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The instabilities and transitions of flow in a vertical cylindrical cavity with heated
bottom, cooled top and insulated sidewall are investigated by linear stability analysis.
The stability boundaries for the axisymmetric flow are derived for Prandtl numbers
from 0.02 to 1, for aspect ratio A (A = H/R = height/radius) equal to 1, 0.9, 0.8,
0.7, respectively. We found that there still exists stable non-trivial axisymmetric flow
beyond the second bifurcation in certain ranges of Prandtl number for A = 1, 0.9 and
0.8, excluding the A = 0.7 case. The finding for A = 0.7 is that very frequent changes
of critical mode (azimuthal Fourier mode) of the second bifurcation occur when the
Prandtl number is changed, where five kinds of steady modes m = 1, 2, 8, 9, 10 and
three kinds of oscillatory modes m = 3, 4, 6 are presented. These multiple modes
indicate different flow structures triggered at the transitions. The instability mechanism
of the flow is explained by kinetic energy transfer analysis, which shows that the radial
or axial shear of base flow combined with buoyancy mechanism leads to the instability
results.
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1. Introduction
Cylindrical Rayleigh–Bénard convection is a classical prototype of pattern formation

(Cross & Hohenberg 1993). This system has been the focus of intensive studies
because of its theoretical and practical importance (Bodenschatz, Pesch & Ahlers
2000). The flow instabilities in the convection play a crucial role in how the
convection patterns develop. The instability of the conductive state has been well
established since the works of Charlson & Sani (1970, 1971), Stork & Müller (1975),
Rosenblat (1982) and Buell & Catton (1983). All these works have shown that flow
structure after the primary threshold is independent of the Prandtl number but depends
on the aspect ratio A. The transition between axisymmetric and non-axisymmetric
modes occurs around A = 1.44 for conductive sidewalls. The flow is axisymmetric
(m = 0) for 0.64 < A < 1.1 and non-axisymmetric (m = 1) for larger values of A in
the case of adiabatic sidewalls. The critical Rayleigh number decreases asymptotically
towards a constant value as A→ 0.
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The stability of the first convective state depending on both aspect ratio and
Prandtl number has been investigated mainly for axisymmetric primary flow. The
first numerical investigation of the instability of the axisymmetric flows at small aspect
ratios is due to Charlson & Sani (1975). However, they failed to predict the secondary
instability satisfactorily, since the resolution available at that time was inadequate and
the mode truncation was too severe. Müller, Neumann & Weber (1984) investigated
convective flows experimentally and numerically for Pr = 0.02 and Pr = 6.7. They
observed axisymmetric flows for A = 1 and non-axisymmetric flows for 2 < A < 10.
They also found numerically a second stable solution at Ra = 2800 with symmetry
m = 2, which agrees with the result reported by Neumann (1990). Hardin & Sani
(1993) calculated weakly nonlinear solutions to the Boussinesq equations for several
moderate and large aspect ratios. They corrected some results of Charlson & Sani
(1975) and extended them for convection with the Soret effect. Very recently, Hért
et al. (2010) experimentally studied both conductive and convective instability in
cylindrical convection for 0.22 < A < 2 and Pr = 28.9. Most of their results are
consistent with previous stability analysis and numerical simulations.

