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This paper deals with the asymptotic properties of quasi-maximum likelihood es-
timators for multivariate heteroskedastic models+ For a general model, we give
conditions under which strong consistency can be obtained; unlike in the current
literature, the assumptions on the existence of moments of the error term are weak,
and no study of the various derivatives of the likelihood is required+ Then, for a
particular model, the multivariate GARCH model with constant correlation, we
describe the set of parameters where these conditions hold+

1. INTRODUCTION

As a result of the paper by Mandelbrot (1963), we know that for certain time se-
ries, and especially economic and financial time series, the conditional variance is
not constant over time+ Therefore, several models trying to take into account this
particular behavior have been introduced+The most successful ones are undoubt-
edly the autoregressive conditional heteroskedastic (ARCH) model, introduced by
Engle (1982),and some of its derivative models (GARCH,GARCH-M,EGARCH,
etc+)+ The implementation of these parametric models is relatively simple+ And,
from a practical point of view, it is well known now how to identify, estimate, and
test this kind of model (for a description of these methods and some empirical ev-
idence, see the survey of Bollerslev, Chou, and Kroner, 1992)+

From a theoretical point of view, however, the problem of statistical inference
for these models remains partially open+ Indeed,Weiss (1986) gave the first proof
of consistency and asymptotic normality of the maximum likelihood estimator
for univariate ARCH model but under strong conditions on the existence of the
moments of the error term+ On the other hand, a paper of Nelson (1990) showed
that for a particular model, the GARCH(1,1) model, the process can be strictly
stationary with infinite second moment, and the empirical studies (see Bollerslev
et al+, 1992) suggest that some financial time series seem to be characterized by
such a process+ Therefore, statistical inference under weak conditions on the ex-
istence of moments is needed+
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Lumsdaine (1991) gave such a proof of consistency and asymptotic normality
for the univariate GARCH(1,1) model, for the set of parameters where there
exists a strictly stationary solution (including the IGARCH case)+ Lee and Hansen
(1994) obtained the same result under weaker conditions+ However, only a local
consistency is obtained, and the technical proofs seem difficult to extend to other
models+ For the same models, Elie and Jeantheau (1995) gave a proof of global
consistency,which is less technical and therefore can be applied to more complex
univariate models, for instance, to a GARCH~ p,q! model+

In this paper,we focus our attention on multivariate models+ In the literature,sev-
eral formulations of conditionally heteroskedastic multivariate models have been
introduced (see, e+g+, Bollerslev, 1987; Bollerslev, Engle, and Wooldridge, 1988;
Engle and Kroner, 1995)+But the complexity of the equations involved in all these
models makes the study of the likelihood difficult, and the method of the proofs of
Lumsdaine (1991) or Lee and Hansen (1994) cannot be used+ The aim of this pa-
per is to show that the methodology used in Elie and Jeantheau (1995) can be ap-
plied to multivariate models because the consistency of the quasi-maximum
likelihood estimator is obtained without any study of the various derivatives of the
log-likelihood function, and under weak conditions on the existence of moments+

The paper is organized as follows+ Section 2 presents a general multivariate
heteroskedastic model, the estimation method, and the assumptions under which
we can derive the strong consistency of the estimator+ For this purpose, we recall
a theorem of consistency (see Pfanzagl, 1969)+ Section 3 presents a particular
example of this model, the multivariate GARCH model with constant correlation,
introduced by Bollerslev (1987)+ For this model, we study more particularly the
stationarity and the identifiability, and then we are able to describe the set of
parameters where the quasi-maximum likelihood estimator is strongly consis-
tent+ Section 4 concludes+ Mathematical proofs are deferred to the Appendix+

2. PARAMETER ESTIMATION FOR MULTIVARIATE
HETEROSKEDASTIC MODEL

2.1. The Model and Assumptions

Let ~V, A,P! be a probability space, $Yt , t [ Z% anRd-valued process, andu a
parameter inQ , Rs+We say thatYt is a multivariate autoregressive process with
conditionally heteroskedastic errors if, for all t [ Z, we have

Yt 5 Fu~ sYt21! 1 Du~ sYt21!ht , (1)

where

sYt21 5 ~Yt21,Yt22, + + +!,
Fu is a measurable function from~Rd!N r Rd,
Du is a measurable function from~Rd!N r Rd J Rd,
$ht , t [ Z% is a doubly infinite sequence of independent and identically distributed

(i+i+d+) Rd random variables defined onV,with mean 0 and covariance matrixG such
that
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G 5 1
1 r12 {{{ r1d

r12 1 L I

I L L r~d21!d

r1d {{{ r~d21!d 1
2 ,

ht is independent of thes-field It21 generated by$Yt21,Yt22, + + +% 5 sYt21, and
ht is It-measurable+

