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We investigate several geometric models of networks that simultaneously have some nice

global properties, including the small-diameter property, the small-community phenomenon,

which is defined to capture the common experience that (almost) everyone in society also

belongs to some meaningful small communities, and the power law degree distribution, for

which our result significantly strengthens those given in van den Esker (2008) and

Jordan (2010). These results, together with our previous work in Li and Peng (2011), build a

mathematical foundation for the study of both communities and the small-community

phenomenon in various networks.

In the proof of the power law degree distribution, we develop the method of alternating

concentration analysis to build a concentration inequality by alternately and iteratively

applying both the sub- and super-martingale inequalities, which seems to be a powerful

technique with further potential applications.

1. Introduction

With the availability of massive datasets of many real-world networks, we can make

quantitative observations and studies of the underlying dynamic mechanisms and many

interesting phenomena occurring in large-scale networks. Some properties such as sparse-

ness, high-clustering, hierarchical structure, the power law degree distribution and small

diameters appear in a wide range of networks, ranging from internet graphs and

collaboration graphs to PPI (Protein–Protein Interaction) networks. Modelling these

interesting properties and phenomena not only provides us with a good way to understand

better how these networks evolve, and why these global phenomena occur through local
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growth rules, but also gives us insights into the development of new technologies, or even

cancer drugs.

A typical network always exhibits several properties at the same time. For example,

in a web graph, the nodes are web-pages and directed edges are hyperlinks between the

pages, the number of nodes with in-degree k is proportional to k−β for some constant β,

that is, the in-degree sequence obeys the power law degree distribution (see, for example,

Albert et al. (1999) and Kleinberg et al. (1999)). It has also been observed that web

graphs have a small average distance (Albert et al. 1999; Broder et al. 2000). (In this

paper, when there is no risk of confusion, we will use ‘small’ to mean that the quantity

is a polylogarithmic function of the number of graph nodes.) Furthermore, the most

community-like subgraphs in large web graphs turn out to have size about 100, which

seems to be a general property of many real large networks (Leskovec et al. 2008; 2010).

The three properties mentioned above are by no means specific to technological networks,

and also appear in a wide range of social networks, such as the friendship network of

LiveJournal.

The first two properties, that is, the power law degree distribution and the small-

diameter property, have been explored extensively in recent decades. However, to our

knowledge, the third property – that good communities in large-scale networks have

small sizes – is still largely unexplored since there has been no mathematical definition of

what we mean by good communities in networks, and this has motivated us to carry out

a mathematical study of the common experiences, observations and experiments related

to the small-community phenomenon in networks.

The authors of the current paper have proposed a mathematical definition for com-

munities based on the concept of conductance and have given a definition of the small-

community phenomenon in networks. We then conjectured that small communities are

ubiquitous in various networks (Li and Peng 2011). Intuitively, a given network is said to

have the small-community phenomenon if almost every node in the network is contained in

some good community of small size (see Section 2 for the formal definition). We have found

theoretical evidence for our conjecture in that some classical network models, including

Kleinberg’s small-world model (Kleinberg 2000) and the Ravasz–Barabási Hierarchical

model (Ravasz and Barabási 2003), do indeed exhibit the small-community phenomenon,

though there are also models that do not.

There are also other reasons for us to make this conjecture. First, we have all experienced

the fact that everyone in a society belongs to some small meaningful subgroups such as

classmates, friends or relatives. Second, existing empirical studies provide evidence that

large communities are rare in large networks, and good communities are small. In addition

to the direct evidence given in Leskovec et al. (2008; 2010) and Groh and Rappel (2009),

there is also some indirect evidence. For example, Lang (2005) showed that spectral

graph partitioning fails to generate highly unbalanced cuts for many large-scale social

networks, and Kurucz and Benczúr (2010) pointed out that this failure may be caused by

an abundance of small dense communities. In summary, we have reasons to conjecture

that small communities are ubiquitous, at least in many large social networks, which raises

a number of new problems for both the theory and applications of the small-community

phenomenon in networks.
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We are interested in evolving models that have all three of these ‘good’ properties:

— the power law degree distribution;

— the small-diameter property; and

— the small-community phenomenon,

all of which are found in typical web graphs and large social networks. Models with

one or two of these properties are easily constructed in a natural way. In particular,

the power law degree distribution arises from the preferential attachment scheme; the

small-diameter property follows from a broad class of graph processes (Bollobás 2001);

and the small-community property may be generated by homophily – the tendency for

close or similar individuals to associate with each other, which is commonly observed as

a reason for two people establishing a relationship with each other.

However, when we try to define a model that encompasses all three properties, we

often come across conflicts that are hard to reconcile. Roughly speaking, the first two

properties usually result from some expander-like graphs, while the small-community

property corresponds to highly structured graphs, which seem to be, to some extent,

like anti-expander graphs (Li and Peng 2011). However, as Li and Peng (2011) shows,

the Ravasz–Barabási Hierarchical model (Ravasz and Barabási 2003) satisfies all three

requirements. On the other hand, the Ravasz–Barabási Hierarchical model has a very

unnatural growith rule, which can only capture very special networks.

Another good candidate may be the Geometric Preferential Attachment (GPA) model

introduced in Flaxman et al. (2007a; 2007b), where the motivation was to model networks

with a power law degree distribution and small expansion. This model is defined on a

unit-area spherical surface S , for which a natural distance can be introduced. Flaxman

et al. combined the rich-get-richer effect and the concept of homophily in a simple way

such that every newcomer only chooses neighbours from those existing vertices that are

close to them using the preferential attachment scheme, and then proved that the power

law distribution occurs when the parameters in the model satisfy certain conditions.

We showed in Li and Peng (2011) that good communities exist for every node in a

model under these conditions. However, the resulting communities, and the diameter, are

relatively large.

In the current paper, we will first study a base model, which is a GPA model with

additive fitness. We will generalise the result of Jordan (2010) by showing that, under

appropriate conditions, the base model has both a power law degree distribution and

the small-community phenomenon. However, the diameter of the model is large in this

situation. To resolve this problem, we try to incorporate a simple growth rule into our

base model that leads to the small-diameter property and does not change the degree

sequence too much. The rule we try is the uniform recursive tree: that is, each time

a new vertex is generated, it chooses a neighbour uniformly at random from existing

vertices. It is well known that such a simple process results in a graph of diameter and

maximum degree of order Θ(ln n), where n is the number of generated vertices (Smythe

and Mahmoud 1995). We give two alternative ways to incorporate this rule, and although

the resulting models are similar, their structures are different. The first is a hybrid model,

which can be viewed as a composition of two independent parts: a local graph, which has
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the power law degree distribution, and a global graph, which may connect vertices that

are far away. The hybrid model as a whole has both the small-diameter property and

a small-community structure. The second model is a self-loop model in which we treat

the additive fitness in our base model as the number of self-loops attached with the new

vertex. This gives a new interpretation for the use of fitness in preferential attachment

schemes. With some further development, the self-loop model is shown to have all three

of our good properties.

The methodology we use to show the power law degree distribution has some

independent interest. The proof technique is inspired by the work in Jordan (2010),

which investigated the asymptotic behaviour of the degree sequence of the base model

(see Section 2). In our proof of the concentration inequalities, there are subtle restrictions

on the parameters for which deeper mathematics is needed. Rather than using the

coupling techniques used in Flaxman et al. (2007a) and van den Esker (2008), we use

the submartingale and supermartingale concentration inequalities recursively (Chung and

Lu 2006) to give a better bound at each step, and this results in a sharp bound for the

desired quantity.

Other related work

Avin studied a random distance graph that incorporates both the Erdös–Rényi graph and

the random geometric graph (Avin 2008). This graph was shown to have several good

properties, for example, the small-diameter property and a high clustering coefficient.

A hybrid model composed of a power law graph and a grid-like local graph has been

studied by several groups of researchers (Chung and Lu 2004; Kurucz and Benczúr 2010;

Fraigniaud and Giakkoupis 2009).

Clusters or communities based on the concept of conductance were studied in Kannan

et al. (2004) and Leskovec et al. (2008; 2010), where spectral algorithms and other

approximation algorithms were used to detect good clusters or communities.

Structure of the paper

We will introduce our definition of the small-community phenomenon in Section 2, where

we will also define our models and state the main results of the paper.

In Section 3, we introduce some useful tools and basic facts, as preparation for

Sections 4–6, where we show that the models have the desired properties. In Section 7,

we discuss the effect of parameter choice on the properties of our proposed models, and,

finally, we present some brief conclusions in Section 8.

2. Basic definitions, the model and main results

2.1. The small-community phenomenon

In a graph G = (V , E), we use degG(v) to denote the degree of a node v ∈ V . The volume

of a subset of S ⊆ V is defined to be the sum of degrees of the vertices in it, that is,

vol(S) =
∑
v∈S

degG(v).
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Our definition of communities is inspired by Leskovec et al. (2008), which used

conductance as a measure of the goodness of a community. In Li and Peng (2011), we

introduced the concept of an (α, β, γ)-community based on the conductance and size of a set

of nodes. The conductance Φ(S) of S is the ratio between the number of edges coming out

of S and either its volume or the volume of its complement S̄ , whichever is smaller, that is,

Φ(S) =
|e(S, S̄ )|

min{vol(S), vol(S̄)}
,

where e(S, T ) denotes the set of edges with one endpoint in S and the other in T .

