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STRONG CONSISTENCY OF
ESTIMATORS FOR MULTIVARIATE
ARCH MODELS

THIERRY JEANTHEAU
Université de Marne-la-Vallée

This paper deals with the asymptotic properties of quasi-maximum likelihood es-
timators for multivariate heteroskedastic modéisr a general modgive give
conditions under which strong consistency can be obtaiuelike in the current
literature the assumptions on the existence of moments of the error term are weak
and no study of the various derivatives of the likelihood is requiléeen for a
particular modelthe multivariate GARCH model with constant correlatiove
describe the set of parameters where these conditions hold

1. INTRODUCTION

As a result of the paper by Mandelbrot (1968 know that for certain time se-
ries and especially economic and financial time setties conditional variance is
not constant over tim&@ herefore several models trying to take into account this
particular behavior have been introduc&te most successful ones are undoubt-
edly the autoregressive conditional heteroskedastic (ARCH) miattelduced by
Engle (1982)and some of its derivative models (GARGBARCH-M, EGARCH,
etc). The implementation of these parametric models is relatively sindwid,
from a practical point of viewit is well known now how to identifyestimateand
test this kind of model (for a description of these methods and some empirical ev-
idence see the survey of Bollersle€hou and Kroner1992)

From a theoretical point of vievimoweveythe problem of statistical inference
for these models remains partially opémdeed Weiss (1986) gave the first proof
of consistency and asymptotic normality of the maximum likelihood estimator
for univariate ARCH model but under strong conditions on the existence of the
moments of the error tern®n the other handa paper of Nelson (1990) showed
that for a particular modethe GARCH(11) mode] the process can be strictly
stationary with infinite second momeiaind the empirical studies (see Bollerslev
et al, 1992) suggest that some financial time series seem to be characterized by
such a procesd herefore statistical inference under weak conditions on the ex-
istence of moments is needed
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Lumsdaine (1991) gave such a proof of consistency and asymptotic normality
for the univariate GARCH(1) mode] for the set of parameters where there
exists a strictly stationary solution (including the IGARCH cakef and Hansen
(1994) obtained the same result under weaker conditidawever only a local
consistency is obtainednd the technical proofs seem difficult to extend to other
models For the same modelg&lie and Jeantheau (1995) gave a proof of global
consistencywhich is less technical and therefore can be applied to more complex
univariate modelsfor instanceto a GARCH p,q) model

Inthis paperwe focus our attention on multivariate modétsthe literaturesev-
eral formulations of conditionally heteroskedastic multivariate models have been
introduced (seee.g., Bollerslev 1987 Bollersley Engle and Wooldridge1988
Engle and Kronen995) But the complexity of the equations involved in all these
models makes the study of the likelihood diffig@hd the method of the proofs of
Lumsdaine (1991) or Lee and Hansen (1994) cannot be Tibedaim of this pa-
per is to show that the methodology used in Elie and Jeantheau (1995) can be ap-
plied to multivariate models because the consistency of the quasi-maximum
likelihood estimator is obtained without any study of the various derivatives of the
log-likelihood function and under weak conditions on the existence of moments

The paper is organized as followSection 2 presents a general multivariate
heteroskedastic modehe estimation methg@nd the assumptions under which
we can derive the strong consistency of the estim&trthis purposewe recall
a theorem of consistency (see Pfanzd@69) Section 3 presents a particular
example of this modethe multivariate GARCH model with constant correlation
introduced by Bollerslev (1987 or this modelwe study more particularly the
stationarity and the identifiabilifyand then we are able to describe the set of
parameters where the quasi-maximum likelihood estimator is strongly consis-
tent Section 4 concluded/lathematical proofs are deferred to the Appendix

2. PARAMETER ESTIMATION FOR MULTIVARIATE
HETEROSKEDASTIC MODEL

2.1. The Model and Assumptions

Let (Q, A,P) be a probability spagdY;,t € Z} anR%valued processaandé a
parameter ir® C R®. We say thal; is a multivariate autoregressive process with
conditionally heteroskedastic errorsfior all t € Z, we have

