f :D ⊂ TN
× ]0,∞[→ TN

× ]0,∞[ be a measure-preserving
embedding and suppose that there is a function W =W (2̄, r) satisfying W ∈
C1(TN

× ]0,∞[), (3.7) and (3.8). Let (ε j ) j∈N and (W j ) j∈N be sequences
of positive numbers with the properties

∑
∞

j=1 ε j <∞, lim j→∞ W j =∞ and
lim j→∞ ε

−1
j c((1/4γ )W j )= 0. Denote

A=
⋃
j∈N

A j , A j = {(2̄, r) ∈ TN
× ]0,∞[: |W (2̄, r)−W j | ≤ ε j }. (4.1)

Then A has finite measure and every unbounded orbit of f enters A. More precisely, if
(2̄0, r0) ∈ U , where U is from (2.3), and, if (2̄n, rn)n∈N denotes the forward orbit under
f , then there is K ∈ N so that (2̄K , rK ) ∈A.

Proof. First, we shall show that A has finite measure. By Fubini’s theorem,

(µTN ⊗ λ)(A j )=

∫
TN
λ(A j, 2̄) dµTN (2̄) (4.2)

for the sections A j, 2̄ = {r ∈]0,∞[: (2̄, r) ∈A j }. We are going to prove that λ(A j, 2̄)≤

2β−1ε j . To establish this assertion, we note that every function w 2̄ : r 7→W (2̄, r)
provides a diffeomorphism between the intervals ]0,∞[ and ]W (2̄, 0),∞[. Its inverse
function w−1

2̄
is Lipschitz continuous with constant β−1, by (3.7), and moreover A j, 2̄ =

w−1
2̄
(]W j − ε j , W j + ε j [). Thus, A j, 2̄ is an interval of length at most 2β−1ε j and

therefore

(µTN ⊗ λ)(A)≤
∞∑
j=1

(µTN ⊗ λ)(A j )≤

∞∑
j=1

2ε j

β
<∞.
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To prove the recurrence property, we fix (2̄0, r0) ∈ U and we denote by (2̄n, rn) the
forward orbit under f . We need to start with some preliminaries. According to (3.7),
there is r∗ > 0 such that

β

2
≤

W (2̄, r)
r

≤ 2γ, r ∈ [r∗,∞[. (4.3)

Furthermore, owing to the properties of the sequences (ε j ) and (W j ), we can find an
integer j0 ≥ 2 such that

W j0 >max
{
W (2̄1, r1), ‖c‖∞ + max

2̄∈TN
W (2̄, r∗), 2‖c‖∞

}
and c

(
1

4γ
W j0

)
≤ ε j0 .

Then lim supn→∞ W (2̄n, rn)=∞. To verify this assertion, observe that for rn ≥ r1,
by (3.7),

W (2̄n, rn)≥ β(rn − r1)+W (2̄n, r1)

and lim supn→∞ W (2̄n, rn)=∞ follows from lim supn→∞ rn =∞ and the compactness
of TN . Due to lim supn→∞ W (2̄n, rn)=∞ and W (2̄1, r1) < W j0 , we can select a first
index K ≥ 2 so that W (2̄K , rK ) > W j0 . In particular, this implies that W (2̄K−1, rK−1)≤

W j0 . Now, from (3.8), we obtain the bound W (2̄K , rK )≤W (2̄K−1, rK−1)+ c(rK−1)

and this in turn leads to

W (2̄K−1, rK−1)≥W (2̄K , rK )− ‖c‖∞ > W j0 − ‖c‖∞
≥ max
2̄∈TN

W (2̄, r∗)≥W (2̄K−1, r∗).

The monotonicity of W (2̄K−1, ·) thus shows that rK−1 > r∗. Combining (4.3) and the
previous estimate, it thus follows that

rK−1 ≥
1

2γ
W (2̄K−1, rK−1)≥

1
2γ

(W j0 − ‖c‖∞)≥
1

4γ
W j0 .