Note that the system extends infinitely far into the past+ From (1),we remark that

E~Yt0It21! 5 Fu~ sYt21! and Var~Yt0It21! 5 Du~ sYt21! G Du~ sYt21!'+

Therefore, Fu~ sYt21! is the prediction ofYt when its past is known, andDu~ sYt21!ht

is the error term+ For simplicity, we will denote

Ft,u 5 Fu~ sYt21! and Dt,u 5 Du~ sYt21!,

and the conditional covariance matrix of the error term

Ht,u 5 Var~ Yt0It21! 5 Dt,u G Dt,u
' +

2.2. Main Result

Let the true value of the parameteru0 be inQ+ For ease of reference, we list the
assumptions under which a strongly consistent estimator is obtained+ (Note that
“a+s+” in Assumption A5 is defined as “almost surely+”)

Assumption A0 (Compactness)+ Q is compact+

Assumption A1 (Ergodicity)+ ∀u0 [ Q, model (1) admits a unique strictly
stationary and ergodic solutionYt , following a stationary lawPu0

+

Assumption A2 (Lower bound for the determinant of the conditional covari-
ance matrix)+ There exists a deterministic constantc . 0 such that∀t, ∀u [ Q,
det~Ht,u! $ c+

Assumption A3 (Logarithmic moment)+ ∀u0 [ Q, Eu0
~6log~detHt,u0

!6! , `+

Assumption A4 (Identifiability)+ The functionsF andH are such that

∀u [ Q,∀u0 [ Q,

Ft,u 5 Ft,u0
Pu0

a+s+

and

Ht,u 5 Ht,u0
Pu0

a+s+
6 n u 5 u0+

Assumption A5 (Continuity)+ The functionsF andH are continuous functions
of the parameteru+

Let us remark that we do not assume that the random variablesht are Gaussian+
Therefore, we use the quasi-maximum likelihood estimation method: We con-
sider a functionFT~u! that would be the conditional (onsY0! log likelihood of the
sample~Y1, + + + ,YT! if the random variables~ht! were Gaussian, that is to say

FT~u! 5 FT~ sYT ,u! 5
1

T (
t51

T

f ~ sYt ,u!
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with

f ~ sYt ,u! 5 log~detHt,u! 1 ~Yt 2 Ft,u!'Ht,u
21~Yt 2 Ft,u!+ (2)

Then we define our estimatorZuT as any solution of the equation

ZuT 5 arg inf
u

FT~ sYT ,u!+ (3)

We will refer to FT~u! as a contrast process and toZuT as a minimum contrast
estimator (see Dacunha-Castelle and Duflo, 1983)+ It is the exact maximum con-
ditional likelihood estimator if~ht , t [ Z! are Gaussian+

We can now give the main result of this paper+

THEOREM 2+1+ Under AssumptionsA0–A5, the minimum contrast estimator
for our model is strongly consistent, that is to say

ZuT
Tr`

&& u0 Pu0
a+s+

This result will be proved in the next section+ Let us remark that this is obtained
under weak conditions;Assumptions A0,A1,A4, and A5 are common to get the
consistency of a minimum contrast estimator, and A3 is a weak condition on the
existence of moment+ Assumption A2 is a crucial assumption in our proof+

2.3. Proof of the Strong Consistency

For model (1), the consistency of the estimator relies on the following theorem (a
proof can be found in Pfanzagl, 1969, for i+i+d+ data and can be immediately
generalized for strictly stationary and ergodic data)+ Setx2 5 inf ~x,0!+

THEOREM 2+2+ On ~V,A,P!, let $Yt , t [ Z% be a strictly stationary and er-
godic process, u a parameter inQ, and FT~ sYT,u! be a contrast process such that

FT~ sYT ,u! 5 T 21 (
t51

T

f ~ sYt ,u!,

where f is a measurable function with realvalues and continuous inu+ Let B~u,r!
be the ball of centeru and radiusr, and f*~u,r! 5 inf $ f ~ sYt ,u '!, u ' [ B~u,r!%+
Make the following suppositions+

Hypothesis H0+ Q is compact+
Hypothesis H1+ The function F~u0,u!, defined for all u [ Q by F~u0,u! 5

Eu0
~ f ~ sY1,u!!, has a unique finite minimum atu0+

Hypothesis H2+ ∀u [ Q, Eu0
~ f*

2~u,r!! . 2`+

Then, the minimum contrast estimatorZuT associated to FT~u! converges Pu0
a+s+

to u0 when Tr `+
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In the current literature on ARCH-type models, the consistency of estimators
relies on theorems similar to the one given in Andrews (1987)+ In this case, the
proof is often very complex and technical (see Lumsdaine, 1991; Lee and Hansen,
1994)+ The use of Theorem 2+2 allows us to simplify this proof+ Indeed, notice
that it is not assumed that the contrast functionF~u0,u! is finite everywhere+
Therefore, we can still deal with models whereEu0