Yo = Dp(Yi1) + Ag(Ye 1), (1)
where

Y1 =Y1,Y o),

®, is a measurable function froR%)Y — R,

Ay is a measurable function frofR%)" — R4 ® RY,

{m,t € Z} is a doubly infinite sequence of independent and identically distributed
(i.i.d.) RYrandom variables defined @i with mean 0 and covariance matiibsuch
that
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1 pw P1d
p2 1
= .
P(d-1yd
Pid "t P(d-1yd 1

n¢ is independent of the-field I;_; generated byY;_1,Y;—5,...} = Y1, and
7, is l;-measurable

Note that the system extends infinitely far into the pgsdm (1) we remark that
E(Yi/li-1) = @p(Yi—1) and  ValY/li—1) = Ag(Yi1) T Ap(Y—1)".

Therefore®,(Y;_1) is the prediction o¥; when its past is knowrandA, (Y1) n;
is the error termFor simplicity we will denote

Dy = ®y(Y;—1) and Arg = Ag(Yi-1),
and the conditional covariance matrix of the error term
Hip = Var(Y,/li-1) = Apg I Atyp.

2.2. Main Result

Let the true value of the paramet&ybe in®. For ease of referenceve list the
assumptions under which a strongly consistent estimator is obtdiNetk that
“a.s.” in Assumption A5 is defined as “almost surély

Assumption A0 (Compactness® is compact

Assumption Al (Ergodicity) 06y € ®, model (1) admits a unique strictly
stationary and ergodic solutioh, following a stationary lawP,,.

Assumption A2 (Lower bound for the determinant of the conditional covari-
ance matrix) There exists a deterministic constant 0 such thatlt, (06 € 0,
det(H;,) =c.

Assumption A3 (Logarithmic moment)16, € 0, E (|log(detH, 4,)[) < co.
Assumption A4 (ldentifiability) The functionsb andH are such that
Dy g = Dy, Py, as.
00 € 0,00, € 0, and =0 = 0,.
Hip = Hyo, Po,as.

Assumption A5 (Continuity) The functionsb andH are continuous functions
of the parametef.

Let us remark that we do not assume that the random varigbéee Gaussian
Therefore we use the quasi-maximum likelihood estimation methd@ con-
sider a functior(6) that would be the conditional (oY) log likelihood of the
sample(Y;,...,Yy) if the random variable&y,) were Gaussiarthat is to say

Frl0) = Fr(/0) = 7 3 1000)
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with
f(Y;,0) = log(detH, 5) + (Y — q)t,f))’Ht,_el(Yl — Dyp). (2

Then we define our estimatér as any solution of the equation
fr = arg ingT(_YT’H)- 3)

We will refer to F+(f) as a contrast process andépas a minimum contrast
estimator (see Dacunha-Castelle and DUERB3) It is the exact maximum con-
ditional likelihood estimator ifn,,t € Z) are Gaussian

We can now give the main result of this paper

THEOREM 21. Under Assumption80—A5, the minimum contrast estimator
for our model is strongly consisterhat is to say

A T—oo

0r —— 0 Py as

This result will be proved in the next sectidret us remark that this is obtained
under weak condition#®\ssumptions AQA1, A4, and A5 are common to get the
consistency of a minimum contrast estimatord A3 is a weak condition on the
existence of momenfAssumption A2 is a crucial assumption in our proof

2.3. Proof of the Strong Consistency

For model (1)the consistency of the estimator relies on the following theorem (a
proof can be found in Pfanzagl969 for i.i.d. data and can be immediately
generalized for strictly stationary and ergodic daggtx ~ = inf(x,0).

THEOREM 22. On (Q, A, P), let{Y;,t € Z} be a strictly stationary and er
godic processt a parameter i®, and F(Yr,6) be a contrast process such that

T
FT(_YT96) = T71 2 f(_YhH)a
t=1

where fis a measurable function with realues and continuous i Let B(6, p)
be the ball of centef and radiusp, and £.(9,p) = inf{ f(Y;,6’), 8’ € B(0,p)}.
Make the following suppositions

Hypothesis H. @ is compact

Hypothesis H. The function R6q,0), defined for all6 € © by F(6q,0) =
Eq,(T(Y1,6)), has a unique finite minimum &b.