Finally, using W (2̄K , rK ) > W j0 ≥W (2̄K−1, rK−1) and that c(r) is decreasing, we get

|W (2̄K , rK )−W j0 | ≤W (2̄K , rK )−W (2̄K−1, rK−1)≤ c(rK−1)≤ c
(

1
4γ

W j0

)
≤ ε j0 ,

which means that (2̄K , rK ) ∈A j0 . �

In order to prove recurrence for a measure-preserving transformation T : X→ X , the
Poincaré recurrence theorem can be applied if X has finite measure. We will use it in the
following version.

LEMMA 4.2. Let (X, F , µ) be a measure space such that µ(X) <∞. Suppose that there
exist a measurable set 0 ⊂ X of measure zero and a map T : X \ 0→ X which is one-to-
one so that the following holds:
(a) T is measurable, in the sense that T (B), T−1(B) ∈ F for B ∈ F; and
(b) T is measure preserving, in the sense that µ(T (B))= µ(B) for B ∈ F .
Then for every measurable set B ⊂ X almost all points of B visit B infinitely many times
in the future (i.e. T is infinitely recurrent).
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Note that in particular µ(T (X \ 0))= µ(X \ 0)= µ(X) by (b) and so T is both almost
onto and almost one-to-one. In fact, a stronger property holds: there exists a set X∞ ∈ F of
full measure such that X∞ ⊂ X \ 0 and T (X∞)= X∞. It can be constructed recursively
by setting

X1 = (X \ 0) ∩ T (X \ 0), Xn+1 = T−1(Xn) ∩ T (Xn) ∩ Xn, X∞ =
∞⋂

n=1

Xn .

In the opposite case that µ(X)=∞, Lemma 1.4 by Dolgopyat will be important. We
include a proof, following [7, Lemma 4.1], to make the paper self contained.

Proof of Lemma 1.4. Let0 ⊂ X be measurable so thatµ(0)= 0 and all points from X \ 0
visit A in the future. Then the first return time r(x)=min {k ∈ N : T k(x) ∈ A} is well
defined for x ∈ X \ 0; here N= {1, 2, . . .}. It induces a map S : X \ 0→ A given by
S(x)= T r(x)(x). The restriction of this map to A \ 0, i.e. S : A \ 0→ A, is one-to-one
and measure preserving; see [9, Lemma 2.43] for a similar statement. Now let B ⊂ X be
measurable and define B j = {y ∈ B \ 0 : r(y)≤ j} as well as

A j = S(B j )=

j⋃
k=1

(T k(B) ∩ A)⊂ A for j ∈ N.

Since µ(A) <∞ by hypothesis, the Poincaré recurrence theorem applies to A j . Hence,
there are measurable sets 0 j ⊂ A j such that µ(0 j )= 0 and every point x ∈ A j \ 0 j

returns, via S, to A j infinitely often. Now consider the null set F ⊂ B given by

F = B ∩
(
0 ∪

⋃
j∈N

S−1(0 j )

)
.

If y ∈ B \ F , then y will return to B infinitely many times in the future. In fact, select
j ∈ N such that r(y)≤ j , i.e. y ∈ B j . Then x = S(y) ∈ A j \ 0 j . Thus, by construction,
there exist infinitely many k ∈ N with the property that k ≥ j and Sk(x) ∈ A j . Let us fix
one of these k. Then Sk(x)= S(z) for some z ∈ B j . Writing out this relation, we arrive at

T r(z)(z)= S(z)= Sk(x)= Sk+1(y)= T
∑k

j=0 r(S j (y))
(y).

Noting that
∑k

j=0 r(S j (y))≥ k + 1≥ j ≥ r(z), the fact that T is one-to-one leads to

T m(y)= z ∈ B j ⊂ B; here m =
∑k

j=0 r(S j (y))− r(z) ∈ N. �

Now we can give the proof of our main abstract result.

