
J. Fluid Mech. (2014), vol. 750, pp. 210–244. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.246

210

Two-dimensional planar plumes and fountains
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Closed-form solutions describing the behaviour of two-dimensional planar turbulent
rising plumes and fountains from horizontal planar area and line sources in unconfined
quiescent environments of uniform density are proposed. Extending the analysis
on axisymmetric releases by van den Bremer & Hunt (J. Fluid Mech., vol. 644,
2010, pp. 165–192) to planar releases, the local flux balance parameter Γ = Γ (z)
is instrumental in describing the bulk behaviour of steady Boussinesq and non-
Boussinesq planar plumes and the initial rise behaviour of Boussinesq planar fountains
as a function of height z. Expressions for the asymptotic virtual source correction are
developed and the results elucidated by ‘scale diagrams’ (cf. Morton & Middleton,
J. Fluid Mech., vol. 58, 1973, pp. 165–176) showing certain characteristic heights for
different source conditions. These diagrams capture all the different manifestations
of plume behaviour, encompassing fountains, jets, source-momentum-dominated or
‘forced’ plumes, pure plumes and source-buoyancy-dominated or ‘lazy’ plumes, and
their associated key features. Other flow features identified include a gravity-driven
deceleration regime and a mixing-driven regime for forced fountains. Deceleration
in lazy fountains is purely gravity-driven. The results can be shown to be valid for
both Boussinesq and non-Boussinesq plumes (but not for non-Boussinesq fountains)
thus resulting in universal solutions valid for both cases provided the entrainment
velocity is unaffected by non-Boussinesq effects. This paper presents and explores
these universal solutions. An accompanying paper (van den Bremer & Hunt, J. Fluid
Mech., vol. 750, 2014, pp. 245–258) examines the implications for non-Boussinesq
plumes. The existing solutions of Lee & Emmons (J. Fluid Mech., vol. 11, 1961,
pp. 353–368) generalized herein are valid for a constant entrainment coefficient α.
New results for an entrainment coefficient that varies linearly with Γ (z) and thus
captures experimental values far more realistically are presented for forced plumes.

Key words: convection, plumes/thermals

1. Introduction
Turbulent planar plumes arising from horizontal area sources have received

significantly less attention than axisymmetric plumes. This is especially evident
for non-Boussinesq planar plumes for which experimental studies appear entirely
absent from the literature. Notwithstanding, planar plumes occur in a wide variety of
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Two-dimensional planar plumes and fountains 211

circumstances both in the natural and the man-made environments. The saline plumes
that form at leads in melting sea ice (Wettlaufer, Worster & Huppert 1997; Widell,
Fer & Haugan 2006), where cracks in the ice expose salt water to the atmosphere
and evaporation drives off fresh water resulting in regions of locally higher salinity
driving convection, are planar in nature. Pollutants are often discharged into the ocean
through planar diffusers (Koh & Brooks 1975; Jirka 2006). Domestic and industrial
ventilation provide other examples of planar sources from which plumes (e.g. from
chilled beams) or fountains (e.g. from air curtains at doorways) form. Moreover, a row
of closely spaced axisymmetric sources is often better modelled as one planar source,
for example a row of audience members in a crowded lecture theatre (Radomski
2008). In the laboratory, truly planar plumes are notoriously difficult to create owing
to practical challenges in achieving uniform source conditions along the entire length
of the source. Crucially, we are interested in plumes that are not only planar but are
in fact two-dimensional in nature, that is, for which the horizontal length of the source
L is large relative to the source half-width of the plume b0 (L� b0), a simplifying
assumption that is commonly made in the literature. This geometry is typical of ice
leads which may extend tens of kilometres with widths of only O(10)–O(100) m
(Ching, Fernando & Noh 1993). Despite the two-dimensional nature of the source,
turbulent eddies responsible for the entrainment of ambient fluid into the plume
or fountain are fundamentally three-dimensional and the time-dependent turbulent
properties of the fluid vary both across and along the main axis of the plume. By
focusing our attention on quantities that are averaged both in time and in the along-
axis direction, we achieve turbulence closure based on these double averages. All the
quantities considered are thus averaged in time and along the axis of the plume.

The behaviour of Boussinesq turbulent buoyant plumes rising from horizontal long
planar sources in unconfined quiescent environments of uniform density was first
studied by Rouse, Yih & Humphreys (1952). They derived functional relationships
for the key variables based on similarity considerations and combined these with
the results from their experiments. Rouse et al. (1952) establish power-law solutions
valid for pure plumes with generic cross-stream profiles. Additionally, they show
that measurements of the vertical velocity and the effective gravity, when suitably
scaled, each fall onto one bell-shaped curve and thereby confirm their self-similarity
hypothesis. Their work was followed by a more systematic attempt to model the
behaviour of planar plumes across a range of source Richardson numbers by Lee &
Emmons (1961), whose approach is analogous to that of Morton, Taylor & Turner
(1956) and Morton (1959) for axisymmetric plumes. Lee & Emmons (1961) assume
that the plume is Boussinesq and thin so that pressure variations in the vertical
direction are small and can be ignored (their ‘boundary layer’ assumption), and they
adopt the entrainment model proposed by Taylor (1945) and subsequently adopted
by Morton et al. (1956) to achieve turbulence closure. Assuming steadiness in time,
the system of partial differential equations describing the flow was then transformed
into a system of ordinary differential equations describing the behaviour of the
fluxes of momentum, buoyancy and mass or volume. The development of these
so-called plume conservation equations, which will be used as the starting point of
the discussion herein, has recently been re-examined in a review of the historical
development of classical plume theory by van den Bremer & Hunt (2010). Notably,
when applying plume theory, the practitioner is faced with classifying the plume in
question as Boussinesq, or non-Boussinesq when the density difference between the
plume and ambient fluid is significant relative to the latter’s density. The Boussinesq
approximation thence amounts to ignoring such density differences, when they are
small, except where they are responsible for the existence of a buoyancy force.
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212 T. S. van den Bremer and G. R. Hunt

The famous entrainment model of Taylor (1945) assumes that the horizontal
entrainment velocity ue is proportional to the local vertical velocity w of the plume
with a constant of proportionality α, referred to as the entrainment coefficient. In their
experimental study, Kotsovinos & List (1977) argued for an improved description of
entrainment, implementing the hypothesis of Priestley & Ball (1955), namely that
α is a linear function of the local Richardson number. Delichatsios (1988), with
further clarification by Thomas & Delichatsios (2007), concludes from similarity
arguments that the entrainment model ue = αw applies to both Boussinesq and
non-Boussinesq planar plumes with one universal entrainment coefficient α that, unlike
axisymmetric plumes, does not depend on the local density contrast. Although the
solutions presented herein with such an entrainment assumption are universally valid
for Boussinesq and non-Boussinesq plumes, the implications of this assumption and
its validity are explored in an accompanying paper (van den Bremer & Hunt 2014).

The different types of solution (§ 3) to the conservation equations for planar
plumes can be classified according to the source flux balance parameter, which arises
naturally on non-dimensionalizing the plume conservation equations, defined here for
the Boussinesq case with top-hat profiles (§ 2.2) by:

Γ0 = B0Q3
0

2αM3
B,0
. (1.1)

Here, B0 denotes the source buoyancy flux per unit length (dimensions L3T−3), Q0 the
source volume flux per unit length (L2T−1) and MB,0 the source momentum flux per
unit length (L3T−2) under the Boussinesq approximation. Without approximation, the
source momentum flux per unit length is M0 (L3T−2). As for all the relevant quantities
in this paper, the fluxes are averaged in time and in the direction along the axis of
symmetry of the plume and have been normalized by the (uniform) ambient density
ρa, where appropriate. The source parameter (1.1) can also be defined as the ratio of
two length scales, a jet length LJ and a source length LS, which we define as:

LJ ≡ α
2/3MB,0

21/3B2/3
0

, LS ≡ Q2
0

2MB,0
, Γ0 =

(
LS

LJ

)3/2

, (1.2a–c)

where LS = b0, b0 denoting the source half-width of the plume, i.e. at z = 0. Note
that the coefficients in (1.1) and (1.2) have been chosen for consistency with top-hat
profiles (§§ 2.2 and 2.4).

As for axisymmetric releases (van den Bremer & Hunt 2010), five classes of
solution to the planar conservation equations can be established: fountains (Γ0 < 0)
with source fluxes of buoyancy and momentum acting in opposing directions
(B0M0 < 0), pure jets (Γ0 = 0) with zero source buoyancy flux, forced plumes
(0<Γ0 < 1) dominated by their source momentum flux for heights up to the order of
a jet length, pure plumes (Γ0= 1) with the source fluxes exactly in balance, and lazy
plumes (Γ0 > 1), which may be regarded as having a deficit of source momentum
flux or, alternatively, an excess of mass flux (non-Boussinesq case) or volume flux
(Boussinesq case) at the source compared with a pure plume. A single source
parameter gives a unique representation of the behaviour that can be observed for
steady releases and enables a characterization of the different types of bulk behaviour
of rising plumes and fountains from general area sources. For axisymmetric releases,
Morton (1959) solved the conservation equations for fountains and for forced and
lazy plumes. By applying an asymptotic virtual source correction as a vertical origin
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Two-dimensional planar plumes and fountains 213

offset, Morton (1959) showed that the solutions for plumes rising from area sources
can be replaced by the much simpler power-law solutions for plumes rising from
point sources, the power-law solutions matching the original solution in the far field.

To solve the system of planar plume conservation equations Hunt & Coffey (2009),
who study planar fountains, have adopted the Γ -centred approach proposed by
Hunt & Kaye (2005), which is equivalent to the approach adopted herein. In this
approach the parameter Γ (z), where z= 0 denotes the location of the actual source,
is defined as a local Richardson number expressed in terms of the local fluxes:
Γ (z) = B(z)Q3(z)/2αM3

B(z). The bulk plume and fountain behaviours at any height
are captured through the parameter Γ ; hence solving for Γ (z) immediately reveals the
plume or fountain behaviour with height z. Using this Γ -centred approach, van den
Bremer & Hunt (2010) obtained closed-form solutions that are universally applicable
to Boussinesq and non-Boussinesq axisymmetric plumes.