Wanschura, Kuhlmann & Rath (1996) performed a numerical study of secondary
convective instabilities for moderate-aspect-ratio cylinders. The study was done in the
aspect ratio range 0.64 < A < 1.1, for which the primary threshold corresponds to
the axisymmetric mode m = 0. The Prandtl number is fixed at two values: Pr = 0.02
and Pr = 1. The secondary threshold increases with the Prandtl number, and also
strongly depends on the aspect ratio. The unstable mode of this secondary transition
corresponds to the m = 2 mode in general, while oscillatory m = 3 and m = 4
modes are also observed in a narrow aspect ratio 0.64 < A < 0.69 at Pr = 1. They
also elucidated the instability mechanism by energy analysis. The axisymmetric flow
becomes unstable due to the classical thermal instability mechanism for large Prandtl
numbers, whereas for small Prandtl numbers the secondary instability is inertial in
nature. Touihri, Ben Hadid & Henry (1999) numerically investigated the stability
of the conductive state for aspect ratios A = 1 and A = 2 and the convective state
for A = 1. They established a diagram of primary bifurcations, including unstable
branches. The secondary bifurcation point for A = 1 and 0 < Pr < 1 has also been
given. Borońska & Tuckerman (2006) performed a more detailed description of the
oscillatory instability with the azimuthal wavenumbers m = 3 and m = 4 found by
Wanschura et al. (1996). The transitions from steady axisymmetric flows to time-
dependent flows are studied by nonlinear simulations, linear stability analysis and
bifurcation theory. Their results demonstrate that the axisymmetric flow becomes
unstable to standing and travelling azimuthal waves at a Rayleigh number near 7400,
and the standing waves are slightly unstable to travelling waves. Moreover, they
interpreted their results as a Hopf bifurcation in a system with O(2) symmetry.

An interesting experimental study was carried out by Hof, Lucas & Mullin (1999).
They observed five distinct steady patterns for fixed A = 0.5,Pr = 6.7 and Ra = 1775
with insulating sidewalls. They also reported a transition from an axisymmetric
steady state towards the azimuthal waves. There are some further simulations and
analyses relevant to this experiment. Rüdiger & Feudel (2000) numerically studied the
formation of different patterns as straight rolls, targets, and spirals in a cylindrical
system for A = 0.25 and Pr = 1. Leong (2002) used a finite difference method to
simulate convective flows for Pr = 7 in cylinders of aspect ratios A = 0.25 and
0.5 with adiabatic lateral walls. They observed several steady patterns of parallel
rolls, three-spoke flow and axisymmetric state, all of which were stable in the
range 781 < Ra < 4688. Ma, Sun & Yin (2006) numerically studied the flow state
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multiplicity in Hof et al. (1999) under the same parameters. Very recently, Borońska
& Tuckerman (2010a,b) performed a more complete survey of the convective patterns
at the parameter A = 0.5 and Pr = 6.7 by numerical and bifurcation analysis for both
insulating and conductive sidewalls.

Based on the second instability analysis of Wanschura et al. (1996) and Touihri
et al. (1999), the present study concerns not only the stability of axisymmetric flow
corresponding to the second bifurcation but also the stability of axisymmetric flow
beyond the second bifurcation. Several parameter variations are performed to obtain
deeper insights into the nature of the convective instability. The influences of geometry
(aspect ratio) and physical parameters (Prandtl number) are studied systematically by
linear stability analysis. Further, the kinetic energy transfer between the basic state and
a disturbance is considered in order to elucidate the instability mechanisms.

2. Problem formulation and numerical method
We consider an incompressible Newtonian fluid confined in a vertical cylindrical

cavity of aspect ratio A = H/R, where H is the height and R is the radius of
the cavity. The cylinder is uniformly heated from below with a higher temperature
Th and cooled from above with a lower temperature Tc, whereas the sidewall is
adiabatic. In cylindrical coordinates, the domain is (r, ϕ, z) ∈ [0, 1] × [0, 2π] × [0,A].
The three-dimensional problem is described by the Boussinesq equations. All the
physical characteristics are taken as constant except the density, which is taken
as a linear function of temperature in the buoyancy term, ρ = ρ0[1 − α(T − T0)],
where α is the thermal expansion coefficient and T0 is the reference temperature
(T0 = Tc). The length, time, velocity and pressure are scaled by R, R2/κ , κ/R, and
ρ (κ/R)2, respectively, where κ is the thermal diffusivity. Non-dimensional temperature
is defined by Θ = (T − Tc)/(Th − Tc). The dimensionless governing equations can be
written as

∇ ·u= 0, (2.1)
∂u
∂t
+ u ·∇u=−∇p+ Pr ∇2u+ PrRaΘ ẑ, (2.2)

∂Θ

∂t
+ u ·∇Θ = ∇2Θ, (2.3)

where Pr = ν/κ is the Prandtl number, ν is the kinematic viscosity, Ra = gα(Th −
Tc)R3/(κν) is the Rayleigh number, g is the gravity acceleration, and ẑ is the unit
vector in the z direction.