We can now define the (α, β, γ)-community as follows.

Definition 2.1. Given a graph G = (V , E) with |V | = n, a connected set S ⊂ V with

|S | = ω(1) is a strong (α, β)-community if

Φ(S) �
α

|S |β . (1)

Moreover, if |S | = O((ln n)γ), we say that S is a strong (α, β, γ)-community.

Note that in the above definition we require that the size of a community is not too

small (that is, |S | = ω(1)). This requirement helps us avoid the trivial case in our definition

(when |S | is constant, it can always be treated as a proper community by choosing large

α). In fact, a meaningful community in society can never be too small because of a lack

of requisite variety or other group function (Allen 2004).

The following definition characterises the property that almost everyone in the network

belongs to some small community (from now on, when we write almost every we will

mean 1 − on(1), where n is the number of vertices in G).

Definition 2.2. A network (model) G is said to exhibit the small-community phenomenon

if almost every node belongs to some (α, β, γ)-community, where α, β, γ > 0 are some

global constants.

2.2. The geometric model

The base model we will use is a geometric preferential attachment model with additive

fitness. Such a model has been studied in van den Esker (2008) and Jordan (2010) – see

also Flaxman et al. (2007a; 2007b). We assume that a self-loop counts as degree 1. The

model is defined on a unit-area spherical surface S (that is, the radius of the sphere is

1/2
√
π). Let n be the number of vertices we are going to generate. Let ξ > 0 be an

arbitrary constant and m, r and δ = ξm be parameters, which may depend on n (note

that this is the essential difference compared with the cases studied in Jordan (2010)).

Intuitively speaking, m is the number of edges we are going to add in each step; r is the

distance restriction on the two endpoints of an edge; and δ is the additive fitness. Let

BR(v) denote the spherical cap of radius R around v in S , that is,

BR(v) = {u ∈ S : ‖u − v‖ � R},

where ‖ · ‖ denotes the angular distance on S . Let AR = area(BR(v)) be the area of the

spherical cap of radius R, which is independent of v.
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The base model

We start the process from a graph G1, which is composed of a uniformly generated (from

S) node x1 with 2m self-loops. At each time t + 1 for t > 0, if Gt = (Vt, Et), we first

generate a new node xt+1 uniformly at random from S , and then connect it to some

existing vertices or itself. Specifically, if there is no node in Br(xt+1), we add 2m self-loops

to xt+1. And if Br(xt+1)∩Vt �= �, we choose m contacts (with replacement) independently

from Br(xt+1) for the newcomer such that for any i with 1 � i � m, the probability that

some vertex v ∈ Br(xt+1) is chosen as the ith contact is defined by

Pr
[
yt+1
i = v

]
=

degt(v) + δ∑
w∈Br(xt+1)∩Vt

(degt(w) + δ)
. (2)

Remark 2.1. A self-loop parameter α > 2 was introduced in van den Esker (2008) (and

Flaxman et al. (2007a; 2007b)) to avoid a technical problem when proving the power law

degree distribution. In their settings, a node v ∈ Br(xt+1) is chosen as the contact with

probability

degt(v) + δ

max
{∑

w∈Br(xt+1)∩Vt
(degt(w) + δ), α(m + δ/2)Art

} , (3)

where δ > −m. The case of α = 0 was left open in those papers, but Jordan (2010) has

since investigated the asymptotic behaviour of the degree sequence for this case. In that

study, m, r, δ > 0 are constants that do not depend on n, which converges to infinity.

However, in our situation, we need a strong concentration result, so the parameters may

depend on n. We will give such a result when α = 0 and δ > 0, which strengthens the

results in van den Esker (2008) and Jordan (2010), and partially answers the open question

in Flaxman et al. (2007a; 2007b).

We can show that when δ = ξm > 0 and r = r0 = n− 1
2 (ln n)c0 , where c0 = c0(ξ) is

large and may depend on ξ, the base model has the power law degree distribution and

the small-community phenomenon but does not have the small-diameter property. To

incorporate the missing property without changing the other two properties too much,

we will introduce some operations that, essentially, generate a uniform recursive tree. We

give two different operations such that both of the resulting variants of the base model

have the three properties to some extent.

The hybrid model

In this model, every edge has an attribute that indicates whether it is a local-edge or a

long-edge, that is, whether the two endpoints of the edge are local- or long-contacts of

each other. A local- (or long-) edge contributes to the local- (or long-) degree of both of its

endpoints. We start from GH
1 , which is the same as G1 in the above, and let the self-loops

of x1 be local-edges. At each step t + 1 for t � 1, we form GH
t+1 from GH

t , by choosing

a new vertex xt+1 uniformly at random from S . We first choose for the newcomer m

local-contacts yi, 1 � i � m, independently at random, as in the base model, with degt(v)
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in Equation (2) denoting the local-degree of v at time t. Then we choose for xt+1 another

long contact z uniformly from x1, . . . , xt.

This model can be seen to be composed of two parts: a local power law graph and a

global uniform recursive tree. These can be generated in two phases. First, we generate

the local power law graph following the rules used in the base geometric model. We then

generate a recursive tree as follows: taking each t � 1 in turn, xt+1 connects a long-contact

chosen uniformly at random from x1, . . . , xt.

The independence of the local and global parts of the hybrid model conforms to our

intuition that local and long contacts are formed by different mechanisms. Previous studies

on such a model have usually had a global power law graph and a local grid-like graph

(see, for example, Chung and Lu (2004)), which is comparable to ours.

The self-loop model

In this model, every new node is created with δ flexible self-loops, which may be eliminated

in later steps. We now generate x1 uniformly at random from S and add 2m+δ self-loops

to it, with δ � 2 loops marked flexible. This is the start graph GS
1. At each step t + 1 for

t � 1, we form GS
t+1 from GS

t , by choosing a new vertex xt+1 uniformly at random from

S, and then adding δ flexible self-loops to it. We then choose m contacts yi, 1 � i � m

independently at random, as in the base model, with degt(v) in Equation (2) denoting

the number of non-flexible edges incident to v at time t. Then we choose for xt+1 another

contact z uniformly from the set of existing nodes containing one or more flexible self-

loops (this set cannot be empty because xt is a member of it), and delete one flexible

self-loop from both xt+1 and z. The newly added edge (xt+1, z) is marked flexible. Note

that the edge-rewiring keeps the degree of the vertices unchanged, which facilitates the

analysis of its degree distribution.

This model can also be seen to be composed of two parts: a flexible part and a non-

flexible part, which can be generated in several phases. We first generate the non-flexible

part following the growth rules of the base model. We then add δ flexible self-loops to

each vertex. Then, taking each t � 1 in turn, xt+1 connects a contact z chosen uniformly

at random from x1, · · · , xt, containing flexible self-loop(s), then a flexible self-loop of xt+1

and z is deleted and a new flexible edge (xt+1, z) is added.

We can give a plausible explanation of the self-loops emerging in this model. It is a

common observation in the social sciences that members of society do not just have direct

relationships with others, but some implicitly asymmetric ‘parasocial’ interactions with

celebrities, virtual characters, and so on. In these relationships, one of the parties knows

a great deal about the other, but the other knows very little if anything about the first

party (Horton and Wohl 1956). Such relationships are seldom reflected in commonly used

friendship networks, which are mainly concerned with symmetric two-sided friendships.

Our model incorporates the parasocial relationships as self-loops, and the edge-rewiring

may be roughly interpreted as the long-distance relationship being established at the

expense of its parasocial connections.
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2.3. Main results

Our main results are that the two models have rather good properties. We will assume

that δ = mξ, where ξ > 0 is some constant and r0 = n−1/2(ln n)c0 for some large constant

c0, which may depend on ξ.

For r � r0, it is obvious that the diameter of the base model is

Ω(1/r) = Ω
(
n1/2(ln n)−c0

)
(see Section 4), which is large, while the small diameters of the uniform recursive trees

imply the small-diameter property in our two generalised models.

Theorem 2.1 (Small-diameter property).

(i) For any m � 1, r > 0, the diameter of GH
n is O(ln n) with high probability.

(ii) For m � K1(ξ) ln n and r > 0, the diameter of GS
n is O(ln n) with high probability,

where K1(ξ) is some constant depending on ξ.

Given the geometric structure of the models, it is natural to think that a group of

vertices close to each other behaves like a good community. We will make this intuition

rigorous by considering the R-neighbourhood CR(v) of a vertex v, which is the set of all

vertices within a distance of at most R from v in Gn, and then show, for some appropriate

r and R, that CR(v) is a good community for every v. We have the following result.

Theorem 2.2 (Small-community phenomenon). If r = r0 and m � K2(ξ) ln n, where K2(ξ) is

some constant depending on ξ, both GH
n and GS

n have the small-community phenomenon,

that is, in each model, for every node v ∈ Vn, there exists with high probability some

(α, β, γ)-community containing v, where α, β, γ are constants independent of n.