Modifications to the plume conservation equations, focusing on axisymmetric
releases, have been numerous and diverse. Such modifications include a time-
dependent implementation (Scase et al. 2006) and inclusion of an internal mechanism
for changing buoyancy through chemical reaction (Conroy & Llewellyn Smith 2008;
Campbell & Cardoso 2010). For a review of the different aspects of turbulent
plumes, including applications and development of different theories, the reader is
referred to Turner (1966), Linden (2000), Kaye (2008), Woods (2010) and Hunt &
van den Bremer (2011). For planar plumes in particular, Kay (2007) modified the
conservation equations to allow for a quadratic dependence of density on temperature.
Hunt & Coffey (2009) applied the conservation equations to planar fountains and
did so using the aforementioned Γ -centred approach. For the axisymmetric case,
Mehaddi, Vauquelin & Candelier (2012) also adopt the Γ -centred approach to propose
closed-form solutions for fountains in stratified environments. In an experimental study,
Bush & Woods (1999) consider planar plumes in a geophysical context by placing
long linear sources in a rotating ambient and examine the formation of vortical
structures that arise.

The majority of advances in plume theory have focused on axisymmetric plumes,
with application to planar plumes being left aside after the seminal paper of Lee
& Emmons (1961). Although many results for axisymmetric plumes can be readily
extended to planar plumes, there are fundamental differences in behaviour between
the two. This paper aims to bridge this gap in the literature. It explores solutions for
plumes and fountains rising from planar sources by expressing the planar plume
conservation equations in terms of the flux balance parameter Γ . Closed-form
solutions to the system of conservation equations can then be readily obtained in
a form that is instrumental in describing the key aspects of the behaviour of planar
fountains and plumes.

This paper thereby clarifies and exposes the results of Lee & Emmons (1961). The
behaviour of planar plumes and fountains is further elucidated by scale diagrams,
analogous to the scale diagrams for axisymmetric Boussinesq plumes of Morton
& Middleton (1973). These diagrams show different non-dimensional characteristic
heights (including the asymptotic virtual source correction) as a function of the
source conditions described by Γ0. The behaviour of plumes and fountains is further
clarified by exploring the variation of Γ , the density contrast and the relevant
non-dimensional fluxes with height and doing so for different values of Γ0. In
addition, new solutions for an entrainment coefficient that varies linearly with the
value of the local flux balance parameter Γ are presented for forced plumes leading
to another class of solution, a class in which forced plumes become straight-sided.
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214 T. S. van den Bremer and G. R. Hunt

Axisymmetric straight-sided plume solutions in stratified environments have recently
received attention in Kaye & Scase (2011).

Extending the approach of van den Bremer & Hunt (2010) for axisymmetric plumes
to planar plumes, we show that provided we introduce ‘universal notation’ and adopt
a suitable scaling, the solutions to the systems of equations describing Boussinesq and
non-Boussinesq plumes take the same mathematical form, which in turn highlights
the analogies and differences between the two in a powerful and effective way. In
doing so, a length scale is identified on which the transition between Boussinesq
and non-Boussinesq behaviour takes place. This length scale is of a similar form but
altogether different to the transition length scale for axisymmetric plumes rising from
point sources derived by Rooney (1997) and generalized to area sources by van den
Bremer & Hunt (2010). The implications of the unmodified entrainment assumption
underlying this universality for the prediction of the physical behaviour of a non-
Boussinesq plume, compared to the prediction of the behaviour of such a plume by a
Boussinesq model, raise significant questions regarding the validity of this assumption.
This is explored in detail in the accompanying paper (van den Bremer & Hunt 2014).

This paper is laid out as follows: § 2 introduces the plume conservation equations
and these are rewritten in a non-dimensional form that is potentially universally
applicable to Boussinesq and non-Boussinesq plumes and Boussinesq fountains. The
different entrainment models with constant α for Boussinesq and non-Boussinesq
plumes and Boussinesq fountains, and with varying α = α(Γ ) for forced Boussinesq
plumes are also discussed in § 2. The universal solutions for pure jets (Γ0 = 0), pure
plumes (Γ0 = 1), fountains (Γ0 < 0), forced plumes (0 < Γ0 < 1) and lazy plumes
(Γ0 > 1) all with constant α, and the solutions for forced plumes (0 < Γ0 < 1) with
variable α are presented in § 3. The characteristic behaviour of fountains and of forced
and lazy plumes is examined in § 4, and the discussion is aided by the presentation
of scale diagrams. Far-field behaviour and the transition between non-Boussinesq and
Boussinesq behaviour is discussed in § 5. Finally, conclusions are drawn in § 6.

2. Plume model
2.1. Similarity

In order to describe the bulk time-averaged behaviour of turbulent plumes and
fountains with height it is necessary to model the horizontal variation across the
plume width. By averaging along the axis of symmetry of the plume, variations
along the length of the plume are ignored; the cross-section-integrated quantities used
hereinafter are therefore per-unit-length without exception. The most commonly
adopted profiles to describe the time-averaged horizontal variation of vertical
velocity and density across the plume width are Gaussian and top-hat profiles.
For planar Boussinesq plumes, Gaussian profiles are given by the vertical velocity
w(x, z)=wm(z)exp(−x2/b2) and reduced gravity g′(x, z)= g′m(z)exp(−x2/b2), where x
is the (cross-stream) horizontal coordinate orthogonal to the vertical axis of symmetry,
z is the vertical coordinate measured from the source upwards, wm and g′m are the
centreline values of the vertical velocity and the reduced gravity, respectively, and
b is a characteristic measure of the plume half-width. The characteristic measure of
the plume half-width based on the velocity and the reduced density profiles may be
different. The reduced gravity g′ = g(ρa − ρ)/ρa = g(1 − η) and the density contrast
is defined as:

η(x, z)≡ ρ(x, z)
ρa

, (2.1)
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Two-dimensional planar plumes and fountains 215

where ρ(x, z) is the local density of the plume fluid after averaging in time and along
the axis of the plume and ρa the (constant) density of the ambient fluid. For non-
Boussinesq plumes, measurements of the precise form of these cross-stream profiles
are rare and not conclusive. The debate in the literature has therefore revolved around
the question of which quantity should be described by a Gaussian distribution based
on theoretical arguments, 1− η= (ρa− ρ)/ρa or (1− η)/η= (ρa− ρ)/ρ, and what the
most appropriate length scale is on which the horizontal coordinate x in the exponent
should be scaled, where the scale for the velocity and the effective gravity profiles
may be different. In the absence of experimental data, similarity arguments cannot
unequivocally answer these questions. By defining a true similarity solution as one for
which the mass flux near the origin can be set to zero, Thomas & Delichatsios (2007)
attempt to resolve this debate. However, their length scale on which the horizontal
coordinate x must be scaled is only defined through an implicit function of the local
vertical velocity and the local density contrast, resulting in solutions that are perhaps
overly complex.

Although it is evident that Gaussian profiles generally provide a better fit to cross-
sectional data, top-hat profiles are adopted herein as they considerably simplify the
analysis and thus lend greater insight into the bulk behaviour of the release with
height. The difference between the conservation equations for top-hat and Gaussian
profiles is one of coefficients; the form of the conservation equations and the nature
of the predicted behaviour are equivalent. Indeed, it can be shown (appendix A for the
Boussinesq case and appendix B, where the argument of Thomas & Delichatsios 2007
is reproduced, for the non-Boussinesq case) that the solutions presented in this article
are valid for Boussinesq plumes with top-hat profiles and Gaussian profiles alike. It
should be emphasized that, in the absence of careful measurements for non-Boussinesq
plumes, the choice of which variable, (1 − η) or (1 − η)/η, is best described by a
Gaussian distribution remains an arbitrary one.

2.2. Conservation equations
Adopting top-hat profiles, for an unstratified quiescent ambient, the equations
expressing conservation of mass and momentum prior to applying the Boussinesq
approximation can be respectively written as follows:

d(2ηwb)
dz

= 2ue, (2.2)

d(2ηw2b)
dz

= 2b(1− η)g, (2.3)

where ue is the horizontal entrainment velocity at the edge (x = ±b) of the top-hat
profile of the plume. For top-hat profiles the fluxes of mass G and momentum M,
normalized by the ambient density ρa, and the volume flux Q are:

G= 2ηwb, M = 2ηw2b, Q= 2wb. (2.4a–c)

As is standard, it has been assumed in deriving the equation for conservation of
momentum (2.3) that the plume is long and thin so that vertical pressure gradients
are much greater than cross-stream pressure gradients.

The Boussinesq approximation, which can be made if the density contrast between
the ambient and release fluids is suitably small, is two-fold. The variation in density
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216 T. S. van den Bremer and G. R. Hunt

on the left-hand side of (2.2) can be ignored, so that G= 2ηwb can be replaced by
Q = 2wb; conservation of mass flux implies conservation of volume flux under the
Boussinesq approximation. Secondly, M = 2ηw2b can be replaced by MB = 2w2b on
the left-hand side of (2.3), ignoring the contribution of density variation to changes
in the momentum flux.

In the non-Boussinesq case, assuming the plume fluid behaves as an ideal gas, there
is no external heat input into the plume, the pressure variation in the ambient is
hydrostatic, and restricting our attention to length scales much smaller than the length
scale associated with the hydrostatic pressure distribution of the ambient (LH = pa/gρa,
where pa is the ambient pressure), it can also be shown that volume is conserved. The
derivation originally made by Rooney & Linden (1996) is reproduced in the review
by van den Bremer & Hunt (2010) in its simplest form for the axisymmetric case. In
both the Boussinesq and the non-Boussinesq cases, conservation of volume flux takes
the form:

d(2wb)
dz

= 2ue. (2.5)

Combining conservation of volume flux (2.5) and conservation of mass flux (2.2)
yields conservation of the flux of density deficit, i.e. conservation of the quantity:

B= 2g(1− η)wb, (2.6)

which has the dimensions of buoyancy flux L3T−3 and becomes equal to the buoyancy
flux in the Boussinesq limit. This quantity is conserved for both the Boussinesq and
the non-Boussinesq cases.