~ f ~ sY1,u!! is not always finite
or where the finiteness is difficult to check, such as in most ARCH-type models+
Furthermore, no assumption is made on the behavior of the derivatives of the
contrast process+

The condition of moment induced by Theorem 2+2 is given by the finiteness
of F~u0,u0!, and therefore we must haveEu0

6 f ~ sY1,u0!6 , 1`+ This condition
is fulfilled by the conditionally heteroskedastic model under the weak (loga-
rithmic) moment condition A3+ Therefore, in the univariate case, it is possible
to use Theorem 2+2 to deal with the IGARCH model (see Elie and Jeantheau,
1995)+

By Theorem 2+2,we get the strong consistency of our estimator (Theorem 2+1)
if Assumptions A1–A5 imply H1 and H2, whenf ~ sYt ,u! is given by (2)+ First, we
remark that, under A2, Ht,u is a positive definite matrix, as isHt,u

21, and, thus,
FT~ sYT,u! is always greater than log~c!+ Therefore, H2 holds obviously, and this
remark is also important for the proof of the next proposition, which shows that
H1 holds+

PROPOSITION 2+1+ Under AssumptionsA1–A4, FT~ sYT,u! converges, when
T r `, Pu0

a+s+ to F~u0,u! 5 Eu0
~ f ~ sY1,u!!, and this function has a unique finite

minimum inu0+

Proof+ See Appendix+

Therefore, the strong consistency of our estimator for the model (1), as given
in Theorem 2+1, follows from Proposition 2+1 and Theorem 2+2+

3. APPLICATION TO THE MULTIVARIATE GARCH MODEL WITH
CONSTANT CORRELATION

For particular models, however, the verification of Assumptions A1–A5 may be
difficult + In the univariate case, it is possible to prove that these assumptions hold
for a GARCH(1,1) model for the set of parametersQ where the condition of strict
stationarity given by Nelson (1990) is satisfied (including the IGARCH(1,1) case)
and where the conditional variance is bounded from below+ These results can be
extended to strictly stationary GARCH~ p,q! models, under some additional con-
ditions of identifiability (see Elie and Jeantheau, 1995)+ The aim of this section is
to show how this can be achieved for a multivariate GARCH model with constant
correlation+We first introduce this model+
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3.1. The Model

For simplicity, we will only deal with a case whereFu is equal to a constantb [
Rd+ Therefore, we assume that

Yt 5 b 1 «t , (4)

where the error term«t is defined as follows (see Bollerslev, 1987)+

DEFINITION 3+1+ A sequence$«t , t [ Z% of randomvariables withvalues in
Rd follows a multivariate GARCH~ p,q! process with constant correlation if

«t 5 Dt ~u!ht ,

whereDt~u! is a diagonal matrix and the elements of the diagonalDt, ii ~u! satisfy,
for all i , the following relation:

1
~Dt,11~u!!2

I

~Dt,dd~u!!2
2 5 W 1 (

i51

q

Ai 1
«t2i,1

2

I

«t2i,d
2

2 1 (
i51

p

Bi 1
~Dt2i,11~u!!2

I

~Dt2i,dd~u!!2
2 , (5)

where W[ Rd, Ai and Bi [ Rd 3 Rd, and we assume that all coefficients of these
matrices are positive+ Furthermore, we have the following conditions onht :

1+ $ht , t [ Z% is a sequence of i+i+d+ Rd-valued randomvariables, with mean0 and
covariance matrixG such that

G 5 1
1 r12 {{{ r1d

r12 1 L I

I L L r~d21!d

r1d {{{ r~d21!d 1
2 ,

2+ ht is independent of thes-field It21 generated by$ Yt21,Yt22, + + +%, and
3+ the law ofht is such that there is no quadratic form q for which q~ht! 5 d a+s+ , with

d [ R+

From this definition, we see that the conditional covariance matrix of«t , de-
noted byHt~u!, is such that

HHt, ii ~u! 5 ~Dt, ii ~u!!2

Ht, ij ~u! 5 rij Dt, ii ~u!Dt, jj ~u! for i Þ j+

Therefore, the conditional correlation between«t, i and«t, j is constant+ This as-
sumption may seem restrictive, but some empirical studies have found it to be
reasonable (see Bollerslev et al+, 1992)+