The boundary conditions for velocity and temperature are

u= 0 for r = 1 or z= 0,A, (2.4)
∂Θ

∂r
= 0 for r = 1, (2.5)

Θ = 1 for z= 0, Θ = 0 for z= A. (2.6)

Setting u = 0 for the whole field, we can obtain the temperature distribution for the
diffusive motionless state, Θ(z)= (1− z/A).

The governing equations (2.1)–(2.3) have been solved using second-order centre
differences in space and a second-order fractional-step method in time in three-
dimensional cylindrical coordinates, which is an improved version of the algorithm
in Verzicco & Orlandi (1996) and Ma et al. (2006). An additional pressure predictor
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as in Hugues & Randriamampianina (1998) is employed before each time step. The
numerical results show that the new method is more robust than the original steady-
state solver using Newton’s method.

A Jacobian-free Newton–Krylov method (JFNK) (Knoll & Keyes 2004) is
implemented to capture the stable and unstable steady-state solution, which is the basis
of linear stability analysis. We have used the first-order implicit/explicit Euler scheme
for the calculation of a Stokes preconditioner that allows a matrix-free inversion of
the preconditioned Jacobian needed in each Newton iteration (Tuckerman & Barkley
2000). The corresponding linear system is solved by an iterative technique using the
BiCGstab algorithm (van der Vorst 1992); with this method the Jacobian matrix is
never constructed or stored.

The linear stability of steady state u is governed by the eigenvalues λj of the
Jacobian (Nu + L):

(Nu + L)u′ = λu′. (2.7)

This follows from the fact that infinitesimal perturbations from a steady state evolve
according to the linear stability equation

∂tu′ = (Nu + L)u′. (2.8)

The implicitly restarted Arnoldi method (Lehoucq, Sorensen & Yang 1998) using
ARPACK routines is implemented to calculate the leading eigenvalues. By time-
stepping the linearized equations, we are able to construct a small matrix which
represents the action of the Jacobian J on the subspace of the leading eigenvectors.
Diagonalization of this matrix gives the leading eigenvalues and eigenvectors.

Our code was successfully tested by comparison with results of Buell & Catton
(1983), Touihri et al. (1999) and Borońska & Tuckerman (2006). Most of our
simulations were performed using a grid 70 × 90 × 60 in the radial, azimuthal and
vertical directions respectively.

In order to get some physical insights into the stability results, we performed the
kinetic energy transfer analysis around selected critical points. The total kinetic change
rate is given by the Reynolds–Orr equation obtained by multiplying (2.8) by u′ and
integrating over the volume Ω occupied by the fluid (Ma, Henry & Ben Hadid 2005).
The rate of kinetic change dK/dt can be written as

dK

dt
= d

dt

∫
Ω

1
2
u′u′ dΩ =−

∫
Ω

u′ · (u′ ·∇u) dΩ

−Pr
∫
Ω

(∇ × u′)2 dΩ + PrRa
∫
Ω

u′zΘ
′ dΩ

=−
∫
Ω

(
u′ru
′
r

∂ur

∂r
+ u′ru

′
z

∂ur

∂z
+ u′zu

′
r

∂uz

∂r
+ u′zu

′
z

∂uz

∂z
+ u′ϕu′ϕur

r

)
dΩ

−Pr
∫
Ω

(∇ × u′)2 dΩ + PrRa
∫
Ω

u′zΘ
′ dΩ

= Kv + Kd + Kb

= Kv1 + Kv2 + Kv3 + Kv4 + Kv5 + Kd + Kb, (2.9)

where Kv is the interaction between the disturbance u′ and the basic flow u, and
Kd and Kb represent the viscous dissipation of the perturbation kinetic energy and
buoyancy forces, respectively. The terms on the right-hand side of (2.9) with a positive
(negative) sign destabilize (stabilize) the base flow. The sign and magnitude of Kv
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FIGURE 1. Stability curves for the three-dimensional instability of the axisymmetric basic
flow: (a) A = 1; (b) A = 0.9. Solid curves with hollow symbols represent steady transitions
and solid symbols oscillatory transitions. Up triangles (4), m = 1 modes at the transition;
circles (©), m = 2 modes; solid circles (•), m = 2 modes; solid squares (�), m = 3 modes.
The AS in the figures indicates the region in which the axisymmetric flow is stable, and AU
means there is no stable axisymmetric base flow in the region.

depend sensitively on both the critical mode and the basic state: it includes both
stabilizing and destabilizing effects. As Kd is negative, it is stabilizing.