The conservation equations ((2.2), (2.3) and (2.5)) are also valid for planar fountains
(Hunt & Coffey 2009), governing the behaviour until the initial maximum rise height
is reached but not the subsequent collapse, where the dynamics of entrainment
are significantly modified and momentum is exchanged between upflowing and
downflowing bodies of fluid.

2.3. The entrainment model
To achieve turbulence closure, it is necessary to model the entrainment of the ambient
fluid. Herein, we adopt the entrainment model originally adopted by Lee & Emmons
(1961) based on the seminal entrainment model of Taylor (1945) and popularized by
Morton et al. (1956):

ue = αw for Boussinesq and non-Boussinesq plumes, (2.7)

where α is a constant. This entrainment model is consistent with the simplest class of
(similarity) solution to the system of ordinary differential equations ((2.2), (2.3) and
(2.5)), namely the solution for plumes rising from line sources (cf. the point-source
solutions for axisymmetric plumes by Morton et al. 1956), in which the fluxes of mass
and momentum can be expressed as powers of height z, and which can be derived
based on dimensional arguments. These line-source solutions are given in appendix C
in terms of the universal notation introduced in § 2.4.

Throughout our primary theoretical developments, we adopt entrainment coefficients
that are pertinent for top-hat profiles, denoting this coefficient as α. As such, rather
than introduce subscripts to distinguish between top-hat and Gaussian values, we
note that the only exceptions are (i) the entries in table 1 (where we list Gaussian
entrainment coefficients resulting from experimental studies) and (ii) in (2.15) and
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Two-dimensional planar plumes and fountains 217

Spreading rate (db/dz) α Release type

Kotsovinos (1975) — 0.04–0.06 Pure jet
literature review (table 1.3.1)

Kotsovinos (1976) 0.14 0.06 Pure jet
Chen & Rodi (1980) 0.11–0.14 0.05–0.06 Pure jet
Antonia et al. (1983) 0.10 0.05 Pure jet

Lee & Emmons (1961) — 0.16 Pure plume
Kotsovinos (1975) — 0.10 Pure plume
Chen & Rodi (1980) 0.12–0.13 0.11–0.12 Pure plume

(Rouse et al. (1952) revised)
Yuan & Cox (1996) — 0.13 Pure plume

TABLE 1. Overview of experimentally determined values of the (constant) slope of the
plume envelope db/dz or ‘spreading rate’ and the entrainment coefficient that is derived
from this constant spreading rate in the majority of cases. As observations generally
support Gaussian cross-stream profiles, we then have for pure jets db/dz = 4α/

√
π and

for pure plumes db/dz = 2α/
√

π (appendix A), where α is the (Gaussian) entrainment
coefficient. Where multiple values are quoted, this reflects the use of different half-width
scales used to characterize the variation of the (approximately normally distributed)
buoyancy and vertical velocity profiles. In the case of Kotsovinos (1975) literature review,
the range reflects the different other authors cited in that work (see table 1.3.1 of
Kotsovinos 1975).

appendices A and B where the entrainment coefficient is Gaussian in order to
highlight how our results can be applied to a Gaussian plume model.

Contrary to the axisymmetric case (van den Bremer & Hunt 2010), the horizontal
entrainment velocity suggested by similarity arguments (2.7) is unaffected by non-
Boussinesq effects. As recognized by Delichatsios (1988), there is no experimental
evidence to either support or contradict this result. It is, thus, only founded on
consistency with similarity solutions, namely the line-source solutions given in
appendix C. For further discussion, see Rooney (1997). In the axisymmetric case
there is experimental evidence, albeit limited, to support a modified entrainment
model that predicts a reduction of the entrainment velocity for increasing density
contrasts. The independence of the entrainment model from the density contrast in
the planar case is in contradiction with the axisymmetric case, for which self-similarity
implies a reduction of the entrainment velocity by a factor

√
η (cf. ue= αw

√
η). The

tentative hypothesis of Delichatsios (1988) that the entrainment velocity is unaffected
by non-Boussinesq effects can readily be adopted, resulting in the universal solutions
discussed in § 2.4.

As an alternative to the constant entrainment coefficient model in (2.7), entrainment
models have been proposed in which the entrainment coefficient varies linearly with
the local flux balance. This reflects the observation that the entrainment coefficient
is generally larger for buoyant jets than for pure jets, a phenomenon that can be
explained by buoyancy-enhanced turbulence. Although this assumption is not made
explicitly, Kotsovinos & List (1977) assume that α varies linearly with the local value
of Γ and find that it gives a better description for forced plumes. For forced plumes,
we examine the effects on the model outcome of the following entrainment model:

ue = (αj + (αp − αj)Γ )w= αp(κ + (1− κ)Γ )w for 0 6 Γ 6 1, (2.8)
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where αj is the entrainment coefficient for a pure jet, αp the entrainment coefficient for
a pure plume and κ =αj/αp. For κ = 1 we recover the constant-coefficient entrainment
model in (2.7).

Although experimental measurements of the entrainment coefficient α vary (see
table 1 for an overview of values of the entrainment coefficient for Gaussian profiles
found in the literature, where we emphasize that many authors have adopted different
definitions of the entrainment coefficient and great care in comparing experimentally
obtained values is imperative), the evidence seems supportive of the entrainment
coefficient for pure plumes being at least two times larger than the entrainment
coefficient for pure jets. As shown in § 3.5, forced plumes become straight-sided for
κ = 1/2. List & Imberger (1973) provide an alternative rationale for the entrainment
model in (2.8) with κ = 1/2 from observations that a forced plume is indeed
straight-sided. List & Imberger (1973) thereby provided evidence for the earlier
hypothesis of Priestley & Ball (1955), who did not make an explicit entrainment
assumption, but instead assumed a particular form of the Reynolds stress distribution.
For axisymmetric fountains there is evidence that the entrainment coefficient is
significantly reduced by negative buoyancy (Kaminski, Tait & Carazzo 2005), but
such variation is not considered further herein for planar fountains.

2.4. Universal solutions
Having adopted the standard entrainment model (2.7), the conservation equations for
the fluxes of mass, volume and momentum are equivalent to those of Lee & Emmons
(1961) for Boussinesq plumes. The analogy with the conservation equations of Morton
et al. (1956) cannot be missed. Also adopting the entrainment model (2.7) for non-
Boussinesq plumes, the conservation equations can be written in a universal form:

dG

dz
= 2ue,

dM

dz
= BG

M
,

dB
dz
= 0, (2.9a–c)

where we use the following notation:

G =
{

2wb=Q,
2ηwb=G,

M =
{

2w2b=MB (Boussinesq),
2ηw2b=M (non-Boussinesq).

(2.10a,b)

Accordingly, we define the effective half-width β and the density parameter ∆:

β =
{

b,
bη,

∆=




1− η (Boussinesq),
1− η
η

(non-Boussinesq),
(2.11a,b)

so that G = 2wβ and M = 2w2β.

2.5. Γ -approach for constant α
Adopting the universal notation in (2.10) and (2.11), the flux balance parameter Γ for
a constant entrainment coefficient α can be defined as:

Γ = BG 3

2αM 3
= gβ∆
αw2
= gb(1− η)

αw2
, (2.12)
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so that the line-source solutions in appendix C correspond to Γ = 1, i.e. a plume that
is pure at all heights. Furthermore, it can be noted both from the ratio of G and M
on the left-hand side of (2.12) and from the far right-hand-side term, that Γ takes the
same value if a given plume is modelled by either a Boussinesq or a non-Boussinesq
model.

After considerable manipulation the equations of conservation of the fluxes of
volume, momentum and buoyancy (2.9) can be expressed in terms of Γ , the
non-dimensional effective half-width β̂=β/β0, the non-dimensional velocity ŵ=w/w0
and a non-dimensional height ζ = αz/β0:

dΓ
dζ
= 3Γ (1− Γ )

β̂
,

dβ̂
dζ
= 2− Γ, dŵ

dζ
= ŵ

β̂
(Γ − 1). (2.13a–c)

Note that the definition of the non-dimensional height ζ depends on β0 and, therefore,
is different in Boussinesq and non-Boussinesq cases.

The system of ordinary differential equations (2.13) can be solved subject to the
initial conditions:

Γ = Γ0, β̂ = 1, ŵ= 1 at ζ = 0. (2.14a–c)

As for the axisymmetric case (van den Bremer & Hunt 2010), there are five classes
of solution: fountains (Γ0 < 0), pure jets (Γ0 = 0), forced plumes (0 < Γ0 < 1), pure
plumes (Γ0 = 1) and lazy plumes (Γ0 > 1).

Equations (2.13) and hence the solutions presented hereinafter are equally valid for
Boussinesq (appendix A) and non-Boussinesq plumes (appendix B following Thomas
& Delichatsios 2007 with λ= 1) with Gaussian profiles and in that case:

Γ = BG 3

23/2αM 3
, ζ = 2α√

π

z
β0

(Gaussian profiles), (2.15a,b)

with α now denoting the value of the entrainment coefficient for Gaussian profiles.