A simple corollary of the above theorem is that the base model Gn also displays the

small-community phenomenon, which indicates that the community structure is mainly

determined by the geometric structure of our model and that the effect of long edges is

small because every new node can establish m 	 ln n local edges but only 1 long edge.

The power law degree distribution is a result of the preferential attachment scheme

used in our base model, for which we have the following theorem.

Theorem 2.3 (Degree distribution of the base model). In the base model, if r � r0,

m = O(ln2 n) and δ = mξ for any constant ξ > 0, there exist constants Ck and µ, such

that for all k = k(n) � m,

E[dk(t)] = Ck

n

k3+ξ
+ O

(
n

(nr2)µ

)
, (4)

where:

— dk(t) denotes the number of vertices with degree k in the base model Gt;

— Ck = Ck(m, ξ) tends to a limit C∞(m, δ) that only depends on m and δ as k → ∞; and

— µ is some constant depending on ξ and strictly less than 1.
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Theorem 2.3 already significantly strengthens the results in both van den Esker (2008)

and Jordan (2010). The proof of this theorem requires a new technique of recursively

bounding the concentration inequalities, which we will develop in Section 6.

We can show from Theorem 2.3 that in our generalised models, the networks satisfy a

nice power law degree distribution.

Theorem 2.4 (Power law degree distribution). For r � r0 and m = O(ln2 n), the expected

degree sequences of the local graph of the hybrid model GH
n and the whole graph of

the self-loop model GS
n both follow a power law distribution with exponent 3 + ξ. More

specifically, there exist constants CH
k , CS

k and µ such that for all k = k(n) � m:

(i) In the hybrid model,

E[dk(n)] = CH
k

n

k3+ξ
+ O

(
n

(nr2)µ

)
,

where dk(t) denotes the number of vertices with local-degree k in GH
t .

(ii) In the self-loop model,

E[dk(n)] = CS
k

n

k3+ξ
+ O

(
n

(nr2)µ

)
,

where dk(t) denotes the number of vertices with total degree k in GS
t .

In the above statements, both CH
k and CS

k tend to some limits that depend only on m and

δ as k → ∞, and µ is some constant depending on ξ and strictly less than 1.

From the above theorems, we know that when r = r0 = n−1/2(ln n)c0 , the two generalised

models have all three properties simultaneously to some extent (the reservation being that

only the local part has the power law degree distribution in the hybrid model). One might

then ask about the cases when r is too large or too small, and we will give some evidence

that at least one of the three properties disappears in such cases. In particular, we have

the following new phenomenon when r is large.

Theorem 2.5 (Large community and small expander). In the base model Gn, let r = n−1/2+ε,

where ε > 0 and m � K ln n, for some sufficiently large constant K . Then:

(i) If R = n−1/2+ρ, for any ρ > ε, then

|CR(v)| = Θ(n2ρ)

Φ(CR(v)) = O

(
1

nρ−ε

)

with high probability.

(ii) For all R = o(r),

Φ(CR(v)) = Ω(1)

with high probability.

Theorem 2.5 says that when r = n−1/2+ε, there exists some large community for every

node, but it may not belong to any small community because the most natural candidate,

that is, the small neighbourhood, is not a good community. Note that Theorem 2.5 may
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imply a new phenomenon in networks. It would be interesting to find some real-world

networks in which there is a large fraction of nodes, each of which is contained in both

a good but large community, and a small expander. Also note that the two generalised

models exhibit the same phenomenon for large r.

The remaining sections of the paper are devoted to proving our main results, that is,

Theorems 2.1–2.5. We introduce some basic tools for our proof in Section 3, and prove

some basic properties of our network models; in Sections 4 and 5, we prove Theorems 2.1

and 2.2, respectively; in Section 6, we prove Theorems 2.3 and 2.4; and in Section 7, we

prove Theorem 2.5. Finally, in Section 8, we discuss some further issues following on from

the results in this paper.

3. Useful tools and basic facts

Before proving the main results, we will first give some basic facts, which will be useful in

our proofs of the main results.

We will use the following form of the Chernoff bound – see, for example, Dubhashi

and Panconesi (2009, Theorem 1.1).

Lemma 3.1. If X1, . . . , Xt are independently distributed in [0, 1] and X =
∑t

i=1 Xi, then

for 0 < ζ � 1,

Pr
[
|X − E[X]| � ζE[X]

]
� 2e− ζ2E[X]

3 . (5)

We will use the following submartingale concentration inequality extensively in our

proofs – see Chung and Lu (2006, Theorems 2.38 and 2.41).

Lemma 3.2. Suppose {X0, . . . , Xt} is a sequence of random variables associated with a

filter {F0, . . . ,Ft} and G is some event on the probability space. If for 1 � i � t we have

E[Xi|Fi−1,G] � Xi−1

Var[Xi|Fi−1,G] � σ2
i

Xi − E[Xi|Fi−1,G] � M

where σ2
i ,M are non-negative constants, then

Pr[Xt � X0 + λ] � e
− λ2

2
∑ t

i=1
σ2
i
+Mλ/3 + Pr[¬G]. (6)

The supermartingale concentration inequality is similar, so we will not give it explicitly

here.

In the following sections we will use constants c0, c1 and c2, which may depend on ξ, to

characterise some bounds. We state here the conditions that these three constants should

satisfy:

(c0 − c1 − 1)(1 − 1/(ξ + 2)) < c1 < 2(c0 − c1 − 1)(1 − 2/(2 + ξ)) (7)

c2 = c1
ln(ξ(1 + ξ/2) + 1)

ln((7 + 400/ξ)2(ξ(1 + ξ/2) + 1))
. (8)
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Note that for fixed ξ we can always choose c0 to be large enough to guarantee that c2 is

also large, which will ensure that the bounds we obtain in the proof are good.

In the definition of our base model, a new vertex will create 2m self-loops if there is no

existing vertex within a distance of at most r. This rule is made to guarantee that at each

step the degree of the graph grows by 2m, which facilitates further analysis. Moreover, in

most interesting cases, when r = r0 = n−1/2(ln n)c0 , if t grows as large as

τ = O

(
n

(ln n)2c0−1

)
,

then with high probability for any vertex that comes after time τ, there will be many

existing nodes within a distance of at most r. Therefore, we will focus on the processes

through which all the later comers will choose existing nodes as neighbours rather than

creating 2m self-loops.

In analysing the degree sequence of our base model, it is convenient to compare the

chosen probability given in Equation (2) with the traditional case (see, for example,

Bollobás (2003)), in which at each step t + 1 an existing vertex v with degree k is chosen

with probability k/2t, where 2t is the total degree of all existing vertices. Thus, it is natural

to consider using a good estimate of Equation (2) for further analysis. In particular, we

would like to have some good bound on the normalised quantity of the denominator in

Equation (2). Let Tt(u) denote this quantity, namely,

Tt(u) =
∑

v∈Br(u)∩Vt

(degt(v) + δ).

A closely related quantity is

Zt(u) =
∑

v∈Br(u)∩Vt

1,

which is the number of vertices in Br(u) at time t. We will now prove several simple facts

related to these two quantities.

Lemma 3.3. If u ∈ S and t > 0, then the expectation of Tt(u) is Ar(2m + δ)t.

Proof. Note that

E[Tt(u)] = E

⎡
⎣ ∑
v∈Br(u)∩Vt

(degt(v) + δ)

⎤
⎦

= E

[∑
v∈Vt

(degt(v) + δ)1v∈Br(u)

]

= E

[∑
v∈Vt

degt(v)1v∈Br(u)

]
+ δArt. (9)

But from Flaxman et al. (2007a, Lemmas 1 and 2), we have

E

[∑
v∈Vt

degt(v)1v∈Br(u)

]
= 2Armt,

which completes the proof.
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Let Ar denote the area of Br(v). Then Ar = area(Br(v)) ∼ r2/4, for r = o(1). Let

tr =
12(ln n)2nc1/c0

r2(1−c1/c0)
.

So Artr ∼ 3(ln n)2(nr2)c1/c0 . We will consider r � r0 = n−1/2(ln n)c0 and let

t0 := tr0 =
12n

(ln n)2c0−2c1−2
.

We first give an estimate of the quantity Zt(u).

Lemma 3.4. If r � r0, then for any t � tr , we have

|Zt(u) − Art| �
1

(nr2)c1/2c0
Art,

with probability at least 1 − 2n− ln n.

Proof. Noting that

Zt(u) =

t∑
i=1

1xi∈Br(u)

and

Pr[1xi∈Br(u) = 1] = Ar,

we can obtain the result by simply applying the Chernoff bound.

From the above lemma, we can give a rough bound on Tt(u).

Lemma 3.5. If r � r0, then for any t � tr , we have(
1 − 1

(nr2)c1/2c0

)
(1 + ξ)mArt � Tt(u) � 4

(
1 +

1

(nr2)c1/2c0

)
(2 + ξ)mAr (10)

with probability at least 1 − 4n− ln n.

Proof. The first inequality is obvious from the trivial relation that Tt(u) � m(1 + ξ)Zt

and the bound on Zt given in Lemma 3.4.