3. Results
The primary flow in a cylindrical Rayleigh–Bénard system is quiescent: it bifurcates

to convective axisymmetric flow, which breaks the Boussinesq symmetry in the axial
direction with increasing Rayleigh number in our studied parameter region. The
axisymmetric flow will further bifurcate to a three-dimensional flow, which breaks
the azimuthal symmetry. The variations of the critical Rayleigh number and critical
frequency are plotted as functions of Pr for aspect ratios A = 1, 0.9, 0.8, 0.7. Kinetic
energy transfer analysis has been performed to investigate the physical mechanisms.

3.1. Stability results
Figures 1 and 2 give the stability diagrams for each aspect ratio. The stability result
for A = 1 is shown in figure 1(a). The lower curve in figure 1(a) corresponds to the
critical Rayleigh number for the second bifurcation to the steady m = 2 mode, which
is consistent with the result of Touihri et al. (1999). Beyond the second bifurcation,
we found that there still exists stable axisymmetric flow for 0.044 < Pr < 0.226 in
certain Rayleigh number ranges, which was not mentioned in Touihri et al. (1999).
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FIGURE 2. Stability curves for the three-dimensional instability of the axisymmetric basic
flow: (a) A = 0.8; (b) A = 0.7. Solid curves with hollow symbols represent steady transitions
and solid symbols oscillatory transitions. Up triangles (4), m = 1 modes at the transition;
circles (©), m = 2 modes; down triangles (O), m = 8 modes; diamonds (�), m = 9 modes;
left triangles (C), m = 10 modes; solid circles (•), m = 2 modes; solid squares (�), m = 3
modes; solid diamonds (�), m= 4 modes; solid up triangles (N), m= 6 modes. The AS in the
figures indicates the region in which the axisymmetric flow is stable, and AU means there is
no stable axisymmetric base flow in the region.

The axisymmetric flow is calculated by direct numerical simulation and taken as the
base flow for linear instability analysis. The instability boundary of the axisymmetric
flow is determined by the instability analysis with either decreasing or increasing Ra.
It is shown in figure 1(a) that the critical points form a closed curve. The region in
which the axisymmetric flow is stable (AS) and the region in which the axisymmetric
flow is always unstable (AU) are divided by the stability curves. If the parameter
(Pr , Ra) lies in the AS region, the flow can be axisymmetric; otherwise the flow will
be three-dimensional. Taking the axisymmetric flow in the closed region as the base
flow, a decrease in Ra will cause a steady m = 2 flow, which is similar to the flow
beyond the second bifurcation. Meanwhile, an increase in Ra will lead to multiple
transitions to steady or oscillatory flows, depending on the Prandtl number. First, for
an extremely narrow range of Pr around 0.044, the transition is through a steady
m= 2 bifurcation. Then the wavenumber of the leading mode varies continuously from
oscillatory for m= 3 to oscillatory for m= 2 and to steady for m= 1.