Proof of Theorem 3.1. Recall the definition of

U =
{
(2̄0, r0) ∈D∞ : lim sup

n→∞
rn =∞

}
from (2.3), where (2̄n, rn)= f n(2̄0, r0) gives the orbit of (2̄0, r0) under the map f .
Since the assertion is immediate in the case where U = ∅, we will henceforth assume that
U 6= ∅.
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Step 1. Almost all unbounded orbits of f are oscillatory. We are going to show that there
is a set Z ⊂ U of measure zero such that if (2̄0, r0) ∈ U \ Z , then

lim inf
n→∞

rn <∞. (4.4)

Hence, if (2̄0, r0) ∈ U \ Z , then lim supn→∞ rn =∞, but lim infn→∞ rn <∞. To prove
the assertion about the existence of Z , we first note that the restriction T = f | U : U→ U
is well defined and one-to-one. Furthermore, since f is assumed to be measure preserving,
so is T . Now we are going to distinguish three cases:
(i) (µTN ⊗ λ)(U)= 0;
(ii) 0< (µTN ⊗ λ)(U) <∞; and
(iii) (µTN ⊗ λ)(U)=∞.
In case (i), we can simply take Z = U . In the second case (ii), we apply the Poincaré
recurrence theorem (Lemma 4.2) to T : U→ U . It follows that for every Borel set
B ⊂ U , almost every point (2̄0, r0) ∈ B returns to B infinitely often under the iteration
of f . In case (iii), we arrive at exactly the same conclusion, owing to Lemma 1.4 with
X = U , µ= µTN ⊗ λ and the set A =A ∩ U from (4.1) in Lemma 4.1. To exploit this
fact, we introduce the distance function d((2̄1, r1), (2̄2, r2))= ‖2̄1 − 2̄2‖ + |r1 − r2|

on TN
× ]0,∞[ and cover TN

× ]0,∞[ by the sets B j = {(2, r) : |r − j | ≤ 1} for
j ∈ N. Then for B j =B j ∩ U ⊂ U we apply the recurrence property to find sets
Z j ⊂ B j of measure zero such that every (2̄0, r0) ∈ B j \ Z j returns to B j infinitely
often. By definition of B j , this means that |rn − r0| ≤ 2 for infinitely many n and
hence lim infn→∞ rn ≤ r0 + 2. To summarize, if j ∈ N and (2̄0, r0) ∈ B j \ Z j , then
lim infn→∞ rn <∞. Therefore, we can take Z =

⋃
j∈N Z j ⊂ U , which has the desired

properties, owing to
⋃

j∈N B j = U .

Step 2. The conclusion of the theorem is valid on a subgroup of TN . Let 6 = {0} ×
TN−1

⊂ TN and denote the points in 6 by ϕ̄ = (0̄, ϕ̄2, . . . , ϕ̄N ). The normalized Haar
measure on 6 is called µ6 . We are going to show that for µ6-almost all ϕ̄ ∈6, the set
Eϕ̄ ⊂ R× ]0,∞[ has Lebesgue measure zero. This will be a consequence of the previous
step and Fubini’s theorem. First, we assert that

(ι2̄ × id)(E2̄)⊂ Z, 2̄ ∈ TN , (4.5)

where ι2̄ is from (2.1) and Z denotes the set of measure zero from Step 1. To establish
(4.5), let (t0, r0) ∈ E2̄. If (tn, rn)= f n

2̄
(t0, r0) denotes the orbit of (t0, r0) under f2̄, then

limn→∞ rn =∞ by definition. For (2̄0, r0)= (ι2̄ × id)(t0, r0), we obtain, using (3.4)
iteratively,

f n(2̄0, r0)= (ι2̄ × id) f n
2̄
(t0, r0)= (ι2̄ × id)(tn, rn).