To see the second inequality, note that the sum of the degrees of vertices in Br(u) is

equal to the sum of the out-degrees of all vertices in Br(u), which is equal to mZt plus the

sum of the in-degrees of vertices in Br(u), which is at most the sum of the out-degrees of
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all vertices in B2r(u). Therefore,

Tt(u) � (m + δ)Zt + m
∑

v∈Vt∩B2r(u)

1

� (2m + δ)
∑

v∈Vt∩B2r(u)

1

� (2m + δ)A2rt

(
1 +

1

(nr2)c1/2c0

)

= 4(2 + ξ)mArt

(
1 +

1

(nr2)c1/2c0

)

with probability 1 − 2n− ln n.

4. Small-diameter property

It is obvious that the diameter in the base model is at least Ω(1/r) = Ω(n1/2(ln n)−c0 ) for

all r � r0 since any vertex can connect nodes within a distance of at most r, and the

maximum distance of two vertices is Ω(1). However, with the addition of the ability to

choose uniformly from the subset of previous vertices, the diameter can be reduced to

O(ln n), with high probability. We will use the following classic result on the diameter and

maximum degree of a uniform recursive tree.

Lemma 4.1. With high probability, the diameter and maximum degree in a uniform

recursive tree are Θ(ln n).

Proof. This is a classic result – see, for example, Pittel (1994) and Devroye and Lu (1995)

for a proof.

We can now bound the diameter of the two generalised models as follows.

Proof of Theorem 2.1 (Small-diameter property). We consider the two models separately.

The hybrid model: In this case, no matter how quickly the local graph grows, the global

graph is the same as the uniform recursive tree, which gives an upper bound O(ln n)

on the diameter of the whole graph.

Self-loop model: In this case, the constructed tree in the flexible part is restricted to

having degree at most δ, and thus may be different from a uniform recursive tree.

However, by Lemma 4.1, the maximum degree of a uniform recursive tree is L ln n,

where L is the hidden constant in Θ(ln n), from which we know that if δ � L ln n,

then, with high probability, the constructed tree in the flexible part is the same as

the uniform recursive tree. Therefore, the diameter of the self-loop model is again

upper bounded by O(ln n). Finally, we note that δ = mξ � L ln n is equivalent to

m � L ln n/ξ, which completes the proof.

5. The small-community phenomenon

In this section, we consider the community structure and will require that r = r0. We start

from the intuition that a group of people close to each other form a good community,
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which can be thought of as a geographical community (Kurucz and Benczúr 2010). In

particular, for a node v, we define the R-neighbourhood CR(v) of v to be the set of

vertices within a distance of at most R from v in Gn, that is, CR(v) = BR(v) ∩ Vn. Letting

R0 = n−1/2(ln n)2c0 , we will show that CR0
(v) is a good community. In this section, we will

assume that m � K2(ξ) ln n, where K2(ξ) is some large constant depending on ξ.

Note that given v, the probability that a node generated uniformly at random from S

will land in BR0
(v) is

AR0
∼ R2

0/4 =
(ln n)4c0

4n
.

Using the Chernoff bound, it is easy to show that with high probability the number of

nodes in CR0
is Θ((ln n)4c0 ), which means that the size of such an R-neighbourhood is

small. Now we consider the connectivity of the subgraph induced by CR0
(v).

Lemma 5.1. In the base model, if r = r0 = n−1/2(ln n)c0 , then for any v ∈ Vn, the

R0-neighbourhood CR0
(v) induces a connected subgraph in Gn with high probability.

Proof. We will first show that for every v, we have Cr/2(v) induces a connected subgraph

in Gn with high probability. The lemma then follows from the fact that any two vertices

u, u′ in CR0
(v) can be connected by a set of paths between vertices u = v1, v2, · · · , vk = u′

such that each vertex pair (vi, vi+1) is within a distance of r/2.

Now we consider the connectivity of Cr/2(v).

Let ArT = 12 ln n. Then

T =
12n

(ln n)2c0−1
.

Let H0 be the subgraph induced by nodes within a distance of at most r/2 from v at

time T . Now let xt1 , · · · , xtk be the nodes that land in Br/2(v) after time T , and Hs be

the corresponding subgraph when vertex xts is added in Br/2(v). Since every vertex xj will

land in Br/2(v) with probability Ar/2, we know that with high probability, for t � T , the

number of nodes in Br/2(v) will be in the range [κ1Ar/2t, κ2Ar/2t] for some constants κ1, κ2.

In particular, we have that

|H0| � κ2Ar/2T = 3κ2 ln n

and

κ1Ar/2ts � |Hs| � κ2Ar/2ts.

Now let Xs be the number of connected components of Hs, and Ys be the number of

connected components of Hs connected to xts+1
. Then we have

Xs+1 = Xs − Ys + 1, X0 � 3κ2 ln n.

We show that if s � 6κ2 ln n, then Xs decreases by at least 1 for every s � 1 with

probability at least 7/10, from which we know that the probability that H6κ2 ln n is not

connected is bounded by O(n−3). The Lemma then follows from the fact that each of

the later vertices xts+1
such that s � 6κ2 ln n will connect the Hs with probability at least

1 − O(n−10).
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Let E denote the event that for any u ∈ Vn and for each t � T , we have

Tt(u) � 32(2 + ξ)mAr/2t.

Then, as in the proof of Lemma 3.5, the probability that E holds is 1 − O(n−4). Now,

conditioned on E, for each 1 � s � 6κ2 ln n, since xts is in Br/2(v), we have that |xts −u| � r

for every vertex u ∈ Hs−1, so xts will connect u with probability at least

m + δ

Tts−1(xts )
�

1

32Ar/2ts
.

Therefore, the probability that xts will not connect any vertex in Br/2(v) is

Pr[Ys = 0] �

(
1 − |Hs|

32Ar/2ts

)m

� n−10,

where the second inequality follows from the fact that m � K2(ξ) ln n.

Now we consider the case where Hs has at least two connected components, namely,

Xs � 2. The probability that xts+1
will connect at most one component is

Pr[Ys = 1|Xs � 2] � 2

(
1 − 1

32Ar/2ts

)m

� 1/10,

where we have used the fact that 32Ar/2ts � 96 ln n and m � K2(ξ) ln n.

Therefore, Xs decreases by at least 1 for every 1 � s � 6κ2 ln n with probability at least

7/10, which completes our proof.

We will now show that the conductance of CR0
(v) in each model is small.

Lemma 5.2. In both the hybrid and self-loop models, for any v ∈ Vn, we have

Φ(CR0
(v)) = O

(
1

|CR0
(v)|1/4c0

)
(11)

with high probability.

Proof. We first consider the hybrid model. For convenience, we abbreviate CR0
(v) as C .

Let e(C, C̄) denote the set of edges connecting C and its complement. Let e1(C, C̄) and

e2(C, C̄) denote edges in e(C, C̄) that are local and long, respectively. Then we have

e(C, C̄) = e1(C, C̄) ∪ e2(C, C̄).

Local edges connecting C and C̄ must lie between the two spherical segments separated

by the boundary of CR0
(v). More specifically, if e = (u, w) ∈ e1(C, C̄), then one of u, w lies on

the strip str1 = BR0+r(v)\BR0
(v), and the other point lies on the strip str2 = BR0−r(v)\BR0

(v).

With high probability, the total number of vertices in str1 is at most n(2rR0 + r2), and the

total number of vertices in str2 is at most n(2rR0 − r2). Hence, the number of local edges

lying between the two strips is at most 4mnrR0, namely, |e1(C, C̄)| � 4mnrR0.

Now we consider the long edges that connect C to the rest of the graph. We will show

that the number of these edges is relatively small compared with the number of local

edges within C . More precisely, we have the following lemma.
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Lemma 5.3. In the hybrid model, let Yt denote the sum of the long-degrees of vertices

in BR0
(v) ∩ Vt. Then Yn � cAR0

n for some constant c, with high probability.

Proof. By definition, we have the following recurrence for Yt.

E[Yt+1|Yt] = Yt + AR0
+

|BR0
(v) ∩ Vt|
t

. (12)

Let AR0
T = 12 ln n, so

T =
12n

(ln n)4c0−1
.

Let F denote the event that for all t � T , the relation |BR0
(v)∩Vt| ∈ [κ1AR0

t, κ2AR0
t] holds

for some constants κ1 and κ2 and that the maximum long-degree of vertices x1, · · · , xT is

L ln n. By Lemma 4.1 and the Chernoff bound, we know that Pr[F] � 1 − O(n−3).

Now we know that for t � T ,

E[Yt+1|Yt,F] � Yt + AR0
+

κ2AR0
t

t
,

from which we have

E[Yt+1|Yt,F] − (1 + κ2)AR0
(t + 1) � Yt − (1 + κ2)AR0

t. (13)

Conditioned on F, we know that the number of vertices in BR0
(v) ∩ Vt is

κ2AR0
T � 12κ2 ln n,

and every vertex in this set has degree at most L ln n, from which we know that YT �
12κ2L(ln n)2. We now define

Xτ =

{
Yτ − (1 + κ2)AR0

τ for τ � T + 1

12κ2L(ln n)2 for τ = T .