The multivariate GARCH model with constant correlation is an example of the
model (1) described in the previous section+We just addAssumptionA3 about the
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law of ht ; this will be important for ensuring the identifiability of this model+ The
parameteru of our model that we have to estimate is thed~1 1 1 1 dq 1 dp 1
~d2 1!02! vector constructed withb,W,Ai ,Bi , andrij + In the following sections,
we will derive conditions on this model under which Assumptions A1–A5 hold,
and therefore under which the minimum contrast estimator is strongly consistent+

3.2. Stationarity (Assumption A1)

First, we must find the set of parametersQ such that the solution of the GARCH
model verifies Assumption A1 of strict stationarity and ergodicity+ The weak
stationarity of univariate ARCH and GARCH models can be found in the original
papers of Engle (1982) and Bollerslev (1986), and one can derive from this the
analogous results for multivariate models+The strict stationarity is more complex
to obtain; for the GARCH(1,1) model, it is possible to give an explicit necessary
and sufficient condition on the set of parameters (see Nelson, 1990) to get the
result, but for the univariate GARCH~ p,q! model, the condition is formulated
with the Lyapunov exponent of a matrix associated tou (see Bougerol and Picard,
1992), and a generalization of this result to multivariate GARCH models seems
difficult +

However, it is possible to give a condition under which there exists a weakly
stationary solution (see Bollerslev, 1987;Engle and Kroner, 1995)+Therefore, for
our model, we give this condition (denoted by B1), and then we prove that the
solution is also strictly stationary and ergodic and thus that Assumption A1 holds+
Let us remark that, for our purpose, B1 is too strong because it implies that the
solution has a finite second moment, whereas the method of our proof requires
only a finite logarithmic moment+

Let us denote as Id thed 3 d identity matrix+

PROPOSITION 3+1+ We will make the following assumption+

Assumption B1+ u is such that det(Id2 (i51
n ~Ai 1 Bi !l

i ! has its roots outside
the unit circle+

Under Assumption B1, the multivariate GARCH~ p,q! model with constant
correlation has a weakly stationary solution+ Moreover, this solution is unique
and is also strictly stationary and ergodic+

Proof+ See Appendix+

It is important to remark that one can derive the strict stationarity and the
ergodicity because the solution of this model has an explicit expression in terms
of the sequence$ht , t [ Z%; this is a specific feature of the multivariate GARCH
model with constant correlation+

3.3. Identifiability (Assumption A4)

The aim of this section is to check Assumption A4+ Using the backshift operator
notationL, we can rewrite (5) as
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P~L!1
Ht,11~u!

I

Ht,dd~u!
2 5 W 1 Q~L!1

«t,1
2

I

«t,d
2
2 , (6)

with P andQ two matrices with polynomial coefficients such thatP~L! 5 Id 2

(i51
p Bi L

i and Q~L! 5 (i51
q Ai L

i + If we multiply (6) by a matrix with poly-
nomial coefficientsR~L! Þ Id, we get another formulation of the multivariate
GARCH model with the same solution; therefore, to be identifiable, this for-
mulation must be minimal in a certain sense+ Before giving a definition of the
term minimal, we recall in the next section some properties of matrices with
polynomial coefficients+

3.3.1. Definition and properties related to matrices with polynomial coeffi-
cients. The results and the proofs of this section can be found in Kailath (1980)+
We denote byMP the set of matrices with polynomial coefficients+ Let us recall
that a square matrixM~L! [ MP is unimodular if its determinant is nonequal to
0 and independent of the lag operatorL+ Because of Theorem 3+1, we may define
a greatest common left divisor (see Kailath,1980)+

THEOREM 3+1+ Let A,B [ MP such thatdetAÓ 0anddetBÓ 0; there exists
D [ MP such that

every left divisor of D is also a left divisor of A and B, and
every left divisor of A and B is also a left divisor of D+

The matrix D is called the greatest common left divisor of A and B+Moreover,we
have the Bezout equality

∃~U,V! [ MP20D 5 AU 1 BV+
It is important to note that the greatest common left divisor is not unique, but

if D ' is another greatest common left divisor ofA and B, then there exists a
unimodular matrixWsuch thatD ' 5 DW+ Therefore, we say that two matrices of
MP are coprime if any of their greatest common left divisor is unimodular+

In the univariate case, it is usual to assume that the two polynomials in-
volved in the equation of the model are coprime to get the identifiability+ But,
because the greatest common left divisor is not unique for polynomial matri-
ces, this assumption is not sufficient in the multivariate case+ Therefore, we
introduce here the notion of “column-reduced” matrix, which will be useful in
what follows+ Let M~L! be a polynomial matrix anddij the degree of the poly-
nomial Mij ~L! 5 (l50

dij aij , l L
l + We definedj ~M ! and the matrixM rc by

dj ~M ! 5 sup
i

dij and Mij
rc 5 aij ,dj

+

Then, we can introduce the following definition+

DEFINITION 3+2+ A polynomial matrix M is column reduced if the determi-
nant of Mrc is nonequal to0+
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3.3.2. Minimal multivariate GARCH formulation.We will give in this sec-
tion a condition for the identifiability of the multivariate model (5)+ Let us give a
first lemma+