Thus, (2̄n, rn)= f n(2̄0, r0)= (ι2̄(tn), rn) is the corresponding orbit of (2̄0, r0) under f
and it has the property limn→∞ rn =∞. In particular, (2̄0, r0) ∈ U , which proves (4.5) in
the case (i). For (ii) and (iii), we have lim infn→∞ rn <∞ for (2̄0, r0) ∈ U \ Z; see (4.4).
Hence, we must have (2̄0, r0) ∈ Z , which completes the proof of (4.5).

Now we turn to the subgroup 6 and observe that given any interval I ⊂ R of length
1/ω1, the map

ψ : I ×6→ TN , ψ(t, ϕ̄)= ιϕ̄(t)=8t (ϕ̄)= ϕ̄ + ι(t) (4.6)
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is an isomorphism of measure spaces; see [1, Proposition 6.3] for a related construction in
a more general framework. This means the following: (a) up to sets of measure zero, ψ is
bijective; (b) ψ and ψ−1 are measurable; (c) we have

1
ω1

µTN (ψ(B))= (λ⊗ µ6)(B) (4.7)

for all Borel sets B ⊂ I ×6. In particular, if we consider ψ × id : I ×6 × ]0,∞[→
TN
× ]0,∞[, then

1
ω1

(µTN ⊗ λ)(ψ × id)(B)= (λ⊗ µ6 ⊗ λ)(B) (4.8)

for all Borel sets B ⊂ I ×6 × ]0,∞[. Let

C I = {(t, ϕ̄, r) ∈ I ×6 × ]0,∞[ : (ψ(t, ϕ̄), r) ∈ Z}.

Since (µTN ⊗ λ)(Z)= 0, we deduce from (4.8) that also (λ⊗ µ6 ⊗ λ)(C I )= 0. Next
define the sections

C I,ϕ̄ = {(t, r) ∈ I × ]0,∞[: (t, ϕ̄, r) ∈ C I }.

Then it follows from Fubini’s theorem that C I,ϕ̄ has Lebesgue measure zero for µ6-
almost all ϕ̄ ∈6. Let (I j ) j∈Z be a countable family of intervals I j ⊂ R of length 1/w1

which cover R. For each j ∈ Z, select a set S j ⊂6 such that µ6(S j )= 0 and moreover
λ2(C I j ,ϕ̄)= 0 for ϕ̄ ∈6 \ S j . Hence, the set S =

⋃
j∈Z S j ⊂6 has measure zero and

λ2
( ⋃

j∈Z
C I j ,ϕ̄

)
= 0, ϕ̄ ∈6 \ S.

But ⋃
j∈Z

C I j ,ϕ̄ = {(t, r) ∈ R× ]0,∞[ : (ιϕ̄(t), r) ∈ Z} = (ιϕ̄ × id)−1(Z)

by construction and, therefore, recalling that Eϕ̄ ⊂ (ιϕ̄ × id)−1(Z) from (4.5), we finally
obtain λ2(Eϕ̄)= 0 for ϕ̄ ∈6 \ S.

Step 3. From 6 to TN . First, we remark that for all 2̄ ∈ TN and s ∈ R,

fι2̄(s) = τ−s ◦ f2̄ ◦ τs on Dι2̄(s),

where τs(t, r)= (t + s, r). For the escape sets, it directly follows that τs(Eι2̄(s))= E2̄
for s ∈ R, since f n

ι2̄(s)
= τ−s ◦ f n

2̄
◦ τs on Dι2̄(s),∞ for all n ∈ N. In particular,

λ2(Eι2̄(s))= λ
2(E2̄), 2̄ ∈ TN , s ∈ R. (4.9)

Define I = [0, 1/ω1] and consider the map ψ : I ×6→ TN given by (4.6). Take
S ⊂6 from Step 2 and put Z∗ = ψ(I × S)⊂ TN . Then (4.7) and µ6(S)= 0 imply
that µTN (Z∗)= 0. Let 2̄ ∈ TN