By inequality (13), XT , · · · , Xt forms a submartingale with error O(n−3). We also have

that for τ > T ,

Xτ − E[Xτ|Xτ−1] � 1,

and

Var[Xτ|Xτ−1] = Var[Yτ|Xτ−1]

� E[(Yτ − Yτ−1)
2|Xτ−1]

� (1 + κ2)AR0
.

We now apply the submartingale concentration inequality, as in Lemma 3.2, to get

Pr[Xt � XT + λ] � e
− λ2

2(
∑ t

τ=T+1
(1+C2)AR0

+λ/3) + O(n−3)

� e
− λ2

2t(1+C2)AR0
+2λ/3 + O(n−3).

Let λ = c′√ln nAR0
t for some constant c′. Then

Pr
[
Xt � XT + c′√ln nAR0

t
]

� O(n−3).
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Finally, using Xt = Yt − (1 + κ2)AR0
t, we have

Pr
[
Yt � (1 + κ2)AR0

t + c′√ln nAR0
t + 12κ2L(ln n)2

]
� O(n−3).

In particular, Yn � cAR0
n with high probability for some constant c, which completes

the proof of Lemma 5.3.

Continuing the proof of Lemma 5.2, we know by Lemma 5.3 that |e2(C, C̄)| � cAR0
n,

so the total number of edges between C and C̄ is

|e(C, C̄)| = O(mrR0n + R2
0n). (14)

The volume of C is at least m|C| ∼ mR2
0n, which means that

Φ(C) = O

(
m4rR0n + R2

0n

mR2
0n

)
= O((ln n)−1) = O

(
1

|C|1/(4c0)

)
. (15)

Finally, we briefly discuss the proof for the self-loop model. Let δ � K1(ξ) ln n. Then,

with high probability, the constructed tree in the flexible part of the model is a uniform

recursive tree in the same way as in the proof of Theorem 2.1. Therefore, the edges

that connect an R-neighbourhood and its complement can also be bounded by the

same argument as in the case of the hybrid model, which then gives the same result as

Equation (15).

This completes the proof of Lemma 5.2.

We can now show that the two models have the small-community phenomenon.

Proof of Theorem 2.2 (small-community phenomenon). For each v ∈ Vn, the R0-

neighbourhood CR0
(v) is of size Θ((ln n)4c0 ). By Lemmas 7 and 8, we know that CR0

(v) is

an (α, β, γ)-community of v, where α is the hidden constant in the term

O

(
1

|CR0
(v)|1/4c0

)

in Equation (15), β = 1/4c0 and γ = 4c0. This completes the proof of Theorem 2.2.

Note that the proof of Theorem 2.2 also implies that the base model Gt has the small-

community phenomenon. In fact, in that case, we do not need to consider the effect of the

edges generated in the uniform recursive tree, which simplifies the analysis. We can easily

show that the R0-neighbourhood CR0
(v) has small size, induces a connected subgraph and

has conductance

Φ(CR0
(v)) = O

(
m4rR0n

mR2
0n

)
= O((ln n)−c0 )

= O

(
1

|CR0
(v)|1/4

)

�
α′

|CR0
(v)|1/4

,

that is, every node in the base model is contained in an (α′, 1/4, 4c0)-community.
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6. The power law degree distribution

In this section, we prove Theorems 2.3 and 2.4. In particular, in Section 6.1, we prove

Theorem 2.3 by assuming a concentration inequality of the degree sequence, which we

prove in Section 6.2 by developing an alternating concentration method, and, finally, we

prove Theorem 2.4 in Section 6.3.

6.1. The degree sequence on the base model

To prove Theorem 2.3, we analyse a recurrence on E[dk(t)] in the usual way. Recall that

Tt(u) =
∑

v∈Br(u)∩Vt

(degt(v) + δ).

As mentioned earlier, we will first give a good estimate of Tt(u) and show that Tt(u)

concentrates around its expected value. Building on this, we can derive the degree sequence

from the recurrence on E[dk(t)].

Recall that

tr =
12(ln n)2nc1/c0

r2(1−c1/c0)

for any r � r0. We have the following concentration inequality for Tt(u).

Lemma 6.1 (Alternating Concentration Theorem). If r � r0, then for all t � tr , we have

Pr

[
|Tt(u) − (2 + ξ)mArt| �

1

(nr2)c2/2c0
mArt

]
= O(n−2), (16)

where c1 and c2 are constants satisfying the conditions in Equations (7) and (8).

Lemma 6.1 is one of the key technical contributions made in this paper, and is

interesting in its own right. To prove it, we will need to develop an alternating concentration

method, through which we will alternately and iteratively apply the submartingale and

supermartingale inequalities to prove the desired concentration result.

The role of Lemma 6.1 is to give a good estimate of

E

[
1|xt+1−v|�r

Tt(xt+1)
|Gt

]

to analyse the recurrence of E[dk(t)]. In this section, we will use Lemma 6.1 to prove

Theorem 2.3; the full proof of Lemma 6.1 is given in Section 6.2.

Proof of Theorem 2.3. We define

Dk(t) := {v ∈ V (Gt)| degGt
(v) = k}.

Then dk(t) = |Dk(t)|.
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The recurrence for the expectation of dk(t) can be written as follows.

E[dk(t + 1)|Gt] = dk(t)

+
∑

v∈Dk−1(t)

(
mE

[
(k − 1 + δ)1|xt+1−v|�r

Tt(xt+1)
|Gt

])

−
∑

v∈Dk(t)

(
mE

[
(k + δ)1|xt+1−v|�r

Tt(xt+1)
|Gt

])

+ O(mE[ηk(Gt, xt+1)|Gt]),

(17)

where ηk(Gt, xt+1) denotes the probability that a parallel edge from the new vertex xt+1 to

a vertex of degree no more than k is created, and is at most

(
m

2

) k∑
i=m

∑
v∈Di(t)

(i + δ)2
(

1|v−xt+1|�r

Tt(xt+1)

)2

.

Now for t � tr , we use At to denote the event

|Tt(u) − (2 + ξ)mArt| �
1

(nr2)c2/2c0
mArt.

By Lemma 6.1, we have

Pr[At] = 1 − O(n−2).

Therefore, for t � tr ,

E

⎡
⎣ ∑
v∈Dk(t)

(k + δ)1|xt+1−v|�r

Tt(xt+1)

⎤
⎦

= E

⎡
⎣ ∑
v∈Dk(t)

(k + δ)1|xt+1−v|�r

(2 + ξ)mArt

(
1 + O

(
1

(nr2)c2/2c0

))
|At

⎤
⎦Pr[At] + O(n−2)

=
(k + δ)

(2 + ξ)mt

(
1 + O

(
1

(nr2)c2/2c0

))
E[dk(t)|A] Pr[A] + O(n−2)

=
(k + δ)

(2 + ξ)mt

(
1 + O

(
1

(nr2)c2/2c0

))
(E[dk(t)] − E[dk(t)|¬A] Pr[¬A]) + O(n−2)

=
(k + δ)E[dk(t)]

(2 + ξ)mt
+ O

(
1

(nr2)c2/2c0

)
.

Similarly, we have

E

⎡
⎣ ∑
v∈Dk−1(t)

(k − 1 + δ)1|xt+1−v|�r

Tt(xt+1)

⎤
⎦ =

(k − 1 + δ)E[dk−1(t)]

(2 + ξ)mt
+ O

(
1

(nr2)c2/2c0

)
.

https://doi.org/10.1017/S0960129511000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000570


A. Li and P. Peng 392

The error term can be bounded as follows.

E[ηk(Gt, xt+1)]

�

(
m

2

)
E

⎡
⎣ k∑

i=m

∑
v∈Di(t)

(k + δ)2
(

1|v−xt+1|�r

Tt(xt+1)

)2
⎤
⎦

�

(
m

2

)
E

⎡
⎣ k∑

i=m

∑
v∈Di(t)

(k + δ)2
1

m2Art2

(
1 + O

(
1

(nr2)c2/2c0

))⎤⎦+ O(n−2)

� O

(
(k + δ)2

Art

)
+ O(n−2) .

If

k + δ � k0(t) = (nr2)c1/2c0−c2/4c0 ,

then

E[ηk(Gt, xt+1)] = O

(
1

(ln n)2(nr2)c2/2c0

)
and

E[mηk(Gt, xt+1)] = O

(
1

(nr2)c2/2c0

)
,

given the fact that m = O(ln2 n).

Let d̄k(t) := E[dk(t)]. Now the recurrence can be simplified as

d̄k(t + 1) = d̄k(t) − (k + δ)d̄k(t)

(2 + ξ)t
+

(k − 1 + δ)d̄k−1(t)

(2 + ξ)t

+ 1k=m + O

(
1

(nr2)c2/2c0

)
.