LEMMA 3 +1+ If U is a d3 d matrix and V an It21-measurablevector,we have

U 1
«1, t

2

I

«d, t
2
2 5 V n U 5 0 and V5 0+

Proof+ See Appendix+

We can now prove the following proposition+

PROPOSITION 3+2+ Let~P1,Q1! be a couple of polynomial matrices such that

the model~5! has a weakly stationary solution,
detP1 Ó 0 anddetQ1 Ó 0, and
P1 and Q1 are coprime+

Then, if «t is also the solution of a model written with the polynomial matrices
~P2,Q2!, there exists a polynomial matrix M such that

P2 5 M P1 and Q2 5 M Q1+

Proof+ See Appendix+

As indicated previously, the condition “P1 andQ1 are coprime” is not sufficient
for identifiability of the model+ Indeed, it is possible to find a unimodular matrix
M such thatM Þ Id, dj ~MP! 5 dj ~P!, dj ~MQ! 5 dj ~Q!, andM~0! 5 Id+Therefore,
the multivariate GARCH model formulated with~MP,MQ! has the same solution
(it is the only way to find a couple of polynomial matrices with this property)+The
following definition gives an additional assumption to get rid of this case+

DEFINITION 3+3+ We say that the formulation of a multivariate GARCH~ p,q!
model is minimal if

P~L!1
Ht,11~u!

I

Ht,dd~u!
2 5 W 1 Q~L!1

«t,1
2

I

«t,d
2
2 ,

with P and Q satisfying

1+ P~0! 5 Id and Q~0! 5 0+
2+ detP Ó 0 anddetQ Ó 0+
3+ P and Q are coprime+
4+ ∀j, 1 # j # d, dj ~P! 5 dj # p and dj ~Q! 5 dj # q+
5+ P or Q is column reduced+

With this last condition, we can prove the following result, which is a justifi-
cation of the termminimal.
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PROPOSITION 3+3+ Let ~P1,Q1! define a minimal formulation of a multivar-
iate GARCH~ p,q! model, such that there exists a weakly stationary solution
denoted«t ; then, if «t is also the solution of another model written with~P2,Q2!,
there exists j, such that dj ~P2! . dj ~P1! or dj ~Q2! . dj ~Q1!+

Proof+ See Appendix+

According to the results of the previous section, let us introduce the following
assumption+

Assumption B2+ The formulation atu0 of the multivariate GARCH~ p,q! model
with constant correlation is minimal+

The following proposition proves that, under this assumption, the model is
identifiable+

PROPOSITION 3+4+ Letu [ Q+ Under AssumptionsB1 andB2, and if Ht,u is
the weakly stationary solution of the multivariate GARCH model with constant
correlation, we have

∀u [ Q,∀u0 [ Q,

b 5 b0 Pu0
a+s+

and

Ht,u 5 Ht,u0
Pu0

a+s+
6 n u 5 u0+

Proof+ See Appendix+

3.4. Consistency of the Minimum Contrast Estimator

We can now give a set of sufficient conditions to get the consistency of the min-
imum contrast estimator+ Let us introduce the following additional assumptions+

Assumption B0+ Q is compact+

Assumption B3+ There exist two strictly positive constantsc1 andc2 such that
all the elements ofW are greater thanc1

10d and detV $ c2+

THEOREM 3+2+ Under AssumptionsB0–B3, the minimum contrast estimator
for a multivariate GARCH~ p,q! with constant correlation~see~4!! is strongly
consistent+

Proof+ See Appendix+

The stationarity and the identifiability of the model have been verified in the
previous sections+ It is not difficult to see that Assumption B3 implies that the
determinant of the conditional covariance matrix has a lower bound+ Last, be-
cause under B1 our solution is weakly stationary, we have a finite second mo-
ment; therefore, Assumption A3 of finite logarithmic moment is easily verified+
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4. CONCLUSION

This paper has shown a way to give a proof of the consistency of the quasi-
maximum likelihood estimator for multivariate GARCH models+ However,many
questions remain open+ First, we verified the necessary assumptions for only
one particular model, the GARCH model with constant correlation, for which
we are able to describe a set of parameters where the consistency holds; it
would be useful to apply it to other multivariate models+ It would be also very
important to complete the asymptotic theory of these models by giving a proof
of the asymptotic normality of the estimators+ However, it seems difficult to
give such a proof without a deep study of the contrast processFT~u! and its
derivatives; unfortunately, the expressions involved in these models are very
cumbersome+
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APPENDIX