\ Z∗ be fixed and introduce s =21/ω1 ∈ I , where
2̄= (2̄1, . . . , 2̄N ) and 21 ∈ [0, 1]. With ϕ̄ = ι2̄(−s), we then have ϕ̄ = 2̄− ι(s)=
2̄− (21/ω1)ω ∈6 and moreover ϕ̄ 6∈ S, since otherwise ψ(s, ϕ̄)= ϕ̄ + ι(s)= 2̄ ∈ Z∗.
Hence, using (4.9) and Step 2, λ2(E2̄)= λ

2(Eϕ̄)= 0, which completes the proof of
Theorem 3.1. �
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5. Proof of the main result
First, we are going to introduce the ping-pong map in some detail. Let p be a forcing
function such that

p ∈ C2(R), 0< a ≤ p(t)≤ b (t ∈ R), ‖p‖C2
b
= ‖p‖∞ + ‖ ṗ‖∞ + ‖ p̈‖∞ <∞.

(5.1)
We study the successor map, which sends a time t0 ∈ R of impact to the left racket x = 0

and the corresponding velocity v0 > 0 immediately after the impact to their successors t1
and v1 describing in the same way the subsequent impact to x = 0. As is derived in [11],
this map is given by

(t0, v0) 7→ (t1, v1), t1 = t̃ +
p(t̃)
v1

, v1 = v0 − 2 ṗ(t̃), (5.2)

where t̃ = t̃(t0, v0) denotes the time at which the right racket x = p(t) is hit. It is implicitly
defined by the relation

(t̃ − t0)v0 = p(t̃). (5.3)

In order to have the map well defined, it will be assumed that t̃ is the first root of equation
(5.3) in ]t0,∞[. From a mechanical point of view, it must be ensured that there is no
further impact to the moving racket before t1, i.e.

x(t)= p(t̃)+ (t − t̃)ẋ(t̃+) < p(t), t ∈ ]t̃, t1[

is needed. Then, by [11, Remark 3.1], for that it is sufficient to take v0 > 3‖ ṗ‖∞. Ignoring
the physical side and looking at the model more formally, the map will be well defined as
soon as

v0 > ν∗ := 2 max
{

sup
t∈R

ṗ(t), 0
}
, (5.4)

since this condition will guarantee that v1 is positive. It also implies that t̃ = t̃(t0, v0) is a
(unique) smooth function, at least of class C1. From now on, we understand that the map
(5.2) and (5.3) is defined on the half-plane R× ]ν∗,∞[.

As a preparation for the proof of Theorem 1.1, we first consider the map (t0, v0) 7→

(t1, v1) from (5.2) and (5.3) for a fixed forcing function p(t) such that (5.1) holds. Since
this map is not symplectic, we need to reformulate the model in terms of time t and energy
E = 1

2 v
2. Defining E0 and E1 by v0 =

√
2E0 and v1 =

√
2E1, respectively, (5.2) reads as

9 : (t0, E0) 7→ (t1, E1),

t1 = t̃ +
p(t̃)
√

2E1
, E1 = E0 − 2

√
2E0 ṗ(t̃)+ 2 ṗ(t̃)2 = (

√
E0 −

√
2 ṗ(t̃))2, (5.5)

where t̃ = t̃(t0, E0) is implicit and to be determined from the relation t̃ = t0 + p(t̃)/
√

2E0.
Then the map 9 from (5.5) is defined for (t0, E0) ∈ R× ] 12ν

2
∗,∞[ and moreover it is area

preserving. The latter may be derived by a direct calculation or from the fact that it has a
generating function; see [11, §A.6]. In addition, the inverse function theorem implies that it
is locally one-to-one. At the end of the paper, we will present an example (cf. Remark 5.3)
showing that in general 9 will fail to be one-to-one globally.