2.6. Γ -approach for variable α
Adopting an entrainment coefficient α(Γ ) that varies linearly with the local
Richardson number (2.8), the entrainment coefficient in the definition of Γ (2.12) is
replaced by the (constant) entrainment coefficient for pure plumes αp:

Γ = BQ3

2αpM3
B
= gb(1− η)

αpw2
. (2.16)

The entrainment model with a variable entrainment coefficient is only examined for
the Boussinesq case. Furthermore, it is only valid for the range 0 < Γ0 < 1, as it is
pertinent only for forced releases. Universal notation is therefore not adopted in this
section. With the entrainment model (2.8) and the modified definition of Γ (2.16),
the conservation equations can be expressed in terms of ŵ= w/w0, b̂= b/b0, Γ and
ζ = αpz/b0:

dΓ
dζ
= 3κΓ (1− Γ )

b̂
,

db̂
dζ
= 2κ − (2κ − 1)Γ,

dŵ
dζ
= ŵ

b̂
κ(Γ − 1). (2.17a–c)

In the specific case κ = 1/2, which is in close agreement with experimentally (§ 2.3)
inferred values of the entrainment coefficient, a new class of solution arises for which
(forced) plumes become straight-sided (§ 3.5) in addition to the solutions given in
§§ 3.1–3.3.
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3. Solutions to the plume equations
3.1. Pure jets (η0 = 1, Γ0 = 0)

For releases arising from finite non-zero width sources, Γ0 = 0 must correspond to
η0 = η(z)= 1, i.e. a pure jet with zero buoyancy flux. For a pure jet, (2.12) requires
that Γ (z)= Γ0 = 0. Equations (2.13) have the following solutions for b and w:

b
b0
= 1+ 2ζ ,

w
w0
= 1√

1+ 2ζ
. (3.1a,b)

The solutions (3.1) can be combined to give the solutions for the fluxes of volume
and momentum:

Q
Q0
=
√

1+ 2ζ ,
MB

MB,0
= 1. (3.2a,b)

3.2. Pure plumes (η0 < 1, Γ0 = 1)
For pure plumes (η0 < 1) from finite non-zero width sources, (2.13) requires Γ (z)=
Γ0= 1. Equations (2.13), combined with the definition of Γ (2.12), have solutions for
β, w and ∆:

β

β0
= 1+ ζ , w

w0
= 1,

∆

∆0
= 1

1+ ζ . (3.3a–c)

The solutions (3.3) can be combined to give the fluxes:

G

G0
= 1+ ζ , M

M0
= 1+ ζ . (3.4a,b)

We note that the solutions (3.3) and (3.4) for pure plumes from non-zero width
sources are equivalent to those for pure plumes rising from line sources (appendix C)
in terms of their behaviour with respect to height with an origin correction ζoc =−1.
This pure plume solution is exact at all heights, noting a singularity at the origin
ζ = ζoc =−1 for the density parameter ∆ in (3.3c).

3.3. Fountains (η0 > 1, Γ0 < 0), forced plumes (η0 < 1, 0<Γ0 < 1) and lazy plumes
(η0 < 1, Γ0 > 1) with constant α

Solving the conservation equations for Γ and β̂ in (2.13) simultaneously gives the
scaled effective half-width β̂ as a function of Γ and Γ0 for fountains (η0> 1, Γ0< 0),
forced plumes (η0 < 1, 0<Γ0 < 1) and lazy plumes (η0 < 1, Γ0 > 1):

β

β0
=
(
Γ

Γ0

)2/3(1− Γ0

1− Γ
)1/3

. (3.5)

Substituting (3.5) back into the expression for dΓ/dζ from (2.13) gives the vertical
rate of change of the flux balance parameter Γ :

dΓ
dζ
= 3Γ (1− Γ )

(
Γ0

Γ

)2/3( 1− Γ
1− Γ0

)1/3

. (3.6)
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Integrating (3.6) gives the height ζ at which a certain value of Γ is attained for the
three classes of solution:

ζ =





−1
3
(1− Γ0)

1/3

(−Γ0)2/3

∫ Γ

Γ0

dx
(−x)1/3(1− x)4/3

for Γ0 < 0,

1
3
(1− Γ0)

1/3

Γ
2/3

0

∫ Γ

Γ0

dx
x1/3(1− x)4/3

for 0<Γ0 < 1,

−1
3
(Γ0 − 1)1/3

Γ
2/3

0

∫ Γ

Γ0

dx
x1/3(x− 1)4/3

for Γ0 > 1,

(3.7)

where x is a dummy variable. Although (3.7) has a closed-form solution in the form
of a hypergeometric series, we do not detail this solution here as the series solution
does not lend more insight than numerical evaluation of the integral and far-field
asymptotics discussed in § 5.1. Combining the conservation equations for ŵ and Γ

in (2.13) yields the vertical velocity as a function of Γ and Γ0:

w
w0
=
(
Γ0

Γ

)1/3

. (3.8)

The rate of change of vertical velocity with height can then be found by substituting
(3.5) and (3.8) into the expression for dŵ/dζ in (2.13):

dŵ
dζ
=−(1− Γ )Γ0

Γ

(
1− Γ
1− Γ0

)1/3

. (3.9)

The rate of change of the effective half-width with height (the slope of the plume
envelope) is simply given by:

dβ̂
dζ
= 2− Γ. (3.10)

Combining the solutions for β̂ (3.5), ŵ (3.8) and the definition of Γ (2.12), the
dimensionless density parameter ∆̂=∆/∆0 and fluxes Ĝ = G /G0 and M̂ =M /M0

can be expressed as:

∆

∆0
=
(
Γ0

Γ

)1/3( 1− Γ
1− Γ0

)1/3

,
G

G0
=
(
Γ

Γ0

)1/3(1− Γ0

1− Γ
)1/3

,
M

M0
=
(

1− Γ0

1− Γ
)1/3

.

(3.11a–c)
In general throughout this paper, hatted variables refer to those variables scaled on
their source values. The rate of change of ∆̂, Ĝ and M̂ with height can be found by
combining the derivatives with respect to Γ of each term in (3.11), respectively, with
dΓ/dζ from (3.6):

d∆̂
dζ
=−Γ0

Γ

(
1− Γ
1− Γ0

)2/3

,
dĜ

dζ
=
(
Γ0

Γ

)1/3

,
dM̂

dζ
= Γ

(
Γ0

Γ

)2/3

. (3.12a–c)
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3.4. Forced plumes with variable α
For (Boussinesq) forced plumes with an entrainment coefficient α that varies linearly
with Γ (2.8), the conservation equations for b̂ and Γ in (2.17) combine to give:

b
b0
=
(
Γ

Γ0

)2/3(1− Γ0

1− Γ
)1/(3κ)

, (3.13)

which reduces to (3.5) for κ = 1. Substituting for b̂ from (3.13) into dΓ/dζ in (2.17)
gives:

dΓ
dζ
= 3κΓ (1− Γ )

(
Γ0

Γ

)2/3( 1− Γ
1− Γ0

)1/(3κ)

, (3.14)

which can be readily integrated from the source to a given height ζ :

ζ = 1
3κ
(1− Γ0)

1/(3κ)

Γ
2/3

0

∫ Γ

Γ0

dx
x1/3(1− x)1+(1/(3κ))

. (3.15)

The solution for ŵ can be found by combining the conservation equations for ŵ and
Γ (2.17), and solving the resulting ordinary differential equation:

w
w0
=
(
Γ0

Γ

)1/3

. (3.16)

We note that the solution for the vertical velocity (3.16) is independent of the
entrainment coefficient ratio κ . As for plumes with a constant entrainment coefficient,
combining the solutions for b̂ (3.13) and ŵ (3.16) and the definition of Γ (2.16), the
scaled density parameter ∆̂ and the scaled fluxes of volume Q̂ and momentum M̂B

can be expressed as:

∆

∆0
=
(
Γ0

Γ

)1/3( 1− Γ
1− Γ0

)1/(3κ)

,
Q
Q0
=
(
Γ

Γ0

)1/3(1− Γ0

1− Γ
)1/(3κ)

,
MB

MB,0
=
(

1− Γ0

1− Γ
)1/(3κ)

.

(3.17a–c)
The rate of change of ∆̂, Q̂ and M̂B with height can be found by combining the
derivatives with respect to Γ of each term in (3.17), respectively, with dΓ/dζ from
(3.14):

d∆̂
dζ
=−Γ0

Γ

(
1− Γ
1− Γ0

)2/(3κ)(
κ(1− Γ )+ Γ ), dQ̂

dζ
=
(
Γ0

Γ

)1/3(
κ(1− Γ )+ Γ ),

(3.18a,b)
dM̂B

dζ
= Γ

(
Γ0

Γ

)2/3

. (3.18c)

3.5. Straight-sided forced plumes
It is evident from (2.17b) that for κ = αj/αp = 1/2, planar forced plumes become
straight-sided. The slope of the plume envelope is equal to that of a pure plume
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(3.3) (db̂/dζ = 1 in both cases), and exact solutions can be found to the system of
conservation equations (2.17):

b
b0
= 1+ ζ , Γ = 1

1+ 1− Γ0

Γ0
(1+ ζ )−3/2

,
w
w0
= (Γ0 + (1− Γ0)(1+ ζ )−3/2)1/3.

(3.19a,b,c)
The solutions (3.19) can be combined with the definition of Γ (2.16) to give:

∆

∆0
= 1

Γ
1/3

0

(
(1+ ζ )3 + 1− Γ0

Γ0
(1+ ζ )3/2

)−1/3

, (3.20a)

Q
Q0
= (Γ0(1+ ζ )3 + (1− Γ0)(1+ ζ )3/2)1/3, (3.20b)

MB

MB,0
= (Γ0(1+ ζ )3/2 + 1− Γ0)

2/3. (3.20c)

4. Characteristic behaviour
As for the axisymmetric case (cf. Morton & Middleton 1973), the unique features

of planar plumes and fountains and their variation with the source conditions can be
illustrated by plotting certain scaled characteristic heights as a function of the source
parameter Γ0 (figures 1 and 2). The characteristic behaviour of the three main types of
release, fountains (§ 4.1), forced plumes (§ 4.2) and lazy plumes (§ 4.3), is discussed
below. In each section, the results are illustrated by a series of figures (figures 3–6)
that show the outline of the plume or fountain envelope b̂ as it varies with height for
different values of Γ0. Another series of graphs (figures 7–11) explores the variation of
the quantities Γ , ∆̂, ŵ, Ĝ and M̂ with height by plotting contours of constant values
of these quantities and their derivatives with respect to height in (Γ0, ζ )-space. In
addition, table 2 shows the values of the derivatives at the source (ζ = 0) (for plumes
and fountains) and asymptotically far away from the source (ζ→∞) (for plumes).

