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Previous studies investigating threshold behavior in real-exchange-rate and price
difference data have used rather ad hoc statistical methods and have focused on univariate
threshold models for relative prices. We utilize a general multivariate threshold
cointegration model and develop a systematic testing and estimation strategy for this
model, building on the work of others. Using Monte Carlo experiments, we systematically
compare the use of univariate and multivariate techniques for testing threshold
cointegration, estimating various threshold models, and testing specifications. We apply
our methodology to a large set of U.S. disaggregated CPI data. We find evidence of
threshold cointegration mainly for tradable goods. However, the type of threshold
nonlinearity that we find generally does not support the transaction-cost view of
commodity arbitrage.
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1. INTRODUCTION

Several recent papers have presented evidence revealing threshold-type nonlin-
earity in real-exchange-rate data and have shown that threshold nonlinearity is a
possible explanation for the apparent unit root behavior of real exchange rates. For
example, Michael et al. (1997) and Sarantis (1999) applied smooth-transition au-
toregressive (STAR) models and rejected linearity for many bilateral and effective
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real exchange rates for a group of industrial countries. Using threshold autoregres-
sive (TAR) models, O’Connell (1998) found evidence of threshold nonlinearities
in narrow panels of European CPI real exchange rates, and Obstfeld and Taylor
(1997) rejected linearity for a large number of within-country disaggregated price
differential series as well as aggregated between-country real-exchange-rate series.
O’Connell and Wei (1997) and Parsley and Wei (1996) found that nonlinearities
exist in U.S. disaggregated price data for a panel of location pairs. All of these
works are more or less motivated by the idea that arbitrage is the force that elimi-
nates any purchasing power parity (PPP) or law of one price (LOP) deviation only
when it is profitable; that is, the price difference (denominated by one currency) is
large enough to offset the per-unit cost of transporting the goods between the two
locations.

The empirical TAR models utilized by the above-mentioned authors to inves-
tigate nonlinearity in adjustments to PPP or to the LOP are univariate versions
of the bivariate threshold cointegration models described by Balke and Fomby
(1997). That is, the authors focus on the threshold behavior of the univariate coin-
tegrating residual implied by the LOP or by PPP (equal to log price difference)
and do not investigate threshold behavior in the broader bivariate model for log
prices. Analysis of threshold behavior in the bivariate model allows one to un-
cover potential nonlinearities and asymmetries in the adjustment of individual
prices and provides more information regarding the dynamics of the data. In ad-
dition, multivariate procedures for testing threshold cointegration that utilize the
full structure of the model should have higher power (provided the model is true)
than univariate procedures that ignore the restrictions imposed by the multivariate
structure. Most empirical work has also largely ignored specification testing of the
imposed TAR models. Specification testing is particularly important in threshold
analysis of the LOP because the transaction cost theory that motivates the em-
pirical specification of the TAR model imposes strong testable restrictions on the
model.

In this paper, we utilize a bivariate threshold vector error-correction model of
cointegration for log price differences and develop a systematic testing, estimation,
and specification strategy for investigating nonlinear adjustment to the LOP. Our
strategy builds on the recent work of Balke and Fomby (1997), Tsay (1998), and
Hansen (1999). Using Monte Carlo experiments, we compare the use of univariate
and multivariate techniques for testing cointegration in the presence of threshold
nonlinearity and for estimating the parameters of various threshold cointegration
models. We also evaluate several model specification schemes, based on nested
hypothesis tests, to see if restricted threshold models can be identified from un-
restricted models. The results from our Monte Carlo experiments suggest that
multivariate tests for cointegration have much higher power than univariate tests;
multivariate and univariate tests for linearity have similar power and it is difficult
to detect certain types of threshold models, especially in small samples. We then
apply our methodology for analyzing threshold cointegration to a wide range of
U.S. disaggregated price data for 41 goods and service categories and 29 cities.
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We find evidence of threshold cointegration mainly for pairs of “tradable” goods
prices. However, the type of threshold nonlinearity that we find generally does not
support the strong restrictions implied by the transaction-cost view of commodity
arbitrage.

The paper is organized as follows. First we provide some motivation for the use
of threshold cointegration models in the analysis of PPP and the LOP. Next, we
present the general bivariate threshold cointegration model and discuss the types of
restricted models used in most empirical work. Then, we extend Balke and Fomby’s
(1997) methodology for testing threshold cointegration to a multivariate setting and
we evaluate this extension using a small Monte Carlo experiment. Following the
Monte Carlo study, we apply our methodology to a large data set of disaggregated
prices to investigate the evidence for threshold nonlinearity in the adjustment to
the LOP. Technical details and derivations are gathered in Appendices A and B.