The bound (5.6) in the following lemma expresses the crucial fact that W = p(t)2 E is
an adiabatic invariant [11]. Therefore, its increase can be conveniently controlled by a
‘modulus of continuity’ 1.
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LEMMA 5.1. There is a constant C > 0, depending only upon ‖p‖C2
b

and a, b > 0 from
(5.1), such that

|p(t1)2 E1 − p(t0)2 E0| ≤ C1(t0, E0) for (t0, E0) ∈ R× ]ν2
∗/2,∞[, (5.6)

where (t1, E1)=9(t0, E0) denotes the ping-pong map for the forcing function p and
1(t0, E0)= E−1/2

0 + sup{| p̈(t)− p̈(s)| : t, s ∈ [t0 − C, t0 + C], |t − s| ≤ C E−1/2
0 }.

Proof. Since E1 ≤ (
√

E0 +
√

2 ‖ ṗ‖∞)
2, it is sufficient to prove (5.6) for E0 ≥ 1, as we

will henceforth assume. Defining ϕ(t)= p(t)2, we obtain from [11, Lemma A.5] the key
relation

p(t1)2 E1 − p(t0)2 E0 =
1
2
ϕ(t̃)

∫ 1

0
(1− λ)[ϕ̈((1− λ)t̃ + λt0)− ϕ̈((1− λ)t̃ + λt1)] dλ;

(5.7)
we also note that for large values of the energy this formula is a consequence of [11,
Lemma 3.7]. Furthermore, t1 − t0 ≤ C2 E−1/2

0 , by [11, p. 1494] or directly from (5.5)
and the definition of t̃ , for a constant C2 > 0 which depends upon b and ‖ ṗ‖∞. Since
t̃ ∈ [t0, t1], the convex combinations (1− λ)t̃ + λt0 and (1− λ)t̃ + λt1 also belong to this
interval, so that their distance to t0 is bounded by C2 E−1/2

0 ≤ C2. This yields the claim,
observing that ϕ̈ = 2 ṗ2

+ 2pp̈. �

Thus far, we have presented the general setup for the ping-pong map. Now we start
to investigate its properties with respect to quasi-periodicity, in the sense that we fix
2̄ ∈ TN and replace p(t) by p2̄(t) from (1.3). Since P ∈ C2(TN ) by hypothesis, we
have the bound ‖ ṗ2̄‖∞ + ‖ p̈2̄‖∞ ≤ C uniformly in 2̄ ∈ TN . Furthermore, 0< a ≤
p2̄(t)≤ b for all 2̄ ∈ TN and t ∈ R by (1.2), which means that the above considerations
apply with uniform constants; also note that ν∗ from (5.4) becomes uniform in 2̄ ∈ TN

if it is replaced by ν∗∗ = 2 max {max9̄∈TN ∂ωP(9̄), 0}, where ∂ω =
∑N

j=1 ω j (∂/∂θ j ).

Furthermore, from p̈2̄(t)=
∑N

i, j=1 ωiω j (∂
2 P/∂θi∂θ j )(8t (2̄)), we observe that the

functions 1(t0, E0) for p2̄ can be uniformly bounded by

1(E0)= E−1/2
0 + sup

{ N∑
i, j=1

ωiω j

∣∣∣∣ ∂2 P
∂θi∂θ j

(2̄)−
∂2 P
∂θi∂θ j

(9̄)

∣∣∣∣ : 2̄, 9̄ ∈ TN , ‖2̄− 9̄‖

≤ CE−1/2
0

}
.

Therefore, Lemma 5.1 leads to the following result.

LEMMA 5.2. There is a constant C > 0, uniform in 2̄, such that

|p2̄(t1)
2 E1 − p2̄(t0)

2 E0| ≤ C1(E0) for (t0, E0) ∈ R× ]ν2
∗∗/2,∞[,

where (t1, E1)= f2̄(t0, E0) denotes the ping-pong map for the forcing function p2̄.