The stability analyses for smaller aspect ratios were performed in order to evaluate
the effect of aspect ratio. Figures 1(b) and 2(a) show the stability diagram for A= 0.9
and A = 0.8, respectively. The stability curves for these two cases have the same
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FIGURE 3. Critical frequency fcr versus the Prandtl number. Solid circles (•), m = 2 modes
at the transition; solid squares (�), m = 3 modes; solid diamonds (�), m = 4 modes; solid up
triangles (N), m= 6 modes.

topology, and both of them are different from that of A = 1. The critical points for
the axisymmetric flows beyond the second bifurcation no longer form a closed curve.
The critical curves exhibit an ‘S’ shape. As can be seen in figure 1(b), the stability
curve for A = 0.9, the axisymmetric flow beyond the second bifurcation exists for
0.05 6 Pr 6 0.9, and it becomes a steady m = 2 flow with decreasing Ra. Moreover,
the critical points connect with the second bifurcation points at Pr around 0.9, which
is different from that of A = 1. With increasing Ra, the mode changes for A = 1
and A = 0.9 are identical to the variation in the Prandtl number. The critical curve
for A = 0.8, shown in figure 2(a), is slightly different from that of the A = 0.9 case.
The axisymmetric flow loses stability to steady m = 2 flow with decreasing Ra for
0.053 6 Pr 6 0.47, where the Prandtl number range for this transition is much shorter
than that of A = 0.9. Unlike the previous two cases, the oscillatory m = 2 mode no
longer exists. Instead, a steady m= 8 mode is obtained, which is not found for the last
two aspect ratios.

Figure 2(b) shows the stability diagram for A = 0.7. No axisymmetric flow was
found beyond the second bifurcation. Our finding is that frequent changes of instability
mode occur when Pr is changed. The primary axisymmetric flow loses stability to
a series of steady or unsteady three-dimensional flows with increasing Ra. It can be
seen from the figure that the critical mode with respect to the second bifurcation
for small Prandtl number is steady for m = 2. With increasing Pr , the most unstable
mode becomes oscillatory for m = 6, oscillatory for m = 3, steady for m = 8, steady
for m = 9, steady for m = 10, oscillatory for m = 4, oscillatory for m = 3, steady for
m= 1. The critical Rayleigh number increases with increasing Pr for 0.02 6 Pr < 0.3
and grows especially rapidly for 0.05 6 Pr 6 0.126. It decreases with further increase
in Pr for 0.36 Pr 6 1.

The critical frequency corresponding to the oscillatory critical mode is fcr = ωcr/2π,
where ωcr is the angular frequency. The dependence of critical frequency on Prandtl
number is shown in figure 3. It is observed that the frequencies increase as
Pr increases for m = 3 modes, and is almost unchanged for m = 2 modes. The
frequencies increase steeply with increase in Pr for m = 6 modes, and decrease
gradually to a constant value for m= 4 modes. The frequencies for smaller-aspect-ratio
cylinders are higher than those for larger-aspect-ratio cylinders.
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(a)

(b)

(c)

FIGURE 4. (Colour online) Nonlinear simulation of periodic flows for A = 0.7 at t =
0,T/6, 2T/6, . . . . (a) Standing waves at Pr = 0.11, Ra = 83 000, contours of azimuthal
velocity on the z = 0.6 plane; (b) standing waves at Pr = 0.7,Ra = 80 000, contours of
vertical velocity on the z = 0.6 plane; (c) travelling waves at Pr = 0.82,Ra = 77 000,
contours of azimuthal velocity on the z= 0.5 plane.

The stability results show the transition from axisymmetric flow to three-
dimensional flow via two types of symmetry-breaking bifurcation. The instability-
breaking O(2) symmetry is either due to steady bifurcation or due to Hopf bifurcation.
As can be seen from the stability results, there are very rich symmetry-breaking
phenomena. The steady state is reflection-symmetric in the azimuthal direction and the
reflection symmetry is broken by subsequent bifurcation. The periodic solutions have
the form of travelling waves or standing waves, where the travelling waves preserve
space–time symmetry and the standing wave preserves a purely spatial reflection
symmetry. We have performed several nonlinear simulations to determine whether the
periodic solution near onset is a travelling or standing wave. Three periodic flows
for A = 0.7 are presented in figure 4. A standing wave flow was found at Pr = 0.11,
Ra = 83 000 with wavenumber m = 6, as shown in figure 4(a). The flow at Pr = 0.7,
Ra = 80 000 with wavenumber m = 4 is also a standing wave solution, as shown
in figure 4(b). Travelling waves were found for m = 3 flows for both lower and
higher ranges of Prandtl number. We have plotted the travelling waves at Pr = 0.82,
Ra= 77 000 in figure 4(c).