2. THRESHOLD COINTEGRATION AND THE LAW OF ONE PRICE

2.1. Motivation and Literature Review

There is a large literature on testing whether PPP holds in the long run using
univariate and multivariate linear dynamic models. Froot and Rogoff (1995) offer
an exhaustive review. Essentially, the approach taken involves testing to see if
the real exchange rate isI (0) and, hence, a mean reverting process. There is a
consensus view that real-exchange-rate data indeed have mean reverting dynamics,
yet a deviation from equilibrium is found to be very persistent and the estimated
half-life of a shock is typically about 4 years.

Obstfeld and Taylor (1997) question the simplicity of this premise and they
revisit a notion raised by Heckscher (1916) who suggests that international trans-
action costs may play a role in explaining the deviation from PPP. The recent
theoretical works by Dumas (1992) and Sercu et al. (1995) lend support for this
idea. O’Connell and Wei (1997) demonstrate the following simplified version of
the effects of transaction costs on the real exchange rate.

Assume that the only transaction cost is for transportation and is of the “iceberg”
form. For goods purchased in locationi at Pi , and sold in locationj at Pj , the per-
unit revenue is (1− τ )Pj , whereτ denotes the proportional loss of value from trans-
portation, like the melting of an iceberg, and 0<τ <1. That is, instead of defining
transportation costs as the product of how many units of goods are traded and
how many miles they are transported, this functional form takes it as a devaluation
proportional to the gross revenue for each unit, namely, the price. The greater the
distance between two locations, the higherτ is. Thus, arbitrage fromi to j is prof-
itable if and only if(1− τ)Pj − Pi > 0 or 1− τ > Pi /Pj . Conversely, for a unit of
goods fromj to i , positive profit implies(1− τ)Pi − Pj > 0 or Pi /Pj > 1/(1− τ).
Putting theoppositeof these two conditions together, there will be no arbitrage from
either direction when 1/(1− τ)≥ Pi /Pj ≥ 1− τ , or, equivalently when taking
logarithms,−ln(1− τ)≥ ln Pi − ln Pj ≥ ln(1− τ). The band surrounding rela-
tive prices wherein arbitrage is not profitable is therefore [−ln(1− τ), ln(1− τ)].
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Because arbitrage is profitable only outside of the bands, we expect to observe
mean-reverting behavior of the log price difference only when its absolute value
exceeds−ln(1− τ). Within the bands, the log price difference can exhibit random-
walk-type nonstationary behavior.

Empirically, two types of simple threshold cointegration models, popularized
by Balke and Fomby (1997), have been applied to investigate nonlinear adjustment
to PPP or the LOP suggested by the transaction-cost theory described earlier. The
first type of model is the symmetric three-regime BAND-TAR model

1zt =
φ(zt−1− c)+ ηt , if zt−1 > c,
ηt , if −c ≤ zt−1 ≤ c,
φ(zt−1+ c)+ ηt , if zt−1 < −c,

(1)

wherezt denotes the log price differential at timet , ηt is an i.i.d. error term, [−c, c]
represents the symmetric transactions cost band wherein arbitrage is not profitable,
andφ is a speed-of-adjustment parameter satisfying−2<φ<0. In this model, if
arbitrage is not profitable so that|zt−1| ≤ c, thenzt follows a random walk because
there are no economic forces pushing prices together. In contrast, if arbitrage is
profitable such that|zt−1|> c, thenzt follows a stationary AR(1) process with mean
equal to±c, depending on whetherzt−1> c or zt−1< −c. Notice that the forces of
arbitrage in this model push relative prices only to the edge of the transaction-cost
band. If the relative price is just outside the band, sayzt−1 slightly larger thanc,
then the expected adjustment of relative prices,φ(zt−1− c), is small for a givenφ.

The second type of model is the symmetric three-regime equilibrium (EQ) TAR
model

1zt =
φ1zt−1+ ηt , if zt−1 > c,
φ0zt−1+ ηt , if −c ≤ zt−1 ≤ c,
φ1zt−1+ ηt , if zt−1 < −c,

(2)

where it is expected thatφ0≈ 0 andφ1<φ0 so that large deviations from parity
should be less persistent than small deviations. In contrast to the BAND-TAR
model, in the EQ-TAR model, if|zt−1|> c, the relative price reverts to parity and
not to the edge of the band. As a consequence, the magnitude of adjustment in
response to an arbitrage opportunity is greater in the EQ-TAR than in the BAND-
TAR. In other words, for given values ofφ andc, zt in the EQ-TAR model is less
persistent than the BAND-TAR model.1

Pippenger and Goering (1993), Balke and Fomby (1997), O’Connell (1998),
Enders and Granger (1998), and Berben and van Dijk (1999) show that if data
are generated by TAR models such as (1) and (2), then standard unit root tests
can have very low power, which may explain the commonly found high degree
of persistence in real exchange rates, and this result has motivated interest in
the empirical relevance of threshold models for real exchange rates and price
differences.