Since in particular P ∈ C1(TN ), the equation

τ =
1
√

2E0
P(2̄0 + ι(τ )) (5.8)
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can be solved for τ = τ(2̄0, E0) if 2̄0 ∈ TN and E0 > E∗ are fixed; here it suffices to
choose E∗ so large that

√
2E∗ > ν∗∗, with ν∗∗ from above. Furthermore, owing to P ∈

C2(TN ), in particular τ will be a C1-function of its arguments.
To match the family of ping-pong maps to the general framework, we take D =

TN
× ]E∗,∞[ for E∗ >max{E∗, E∗∗} fixed, where E∗∗ will be determined below.

Consider f :D ⊂ TN
× ]0,∞[→ TN

× ]0,∞[, (2̄1, E1)= f (2̄0, E0), given by

f : 2̄1 = 2̄0 + ι(F(2̄0, E0)), E1 = E0 + G(2̄0, E0), (5.9)

where

F(2̄0, E0)=

(
1
√

2E0
+

1
√

2E1

)
P(2̄0 + ι(τ )),

G(2̄0, E0)=−2
√

2E0 ∂ωP(2̄0 + ι(τ ))+ 2∂ωP(2̄0 + ι(τ ))
2

for τ = τ(2̄0, E0). Then f has the special form (3.1) and the associated family of planar
maps { f2̄}2̄∈TN is defined by (3.3). For a fixed 2̄ ∈ TN , the function t̃ = t̃(t0, E0) has
to be determined as the solution to t̃ = t0 + (p2̄(t̃)/

√
2E0)= t0 + (P(2̄+ ι(t̃))/

√
2E0).

Comparing this to (5.8), it is found that t̃(t0, E0)= t0 + τ(2̄+ ι(t0), E0). As a
consequence, it turns out that f2̄ is just the ping-pong map (5.5) with forcing function
p2̄(t). By (3.2) and the definition of D = TN

× ]E∗,∞[, it is defined on D2̄ = (ι2̄ ×
id)−1(D)= R× ]E∗,∞[, independently of 2̄ ∈ TN .

Next we are going to argue that f is measure preserving, using Lemma 3.3. This
amounts to deriving the identity (1+ ∂ωF)(1+ ∂E0 G)− (∂E0 F)(∂ωG)= 1. However,
since f0̄(t0, E0)= (t0 + F(ι(t0), E0), E0 + G(ι(t0), E0)) by (3.3), it turns out that the
desired relation is equivalent to the condition det D f0̄ = 1 on the Jacobian determinant of
f0̄. Recalling that f0̄ is even exact symplectic, it follows that f is measure preserving.

We also need to find a C1-function W =W (2̄0, E0) such that (3.7) and (3.8) are
verified. For this, let

W (2̄0, E0)= P(2̄0)
2 E0.

Regarding (3.7), we have (∂W/∂E0)(2̄0, E0)= P(2̄0)
2, so we can take β = a2 and γ =

b2 by (1.2). For (3.8), we recall the definition of f from (5.9) and we get

W ( f (2̄0, E0))−W (2̄0, E0)= p2̄0
(F(2̄0, E0))

2
[E0 + G(2̄0, E0)] − p2̄0

(0)2 E0.

(5.10)
Writing (t1, E1)= f2̄0

(t0, E0) with t1 = t1(t0, E0) and E1 = E1(t0, E0), we have
F(2̄0, E0)= t1(0, E0) and E0 + G(2̄0, E0)= E1(0, E0); cf. (3.3). Therefore, (5.10)
and Lemma 5.2 for (t0, E0)= (0, E0) yield

W ( f (2̄0, E0))−W (2̄0, E0)= p2̄0
(t1(0, E0))

2 E1(0, E0)− p2̄0
(0)2 E0,

which finishes the proof of (3.8) upon taking c(E0)= C1(E0). Note that then
limE0→∞ c(E0)= 0, due to the compactness of TN .