Proof of Proposition 2.1. Assumption A2 implies thatFT~ sYT,u! $ log~c!, and A1 and
the ergodic theorem yield

F~u0,u! 5 Eu0
~ f ~ sY1,u!! if Eu0

~ f 1~ sY1,u!! , `,

5 1` if not+
Because

F~u0,u0! 5 Eu0
~log~detH1,u0

!! 1 Eu0
~~Y1 2 F1,u0

!'H1,u0

21 ~Y1 2 F1,u0
!!,

by A3, the first term is finite, the second term is equal tod, andF~u0,u0! is finite+ Now,
using A1, we deduce thatFT~Y,u! convergesPu0

a+s+ to a functionF~u0,u! such that

F~u0,u! 2 F~u0,u0! 5 Eu0
~log~detH1,u! 2 log~detH1,u0

!!

1 Eu0
~~Y1 2 F1,u!'H1,u

21~Yt 2 F1,u! 1 d!+

We can write

Y1 2 F1,u 5 ~ Y1 2 F1,u0
! 1 ~F1,u0

2 F1,u!

5 D1,u0
h1 1 ~F1,u0

2 F1,u!+

BecauseH1,u
21 is a positive definite matrix, there exists a matrixM such thatH1,u

21 5 M 'M
and

~Y1 2 F1,u!'H1,u
21~Y1 2 F1,u! 5 ~D1,u0

h1 1 ~F1,u0
2 F1,u!!'M 'M~D1,u0

h1 1 ~F1,u0
2 F1,u!!

5 ~Ah1 1 B!'~Ah1 1 B!,

where the two random variablesA and B are I0-measurable and independent ofh1+
Therefore,

Eu0
~~Y1 2 F1,u!'H1,u

21~Y1 2 F1,u!! 5 EdPA,B~a,b!Eu0
~~ah1 1 b!'~ah1 1 b!!

5 EdPA,B~a,b!Eu0
~tr~a'Va! 1 b'b!

5 Eu0
~tr~A'VA! 1 B'B!+

That is to say,

Eu0
~~ Y1 2 F1,u!'H1,u

21~Y1 2 F1,u!! 5 Eu0
~tr~H1,u0

H1,u
21!!

1 Eu0
~~F1,u0

2 F1,u!'H1,u
21~F1,u0

2 F1,u!!+

Thus,

F~u0,u! 2 F~u0,u0! $ Eu0
~log~detH1,u! 2 log~detH1,u0

!! 1 Eu0
~tr~H1,u0

H1,u
21! 2 d!,

CONSISTENCY OF ESTIMATORS FOR MULTIVARIATE ARCH MODELS 81

https://doi.org/10.1017/S0266466698141038 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698141038


the equality holds if and only ifF1,u0
5 F1,u a+s+ In this case, we obtain

F~u0,u! 2 F~u0,u0! 5 Eu0
~2log~detH1,u0

H1,u
21! 1 tr~H1,u0

H1,u
21! 2 d!+

BecauseH1,u0
andH1,u

21 are positive definite matrix, thed eigenvaluesli of H1,u0
H1,u

21 are
positive and

F~u0,u! 2 F~u0,u0! 5 Eu0S(
i51

d

2 log li 1 li 2 1D+
Using the inequalityx 2 1 $ log x for x . 0, we see thatF~u0,u! 2 F~u0,u0! . 0+
Furthermore, the equality holds if and only if all the eigenvalues are equal to 1, i+e+, when
H1,u0

H1,u
21 5 Id a+s+ Therefore, according to the assumption of identifiability A4, we have

F~u0,u! 5 F~u0,u0! if and only if u 5 u0+ n

Proof of Proposition 3.1. First, we prove that there exists a stationary processHt~u!
that satisfies (5)+ DenotingA~ht

2! the matrix where thel th column ofA is multiplied by
ht, l

2 , this equation may be formulated as

1
Ht,11~u!

I

Ht,dd~u!
2 5 W 1 (

i51

n

~Ai ~ht
2! 1 Bi !1

Ht2i,11~u!