Finally, the effect of the aspect ratio (0.67 6 A 6 1.1) is studied for Pr = 0.1. The
critical Rayleigh numbers are given as a function of A in figure 5. It can be seen
that the stability curve is folded in some aspect ratio range. For 0.67 6 A < 0.75 the
axisymmetric flow loses stability to three different states (steady m = 2, oscillatory
m = 6 and oscillatory m = 3). For larger values of A (0.75 6 A < 1.1), the stability
curve exhibit an ‘anti-S’ shape. Beyond the second bifurcation, there exists a linearly
stable region of Rayleigh numbers for 0.75 6 A 6 1.05 within which either a decrease
or increase in Ra will cause three-dimensional convection. The transition of this flow
with increasing Ra corresponds to an oscillatory m= 3 mode and a steady m= 1 mode
in certain Pr ranges. Moreover, the transition corresponds to a steady m = 2 mode
with decreasing Ra.
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FIGURE 5. Critical Rayleigh number Racr as a function of aspect ratio A for Pr = 0.1.
Solid curves with hollow symbols represent steady transitions and solid symbols oscillatory
transitions. Up triangles (4), m = 1 modes at the transition; circles (©), m = 2 modes; solid
squares (�), m = 3 modes; solid up triangles (N), m = 6 modes. The AS in the figures
indicates the region in which the axisymmetric flow is stable, and AU means there is no stable
axisymmetric base flow in the region.

3.2. Energy analysis
To investigate the physical mechanism responsible for the stability of the axisymmetric
flow, a kinetic energy transfer budget was performed for a fixed Prandtl number Pr =
0.1, and Rayleigh numbers near the three critical points (Ra = 2460, 7650, 12 350).
Figure 6(a) shows the result given by the energy analysis for the second bifurcation.
As we can see, the basic solution becomes unstable first at Ra= 2460. For Ra> 2460,
both inertial term Kv2 and buoyancy term Kb are growing, being responsible for the
instability. Figure 6(b) shows the rate of change of energy for the destabilization
process of the axisymmetric flow with decreasing Ra. The increase of inertial term Kv2

and buoyancy term Kb cause the destabilized effect. The flow bifurcates to a steady
m = 2 flow. Note that Kv3 increases as the Rayleigh number increases up to 7650.
Figure 6(c) gives the results of the kinetic energy fluctuation analysis for transition to
an oscillatory state. This oscillatory state beyond the threshold is decomposed into its
mean value in time and the oscillatory fluctuations as basic states and perturbations;
similarly, equation (2.9) is used to perform kinetic transfer analysis. We consider
Ra = 12 350, which is slightly above the oscillatory threshold Racr = 12 300. It is
clear from this figure that the previous increasing term Kv3 becomes dominantly
destabilizing. Combined with the buoyancy term Kb, both of these terms contribute to
the transition. Incidentally, the energy budget for higher Rayleigh numbers, which is
not plotted here, shows that Kv3 grows and becomes much larger than Kb.

Kinetic energy transfer analyses are also performed for A = 0.7 and Prandtl number
equal to 0.12, 0.4 and 0.6. The critical mode for Pr = 0.12 is periodic for m = 6, and
the corresponding kinetic energy fluctuation analysis at Ra = 90 600 (just above the
oscillatory threshold Racr = 90 500) is shown in figure 7. Here Kv2 is still the leading
destabilizing term, Kv3 is the second destabilizing term, and the effect of Kb is weaker
than the previous two. Thus, the instability here is mainly due to inertial mechanisms.
The critical mode for Pr = 0.4 is steady for m = 10; the kinetic transfer analysis
(figure 7b) obviously demonstrates that the flow bifurcation is caused by the buoyancy
effect. Lastly, for Pr = 0.6 with periodic critical mode m = 4, the kinetic energy
fluctuation analysis performed at Ra = 84 200(critical Rayleigh number Racr = 84 000)
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FIGURE 6. Perturbation kinetic energy contributions for (a) Ra around 2460, (b) Ra around
7650, and (c) Ra= 12 350 at fixed A= 1, Pr = 0.1.

is shown in figure 7. The buoyancy term Kb and inertial term Kv2 are close in
amplitude, and the instability is due to the combination of the two mechanisms.