The empirical evidence in support of the transaction-cost view for real exchange
rates based on estimates of models such as (1) and (2) is mixed. Obstfeld and
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Taylor (1997) estimate symmetric EQ-TAR and BAND-TAR models using month-
ly disaggregated and aggregated CPI’s for 32 city and country locations (with
the United States as the home country) over the period 1980 through 1994 and
find evidence in support of threshold nonlinearity based on the transaction cost
theory. Their estimates of half-lives of shocks to relative prices range from 8 to 12
months compared to those from a linear AR(l) model, which range from 17 to
40 months.2 They also find that the widths of their estimated transaction-cost
bands are positively related to measures of economic distance and exchange rate
volatility as suggested by theory. Berben and van Dijk (1998) reevaluate the results
of Obstfeld and Taylor (1997) using more sophisticated tests for unit roots in
the presence of threshold nonlinearity as well as a more general BAND-TAR
model that allows for asymmetry in the speed of adjustment and in the threshold
values. Despite the fact that they find threshold-type nonlinearity, they claim that
the asymmetry of the estimated parameters of the model, which is statistically
significant, leads to nonsensical conclusions that contradict the transaction-cost
view and they conclude that one should not attribute goods arbitrage as the factor
that causes the nonlinearity in the data. O’Connell (1998) performs unit root tests
and estimates EQ-TAR models on various panels of real exchange rates based on
a different set of price indexes for industrial countries than used by Obstfeld and
Taylor. O’Connell’s results for broad panels of real exchange rates generally do
not support the transaction-cost view because he often fails to reject unit roots
using panel unit root tests. Moreover, his panel estimates of EQ-TAR models such
as (2) indicate that large deviations from PPP can be more persistent than small
deviations from PPP.

The evidence for the transaction-cost view using disaggregated price data is
more favorable. There are several cross-sectional panel studies that show how
price differences of individual commodities and services between two locations
are affected by transaction costs. By regressing some volatility measure of price
differences on selected exogenous variables, Engel and Rogers (1996, 1998a,b),
with no intention of testing for commodity arbitrage, show that the distance be-
tween two locations is a significant factor in explaining market segmentation for
many goods within the U.S. borders. However, time-series studies on price dif-
ferences are rare. Parsley and Wei (1996) perform panel unit root test on monthly
price data of 51 goods and services for a group of 48 cities with a sample period
from 1975 to 1992. For log price differences of both “nonperishable/tradable” and
“perishable” goods, they are able to reject unit roots in the data, which provides
support for the LOP. They also test for nonlinearity, in an ad hoc manner, and their
results are supportive of the view that convergence of prices is faster when the
initial price difference is wider. O’Connell and Wei (1997) are the first to test for
nonlinearity on disaggregated price data using threshold models. They use the same
data as Parsley and Wei (1996), consisting of monthly observations of individual
prices on 48 goods and services from 24 cities. Two panels of data are formed:
one is the price difference of a good in each city versus the all-cities average and
the other is the price difference of each good in a city versus that of a benchmark
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city. Using panel unit root tests, they generally do not reject unit roots. However,
their panel estimates of BAND-TAR and EQ-TAR models are highly supportive
of the transaction-cost view in that large deviations from the LOP appear to be
mean-reverting.

Although there is substantial evidence for threshold nonlinearity in the adjust-
ment to PPP and the LOP, most of the empirical work has been rather ad hoc. For
the most part, EQ-TAR and BAND-TAR models have been imposed on the data
and no specification testing has been done to see if these models are actually appro-
priate. The transaction-cost view imposes restrictions of symmetry of thresholds
and symmetry of adjustment parameters and, apart from the analysis by Berben
and van Dijk (1998), these restrictions generally have not been tested. In addition,
all of the analysis has been based on univariate threshold models for log price
differences. There has been no analysis of the threshold behavior of multivariate
systems of log prices. Clearly, there is a need for a more systematic and rigorous
investigation of threshold nonlinearity. In the following sections, we outline a gen-
eral strategy for investigating threshold cointegration in bivariate systems of log
prices.