4.1. Fountains
For Boussinesq fountains with a constant entrainment coefficient, the only type of
fountain considered herein, the characteristic heights shown in figure 1 are the initial
rise height (ζirh) and the height at which the magnitude of the acceleration (|ŵ′| =
|dŵ/dζ |) reaches a minimum (ζ|ŵ′|min). It can be readily observed from figure 3 that
fountains, unless highly forced, become relatively broad (large db/dz) compared to
forced and lazy plumes (cf. figures 4 and 5) resulting in pressure gradients in the
horizontal direction no longer being much smaller than those in the vertical, which is
likely to invalidate the ‘long and thin’ assumption made in deriving the conservation
equations. As the momentum flux is eroded, from that imparted to the fountain from
its source, by the momentum flux induced by the opposing buoyancy flux, a fountain
will reach a maximum rise height corresponding to b→∞ and w→ 0 and, therefore
to Γ →−∞. This rise height ζ = ζirh is termed the initial rise height after Turner
(1966) and is given by taking the limit Γ =−∞ of (3.7):

ζirh =−1
3
(1− Γ0)

1/3

(−Γ0)2/3

∫ −∞

Γ0

dx
(−x)1/3(1− x)4/3

. (4.1)
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Γ
dΓ
dζ

dŵ
dζ

dβ̂
dζ

d∆̂
dζ

dĜ

dζ
dM̂

dζ

κ = 1: ζ = 0 Γ0 3Γ0(1− Γ0) Γ0 − 1 2− Γ0 −1 1 Γ0

κ = 1/2: ζ = 0 Γ0
3Γ0(1− Γ0)

2
Γ0 − 1

2
1 −1+ Γ0

2
1+ Γ0

2
Γ0

κ = 1: ζ→∞ 1 0 0 1 0 Γ
1/3

0 Γ
2/3

0

κ = 1/2: ζ→∞ 1 0 0 1 0 Γ
1/3

0 Γ
2/3

0

TABLE 2. Values of the derivatives of plume quantities and fluxes at the sources (ζ = 0)
and in the limit ζ →∞ (Γ = 1) for a constant entrainment coefficient (κ = 1) and a
variable entrainment coefficient κ=1/2. The first row (κ=1 : ζ =0) is valid for Boussinesq
fountains (Γ0 < 0) and both non-Boussinesq and Boussinesq forced and lazy plumes
(Γ0 > 0), whereas the second row (κ = 1/2 : ζ = 0) is only valid for forced Boussinesq
plumes (0<Γ0 < 1). The third row (κ = 1 : ζ→∞) is valid for both non-Boussinesq and
Boussinesq forced and lazy plumes (Γ0 > 0), whereas the fourth row (κ = 1/2 : ζ→∞) is
only valid for forced Boussinesq plumes (0<Γ0 < 1).

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1.0

−0.5

0

0.5

1.0

FIGURE 1. Scale diagram for planar fountains, forced plumes and lazy plumes showing
the initial rise height ζirh, the minimum deceleration height ζ|w′|min , the jet–plume transition
height ζjpt, the minimum effective half-width neck height ζβmin , the maximum dilution rate
height ζ∆′min

and the asymptotic virtual source correction ζavs.

Table 3 shows the values that the different quantities attain at the initial rise height.
Solutions for fountains are based on the plume entrainment model, which becomes
invalid after the fountain has reached its initial rise height and reverses because
of subsequent interaction between upflow and downflow. Hunt & Coffey (2009)
further subdivided the fountain solution class into highly forced (−1�Γ0 < 0), weak
(Γ0 . −1) and very weak fountains (Γ0 → −∞), and used data from experiments
to show that the solution for the (initial) rise height based on the plume equations,
as proposed herein, becomes invalid for very weak fountains. Comparing the source
values of the rate of change of volume flux dQ̂/dζ |ζ=0 = 1 (3.12b) and the rate of
change of momentum flux dM̂B/dζ |ζ=0=Γ0 (3.12c), and interpreting Γ ∝ (Q/MB)

3 as
a flux balance parameter, it is evident that the momentum flux MB approaches zero
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FIGURE 2. Scale diagram for planar lazy plumes showing the minimum effective half-
width neck height ζβmin , the maximum dilution rate height ζ∆′min

and the asymptotic virtual
source correction ζavs.

more rapidly for lazy fountains. Accordingly, Γ approaches Γ = −∞ more rapidly
the lazier the fountain (very negative Γ0) and the initial rise height is smaller.

From (3.11) and (3.12), the volume flux increases monotonically with height at a
monotonically decreasing rate, whereas the momentum flux decreases monotonically,
but at a monotonically increasing rate, as is illustrated by figures 10(a,c) and 11(a,c).
The density parameter ∆̂ decreases monotonically from a source value ∆̂ = 1. The
value of ∆̂ reached at the initial rise height, indicative of the dilution over the vertical
extent of the fountain and given by taking the limit Γ →−∞ of (3.11), is a function
of Γ0:

∆̂irh =
(

Γ0

Γ0 − 1

)1/3

. (4.2)

It is evident then, that the lazier the fountain is at the source (i.e. for increasingly
negative Γ0), the larger the remaining density contrast at the initial rise height and
the greater the potential role of the subsequent downflow. Thus, we may anticipate
the influence of the downflow to alter depending on whether the fountain is relatively
forced or relatively lazy.

Furthermore, by differentiating dŵ/dζ in (3.9) with respect to Γ it can be shown
that the vertical acceleration reaches a maximum at a height corresponding to Γ =−3
for sufficiently forced fountains (Γ0 > −3). For fountains that are not sufficiently
forced (Γ0 <−3) the velocity still decreases monotonically. The rate (with height) at
which this decrease occurs no longer reaches a maximum but decreases monotonically
with increasing distance from the source. This characteristic height denoted by ζ|w′|min

corresponds to the maximum (negative) acceleration or, more intuitively, to the
minimum deceleration and is given by substituting Γ =−3 into (3.7):

ζ|w′|min =−
1
3
(Γ0 − 1)1/3

Γ
2/3

0

∫ −3

Γ0

dx
x1/3(x− 1)4/3

. (4.3)

The minimum acceleration height thus lies between a region of rapid deceleration near
the source under the influence of the undiluted effective gravity and a region near the
top of the fountain where the fluid rapidly spreads in the lateral direction and the
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FIGURE 3. Behaviour of fountains with equivalent source half-widths b0 as a function
of Γ0. The outline of the fountain envelope b̂(ζ ) is indicated. The filled circles denote
the initial rise height ζirh corresponding to Γ = −∞ and the hollow circles denote the
minimum deceleration height ζ|w′|min corresponding to Γ =−3.

Γ b̂ ŵ η Q̂ Ĝ M̂B M̂ B̂

−∞ ∞ 0 1− (1− η0)
( Γ0

Γ0 − 1

)1/3 (Γ0 − 1
Γ0

)1/3 1
η0

(Γ0 − 1
Γ0

)1/3 − 1− η0

η0
0 0 1

TABLE 3. Values of the quantities and fluxes for Boussinesq fountains with a constant
entrainment coefficient at the initial rise height (ζirh). The form of ∆̂irh is given in (4.2).

−0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

0.5

1.0

1.5

FIGURE 4. Predicted behaviour of forced plumes with equivalent effective source
half-widths β0 as a function of Γ0 with a constant entrainment coefficient (κ = 1) (black
lines and circles) and a variable entrainment coefficient (κ = 1/2) (grey lines). The filled
circles denote the height at which dβ̂/dζ = 3/2, termed the jet-plume transition (ζjpt), the
hollow circles denote the height at which dβ̂/dζ = 5/4. The slope converges to dβ̂/dζ = 1
asymptotically with height.
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FIGURE 5. Predicted behaviour of lazy plumes with equivalent source effective half-widths
β0 as a function of Γ0. The filled circles denote the height at which the effective half-
width reaches a minimum (βmin) and the hollow circles denote the height at which the
dilution rate reaches a maximum (∆′min = (d∆/dζ )min).
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FIGURE 6. Predicted behaviour of very lazy plumes with equivalent source effective half-
widths β0 as a function of Γ0. The filled circles denote the height at which the effective
half-width reaches a minimum (βmin) and the hollow circles denote the height at which
the dilution rate reaches a maximum (∆′min = (d∆/dζ )min).

velocity drops to conserve mass. Two regimes, gravity-driven deceleration and mixing-
driven deceleration, can clearly be distinguished. It is evident from figure 8(a) that
∆̂ remains very close to its source value over a relatively large distance above the
source; almost no dilution occurs in the near-source region. Additionally, the source
value of the dilution rate d∆̂/dζ |ζ=0=−1 (3.12a) does not vary with Γ0. For relatively
lazy fountains (Γ0 6−3) the gravity-driven deceleration regime extends until the initial
rise height. Only for relatively forced fountains (Γ0 > −3) do significant mixing (cf.
figure 10a) and dilution (cf. figure 8a) occur at a relatively large distance above the
source (the mixing-driven deceleration regime).

4.2. Forced plume behaviour
For forced plumes, the characteristic heights include a height describing the transition
from jet-like to plume-like behaviour (ζjpt). For a constant entrainment coefficient α
the slope of the envelope of a pure jet (dβ̂/dζ |Γ0=0 = 2) exceeds the slope of a pure
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FIGURE 7. Contours of (a,b) constant Γ and (c,d) constant Γ ′= dΓ/dζ for releases with
a constant entrainment coefficient (κ = 1) (black lines) and forced releases with a variable
entrainment coefficient (κ = 1/2) (grey lines).

plume (dβ̂/dζ |Γ0=1 = 1). A forced plume (0<Γ0 < 1) will undergo a transition from
jet-like to plume-like behaviour as it rises. This transition can be characterized by a
height at which the slope of the envelope is the average of a pure jet and a pure plume
(dβ̂/dζ = (1+ 2)/2= 3/2). From (2.13), it is evident that this height corresponds to
Γ = 1/2. The jet–plume transition height ζjpt can be evaluated by substituting Γ = 1/2
into (3.7):

ζjpt = 1
3
(1− Γ0)

1/3

Γ
2/3

0

∫ 1/2

Γ0

dx
x1/3(1− x)4/3

, (4.4)

and is shown as a function of Γ0 in figure 1. We note the jet-plume transition height
is defined based on the slope of the universal parameter β, which is not equal to the
half-width in the non-Boussinesq case. This is discussed further in the accompanying
paper (van den Bremer & Hunt 2014).