I

Ht2i,dd~u!
2 ,

wheren 5 sup~ p,q!, Ai ~ht
2! 5 0 for i . q andBi 5 0 for i . p+

Let us considerVt,u
' 5 ~Ht,11~u!, + + + ,Ht,dd~u!,Ht21,11~u!, + + + ,Ht2n11,dd~u!!+We have

Vt,u 5 1
A1~ht21

2 ! 1 B1 A2~ht22
2 ! 1 B2 {{{ {{{ An~ht2n

2 ! 1 Bn

Id 0

Id I

L I

Id 0

2Vt21,u 1 1
W

0

I

0
2 +

We get

Vt,u 5 F~zt !Vt21,u 1 G, (7)

with zt
' 5 ~ht21,ht22, + + + ,ht2n! andG' 5 ~W,0, + + + ,0!+ The termF~zt! is the preceding

matrix+ Therefore,

Vt,u 5 F~zt ! {{{ F~zt2k11!Vt2k,u 1 (
i50

k21

F~zt ! {{{ F~zt2i11!G+

Let us first prove that the second term here converges inL1 and a+s+ whenkr`+ Indeed,
it is a series of positive terms andE~F~zt! {{{ F~zt2i11!G! 5 F iG, with
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F 5 1
A1 1 B1 A2 1 B2 {{{ An 1 Bn

Id 0

L I

Id 0
2 +

Thus, det~lId 2 F! and det(Id2 (i51
n ~Ai 1 Bi !l

2i! has the same roots+ Under B1, it
implies that the series converges inL1 and therefore also a+s+ Set

PVt,u 5 (
i50

`

F~zt ! {{{ F~zt2i11!G+

By independence of the random variablesht , the process~zt! and, consequently, the pro-
cess~ PVt,u! are strictly stationary and ergodic+ Moreover, because

PVt,u 5 F~zt ! PVt21 1 G,

PVt,u is a strictly stationary solution of (7) andPVt,u is in L1+ Therefore, S«t, i 5 PHt, ii
102ht, i is a

strictly stationary multivariate GARCH~ p,q! process, and is also inL2+
Let us now prove that this solution is unique+ Indeed, if «t is another solution, thenVt,u

satisfies

Vt,u 5 F~zt ! {{{ F~zt2k11!Vt2k,u 1 (
i50

k21

F~zt ! {{{ F~zt2i11!B+

The first term converges to 0 inL1 because

F~zt ! {{{ F~zt2k11!Vt2k,u 5 F kE~Vt2k,u! 5 c1F k kr`
&& 0,

wherec1 . 0+ Therefore, PVt,u 5 Vt,u and, as a consequence, S«t 5 «t + n

Proof of Lemma 3.1. We have«t, i
2 5 Ht, ii ht, i

2 , and the first line of this equation is

(
i51

d

U1i Ht, ii ht21, i
2 5 V1+ (8)

SetWi 5 U1i Ht, ii and letm be the measure of~W1, + + + ,Wd,V1!+ Becauseht is independent
of ~W1, + + + ,Wd,V1!, we get, by Fubini’s theorem,

PS(
i51

d

Wi ht, i
2 5 V1D 5 EPS(

i51

d

wi ht, i
2 5 v1D dm~w1, + + + ,wd ,v1!+

Because the left term is equal to 1, then

PS(
i51

d

wi ht, i
2 5 v1D 5 1 m a+s+

But we have assumed that there is no quadratic form such thatq~ht! 5 c+ Hence, w1 5
{{{ 5 wd 5 v1 5 0, m a+s+, and thenW1 5 {{{ 5 Wd 5 V1 5 0, P a+s+ BecauseHt, ii . 0, we
have, for all i, U1i 5 0 andV1 5 0+ It is also true for the other elements ofV+ n
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Proof of Proposition 3.2. Because«t is a stationary solution of both models, it implies
that, for i 5 1 or 2, detPi ~L! has its roots outside the unit circle+ Therefore, detPi ~L! is a
rational fraction and we have

detPi ~L! 5 (
j50

`

cj L
j for 6L6 # 1,

wherecj converges to 0 with exponential rate+ Let us denote byEPi ~L! the cofactor matrix
of Pi ~L!+We have

Pi ~L!21 5
EPi ~L!

detPi ~L!
,

and Pi ~L!21Qi ~L! can be developed in a series with coefficients converging to 0 with
exponential rate+ Furthermore, for i 5 1,2,

1
Ht,11~u!

I

Ht,dd~u!
2 5 Pi ~1!21W 1 Pi ~L!21Qi ~L!1

«t,1
2

I

«t,d
2
2 ,

and it implies that

~P1~1!21 2 P2~1!21!W 1 ~P1~L!21Q1~L! 2 P2~L!21Q2~L!!1
«t,1

2

I

«t,d
2
2 5 0+ (9)

Set

~P1~L!21Q1~L! 2 P2~L!21Q2~L!! 5 (
j51

`

Fj L
j ,

whereFj ared 3 d matrices+Conditioning (9) byIt2j021,wherej0 5 inf $ j0Fj Þ 0%,we get

Fj01
«t2j0,1

2

I

«t2j0,d
2 2 5 V,

whereV is It2j021-measurable+ By Lemma 3+1, it implies thatFj0 andV are equal to 0+
Thus,

P1~L!21Q1~L! 5 P2~L!21Q2~L!+ (10)