Next we need to show that f is one-to-one on TN
× ]E∗∗,∞[ if E∗∗ is fixed sufficiently

large. To establish this claim, note that E1 =O(E0) leads to

D f =
∂(2̄1, E1)

∂(2̄0, E0)
=

(
IN +O(E−1/2

0 ) O(E−3/2
0 )

O(E1/2
0 ) 1+O(E−1/2

0 )

)
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for the Jacobian matrix of f (which is a square matrix of size N + 1) and IN denoting the
N × N identity matrix. Using the mean value theorem for both coordinates, from this it is
straightforward to check that f is indeed one-to-one for E∗∗ large enough.

To summarize the argument thus far, we are in a position to apply Theorem 3.1 to f :
D ⊂ TN

× ]0,∞[→ TN
× ]0,∞[. This leads to the following conclusion: if we define

D2̄,∞ as in (3.5), then λ2(Ê2̄)= 0 for almost all 2̄ ∈ TN , where Ê2̄ = {(t0, E0) ∈ D2̄,∞ :
limn→∞ En =∞} by (3.6). Translated back to the original variables (t, v)= (t,

√
2E),

this yields the following. Let g2̄ be the ping-pong map (t0, v0) 7→ (t1, v1) from (5.2) for
p(t)= p2̄(t) and let

D̃2̄ = R× ]
√

2E∗,∞[, D̃2̄,1 = D̃2̄, D̃2̄,n+1 = g−1
2̄
(D̃2̄,n), D̃2̄,∞ =

∞⋂
n=1

D̃2̄,n .

Then λ2(Ẽ2̄)= 0 for almost all 2̄ ∈ TN , where

Ẽ2̄ =
{
(t0, v0) ∈ D̃2̄,∞ : lim

n→∞
vn =∞

}
. (5.11)

It remains to relate Ẽ2̄ from (5.11) to E2̄, as introduced in Theorem 1.1. The
ping-pong map g2̄ is in fact defined and in particular C1 on D∗ = {(t0, v0) : v0 >

2 max9̄∈TN ∂ωP(9̄)}, since, provided that v0 > 2 max9̄∈TN ∂ωP(9̄), the equation (5.3)
can be uniquely solved for t̃ . Thus, we find that

E2̄ =
{
(t0, v0) ∈ D∗ : (tn, vn)n∈N is well defined and lim

n→∞
vn =∞

}
.

Hence, if (t0, v0) ∈ E2̄, then there is n0 ∈ N such that (tn, vn) ∈ Ẽ2̄ for all n ≥ n0. In
particular, we have E2̄ ⊂

⋃
∞

n=1 g−n
2̄
(Ẽ2̄). Noting that g2̄ is a local diffeomorphism, it

follows that λ2(E2̄)= 0 whenever we have λ2(Ẽ2̄)= 0. This completes the proof of
Theorem 1.1. �

Remark 5.3. The map 9 from (5.5) will in general fail to be one-to-one globally. To
see this, consider a smooth forcing function p(t) such that the derivative ṗ(t) reaches its
maximum at two instants t̃1 and t̃2 satisfying t̃1 < t̃2 and p(t̃1) > p(t̃2). For simplicity,
we will use the original coordinates (t, v). Let v1 > 0 be the unique number so that t̃1 +
p(t̃1)/v1 = t̃2 + p(t̃2)/v1. Next define v0 = v1 + 2 ṗ(t̃1)= v1 + 2 ṗ(t̃2) as well as t0i =

t̃i − p(t̃i )/v0 for i = 1, 2. Since v0 = v1 + 2 supt∈R ṗ(t) > ν∗ by (5.4) and t01 < t02, the
latter due to p(t̃2) < p(t̃1), the points (t0i , v0) are in the domain of 9 and furthermore
9(t0i , v0)= (t1, v1), where t1 = t̃1 + p(t̃1)/v1.
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