2.2. General Model of Threshold Cointegration

We start our analysis by considering a general three-regime bivariate threshold
VAR (TVAR) model for log prices similar to the one discussed by Tsay (1998).
Let pit be the log price of a good in locationi, (i = 1, 2), at time t and define
pt = (p1t , p2)

′. The TVAR model forpt with lag lengthk, threshold variablezt ,
and delayd is given by

pt = α( j )+8( j )
1 pt−1+8( j )

2 pt−2+· · ·+8( j )
k pt−k+ε( j )

t , if c( j−1) ≤ zt−d ≤ c( j ),

(3)

wheret = 1, . . . , T, j = 1, 2, 3, −∞= c(0) < c(1) < c(2) < c(3)=∞, andε( j )
t is

a serially uncorrelated error term with mean zero and covariance matrix6( j ). The
threshold variablezt is assumed to be stationary and have a continuous distribution.
Additionally, the transition variablezt is assumed to be known, whereas the delay
variabled, lag lengthk, and threshold valuesc(1) andc(2) are potentially unknown.
Typically, the delay parameterd is assumed to be less than or equal to the lag
lengthk.

The TVAR model can be rearranged as

1 pt = α( j ) +
∏( j )

pt−1+
k−1∑
i=1

9
( j )
i 1 pt−i + ε( j )

t , if c( j−1) ≤ z(t−d) ≤ c( j ),
(4)

where ∏( j ) =
k∑

i=1

8
( j )
i − I2 and 9

( j )
i = −

k∑
l=i+1

8
( j )
l .
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If, within each regimej , pt is I (1) and cointegrated with the common cointegrating
vectorβ′ = (1,−β2), then rank(

∏( j )
)= 1 and

∏( j ) = γ( j )β′ =
(
γ
( j )
1

γ
( j )
2

)
(1,−β2).

The threshold vector error-correction model (TVECM) representation is then

1 pt = α( j ) + γ( j )β′pt−1+
k−1∑
i=1

9
( j )
i 1 pt−i + ε( j )

t , if c( j−1) ≤ zt−d ≤ c( j ).

(5)

The TVECM specifies that the adjustment toward the long-run equilibrium rela-
tionshipβ ′pt is regime-specific. For ease of exposition, in the following we focus
on the TVAR withk= 1 andd= 1, which implies a TVECM withk= 0. This
simple model is also the one used most often in empirical applications to date.

In the TVECM withk= 0, it is straightforward to show that the cointegrating
residualβ ′pt has the regime-specific AR(1) or TAR representation

β′pt = δ( j ) + ρ( j )β′pt−1+ η( j )
t , (6)

with
ρ( j ) = 1+ β ′γ( j ) = 1+ γ ( j )

1 − β2γ
( j )
2 , (7)

whereδ( j )=β ′α( j ) andη( j )
t =β ′ε( j )

t . Hence,β ′pt is stable within each regime if
|ρ( j )| = |1+γ ( j )

1 −β2γ
( j )
2 |< 1. Provided this stability condition holds, the regime-

specific mean of the cointegrating residual is

µ( j ) = β′α( j )

β′γ( j )
= δ( j )

1− ρ( j )
. (8)

To eliminate drift inpt , the regime-specific constants can be restricted to the
error-correction term if

α( j ) = −µ( j )γ( j )

whereµ( j ) is given by (8). The TVECM then becomes

1 pt = γ( j )
(
β′pt−1− µ( j )

)+ ε( j )
t , if c( j−1) ≤ zt−1 ≤ c( j ) (9)

and µ( j ) is interpreted as the regime-specific mean of the cointegrating rela-
tion β ′pt .

Since the LOP indicates thatp1t − p2t should beI (0), we focus on the TVECM
for pt , where the cointegrating vector is known to take the valueβ= (1,−1)′, the
threshold variablezt is equal to the residual from the cointegrating relationship,
zt−1=β′pt−1= p1t − p2t , and the errors in each regime have a common covariance
matrix6:

1 pt = α( j ) + γ( j )zt−1+ εt , if c( j−1) ≤ zt−1 ≤ c( j ). (10)
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2.2.1. BAND-TVECM. A special case of the restricted constant TVECM (9)
occurs whenpt in the middle regime is not cointegrated but isI (1) without drift.
In this case,γ (2)= 0, α(2)= 0 and (9) becomes the BAND-TVECM

1 pt =


γ(3)
(
zt−1− µ(3)

)+ εt , if zt−1 > c(2),

εt , if c(1) ≤ zt−1 ≤ c(2),

γ(1)
(
zt−1− µ(1)

)+ εt , if zt−1 < c(1).