From the definition of Γ (2.12), a forced plume can be regarded as having a deficit
of source volume (mass) flux or, alternatively, an excess of source momentum flux.
Although both the volume (mass) flux and the momentum flux increase monotonically
with height for forced plumes, it is evident from figures 10(a,c) and 11(a,c) that the
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FIGURE 8. Contours of (a,b) constant ∆̂ and (c,d) constant ∆̂′= d∆̂/dζ for releases with
a constant entrainment coefficient (κ = 1) (black lines) and forced plume releases with a
variable entrainment coefficient (κ = 1/2) (grey lines).

volume (mass) flux increases generally more rapidly with height than the momentum
flux. The balance of fluxes is thereby restored (Γ → 1), and the forced plume
gradually becomes pure. This adjustment is asymptotic and the pure plume limit
Γ → 1 is only reached as ζ → ∞. Note that despite the source values of the
adjustment rates of the fluxes of volume (mass) and momentum (dĜ /dζ |ζ=0 = 1,
dM̂ /dζ |ζ=0=Γ0 from (3.12b,c)), the large excess of momentum flux at the source is
not rapidly eroded for highly forced plumes (low Γ0) and the adjustment to pure is
very slow, achieving values of Γ close to Γ = 1 only at significant height (figure 7a).
In fact, the flux balance adjustment relies predominantly on an increase of the
volume flux due to entrainment, as the buoyancy force is relatively weak for forced
plumes keeping the momentum flux more or less unchanged and, consequently, a
very significant vertical extent is necessary for the work done by the buoyancy force
to significantly alter the flux balance. Since the vertical velocity only decreases
(dŵ/dζ |ζ=0=Γ0− 1, see figure 9a,c), entrainment in the near-source region of forced
plumes is not very significant (figure 8a) and significant increases in the volume flux
do not occur until at a greater height (figure 10a).
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FIGURE 9. Contours of (a,b) constant ŵ and (c,d) constant ŵ′ = dŵ/dζ for releases with
a constant entrainment coefficient (κ = 1) (black lines) and forced plume releases with a
variable entrainment coefficient (κ = 1/2) (grey lines).

4.2.1. Variable α (Boussinesq)
Introducing a variable entrainment coefficient model, in which the entrainment

coefficient for pure jets (Γ0 = 0) is far smaller than for pure plumes (Γ0 = 1), results
in reduced entrainment in the near-source region of jet-like plumes. We consider the
case κ = 1/2, which is in close agreement with some experimentally observed values
(§ 2.3) and which corresponds to a straight-sided plume envelope. For κ = 1 the
entrainment coefficient is constant. The grey lines in figures 8(a) and 10(a) clearly
show the reduction in entrainment for jet-like plumes (small Γ0). It follows from the
analysis in § 3.4 and table 2 that the source value of the rate of change of momentum
flux is not affected by the variable entrainment coefficient, whereas the rate of change
of the volume flux and the density parameter ∆̂ are reduced the more jet-like the
source conditions: for κ = 1/2, dQ̂/dζ |ζ=0= (1+Γ0)/2 and d∆̂/dζ |ζ=0=−(1+Γ0)/2
(for κ = 1, dQ̂/dζ |ζ=0 = 1 and d∆̂/dζ |ζ=0 = −1). Generally, the effects of κ(= 1/2)
on the momentum flux are negligible (figure 11a,c in which the black and grey lines
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FIGURE 10. Contours of (a,b) constant Ĝ and (c,d) constant Ĝ ′= dĜ /dζ for releases with
a constant entrainment coefficient (κ = 1) (black lines) and forced plume releases with a
variable entrainment coefficient (κ = 1/2) (grey lines).

are close to indiscernible). As a result, the volume flux deficit adjusts less rapidly
and the convergence to pure plume behaviour with height is slowed (figure 7a).

Whereas plumes with a constant entrainment coefficient showed a less steep
envelope (larger db̂/dζ ) for small Γ0, plumes with a variable entrainment coefficient
and κ = 1/2 are straight-sided, i.e. have a (constant) slope db̂/dζ = 1 (figure 4 and
§ 3.5). As a result, jet-like forced plumes (Γ0 ≈ 0) are predicted to be steeper by
a model in which the entrainment coefficient varies and κ = 1/2 (cf. figure 4). To
understand how the steeper slope results from reduced entrainment, consider the rate
of increase of volume flux Q̂= b̂ŵ, which can be written as a total derivative:

dQ̂
dζ
= ŵ

db̂
dζ
+ b̂

dŵ
dζ
. (4.5)

Significantly reduced entrainment (lower dQ̂/dζ ), despite marginally reduced
deceleration in line with negligible changes to the momentum fluxes (cf. figure 11a),
results in a significant reduction in the slope of the plume envelope db̂/dζ ; the plume
envelope becomes narrower.
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FIGURE 11. Contours of (a,b) constant M̂ and (c,d) constant M̂ ′ = dM̂ /dζ for releases
with a constant entrainment coefficient (κ = 1) (black lines) and forced plume releases
with a variable entrainment coefficient (κ = 1/2) (grey lines).

4.3. Lazy plume behaviour
For lazy plumes, the characteristic heights include the height at which the effective
half-width reaches a minimum (ζβ,min) and the height at which the vertical rate of
change of the density parameter ∆ reaches a minimum (ζ∆′,min). It is evident from
figure 5 that, as the lazy plume accelerates, the envelope contracts to a minimum at a
relatively small distance above the source. The height at which the effective half-width
of sufficiently lazy plumes (Γ0 > 2, so that ζβ,min > 0) reaches a minimum corresponds
to Γ = 2, as can be shown on differentiating (3.5) with respect to Γ or, indeed, from
(2.13b).

In contrast to the axisymmetric case (van den Bremer & Hunt 2010), the vertical
velocity does not reach a maximum at a small distance above the minimum effective
half-width neck, but increases monotonically following release. Whereas in the
axisymmetric case the contraction of the radius goes hand-in-hand with a vigorous
reduction of the rate of volume flux increase due to entrainment, which is proportional
to the radius (dG /dz = 2bue), such a reduction is absent in the planar case. In the
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latter case the rate of increase of the volume or mass flux does not vary with the
plume effective half-width (dG /dz = 2ue). Due to the absence of this reduction in
entrainment in planar plumes, sufficient ambient fluid is thereby entrained for the
vertical velocity to keep increasing. It is thus a result of geometric considerations of
two-dimensional versus three-dimensional plumes, that the contraction of the effective
entrainment radius does entail a maximum in the vertical velocity for axisymmetric
plumes, but does not for planar plumes. It is further evident from figure 9 and (3.8)
that the vertical velocity decreases monotonically for forced plumes, remains constant
for a pure plume and increases monotonically for lazy plumes. We note that ζβ,min
is based on the universal parameter β, which is not equal to the half-width in the
non-Boussinesq case. The difference is discussed further in the accompanying paper
(van den Bremer & Hunt 2014).

Figure 8(b,d) shows that the source density contrast is eroded more rapidly the
lazier the plume. Despite dominance of the momentum flux relative to the volume
(mass) flux in the near-source region for highly forced plumes, such plumes will
maintain a greater portion of their source density contrast at any given scaled height
compared to lazy plumes. For sufficiently lazy plumes (Γ0 > 3, so that ζ∆′,min > 0)
the (negative) rate at which the density contrast is eroded ∆′ = (d∆/dζ ) reaches a
minimum at a small distance above the source. By twice differentiating the expression
for ∆̂ (3.11a) with respect to Γ , this height (ζ∆′,min) can be shown to correspond to
Γ = 3. In the Boussinesq case, this corresponds to the height at which dη/dζ reaches
a maximum and can therefore be interpreted as the height at which the dilution is
maximal.

We recall from the definition of Γ (2.12) that a lazy plume can be regarded
as having a deficit of source momentum flux or an excess of volume (mass) flux.
It can be observed from figure 11(a,b) that dM̂ /dζ is greater for lazy than for
forced plumes. At height, but not near the source, the same is true for dĜ /dζ (cf.
figure 10a,b), albeit with smaller differences between forced and lazy. It is clear from
(3.12c) that the variation of the momentum flux at the source (dM̂ /dζ |ζ=0 = Γ0)
strengthens as the source departs further from that producing a pure jet. On the
other hand, from (3.12b), the variation of the volume (mass) flux at the source
dĜ /dζ |ζ=0 = 1 does not respond to the value of Γ0. As a consequence, the rate
dΓ/dζ at which the flux balance parameter is restored towards Γ = 1, the value
which the plume reaches asymptotically with height, is greater for larger Γ0. It is
evident from figure 7(b) that for large values of Γ0 the flux balance parameter is
restored towards Γ = 1 over a relatively small height, despite the large deficit of
source momentum flux. The rapid acceleration (cf. dŵ/dζ |ζ=0 = Γ0 − 1, from (3.9))
and the large values of the vertical velocity that are thus reached can also explain
the rapid entrainment and the maximum of d∆̂/dζ , i.e. the maximum dilution rate,
that is reached in the near-source region of highly lazy plumes.