Hypothesis F2. 00 € 0, Ey (f.(8,p)) > —co.

Then the minimum contrast estimaté¢ associated to F6) corverges B as.
to 6o when T— co.
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In the current literature on ARCH-type modglise consistency of estimators
relies on theorems similar to the one given in Andrews (19Bvdhis casethe
proofis often very complex and technical (see Lumsddif81l; Lee and Hansen
1994) The use of Theorem.2 allows us to simplify this proofindeed notice
that it is not assumed that the contrast functie,, ) is finite everywhere
Thereforewe can still deal with models whetg, ( f(Yy,6)) is not always finite
or where the finiteness is difficult to checkuch as in most ARCH-type models
Furthermoreno assumption is made on the behavior of the derivatives of the
contrast process

The condition of moment induced by Theoren2 & given by the finiteness
of F(6o,60), and therefore we must haws, | f(Y;,600)| < +co. This condition
is fulfilled by the conditionally heteroskedastic model under the weak (loga-
rithmic) moment condition A3Therefore in the univariate caset is possible
to use Theorem.2 to deal with the IGARCH model (see Elie and Jeantheau
1995)

By Theorem 22, we get the strong consistency of our estimator (Theordm 2
if Assumptions A1-A5 imply H1 and H2vhenf(Y;,0) is given by (2) First, we
remark thatunder A2 H, , is a positive definite matrixas isH 4, and thus
Fr(Yr,0) is always greater than I¢g). Therefore H2 holds obviouslyand this
remark is also important for the proof of the next propositiwhich shows that
H1 holds

PROPOSITION 2.. Under Assumption81-A4, F:(Yr,0) corverges when
T — oo, Py, a.s. to F(6o,0) = Ey (f(Y1,0)), and this function has a unique finite
minimum infg.

Proof See Appendix

Thereforethe strong consistency of our estimator for the model4&)given
in Theorem 21, follows from Proposition 2L and Theorem .2.

3. APPLICATION TO THE MULTIVARIATE GARCH MODEL WITH
CONSTANT CORRELATION

For particular modelshowevey the verification of Assumptions A1-A5 may be
difficult. In the univariate casé is possible to prove that these assumptions hold
fora GARCH(11) model for the set of paramete@avhere the condition of strict
stationarity given by Nelson (1990) is satisfied (including the IGARCH)@ase)

and where the conditional variance is bounded from beldwese results can be
extended to strictly stationary GARQId, q) models under some additional con-
ditions of identifiability (see Elie and Jeanthed@95) The aim of this section is

to show how this can be achieved for a multivariate GARCH model with constant
correlation We first introduce this model
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3.1. The Model

For simplicity we will only deal with a case wher®, is equal to a constayit €
RY. Therefore we assume that

Y[:B+8t7 (4)

where the error term, is defined as follows (see Bollerslel987)

DEFINITION 3.1. A sequencés,,t € Z} of randomvariables withvalues in
RY follows a multvariate GARCH( p,q) process with constant correlation if

g = A(0) g,

whereA(0) is a diagonal matrix and the elements of the diagakal(#) satisfy
for all i, the following relation

(At,ll(o))z q Stzfi,l D (Atfi,ll(a))z
=W+ -;A‘ oL+ ; B, : , (5)

(Arqa(0))? &tig (Ar-i,4a(0))?

where We RY A, and B € RY X RY and we assume that all coefficients of these
matrices are positie. Furthermore we hae the following conditions on,:

1. {m,t € Z} is a sequence ofiid. R%valued randonvariables with mean0 and
covariance matrixI” such that

1 P12 Paid
p2 1 :
= . )
P(d-1d
Pid  ° P(d-Dd 1

2. nis independent of the-field I;_; generated by Y;_1,Y;—»,...}, and
3. the law ofxy is such that there is no quadratic form q for whictyg) = § a.s., with
6 ER.