(18)

We now define a new recurrence related to (18). For j < m, let fj = 0, and for j � m,

let

fk =
k − 1 + δ

2 + ξ
fk−1 − k + δ

2 + ξ
fk + 1d=m, (19)

which has solution

fm =
2 + ξ

2 + ξ + m + δ
,

and for k � m + 1,

fk =

k∏
j=m+1

j − 1 + δ

2 + ξ + j + δ
fm

=
Γ(k + δ)Γ(m + 4 + ξ + δ)

Γ(3 + ξ + k + δ)Γ(m + 1 + δ)

2 + ξ

2 + ξ + m + δ

=
φk(m, δ)

k3+ξ
,

where φk(m, δ) tends to a limit φ∞(m, δ) that only depends on m and δ as k → ∞.
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We will now show that

|d̄k(t) − fkt| � M

(
tr +

n + Lt

(nr2)c2/2c0

)
, (20)

where M is some large constant and L is the hidden constant in the term

O

(
1

(nr2)c2/2c0

)
in Equation (18).

We now prove (20) by induction:

— t � tr:

In this case the relation holds trivially.

— t � tr and k � k0(t):

In this case the inequality follows from the fact that d̄k(t) � 2mt/k.

— t � tr and k � k0(t):

We have

|d̄(k + 1) − fk(t + 1)|

=

∣∣∣∣d̄k(t) − fk(t + 1) − (k + δ)d̄k(t)

(2 + ξ)t
+

(k − 1 + δ)d̄k−1(t)

(2 + ξ)t

+O

(
1

(nr2)c2/2c0

)∣∣∣∣
=

∣∣∣∣d̄k(t) − fkt −
(
k − 1 + δ

2 + ξ
fk−1 − k + δ

2 + ξ
fk

)

− (k + δ)d̄k(t)

(2 + ξ)t
+

(k − 1 + δ)d̄k−1(t)

(2 + ξ)t

+O

(
1

(nr2)c2/2c0

)∣∣∣∣
�

(
1 − k + δ

(2 + ξ)t

)
|d̄k(t) − fkt|

+
k − 1 + δ

(2 + ξ)t
|dk−1(t) − fk−1t|

+ O

(
1

(nr2)c2/2c0

)

� M

(
tr +

n + Lt

(nr2)c2/2c0

)
+ L

1

(nr2)c2/2c0

� M

(
tr +

n + L(t + 1)

(nr2)c2/2c0

)
,

which completes the induction and thus the proof of Theorem 2.3.

6.2. Estimation of Tt(u) – alternating concentration analysis

In this section, we prove the Alternating Concentration Theorem (Lemma 6.1).
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As mentioned earlier, Flaxman et al. (2007a; 2007b) and van den Esker (2008)

introduced a new parameter α > 2 to facilitate the analysis, and then used the traditional

coupling technique to bound Tt(u). We do not need to use the additional parameter α

here, but will still get a nice bound. Our idea is to develop a refined method based on

the recurrence directly implied in the definition of Tt(u). By using this recurrence, we can

start from the weak bound given in Lemma 3.5, and iteratively improve both the upper

and lower bounds of Tt(u). This improvement can be done using the submartingale and

supermartingale concentration inequalities as in the proof of Lemma 5.3. This allows us

to show that the accumulated error in the whole process is small, which guarantees the

desired bound.

We will first show that a lower bound can be achieved from a rough lower bound on

Tt(u).

Lemma 6.2. Fix r � r0. If for any t � tr ,

Pr

[
Tt(u) �

(
bl − rl

(nr2)c1/2c0

)
(2 + ξ)mArt

]
� εl (21)

for some bl ∈ [1/2, 1) and rl = o((nr2)c1/2c0 ), then for any t � tr ,

Pr

[
Tt(u) �

(
bu +

ru

(nr2)c1/2c0

)
(2 + ξ)mArt

]
� εu, (22)

where

bu =
ξ + 1

2 + ξ − 1
bl

∈ (1,∞)

ru = 7 + 40rl/ξ

εu = nεl + 5n− ln n+1

and c1 is some constant satisfying the condition given in Equation (7).

Proof of Lemma 6.2. We will mainly use the following recurrence.

E[Tt+1(u)|Gt] = Tt(u) + m(1 + ξ)E[1|xt+1−u|�r|Gt]

+
∑
v∈Vt

mPr
[
yt+1
i = v|Gt

]
1|u−v|�r,

where

Pr[yt+1
i = v|Gt] = E

[
(degt(v) + δ)1|xt+1−v|�r

Tt(xt+1)
|Gt

]
.

Let G denote the event that for all t � tr , the following inequalities hold:

Tt(u) �

(
bl − rl

(nr2)c1/2c0

)
(2 + ξ)mArt(

1 − 1

(nr2)c1/2c0

)
(1 + ξ)mArt � Tt(u) � 4(2 + ξ)mAr

(
1 +

1

(nr2)c1/2c0

)
.
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Then by Lemma 3.5 and the bound given in (21), Pr[¬G] � nεl + 4n− ln n+1. Conditioned

on G, for t � tr , we have

Pr[yt+1
i = v|Gt,G] � E

⎡
⎣ (degt(v) + δ)1v∈Br(xt+1)(

bl − rl
(nr2)c1/2c0

)
(2 + ξ)mArt

|Gt,G

⎤
⎦

=
degt(v) + δ(

bl − rl
(nr2)c1/2c0

)
(2 + ξ)mt

�
degt(v) + δ

bl(2 + ξ)mt

(
1 +

4rl

(nr2)c1/2c0

)
.

Therefore,

E[Tt+1(u)|Gt,G] � Tt(u) + m(1 + ξ)Ar +
1

bl(2 + ξ)t

(
1 +

4rl

(nr2)c1/2c0

)
Tt(u)

�

(
1 +

1

bl(2 + ξ)t

)
Tt(u) +

(
ξ + 1 +

40rl

(nr2)c1/2c0

)
mAr,

where the second inequality uses the rough upper bound on Tt(u) given in Lemma 3.5.

Let

bu =
ξ + 1

2 + ξ − 1
bl

,

and s = 40rl/ξ. Then

E[Tt+1(u)|Gt,G] −
(
bu +

s

(nr2)c1/2c0

)
(2 + ξ)mAr(t + 1)

�

(
1 +

1

bl(2 + ξ)t

)(
Tt(u) −

(
bu +

s

(nr2)c1/2c0

)
(2 + ξ)mArt

)

+

(
bu

bl
+ ξ + 1 − bu(2 + ξ) + (2s + 40rl − s(2 + ξ))

1

(nr2)c1/2c0

)
mAr

�

(
1 +

1

bl(2 + ξ)t

)(
Tt(u) −

(
bu +

s

(nr2)c1/2c0

)
(2 + ξ)mArt

)
. (23)

Now define

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ti(u) −
(
bu +

s

(nr2)c1/2c0

)
(2 + ξ)mAri

i−1∏
j=tr

(
1 +

1

bl(2 + ξ)j

) for i > tr

Ttr (u) −
(
bu + s

(nr2)c1/2c0

)
(2 + ξ)mArtr for i = tr.
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From inequality (23), we know that E[Xi|Gi−1,G] � Xi−1 for tr < i � t. Let

∆i =

i∏
j=tr

(
1 +

1

bl(2 + ξ)j

)
∼
(

i

tr

)1/bl (2+ξ)

.

We have

Xi − E[Xi|Gi−1,G] =
Ti(u) − E[Ti(u)|Gi−1,G]

∆i−1
� (2 + ξ)m,

and

Var[Xi|Gi−1,G] =
Var[Ti(u)|Gi−1,G]

∆2
i−1

�
E[(Ti(u) − Ti−1(u))

2|Gi−1,G]

∆2
i−1

� (2 + ξ)m

Ti−1(u)
bl(2 + ξ)(i − 1)

+

(
ξ + 1 + 40rl

(nr2)c1/2c0

)
mAr

∆2
i−1

�
(ξ + 3)2m2Ar

∆2
i−1

.

Therefore, the sequence Xtr , . . . , Xt satisfies the conditions in Lemma 3.2 with

Pr[¬G] � nε + 4n− ln n+1

and

t∑
i=tr+1

Var[Xi|Gi−1,G] �
t∑

i=tr+1

(ξ + 3)2m2Ar

∆2
i−1

�
t∑

i=tr+1

(ξ + 3)2m2Art
2/bl (2+ξ)
r

i2/bl (2+ξ)
(24)

�

(
mArtr

ln n

)2

.

The last inequality can be seen using the fact that Artr ∼ 3(ln n)2(nr2)c1/c0 and the

assumption that (c0 − c1 − 1)(1 − 1/(ξ + 2)) < c1. Specifically:

— If 2/bl(ξ + 2) = 1, then

t∑
i=tr+1

(ξ + 3)2m2Art
2/bl (2+ξ)
r

i2/bl (2+ξ)
� O

(
m2Artr ln(t/tr)

)

= O

(
m2A2

r t
2
r

Artr/ ln ln n

)

�

(
mArtr

ln n

)2

.
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— If 2/bl(ξ + 2) > 1, then

t∑
i=tr+1

(ξ + 3)2m2Art
2/bl (2+ξ)
r

i2/bl (2+ξ)
� O(m2Artr)

= O

(
m2A2

r t
2
r

Artr

)

�

(
mArtr

ln n

)2

.