5. Far-field behaviour
5.1. Asymptotic virtual source

For forced (0<Γ0 < 1) and lazy (Γ0 > 1) plumes it is clear from (3.6) that the plume
will become pure (Γ → 1) asymptotically with height. In this far-field limit, (3.7) can
be simplified (appendix E) to give:

Γ = 1+ Γ0 − 1
Γ 2

0
(ζ − ζavs)

−3. (5.1)
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Equivalently, for forced plumes with a variable entrainment coefficient, the plume will
become pure (Γ → 1) asymptotically with height. In this far-field limit, (3.15) can be
simplified (appendix E) to give:

Γ = 1+ Γ0 − 1
Γ 2κ

0
(ζ − ζavs)

−3κ . (5.2)

The asymptotic virtual source correction ζavs in (5.1) and (5.2) is given by
(appendix E):

ζavs=





− 1

Γ
2/3

0

+ 1

3Γ 2/3
0

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)
(1− Γ0)

n

(n− 1/3)n!
)

for 0<Γ0 < 1, constant α,

− 1

Γ
2/3

0

+ 1

3Γ 2/3
0

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)

(1− Γ0)
n

(nκ − 1/3)n!
)

for 0<Γ0 < 1, variable α,

− 1

Γ
2/3

0

+ 1

3Γ 2/3
0

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)
(
Γ0−1
Γ0

)n

(n− 1/3)n!
)

for Γ0 > 1/2,

(5.3)
where we note that the domain of convergence for lazy plumes (Γ0 > 1/2) overlaps
with that for forced plumes (0 < Γ0 < 1). We note from (5.3) that ζavs → −1 as
Γ0 → 1, which corresponds to the origin correction for pure plumes identified in
§ 3.2. Furthermore, we note that the asymptotic virtual source correction for forced
and lazy plumes with constant α (5.3) is equivalent to the correction obtained by
Lee & Emmons (1961) using their two-step approach. For completeness, appendix D
reproduces their result in the notation of this paper. By substituting the far-field
expression for Γ (5.1) into (3.5), (3.8) and (3.11), the following much simplified
far-field expressions for plumes with a constant entrainment coefficient are obtained
respectively, to the same level of approximation:

β

β0
= ζ − ζavs,

w
w0
= Γ 1/3

0 ,
∆

∆0
= Γ −1/3

0 (ζ − ζavs)
−1, (5.4a–c)

G

G0
= Γ 1/3

0 (ζ − ζavs),
M

M0
= Γ 2/3

0 (ζ − ζavs). (5.4d,e)

These far-field solutions (5.4) correspond to the solutions for pure plumes (3.3), (3.4)
with an origin correction. The asymptotic virtual source correction for plumes with
constant α is plotted in figure 1 as a function of Γ0. The source conditions of a plume
placed at the asymptotic virtual source that matches the original plume in the far field
are summarized in table 4.

For forced plumes with a variable entrainment coefficient, the far-field solutions in
(5.4) are valid without modification. It can be shown that for κ = 1/2, ζavs as defined
in (5.3) reduces to ζavs = −1 for any 0 < Γ0 6 1, which is in agreement with the
solution for straight-sided forced plumes developed in § 3.5.
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Γ ŵ β̂ ∆̂ Ĝ M̂ B/B0

1 Γ
1/3

0 0 ∞ 0 0 1

TABLE 4. Values of the modified plume quantities and fluxes at the asymptotic virtual
source (avs). The subscript 0 denotes the value at the original sources. A plume, with
the source conditions in this table, placed at the asymptotic virtual source will match the
original plume asymptotically with height.

5.2. Non-Boussinesq to Boussinesq transition
Although the far-field solutions in (5.4) as written in universal notation are directly
valid for non-Boussinesq plumes, the far-field behaviour is better captured on
combining the far-field solutions in (5.4) to give expressions for b̂, ŵ and η:

b
b0
= ξ − ξavs,

w
w0
= Γ 1/3

0 ,
1− η
1− η0

= Γ −1/3
0 (ξ − ξavs)

−1. (5.5a–c)

To aid the discussion, we have introduced in (5.5) a scaled height ξ , the definition
of which does not depend on whether a Boussinesq or a non-Boussinesq model is
considered:

ξ = αz
b0

for Boussinesq and non-Boussinesq plumes. (5.7)

The non-Boussinesq asymptotic virtual source correction ξavs in (5.5) is given by:

ξavs = η0ζavs + (1− η0)Γ
−1/3

0 . (5.8)

In (5.8), ζavs, of course, depends on whether Γ0 < 1 or Γ0 > 1 and is given by (5.3).
It is evident from (5.8), that the non-Boussinesq asymptotic virtual source correction
converges to its Boussinesq equivalent in the limit η0→ 1. For general values of the
density contrast, an additional term (1 − η0)Γ

−1/3
0 arises, the significance of which

can be seen in figure 12, which plots ξavs as a function of Γ0 for four values of η0.
Note that non-Boussinesq effects most significantly affect the asymptotic virtual source
correction for relatively lazy plumes with Γ0 ∼O(101)−O(102).

5.3. Non-Boussinesq to Boussinesq transition length scale
Using the asymptotic definition of the density contrast η (5.5), the height correspond-
ing to a specified value of η can be expressed as:

ξ(Γ0, η0, η)= ξavs + Γ −1/3
0

1− η0

1− η , (5.9)

where ξavs is given by (5.8). Expressing the distance from the asymptotic virtual
source in (5.9) in dimensional terms enables the identification of a transition length
scale measured from the asymptotic virtual source over which non-Boussinesq effects
are important, namely:

LNB−B ∝ b0

α
Γ
−1/3

0 (1− η0)∝
(

B2
0

g3α2

)1/3

. (5.10)
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FIGURE 12. Asymptotic virtual source correction for non-Boussinesq plumes for
(a) forced and lazy plumes and (b) very lazy plumes for different values of the source
density contrast η0. The horizontal line α(Γ ) in (a) denotes the source correction ξavs=−1
for the entrainment model with variable α taking κ = 1/2. Note that the scaled height
ξ = αz/b0 is independent of η0, in contrast to the universal height ζ = αz/β0, which is
dependent on η0 in the non-Boussinesq case ζ =αz/b0η0= ξ/η0, but not in the Boussinesq
case ζ = αz/b0 = ξ .

This is very similar to the transition length scale identified by Woods (1997)
for axisymmetric plumes rising from point sources and generalized to plumes
from axisymmetric area sources by van den Bremer & Hunt (2010), namely
LNB−B ∝ (B2

0/g
3α4)1/5. For four different values of the source density contrast η0,

figure 13 compares, in two ways, the height that is required for the fluid to be
diluted to η= 0.90 and η= 0.95, at which point we can confidently claim the plume
has become Boussinesq: the numerically evaluated exact solution from (3.7) and the
closed-form expression based on the far-field approximation (5.9). Figure 13 confirms
that the transition length scale LNB−B provides an excellent approximation to the
length scale over which the transition from non-Boussinesq to Boussinesq behaviour
takes place, except for very highly forced fountains. As for the axisymmetric case
(cf. van den Bremer & Hunt 2010), the reason for this is that, of the two transitions
that take place with height, namely Γ → 1 and η→ 1, the former takes place more
rapidly except in highly forced fountains.

6. Conclusions
Closed-form solutions to the conservation equations achieved by solving for the

vertical variation of the non-dimensional flux balance parameter Γ , a local Richardson
number, have been developed to describe the bulk behaviour of rising plumes and
fountains from planar area sources. In doing so, we have applied the most recent
findings from the literature on axisymmetric plumes to planar plumes. Despite the
prevalence of planar plumes in both the man-made and the natural environment, we
note that planar plumes have received remarkably little attention since the initial
work by Lee & Emmons (1961) and our intention has been to bridge this gap herein.
As for the axisymmetric case, the variation of Γ with height acts as a powerful
instrument to describe the contrasting behaviour of releases with different source
conditions: fountains (Γ0 < 0), pure jets (Γ0 = 0), forced plumes (0 < Γ0 < 1), pure
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FIGURE 13. Non-Boussinesq to Boussinesq transition for (a) η0 = 0.9, (b) η0 = 0.8,
(c) η0 = 0.6, (d) η0 = 0.4. Two sets of lines are plotted corresponding to η= 0.95 (upper
lines) and η = 0.9 (lower lines); the continuous line corresponds to the (exact) height
evaluated by numerical integration of (3.7) and the dashed line corresponds to the far-field
approximation (5.9). Note that the scaled height ξ =αz/b0 is independent of η0, in contrast
to the universal height ζ = αz/β0, which is dependent on η0 in the non-Boussinesq case
ζ = αz/b0η0 = ξ/η0, but not in the Boussinesq case ζ = αz/b0 = ξ .

plumes (Γ0 = 1) and lazy plumes (Γ0 > 1). It is exactly this contrasting behaviour
that we have aimed to highlight using so-called ‘scale diagrams’, showing a number
of non-dimensional characteristic heights as a function of a single source parameter
Γ0, first introduced by Morton & Middleton (1973) for axisymmetric plumes and
generalized herein to planar plumes. Combining these scale diagrams with ‘cartoons’
of the actual shape or envelope of a number of representative plumes and fountains
elucidates their behaviour even further. Finally, by plotting contours corresponding to
constant values of some of the plume properties in (Γ0,ζ )-space we have explored
the full scope of the solutions.

Insights that have thus been gained for fountains include, but are not limited to,
the identification of a gravity-driven deceleration regime and a mixing-driven regime
for forced fountains, and a sole gravity-driven mixing regime for lazy fountains; and
an expression for the remaining density contrast at the initial rise height of fountains,
which should play a role in explaining the difference between initial and final rise
heights. For plumes, these insights include a very slow convergence of highly forced

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

24
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.246


238 T. S. van den Bremer and G. R. Hunt

plumes to pure plume behaviour with height and the fact that a maximum dilution rate
accompanies the necking behaviour observed in lazy plumes, but a maximum velocity
is not predicted. Additionally, new solutions are found for forced Boussinesq plumes
with an entrainment model in which the entrainment coefficient α varies linearly with
the local Richardson number Γ , allowing for the incorporation of ‘buoyancy enhanced
mixing’, for which experimental evidence is conclusive. For specific values of the
entrainment coefficient for a pure jet and a pure plume, close to those observed, these
solutions correspond to a straight-sided plume envelope.

Although there is reasonable experimental agreement between the behaviours our
model predicts for pure jets and pure plumes, and this evidence is suggestive of a
linear variation of the entrainment coefficient with the local Richardson number in
the forced plume regime, there is no doubt that a full validation of the results herein
represents a considerable undertaking and not without practical challenges. Validation
of the initial rise height of planar fountains is one exception, the rise height being the
principal measurement made in nearly every study of fountains (see Hunt & Coffey
2009 for a review of the data). A number of the characteristic heights identified occur
in the relatively near-field region and this alone would necessitate a laboratory study
using sources of a scale far exceeding those used in the works cited herein in order
to adequately resolve their variation with the source conditions.