In summary, energy analysis for A = 1, Pr = 0.1 (figure 6) shows both inertial term
Kv2 and buoyancy term Kb contributions to the steady transition of the axisymmetric
flow. The inertial term Kv3 is responsible for the oscillatory transition. Energy analysis
for A= 0.7 (figure 7) shows that the inertial term Kv2 and the inertial term Kv3 are the
leading destabilizing terms for the oscillatory transition at Pr = 0.12, the inertial term
Kv2 and the buoyancy term Kb are the leading destabilizing terms for the oscillatory
transition at Pr = 0.6, and the buoyancy term Kb is the leading destabilizing term for
the high-wavenumber steady transition. Now Kv2 measures the amplification of radial
velocity disturbance (u′r) by axial transport (u′z) of axial gradients of the basic radial
flow (∂zur), and Kv3 describes the amplification of the axial velocity disturbance (u′z)
by radial transport (u′r) of axial shear (∂ruz) (Wanschura et al. 1996). Hence the axial
shear of mean flow is more significant for oscillatory transitions in a relatively tall
cylinder (A= 1), while the radial shear of mean flow is more important for oscillatory
transition in a relatively short cylinder (A= 0.7).

Previously the literature (Wanschura et al. 1996; Touihri et al. 1999; Gelfgat,
Bar-Yoseph & Solan 2000; Ma et al. 2005) has shown that for low-Prandtl-number
fluids (Pr = 0.02) the flow becomes oscillatorily unstable due to inertial mechanisms.
For high-Prandtl-number fluids (Pr = 1) the flow becomes unstable due to thermal
mechanisms. In a relatively short cylinder, the flow tends to be oscillatorily unstable,
while in a tall cylinder the flow tends to be unstable via steady bifurcation. There must
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FIGURE 7. Perturbation kinetic energy contributions for (a) Ra= 90 600 and Pr = 0.12, (b)
Ra around 119 000 and Pr = 0.4, and (c) Ra= 84 200 and Pr = 0.6 at fixed A= 0.7.

be some transition range for both Prandtl number and aspect ratio. The parameters we
have studied (A= 1, 0.9, 0.8, 0.7, 0< Pr < 1) are included in the transition range. The
instability properties are more complicated in this region. The transition range for A
can be found in figure 5. It can be speculated that the whole critical surface is partially
multi-valued and continuous, but folded in such a way that a cusp develops. This
phenomenon often occurs due to competition between different instability mechanisms.

Further, the boundaries of a flow are an important factor. They constrain the
development of a disturbance, and usually, the closer they are together the more
stable the flow. However, they sometimes give rise to strong shear in boundary layers
which is diffused outwards by viscosity and so leads to instability of the flow.

4. Conclusion
The stability of steady axisymmetric convection in a vertical cylinder heated from

below has been presented in this paper, which indicates that stability properties depend
strongly on cylinder geometry and the Prandtl number. For A = 1, there is a closed
parameter region for stable axisymmetric flow beyond the second bifurcation. For
A = 0.8 and A = 0.9, the region is no longer closed. The stability curves exhibit an
‘S’ shape, which means that the primary axisymmetric flow connects with the second
axisymmetric flow. However, for A = 0.7 no axisymmetric flow is found beyond the
second bifurcation. The particular shape of the stability boundary is due to the effect
of different instability mechanisms, i.e. the Rayleigh–Bénard mechanism (buoyancy
Kb) and inertial mechanisms (radial shear Kv2 and axial shear Kv3 of base flow).
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The flow in tall cylinders loses stability due to the buoyancy mechanism, which is
connected with the axial shear of the basic flow, and loses stability due to radial shear
of basic flow in short cylinders. For A= 0.7 the flow loses stability to multiple modes
for different Prandtl numbers, which is also the result of the interaction of several
mechanisms. There is a moderate-aspect-ratio region in which several instability
mechanisms work together.
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