— If 2/bl(ξ + 2) < 1, then

t∑
i=tr+1

(ξ + 3)2m2Art
2/bl (2+ξ)
r

i2/bl (2+ξ)
� O

(
m2Art

(
tr

t

)2/bl (ξ+2)
)

= O

(
m2A2

r t
2
r

Artr(
tr
t
)1−2/bl (ξ+2)

)

�
m2A2

r t
2
r

3(ln n)
2+2

(
1− 2

bl (ξ+2)

)
(nr2)

c1/c0+(c1/c0−1)
(

1− 2
bl (ξ+2)

)

�
m2A2

r t
2
r

3(ln n)
2+2

(
1− 2

bl (ξ+2)

)
(nr2)

c1/c0+(c1/c0−1)
(

1− 2
(ξ+2)

)

�

(
mArtr

ln n

)2

.

If we let λ = 2mArtr , then using the submartingale concentration inequality, we have

Pr[Xt � Xtr + λ] � e
− λ2

2
∑ t

j=tr+1
Var[Xi |Gi−1 ,G]+2(2+ξ)mλ/3 + Pr[¬G]

� nεl + 5n− ln n+1.

On the other hand, we have Xtr � 5mArtr conditioned on G. Thus,

∆t−1(Xtr + λ) � 7

(
t

tr

)1/bl (2+ξ)

mArtr

= 7

(
tr

t

)1−1/bl (2+ξ)

mArt

�
7

(nr2)c1/2c0
mArt,

where the last inequality follows from the assumption that

(2c0 − 2c1 − 2)(1 − 2/(2 + ξ)) > c1.
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Therefore,

Pr

[
Tt(u) �

(
bu +

s + 7

(nr2)c1/2c0

)
(2 + ξ)mArt

]

� Pr

⎡
⎣Tt(u) −

(
bu + s

(nr2)c1/2c0

)
(2 + ξ)mArt

∆t−1
� Xtr + λ

⎤
⎦

� Pr[Xt � Xtr + λ]

� nεl + 5n− ln n+1.

We then complete the proof by letting

ru = 7 + 40rl/ξ

εu = nεl + 5n− ln n+1.

Similarly, we can obtain an upper bound on Tt(u) from a rough upper bound.

Lemma 6.3. Fix r � r0. If for any t � tr ,

Pr

[
Tt(u) �

(
bu +

ru

(nr2)c1/2c0

)
(2 + ξ)mArt

]
� εu, (25)

for some bu ∈ (1, 4) and ru = o
(
(nr2)c1/2c0

)
, then for any t � t0,

Pr

[
Tt(u) �

(
bl − rl

(nr2)c1/2c0

)
(2 + ξ)mArt

]
� εl , (26)

where

bl =
ξ + 1

2 + ξ − 1
bu

∈ (1/2, 1)

rl = 7 + 40ru/ξ

εl = nεu + 5n− ln n+1,

and c1 is some constant satisfying the condition given in Equation (7).

Proof. The proof is similar to the proof of Lemma 6.2. Note that in this case we use

the supermartingale concentration inequality and let G′ denote the good event defined in

a similar way to G in the above proof, which then leads to the following recurrence:

E[Tt+1(u)|Gt,G′] � Tt(u) + m(1 + ξ)Ar +
1

bu(2 + ξ)t

(
1 − ru

(nr2)c1/2c0

)
Tt(u)

�

(
1 +

1

bu(2 + ξ)t

)
Tt(u) +

(
ξ + 1 − 5ru

(nr2)c1/2c0

)
mAr.

Let

bl =
ξ + 1

2 + ξ − 1
bu

s′ = 40ru/ξ.
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Then

E[Tt+1(u)|Gt,G′] −
(
bl − s′

(nr2)c1/2c0

)
(2 + ξ)mAr(t + 1)

�

(
1 +

1

bu(2 + ξ)t

)(
Tt(u) −

(
bl − s′

(nr2)c1/2c0

)
(2 + ξ)mArt

)

+

(
bl

bu
+ ξ + 1 − bl(2 + ξ) + (−s′ − 5ru + s′(2 + ξ))

1

(nr2)c1/2c0

)
mAr

�

(
1 +

1

bu(2 + ξ)t

)(
Tt(u) −

(
bl − s′

(nr2)c1/2c0

)
(2 + ξ)mArt

)
. (27)

We then define the corresponding supermartingale X ′
tr
, . . . , X ′

t using the above inequality.

In this case, we will also use the conditions given by Equation (7) on the constants c0 and

c1. Then, by setting

λ′ =
29

4
mArt,

where λ′ corresponds to the parameter λ in Lemma 6.2, and using

X ′
tr

�
1

4
mArtr,

we get

Pr

[
Tt(u) �

(
bl − s′ + 7

(nr2)c1/2c0

)
(2 + ξ)mArt

]

� Pr

⎡
⎣Tt(u) −

(
bl − s′

(nr2)c1/2c0

)
(2 + ξ)mArt

∆t−1
� X ′

tr
− λ′

⎤
⎦

� Pr[X ′
t � X ′

tr
− λ′]

� nεu + 5n− ln n+1.

We then complete the proof by letting

rl = 7 + 40ru/ξ

εl = nεu + 5n− ln n+1.

We are now ready to prove Lemma 6.1. Intuitively, we will apply the above two lemmas

iteratively and show that if we start with a rough lower bound l1, then, by Lemma 6.2,

we can get an upper bound u, from which we can again get a new lower bound l2 by

Lemma 6.3. We prove that l2 > l1, which means that we get a better lower bound at each

iteration. The same holds for the upper bound.

Proof of Lemma 6.1. If

ξ + 1

2 + ξ − 2+ξ
1+ξ

> 4,

we start our iterative process from the rough upper bound in Lemma 3.5; otherwise, we

start the process from the rough lower bound.
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Assume we start from the rough lower bound; the case of starting from the rough

upper bound is similar. By Lemma 3.5, we know that for all t � tr ,

Tt(u) �

(
1 − 1

(nr2)c1/2c0

)
(1 + ξ)mArt

with probability at least 1 − 4n− ln n. We define the start point of our iterative process by

letting

b
(1)
l =

1 + ξ

2 + ξ
∈ (1/2, 1)

r
(1)
l = 1

ε
(1)
l = 5n− ln n.

For i � 1, we assume that we have

Tt(u) �

(
b

(i)
l − r

(i)
l

(nr2)c1/2c0

)
(2 + ξ)mArt

with error probability ε
(i)
l for any t � tr . We now substitute the corresponding parameters

in Lemma 6.2 to give an upper bound

Tt(u) �

(
b(i)
u +

r(i)u
(nr2)c1/2c0

)
(2 + ξ)mArt

for all t � tr with error probability ε(i)
u , where

b(i)
u =

1 + ξ

2 + ξ − 1

b
(i)
l

∈ (1, 4]

r(i)u = (7 + 40/ξ)r(i)l � 7 + 40r(i)l /ξ

ε(i)
u = nε

(i)
l + 5n− ln n+1.

We again substitute the corresponding parameters in Lemma 6.3 to give an improved

lower bound

Tt(u) �

(
b

(i+1)
l − r

(i+1)
l

(nr2)c1/2c0

)
(2 + ξ)mArt

for all t � tr with error ε
(i+1)
l , where

b
(i+1)
l =

1 + ξ

2 + ξ − 1

b
(i)
u

∈ (1/2, 1)

r
(i+1)
l = (7 + 40/ξ)r(i)u � 7 + 40r(i)u /ξ

ε
(i+1)
l = nε(i)

u + 5n− ln n+1.
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Let C(ξ) = 7 + 40/ξ. Then

r
(i+1)
l = C(ξ)2r(i)l

ε
(i+1)
l � n2ε

(i)
l + 10n− ln n+2.

We now show that for every i, we have b
(i+1)
l is strictly greater than b

(i)
l , that is, the

process gives a better lower bound after every pair of consecutive steps. Then, by the

fact that b
(i)
l < 1, we have that {b(i)

l }i�1 converges to 1. We can then show similarly

that the procedure gives a better upper bound; in other words, {b(i)
u }i�1 is a decreasing

sequence that converges to 1. In the following, we will actually prove the stronger result

that after each iteration, the distance between b
(i)
l and 1 decreases by a multiple factor,

which guarantees that the {b(i)
l }i�1 converges quickly to 1.

We calculate the distance between b
(i+1)
l and 1, which gives

1 − b
(i+1)
l = 1 − 1 + ξ

2 + ξ − 1

b
(i)
u

= 1 − 1 + ξ

2 + ξ − 1
1+ξ

2+ξ− 1

b
(i)
l

=
1 − b

(i)
l

ξ(2 + ξ)b(i)
l + 1

�
1 − b

(i)
l

ξ(1 + ξ/2) + 1
.

Therefore, the sequence {1 − b
(i)
l }i�1 decreases by a multiple factor of at least

1

ξ(1 + ξ/2) + 1

at each step. On the other hand, since

Tt(u) �

[
1 −

(
1 − b

(i)
l

)
− r

(i)
l

(ln n)c1

]
(2 + ξ)mArt,

the best bound is determined by the maximum of

r
(i)
l

(ln n)c1
and 1 − b

(i)
l ,

which is at most

1/2

(ξ(1 + ξ/2) + 1)i
.