From this definition we see that the conditional covariance matrixgfde-
noted byH,(6), is such that

{Ht,ii 0) = (A (0))?
Heij (0) = pij Ayii () Ay (0) fori #j.

Therefore the conditional correlation between; ande, j is constantThis as-
sumption may seem restrictivbeut some empirical studies have found it to be
reasonable (see Bollerslev et,d1992)

The multivariate GARCH model with constant correlation is an example of the
model (1) described in the previous sectidfe just add Assumption A3 about the
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law of n; this will be important for ensuring the identifiability of this mod&he
parametep of our model that we have to estimate is th@ + 1 + dq + dp +

(d — 1)/2) vector constructed with, W, A, B;, andpj; . In the following sections

we will derive conditions on this model under which Assumptions A1-A5 hold
and therefore under which the minimum contrast estimator is strongly consistent

3.2. Stationarity (Assumption A1)

First we must find the set of paramet@ssuch that the solution of the GARCH
model verifies Assumption Al of strict stationarity and ergodicithe weak
stationarity of univariate ARCH and GARCH models can be found in the original
papers of Engle (1982) and Bollerslev (1988)d one can derive from this the
analogous results for multivariate modéise strict stationarity is more complex
to obtain for the GARCH(11) mode] it is possible to give an explicit necessary
and sufficient condition on the set of parameters (see Nelk@®0) to get the
result but for the univariate GARCHp,q) mode] the condition is formulated
with the Lyapunov exponent of a matrix associateé {eee Bougerol and Picard
1992) and a generalization of this result to multivariate GARCH models seems
difficult.

However it is possible to give a condition under which there exists a weakly
stationary solution (see Bollersled®87, Engle and Krone1995) Thereforefor
our modeJ we give this condition (denoted by BIgnd then we prove that the
solution is also strictly stationary and ergodic and thus that Assumption Al.holds
Let us remark thatfor our purposgB1 is too strong because it implies that the
solution has a finite second momewnthereas the method of our proof requires
only a finite logarithmic moment

Let us denote as Id the X d identity matrix

PROPOSITION 3L. We will make the following assumption

Assumption B16 is such that det(ld- 3, (A; + Bj)X') has its roots outside
the unit circle

Under Assumption B the multbariate GARCH(p,q) model with constant
correlation has a weakly stationary solutiokloreaver, this solution is unique
and is also strictly stationary and ergodic

Proof See Appendix

It is important to remark that one can derive the strict stationarity and the
ergodicity because the solution of this model has an explicit expression in terms
of the sequencgy;, t € Z}; this is a specific feature of the multivariate GARCH
model with constant correlation

3.3. Identifiability (Assumption A4)

The aim of this section is to check Assumption.Afsing the backshift operator
notationL, we can rewrite (5) as
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Ht,11(9) 812,1
P(L) : =W+ QML) : |, (6)
Ht,dd(a) sgd

with P andQ two matrices with polynomial coefficients such thatL) = Id —
SPB L andQ(L) = 3L, AL If we multiply (6) by a matrix with poly-
nomial coefficientsR(L) # Id, we get another formulation of the multivariate
GARCH model with the same solutiptherefore to be identifiable this for-
mulation must be minimal in a certain senBefore giving a definition of the
term minimal we recall in the next section some properties of matrices with
polynomial coefficients

3.3.1. Definition and properties related to matrices with polynomial coeffi-
cients. The results and the proofs of this section can be found in Kailath (1980)
We denote byMP the set of matrices with polynomial coefficientset us recall
that a square matriki (L) € MP is unimodular if its determinant is nonequal to
0 and independent of the lag operatoBecause of TheoremB we may define
a greatest common left divisor (see KailAt®80)

THEOREM 31. Let A B & MP such thatletA #= 0anddetB # 0; there exists
D € MP such that

every left dvisor of D is also a left diisor of A and Band
every left dvisor of A and B is also a left disor of D.