BecauseP1 andQ1 are coprime, the Bezout equality (see Theorem 3+1) and (10) yield

U 1 P1
21Q1V 5 P1

21 n U 1 P2
21Q2V 5 P1

21 n P2U 1 Q2V

5 P2P1
21 n P2 5 ~P2U 1 Q2V!P1+

Therefore, P2 5 MP1, with M 5 P2U 1 Q2V+ Using (10), we get alsoQ2 5 MQ1+ n
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Proof of Proposition 3.3. Proposition 3+2 implies thatP2 5 MP1 andQ2 5 MQ1+ If P1

is column reduced, because~MP1!~0! 5 Id, we haveM~0! 5 Id andM must be equal to
Id 1 LR~L!, whereR~L! is a polynomial matrix+ Let us calculate the supremum of the
degrees of each columnj of MP1: they can be equal todj ~P1! only if RP1

rc 5 0+ BecauseP1

is column reduced, P1
rc is a full rank matrix, and this implies thatR~L! 5 0+We can make

the same demonstration ifQ1 is column reduced+ n

Proof of Proposition 3.4. First, let us remark that we have alreadyb0 5 b and that
Ht,u0

5 Ht,u obviously implies thatr0ij 5 rij + Furthermore, (5) yields

1
~Ht,11~u!!2

I

~Ht,dd~u!!2
2 5 W 1 (

i51

q

Ai 1
«t2i,1

2

I

«t2i,d
2

2 1 (
i51

p

Bi 1
~Ht2i,11~u!!2

I

~Ht2i,dd~u!!2
2 ,

and, with obvious notations,

1
~Ht,11~u0!!2

I

~Ht,dd~u0!!2
2 5 W0 1 (

i51

q

A0i 1
«t2i,1

2

I

«t2i,d
2

2 1 (
i51

p

B0i 1
~Ht2i,11~u0!!2

I

~Ht2i,dd~u0!!2
2 +

Then, if Ht,u0
5 Ht,u, we get

V 1 (
i51

q

Mi 1
«t2i,1

2

I

«t2i,d
2

2 1 (
i51

p

Mq1i 1
~Ht2i,11~u!!2

I

~Ht2i,dd~u!!2
2 5 0, (11)

whereV is ad-vector andMi ared 3 d matrices+We must prove that all these terms are
equal to 0+ First, (11) yields

M11
«t21,1

2

I

«t21,d
2

2 5 U,

whereU is anIt22-measurable vector+ Therefore, from Lemma 3+1, this implies that both
M1 andU are equal to 0+

Now, becauseM1 5 0, we have

Mq111
~Ht21,11~u!!2

I

~Ht21,dd~u!!2
2 5 2V 2 (

i52

q

Mi 1
«t2i,1

2

I

«t2i,d
2

2 2 (
i52

p

Mq1i 1
~Ht2i,11~u!!2

I

~Ht2i,dd~u!!2
2 +

(12)

Let us suppose thatP is column reduced; if Mq11 Þ 0, becausePrc is a full rank matrix,we
haveMq11Prc Þ 0+ Therefore, from Proposition 3+3, the left term of (12) must have a
formulation with at least one columnj with dj ~P! lags, which is in contradiction with the
right term of this equation, which has onlydj ~P! 2 1 lags+ Therefore, we must have

CONSISTENCY OF ESTIMATORS FOR MULTIVARIATE ARCH MODELS 85

https://doi.org/10.1017/S0266466698141038 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698141038


Mq11 5 0+ The same demonstration holds ifQ is column reduced+ To end the proof, we
iterate the same demonstration forM2,Mq12,M3, + + + ,Mq1p and then show thatV is also
equal to 0+ n

Proof of Theorem 3.2. We must verify that A1–A5 hold; we proved A1 and A4 in
previous sections, and A5 holds obviously+ Furthermore,we haveHt,u 5 Dt,uVDt,u

' +Under
B3, the elements ofW are greater thanc1

10d, and, because the elements ofAi andBi are
positive, it is the same forHii , t + Therefore,

det~Dt,u! $ c1
102+

Because we assumed that detV $ c2, we have det~Ht,u! $ c1c2, and A2 holds+
For A3, we have

Eu0
~log detHt,u0

! 5 Eu0
~log det~Dt,u0

VDt,u0
!'!

5 log~detV! 1 Eu0
~log det~Dt,u0

Dt,u0
!'!

5 log~detV! 1 (
i51

d

Eu0
~log Ht, ii ~u0!!+

Under B1, we know that Eu0
~Ht, ii ! , `+ By Jensen’s inequality, we get

Eu0
~~log detHt,u0

!1! , 1`+ Furthermore, because det~Ht,u0
! $ c1c2, we also have

Eu0
~6log~detHt,u0

!6! , `+ n
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