We terminate the iteration at the step

k0 =

⌈
(c1/2c0) ln(nr2)

ln(C(ξ)2(ξ(1 + ξ/2) + 1))

⌉
�

ln n

4
,
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in which case

1/2

(ξ(1 + ξ/2) + 1)k0
�

r
(k0)
l

(nr2)c1/2c0

=
C(ξ)2k0

(nr2)c1/2c0
,

and

Pr

[
Tt(u) �

(
1 − 1

(nr2)c2/2c0

)
(2 + ξ)mArt

]

� Pr

[
Tt(u) �

(
1 − 2C(ξ)2k0

(nr2)c1/2c0

)
(2 + ξ)mArt

]

� ε
(k0)
l

� 2n2k0−ln n+2

� n− ln n/2+2,

where we have used the assumption that

c2 = c1
ln(ξ(1 + ξ/2) + 1)

ln(C(ξ)2(ξ(1 + ξ/2) + 1))
.

The upper bound can be obtained similarly by noting that the sequence {b(i)
u − 1}i�1

decreases by a multiple factor of at least

1

ξ(2 + ξ) + 1
�

1

ξ(1 + ξ/2) + 1

at each step. Hence, we have

Pr

[
|Tt(u) − (2 + ξ)mArt| �

1

(nr2)c2/2c0
mArt

]
� n−2, (28)

which completes the proof.

6.3. Power law distribution of the generalised models

In this section, we prove Theorem 2.4, using both the result of Theorem 2.3 and its proof.

Proof of Theorem 2.4 (Power law degree distribution). Since the local-degree sequences

in the hybrid model are exactly the same as the degree sequences in the base model, by

Theorem 2.3, the local graph of GH
n has the power law degree distribution.

For the self-loop model, the degree of a node v can be expressed as degt(v) + δ, where

degt(v) is the number of non-flexible edges incident to v at time t. We can now write the
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recurrence as follows:

E[dk+δ(t + 1)|Gt] = dk+δ(t)

+
∑

v∈Dk−1+δ (t)

(
mE

[
(k − 1 + δ)1|xt+1−v|�r

Tt(xt+1)
|Gt

])

−
∑

v∈Dk+δ (t)

(
mE

[
(k + δ)1|xt+1−v|�r

Tt(xt+1)
|Gt

])

+ O
(
mE[ηk(Gt, xt+1)|Gt]

)
,

(29)

Solving the recurrence, we can also arrive at Equation (19), which means the solution has

the form

φ′
k(m, δ)

(k + δ)3+ξ
,

where φ′
k(m, δ) tends to a limit φ′

∞(m, δ) that depends only on m and δ as k → ∞. This

completes the proof that the degree sequence of the self-loop model follows a power law

distribution.

7. Large community and small expander

In this section, we will prove Theorem 2.5.

Before proving the result, we will give a brief discussion on the choice of r. In the

previous sections, we considered the case when r = n−1/2(ln n)c0 for some sufficiently

large constant c0. Both the base model and the two generalised models have the small-

community phenomenon and the power law degree distribution. Now we consider other

choices of r and show that if r is too small or too large, there is some strong evidence

suggesting that the model does not have the power law degree distribution in the first

case or the small-community phenomenon in the second.

When r is as small as r = n−1/2−ε for any ε > 0, each node connects only a very

small fraction of its neighbours, and the whole graph is almost surely disconnected

(Penrose 2003). Furthermore, there are many isolated vertices in the base model for this

range of r, which indicates that the base model is very unlikely to have the power law

degree distribution.

When r is as large as r = n−1/2+ε for any ε > 0, we have shown that the models have

the power law degree distribution. However, the small-community phenomenon does not

seem to exist in this situation. In particular, there is an interesting division of the structure

of the R-neighbourhood when R varies. Specifically, we showed in Li and Peng (2011)

that for this range of r, if R = n−1/2+ρ for any ρ > ε, then with high probability we have

CR(v), for any v, is an (α, β)-community for some constants α, β of size Θ(n2ρ), which

indicates that every node belongs to some large community. Here we show that with

high probability, for all R = o(r), and for any v ∈ Vn, the conductance Φ(CR(v)) of CR(v)

is larger than some constant, which indicates that the R-neighbourhood is not a good

community.

We will now give the proof of Theorem 2.5.
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Proof of Theorem 2.5 (Large community and small expander). The proof of the first

part of the theorem was given in Li and Peng (2011), so we will just prove the second

part here.

For some fixed R = o(r), we let C = CR(v) and C ′ = Cr−R(v) for convenience. Then for

any vertex u ∈ C and u′ ∈ C ′, the distance between u and u′ is at most r. The areas of

BR(v) and Br−R(v) are given by

area(BR(v)) ∼ R2/4

area(Br−R(v)) ∼ (r − R)2/4 ∼ r2/4,

respectively, which means that a uniformly generated point will land in BR(v) and Br−R(v)

with probabilities R2/4 and r2/4, respectively.

We will show that there are many edges between C ′\C and C . To be more specific, let

C1 (or C ′
1) be the vertices in C (or C ′) that were created at or before time n/2, and C2 (or

C ′
2) be the set of vertices in C (or C ′) that were created after time n/2. We will show that

the sum of the number of edges e(C1, C
′
2) between C1 and C ′

2, and the number of edges

e(C2, C
′
1) between C2 and C ′

1 is large.

Let E denote the event that for any u ∈ Vn and for each t � t0,

Tt(u) � 8(2 + ξ)mArt.

Then, by Lemma 3.5, the probability that E holds is 1 − O(n− ln n). Now, conditioned on

E, for any vertex xj ∈ C ′
2, the probability that the ith contact of xj lies in C1 is at least

(m + δ)|C1|
Tj−1(xj)

�
(1 + ξ)|C1|
4(2 + ξ)Arn

�
|C1|
8Arn

.

Hence, |e(C1, C
′
2)| dominates

Bi

(
m|C ′

2|, |C1|
8Arn

)
,

where Bi(N, p) denotes the binomial distribution with parameters N and p.

Similarly, for any vertex xj ∈ C2, the probability that the ith contact of xj lies in C ′
1 is

thus at least
(m + δ)|C ′

1|
Tj−1(xj)

�
(1 + ξ)|C ′

1|
4(2 + ξ)Arn

�
|C ′

1|
8Arn

.

Hence, |e(C2, C
′
1)| dominates

Bi

(
m|C2|, |C ′

1|
8Arn

)
.

In total, the expected number of edges between C and C ′\C is

E[|e(C,C ′\C)|] �
m|C ′

2||C1|
8Arn

+
m|C2||C ′

1|
8Arn

,

which is at least m|C|/16 conditioned on the event A that C ′
1 and C ′

2 are both of size at

least Arn/4. Therefore, by Hoeffdings inequality and the fact that Pr[¬A] = O(n−3), we

have

|e(C, C̄)| � |e(C,C ′\C)| � m|C|/32
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with probability at least

1 − e−m|C|/32.

On the other hand, |C| = o(Arn) with high probability. Therefore,

Pr[∃R = o(r), ∃v, |e(CR(v), C̄R(v))| � m|CR(v)|/32] �
o(Arn)∑
k=1

(
n

k

)
e−mk/32

= o(1),

where the last inequality follows from the assumption that m � K ln n for some large

constant K .

We now note that

vol(CR(v)) � m|CR(v)| + |e(CR(v), C̄R(v))|,

so we have

Φ(CR(v)) �
m|CR(v)|/32

m|CR(v)| + m|CR(v)|/32
= Ω(1) (30)

with high probability, which completes the proof of Theorem 2.5.

Finally, note that the above proof can be adapted to the two generalised models GH
n and

GS
n . Since the number of long edges is relatively small compared with the number of

local edges, the effect of long edges does not change the community structure too much.

Specifically, to show that for R = o(r), with CR(v) an expander in GH
n and GS

n , we just

need to use the fact that

vol(CR(v)) � (m + 1)|CR(v)| + |e(CR(v), C̄R(v))|

and

|e(CR(v), C̄R(v))| � m|C|/32,

which follows in exactly the same way as in the above.

8. Conclusion

We have investigated the small-community phenomenon in networks and given two

models that unify the three properties typical of large-scale networks: the power law

degree distribution; the small-community phenomenon; and the small-diameter property.

The proposed network models provide insights into how real networks evolve, and may

have potential applications in, for example, wireless ad hoc models and sensor networks.

We have shown that the choice of parameters is subtle if one wants all three properties

to coexist. We discussed the fundamental conflicts between them, that is, the fact that the

power law degree distribution generated by the preferential attachment scheme and the

small-diameter property always lead to an expander-like graph, while the small-community

phenomenon corresponds naturally to an anti-expander in some sense, which means that

the conductance of many subsets of small size is of order o(1). Other reasons for such

conflicts are worth further investigation.
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Finally, our proof technique for the power law degree distribution is interesting in its

own right, and partially solves the open problems in Flaxman et al. (2007a). It would

be interesting to find other applications of this method, in particular, in the analysis of

randomised algorithms and network modelling.
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