The matrix D is called the greatest common lefistr of A and BMoreaer, we
have the Bezout equality
OuU,V) € MP%D = AU + BV.

It is important to note that the greatest common left divisor is not unioute
if D' is another greatest common left divisor Afand B, then there exists a
unimodular matriXV such thaD’ = DW. Thereforgwe say that two matrices of
MP are coprime if any of their greatest common left divisor is unimodular

In the univariate caset is usual to assume that the two polynomials in-
volved in the equation of the model are coprime to get the identifiabHBity,
because the greatest common left divisor is not unique for polynomial matri-
ces this assumption is not sufficient in the multivariate casberefore we
introduce here the notion of “column-reduced” matmich will be useful in
what follows Let M(L) be a polynomial matrix and; the degree of the poly-
nomial M (L) = Eﬁioaw L'. We defined;(M) and the matrixvi' by

dJ(M) = Supd,] and Migc = aij,dj.
]
Then we can introduce the following definition

DEFINITION 3.2. A polynomial matrix M is column reduced if the determi
nant of M® is nonequal td.
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3.3.2. Minimal multivariate GARCH formulation.We will give in this sec-
tion a condition for the identifiability of the multivariate model (et us give a
first lemma

LEMMA3.1. IfUisadX dmatrix and V an/_;-measurableector, we hae

2
€1t

Ul : |=Vv=U=0 and V=0.
£§,t
Proof See Appendix
We can now prove the following proposition

PROPOSITION 2. Let(P;,Q,) be acouple of polynomial matrices such that

the model5) has a weakly stationary solutipn

detP; # 0 anddetQ; # 0, and

P, and Q are coprime
Then if & is also the solution of a model written with the polynomial matrices
(P5,Q,), there exists a polynomial matrix M such that
P2:M Pl and Q:M Ql'

Proof See Appendix

As indicated previouslyhe condition P, andQ, are coprime” is not sufficient
for identifiability of the modelindeedit is possible to find a unimodular matrix
M such thaM # Id, d;(MP) = d,(P), d,(MQ) = d;(Q), andM(0) = Id. Therefore
the multivariate GARCH model formulated witMP, MQ) has the same solution

(itis the only way to find a couple of polynomial matrices with this properfje
following definition gives an additional assumption to get rid of this case

DEFINITION 3.3. We say that the formulation of a muhkiriate GARCH p,q)
model is minimal if
Ht,11(9) 8t2,1
P(L) : =W+ Q)| : |,
He aa(0) ey
with P and Q satisfying

1. P(0) = Id and Q0) = 0.
. detP # 0 anddetQ # 0.
. P and Q are coprime
.O0,1=j=d d((P)=d =pandd(Q) =d =q.
. P or Qis column reduced
With this last conditionwe can prove the following resylvhich is a justifi-
cation of the terrminimal.

a b wdN
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PROPOSITION 3&. Let(P;,Q;) define a minimal formulation of a mudtr-
iate GARCH(p,q) mode] such that there exists a weakly stationary solution
denotedk,; then if &, is also the solution of another model written witk,, Q.),
there exists,jsuch that g(P,) > dj(Py) or d;(Q,) > d;(Q,).

Proof See Appendix

According to the results of the previous sectitat us introduce the following
assumption

Assumption B2 The formulation a#, of the multivariate GARCKlp,q) model
with constant correlation is minimal

The following proposition proves thatinder this assumptigrthe model is
identifiable

PROPOSITION 34 Let# € ©. Under AssumptionB1 andB2, and if H, 4 is
the weakly stationary solution of the muliriate GARCH model with constant
correlation, we hae

B = Bo Py, a.s.
06 € 0,00, € O, and =0 = 0,.
Ht,6 = Ht,ﬂo P('}o a.s.

Proof See Appendix

3.4. Consistency of the Minimum Contrast Estimator

We can now give a set of sufficient conditions to get the consistency of the min-
imum contrast estimatok et us introduce the following additional assumptions

Assumption BO 0 is compact

Assumption B3 There exist two strictly positive constamsandc, such that
all the elements ofV are greater thao{’® and det) = c,.