Finally, we show that if an entrainment model based on similarity is introduced
for non-Boussinesq plumes, the solutions to the system of conservation equations for
Boussinesq plumes and the solutions to the system of conservation equations for non-
Boussinesq plumes take the same mathematical form. These ‘universal solutions’ rely
on the introduction of an effective half-width, β, which is equal to the actual half-
width, β = b, in the Boussinesq case and to the product of the half-width and the
local density contrast, β = bη, in the non-Boussinesq case. The implications of this
universality, some of which are unphysical, are discussed in an accompanying paper:
van den Bremer & Hunt (2014).

Appendix A. Boussinesq conservation equations for Gaussian profiles

Adopting Gaussian profiles for the vertical velocity w(x, z)=wm(z)exp(−x2/b2) and
reduced gravity g′(x, z)= g′m(z)exp(−x2/b2), assuming that the cross-sectional variation
in both can be scaled on the same length scale b, conservation of the fluxes of volume
Q = √πwmb, momentum MB = √π/2w2

mb and buoyancy B = √π/2wmg′mb per unit
length are given by:

dQ
dz
= 2αwm = 23/2α

MB

Q
,

dMB

dz
=√πg′mb= BQ

MB
,

dB
dz
= 0. (A 1a–c)

Line-source solutions to the conservation equations with Gaussian profiles (A 1) can
be found based on dimensional arguments expressing the fluxes Q and MB as simple
power-law functions of the conserved quantity B and the height z:

Q= 2α2/3B1/3z, MB = 21/2α1/3B2/3z, (A 2a,b)

or in terms of b, w and the density parameter ∆= 1− η:

b= 2αz/
√

π, w= B1/3/α1/3, ∆= B2/3/(α2/3
√

2gz). (A 3a–c)
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The coefficients in the definition of the flux balance parameter have to be modified
accordingly:

Γ = BQ3

23/2αM3
B
=
√

πgb∆√
2αw2

. (A 4)

By adopting the height scaling ζ = 2αz/b0
√

π and the modified definition of Γ in
(A 4), the conservation equations for Gaussian profiles (A 1) can be shown to be
equivalent to the non-dimensional conservation equations expressed in terms of Γ ,
ζ , b̂ and ŵ (2.13). Therefore, all the solutions presented herein are also valid for
Boussinesq plumes with Gaussian profiles for vertical velocity and effective gravity.

Appendix B. Non-Boussinesq conservation equations for Gaussian profiles
In the solutions of Thomas & Delichatsios (2007), similarity at all horizontal

sections takes the form:

w
wm
= exp(−x̂2),

ρa − ρ
ρ
=
(
ρa − ρ
ρ

)

m

exp(−x̂2/λ2), (B 1a,b)

where x̂ is a non-dimensional horizontal (cross-stream) coordinate and λ is the ratio
between the w and (ρa− ρ)/ρ profiles. Similarity can be obtained by the introduction
of a stream function:

Ψ (x, z)=
∫ x

0

ρ(y)
ρa

w(y)dy. (B 2)

The non-dimensional horizontal coordinate x̂ is defined implicitly in terms of the
stream function:

Ψ (x, z)
Ψ (∞, z)

= 2√
π

∫ x̂

0
exp(−s2)ds. (B 3)

The fluxes of mass, momentum and buoyancy are then given by:

G= 2Ψ (∞, z), M =√2wmΨ (∞, z), B= 2g
(
ρa − ρ
ρ

)

m

Ψ (∞, z)
λ√

1+ λ2
.

(B 4a–c)
The corresponding conservation equations are, in turn, given by:

dG
dz
= 2αwm = 23/2α

M
G
,

dM
dz
=
√

1+ λ2
√

2

BG
M
,

dB
dz
= 0. (B 5a–c)

Appendix C. Universal solutions for plumes rising from line sources
Similarity solutions to the universal conservation equations (2.9) can be found by

expressing G and M as power-law functions of B and z and solving for the exponents
using dimensional arguments:

G = (2α)2/3B1/3z, M = (2α)1/3B2/3z. (C 1a,b)

The solutions in (C 1) can be combined to give:

β = αz, w= (2α)−1/3B1/3, ∆= B2/3

g(2α)2/3z
. (C 2a–c)
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Equations (C 1) and (C 2) can be written entirely in universal notation by scaling on
the source values of the respective quantities, denoted by the subscript 0 (and not
corresponding to z= 0 here), and combining with the definition of Γ0 (2.12):

G

G0
= Γ 1/3

0 ζ ,
M

M0
= Γ 2/3

0 ζ ,
β

β0
= ζ , w

w0
= Γ 1/3

0 ,
∆

∆0
= Γ −1/3

0 ζ−1. (C 3a–e)

Appendix D. Lee & Emmons (1961)

Taking a two-step approach, Lee & Emmons (1961) define the asymptotic virtual
source correction as:

ζavs =





−(F2(F2 − 1))1/3
(∫ (F2−1)1/3

0

v

(v3 + 1)1/3
dv + δ

)
for F> 1,

−(F2(1− F2))1/3
(∫ (1−F2)−1/3

1

v

(v3 − 1)1/3
dv + δ

)
for 0< F< 1,

(D 1)

where F=Γ −1/2
0 is the (normalized) source Froude number. Therefore, the range F>1

corresponds to a forced plume (0<Γ0 < 1), and the range 0< F< 1 to a lazy plume
(Γ0 > 1). The constant δ≈ 0.69 is not evaluated explicitly in Lee & Emmons (1961),
but for both forced and lazy plumes is given by:

δ = 1− 1
3

n=∞∑

n=1

( i=n∏

i=1

(i− 2/3)
1

(n− 1/3)n!
)
. (D 2)

Appendix E. Asymptotic virtual source correction
E.1. Forced plumes with constant α

The plume integral for forced plumes is given by:

P(Γ )=
∫ Γ

Γ0

dΓ
Γ 1/3(1− Γ )4/3 . (E 1)

A suitable substitution is φ = 1− Γ , for which φ→ 0 as Γ → 1. Substituting for φ
into (E 1) gives:

P(φ)=−
∫ φ

φ0

dφ
(1− φ)1/3φ4/3

. (E 2)

The (1− φ)−1/3 term in (E 2) can be expressed as a Taylor series about φ = 0:

1
(1− φ)1/3 = 1+

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)
φn

n!
)
, (E 3)

which is valid for 0<Γ 6 1. Substituting (E 3) into (E 2) and integrating term by term
gives:

P(φ)=
[

3φ−1/3 −
n=∞∑

n=1

((
i=n∏

i=1

(i− 2/3)

)
φn−1/3

(n− 1/3)n!

)]φ

φ0

. (E 4)
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Taking the leading-order term in (1 − Γ ) as a far-field approximation gives Γ as a
function of the non-dimensional height ζ :

Γ = 1− (1− Γ0)

Γ 2
0

(ζ − ζavs)
−3, (E 5)

where ζavs is the asymptotic virtual source correction:

ζavs =− 1

Γ
2/3

0

+ 1

3Γ 2/3
0

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)
(1− Γ0)

n

(n− 1/3)n!
)
. (E 6)

E.2. Forced plumes with variable α
The plume integral for forced plumes with an entrainment model in which α varies
with Γ (2.8) is given by:

P(Γ )=
∫ Γ

Γ0

dΓ
Γ 1/3(1− Γ )1+(1/(3κ)) . (E 7)

A suitable substitution is φ = 1− Γ , for which φ→ 0 as Γ → 1. Substituting for φ
into (E 7) gives:

P(φ)=−
∫ φ

φ0

dφ
(1− φ)1/3φ1+(1/(3κ)) . (E 8)

The (1 − φ)−1/3 term in (E 8) can be expressed as the Taylor series about φ = 0 in
(E 3), which is valid for 0<Γ 6 1. Substituting (E 3) into (E 8) and integrating term
by term gives:

P(φ)=
[

3κφ−1/(3κ) −
n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)

φn−(1/3κ)

(n− (1/3κ)) n!
)]φ

φ0

. (E 9)

Taking the leading-order term in (1 − Γ ) as a far-field approximation gives Γ as a
function of the non-dimensional height ζ :

Γ = 1− (1− Γ0)

Γ 2κ
0

(ζ − ζavs)
−3κ, (E 10)

where ζavs is the asymptotic virtual source correction:

ζavs =− 1

Γ
2/3

0

+ 1

3Γ 2/3
0

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)

(1− Γ0)
n

(nκ − 1/3)n!
)
. (E 11)

E.3. Lazy plumes
The plume integral for lazy plumes is given by:

P(Γ )=−
∫ Γ

Γ0

dΓ
Γ 1/3(Γ − 1)4/3

. (E 12)
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A suitable substitution is φ= (Γ − 1)/Γ , for which φ→ 0 as Γ → 1. Substituting for
φ into (E 12) gives:

P(φ)=−
∫ φ

φ0

dφ
(1− φ)1/3φ4/3

. (E 13)

The (1− φ)−1/3 term in (E 13) can be expressed as a Taylor series about φ = 0:

1
(1− φ)1/3 = 1+

n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)
φn

n!
)
, (E 14)

which is valid for Γ > 1/2. Substituting (E 14) into (E 13) and integrating term by
term gives:

P(φ)=
[

3φ−1/3 −
n=∞∑

n=1

(( i=n∏

i=1

(i− 2/3)
)

φn−1/3

(n− 1/3)n!
)]φ

φ0

. (E 15)

Taking the leading-order term in (Γ − 1) as a far-field approximation gives Γ as a
function of the non-dimensional height ζ :

Γ = 1+ (Γ0 − 1)
Γ 2

0
(ζ − ζavs)

−3, (E 16)

where ζavs is the asymptotic virtual source correction:

ζavs =− 1

Γ
2/3

0

+ 1

3Γ 2/3
0

n=∞∑

n=1




(
i=n∏

i=1

(i− 2/3)

)
(
Γ0 − 1
Γ0

)n

(n− 1/3)n!


. (E 17)
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