THEOREM 32. Under AssumptionB0—B3 the minimum contrast estimator
for a multivariate GARCH( p,q) with constant correlatiorisee(4)) is strongly
consistent

Proof See Appendix

The stationarity and the identifiability of the model have been verified in the
previous sectiondt is not difficult to see that Assumption B3 implies that the
determinant of the conditional covariance matrix has a lower bouast be-
cause under B1 our solution is weakly stationaveg have a finite second mo-
ment therefore Assumption A3 of finite logarithmic moment is easily verified
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4. CONCLUSION

This paper has shown a way to give a proof of the consistency of the quasi-
maximum likelihood estimator for multivariate GARCH modédtowever many
guestions remain opeifrirst, we verified the necessary assumptions for only
one particular modethe GARCH model with constant correlatioior which

we are able to describe a set of parameters where the consistency iholds
would be useful to apply it to other multivariate moddtswould be also very
important to complete the asymptotic theory of these models by giving a proof
of the asymptotic normality of the estimatotdowever it seems difficult to
give such a proof without a deep study of the contrast proEge&$) and its
derivatives unfortunately the expressions involved in these models are very
cumbersome
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APPENDIX

Proof of Proposition 2.1. Assumption A2 implies tha&(Yr,6) = log(c), and A1 and
the ergodic theorem yield

F(00,0) = Epo((Y1,0)) if Egy((¥1,6)) < oo,

= +oo if not.
Because

F(60,00) = Eg,(log(detHy 4,)) + Eg (Y1 — 1 9.) Hi g (Y1 — P1g,)),

by A3, the first term is finite the second term is equal th andF (6y,6,) is finite. Now,
using Al, we deduce that (Y, ) converged, a.s. to a functionF (6o, ) such that

F(00,6) — F(6o,60) = Eg,(log(detHy 4) — log(detHy 4,))
+ Eg, (Yo — ©@19) Hi g (Y; — Dy ) + d).
We can write
Yi— ®19= (Y1 — Oyp,) + (P, — Prp)
= Ay g,m1 + (Py g, — Prp).

BecauseH 4 is a positive definite matrixhere exists a matrikl such thaH; = M'M
and

(Yo = D) Hig(Ys — Prg) = (Apg,m1 + (Prg, — P19)) M/ M(Ag g 11 + (g5, — Prp))
= (Any + B)'(An1 + B),

where the two random variable’s and B are |;-measurable and independent .
Therefore

(% — 1 Y — @) = [ 0Py o(a bIEs((@n: + b (ans + b)

= fdPA,B(& b)Ey (tr(a’Qa) + b'b)
= Ey,(tr(ANQA) + B'B).
That is to say
Eoo (Y1 — @14)'Hig (Y1 — ®14)) = Ep,(tr(Hy g,H1 7))
+ Ep, (P19, — ‘Dl,e)’Hffal(q)l,eo — Dy 4)).
Thus
F(0q,0) — F(00,00) = Ey (log(detH, 4) — log(detH, 4,)) + Ego(tr(Hl,equfgl) —d),
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the equality holds if and only b, o, = ®1 4 as. In this casgwe obtain
F(00,0) — F(6o,00) = Eg (—log(detH, 4 Hig) + tr(Hy g Hig) — d).

BecauséH; 4, andHy 4 are positive definite matrixhed eigenvalues\; of H, 4 Hy ¢ are
positive and

d
F(BO,O) - F(Ho,eo) = E90<2 - |Og/\i + /\i - 1)

i=1

Using the inequalityx — 1 = logx for x > 0, we see thaF (0o,0) — F(6g,60) > O.
Furthermorethe equality holds if and only if all the eigenvalues are equal teel when
Hi¢,Hig = Id as. Thereforeaccording to the assumption of identifiability Ade have
F(60,0) = F(6o,0,) if and only if 6 = 6. u

Proof of Proposition 3.1. First, we prove that there exists a stationary prodegg)
that satisfies (5)DenotingA(n?) the matrix where théth column ofA is multiplied by
né), this equation may be formulated as

Hi11(0) . Hii,12(0)
:W+§(Ai(77t2)+8i) : ,

i=1

H; aa(6) Hii,qa(0)

wheren = sup(p,q), A (n?) = 0 fori > gandB; = 0 fori > p.
Let us consideWy = (Ht11(6), ..., Hyda(0), Hi-1,11(0), ..., Hi-n+1,4a(6)). We have

AlmE1) + By Ac(méEa) + By -+ o Aj(mdn) + By W
Id 0
0
Vo = Id : Vieig + | .
0
Id 0
We get
Vo = F({)Vi—1,0 + G, (7)

with &{ = (-1, Mt—2,...,Mt—n) @and G’ = (W,0,...,0). The termF({,) is the preceding
matrix. Therefore

k-1
Voo = F(0) -+ Flliki)Viko + '26 F() - F({iv1)G.

Let us first prove that the second term here convergés and as. whenk — co. Indeed
it is a series of positive terms aft(F (;) --- F({i—i+1)G) = F'G, with
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A+B A+By -+ A+ B,
Id 0
F=
Id 0

Thus det(Ald — F) and det(ld— 3{L.(A + Bj)A™") has the same roattinder B1 it
implies that the series convergeslihand therefore also.a Set

\7t,0 = ;)F(ft) < F(limiv) G

By independence of the random variabigsthe proces${;) and consequentlythe pro-
cess(\7w) are strictly stationary and ergodiloreover because
Vo = F(Z)Vi-1 + G,

V. is a strictly stationary solution of (7) and , is in L*. Therefore 5,; = H?n,; is a
strictly stationary multivariate GARCHp, q) processand is also irl2.

Let us now prove that this solution is uniquedeed if g is another solutiosthenV, 4
satisfies

k-1
Vo = F(&) -+ F(dke ) Viio + ‘—20 F() -+ F({i—i+1)B.

The first term converges to O it because

k—oo

F(Z) -+ F(li—k+1)Vieko = FkE(Vt—k,e) = Cle —0,

wherec, > 0. Therefore \; y = V,» and as a consequencg = s;. u

Proof of Lemma 3.1. We haveeﬁi = Hii nfi, and the first line of this equation is
d
_Eluli Ht,ii 7712—1,i = V. (8)
=

SetW, = Uy H ;i and letu be the measure @i\, ..., Wy, V;). Becausey, is independent
of (W, ..., Wy, V1), we get by Fubini’s theorem

d d
P(_Elwmfi = V1> = fp<_21Wi775i = Ul> du (Wy, ..., Wy,v1).
i= i=
Because the left term is equal tothen
d
P(EWH’]S' = Ul) = 1/.La.s.
i=1

But we have assumed that there is no quadratic form suchythyat = c. Hence w; =
<o =Wg =0, =0, pas,andtheiV, = .-- = Wy = V; = 0, Pas. Becaused, j > 0, we
have for all i, U;; = 0 andV, = 0. Itis also true for the other elements\éf u
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Proof of Proposition 3.2. Because; is a stationary solution of both modgisimplies
that fori = 1 or 2 detP;(L) has its roots outside the unit circlEhereforedetP;(L) is a
rational fraction and we have

detP, (L) = X gL} for |L|=1,

j=0

whereg; converges to 0 with exponential rateet us denote by (L) the cofactor matrix
of P,(L). We have

P (L)

Pi(L)~* = detP. (L)’

andP; (L) 'Qi(L) can be developed in a series with coefficients converging to 0 with
exponential rateFurthermorefori = 1,2,

Hi11(0) stz,l
=R "W+ R L) QML) |,
Hiaa(0) &ty
and it implies that
8%1
(P1(D)7F = Po() ™ HW + (Pr(L) 7' Qq(L) — Po(L)'Qx(L))| & | =0. (9)
Ssd

Set
(P1(L)*Qu(L) — Po(L)*Qq(L)) = _Elq’j L,
i

whered; ared X d matricesConditioning (9) byl;_; 1, wherejo = inf{ j/®; # 0}, we get
8tz—Jo,l
q)jo = V,

2
Et—jo.d

whereV is |;_j _;-measurableBy Lemma 31, it implies that®;, andV are equal to 0
Thus

P1(L) 1Qu(L) = Po(L) *Qa(L). (10)
BecausdP; andQ, are coprimethe Bezout equality (see TheoreniBand (10) yield
U+ P QV=Pil=U+P;1QV =P = P,U + QV

=P,Pi1=P, = (P,U + Q,V)P,.

Therefore P, = MPy, with M = P,U + Q,V. Using (10) we get alsdQ, = MQ;. u
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Proof of Proposition 3.3. Proposition 2 implies that?, = MP; andQ, = MQ;. If Py
is column reducedecauséMP;)(0) = Id, we haveM(0) = Id andM must be equal to
Id + LR(L), whereR(L) is a polynomial matrixLet us calculate the supremum of the
degrees of each colunjiof MP,: they can be equal ) (P,) only if RP{® = 0. Becausé>;
is column reducedPi is a full rank matrix and this implies thaR(L) = 0. We can make
the same demonstrationG; is column reduced u

Proof of Proposition 3.4. First, let us remark that we have alrea@y = B8 and that
Hi 6, = Hy¢ Obviously implies thapo; = pj;. Furthermore(5) yields

(Hy11(0))? . et . (He—i112(6))?
=W+ D> A| + > B : ,
) =1 ) =1 5
(Hyaa(8)) &t-id (H—i,0a(0))
and with obvious notations
(Ht,u(eo))z q 8t2—i,1 o (Ht—i,ll(go))z
= WO + 2 AOi E + 2 BOi .
5 i=1 5 i=1 5
(Ht,aa(60)) &tid (Hi—i,0a(00))
Then if H , = Hy 4, We get
] &1 . (He—i,11(0))?
V+ M| + > Mg+ : =0, (11)
=1 5 =1 5
etid (Hi—i,0a(8))

whereV is ad-vector andV;; ared X d matrices We must prove that all these terms are
equal to OFirst, (11) yields
8t2—1,1
M| =U,
Etz—l,d
whereU is anl,_,-measurable vectoFherefore from Lemma 31, this implies that both

M; andU are equal to 0
Now, becauséM; = 0, we have

(Hi-111(0))? . efi1 ) (Hi-i11(0))?
Mg.s : =-VoSM| ] My
(Hi-1,4a(0))? efia (Hi-i,0a(0))?
(12)

Let us suppose th&is column reducedf Mg, 1 # 0, becaus® ' is a full rank matrix we
haveMq,1P™ # 0. Therefore from Proposition 3, the left term of (12) must have a
formulation with at least one colunjwith d, (P) lags which is in contradiction with the
right term of this equatianwhich has onlyd;(P) — 1 lags Therefore we must have
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Mg+1 = 0. The same demonstration holdsQfis column reducedlo end the progfwe
iterate the same demonstration ¥dp, Mg 2, M3, ..., Mg, and then show thay is also
equalto 0 |

Proof of Theorem 3.2. We must verify that A1-A5 holdwe proved Al and A4 in
previous sectiongnd A5 holds obviouslyFurthermorewe haveH; o = A 4 QAL ». Under
B3, the elements ofV are greater thani/?, and because the elements Af andB; are
positive it is the same foH;; ;. Therefore

det(A, 4) = cf/2.

Because we assumed that et c,, we have ddiH; 4) = c,c,, and A2 holds
For A3, we have

Ey,(log detH; 4,) = Ey,(log det(A 9, QA 4,)")

= log(detQ)) + Ey (log det(A; o Arg,)")
d

= log(detQ) + >, Ey, (logHy i (6o)).
i=1

Under Bl we know that Ey (Hy i) < oo. By Jensen’s inequality we get
Eg,((log detH; 4,)") < +oo. Furthermore because déH;,) = c,c,, we also have
Ey,(llog(detHy 4,)]) < co. |
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