(11)

A sufficient condition for the stability of (11) is that the cointegrating residualzt

be stable in the outer regimes.3 From (6), stability in the outer regimes requires
|ρ( j )| = |1+γ ( j )

1 − γ ( j )
2 | < 1 for j = 1, 3. Notice that in the middle regimeγ (2)= 0

andα(2)= 0, which implies thatzt = zt−1 + ηt . The BAND-TVECM has the fol-
lowing interpretation. Ifzt−1 is within the band [c(1), c(2)], thenpt follows a random
walk without drift; if zt−1 > c(2) thenzt reverts to the regime-specific meanµ(3)

with adjustment coefficientρ(3) and1 pt adjusts with speed-of-adjustment vector
γ(3); if zt−1< c(1), thenzt reverts to the regime-specific meanµ(1) with adjustment
coefficientρ(1) and1 pt adjusts with speed-of-adjustment vectorγ(1).

It is important to emphasize that the speeds of adjustment of prices in the outer
bands can be different for each element ofpt . To see this more clearly, the model
for 1p1t is

1p1t =


γ
(3)
1

(
zt−1− µ(3)

)+ ε1t , if zt−1 > c(2),

ε1t , if c(1) ≤ zt−1 ≤ c(2),

γ
(1)
1

(
zt−1− µ(1)

)+ ε1t , if zt−1 < c(1),

(12)

and the model for1p2t is

1p2t =


γ
(3)
2

(
zt−1− µ(3)

)+ ε2t , if zt−1 > c(2),

ε2t , if c(1) ≤ zt−1 ≤ c(2),

γ
(1)
2

(
zt−1− µ(1)

)+ ε2t , if zt−1 < c(1).

(13)

In general,γ (3)1 6= γ (3)2 andγ (1)1 6= γ (1)2 , although we expect to findγ ( j )
1 ≤ 0 and

γ
( j )
2 ≥ 0 so that both prices “error-correct” toward parity when the LOP devia-

tion is large. An interesting special case occurs ifγ
( j )
i = 0 (for somei = 1, 2 and

j = 1, 3) since this restriction implies thatpit is not responding to possible arbi-
trage opportunities. This could happen, for instance, if prices are sticky in some
locations relative to others.

Several special cases of the BAND-TVECM (11) are of interest. Thecontinuous
model results when the regime-specific means of the cointegrating residualzt are
equal to the neighboring threshold values: that is,µ(3)= c(2) andµ(1)= c(1). The
symmetricthreshold model occurs whenc(2)= −c(1)= c. The EQ-TVECM arises
if µ(3)=µ(1)= 0.
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2.2.2. BAND-TAR Model. The BAND-TVECM (11) implies the following
three-regime BAND-TAR model forzt :

1zt =


φ(3)
(
zt−1− µ(3)

)+ ηt , if zt−1 > c(2),

ηt , if c(1) ≤ zt−1 ≤ c(2),

φ(1)
(
zt−1− µ(1)

)+ ηt , if zt−1 < c(1),

(14)

whereφ( j )= ρ( j )− 1. This model is more general than (1), which has been used in
most empirical work, because it allows for asymmetric thresholds and adjustment
parameters as well as regime-specific means that are different from the neighboring
thresholds.

Several special cases of the BAND-TAR model (14), analogous to the special
cases of the BAND-TVECM, are of interest. Acontinuousmodel hasµ(3)= c(2)

andµ(1)= c(1); a symmetric thresholdmodel hasc(2)= − c(1)= c; and asym-
metric adjustmentmodel hasρ(3)= ρ(1)= ρ; and an EQ-TAR model results when
µ(3)=µ(1)= 0. Notice that the symmetric BAND-TAR model (1), used most often
in empirical work, results from a continuous, symmetric threshold and symmetric
adjustment BAND-TAR model.4

3. TESTING FOR THRESHOLD COINTEGRATION

Balke and Fomby (1997) discuss some of the general problems associated with
testing for threshold cointegration. They note that testing the null hypothesis of no
cointegration against the alternative hypothesis of threshold cointegration is com-
plicated by the combination of unit root asymptotics and the presence of nuisance
parameters that are only present under the alternative hypothesis. Additionally,
to construct tests with high power for a specific type of TVECM, the specific
form of the threshold model under the alternative generally needs to be speci-
fied and estimated and this can be difficult since there are many possible types
of threshold models. Based on the outcome of a small set of Monte Carlo experi-
ments, Balke and Fomby suggest the following practical strategy. First, test the null
hypothesis of no cointegration against the alternative of (nonthreshold) cointegra-
tion. Next, if the hypothesis of no cointegration is rejected, then test for threshold
nonlinearity. If linearity is rejected, a third step, not investigated by Balke and
Fomby, is also necessary. This is the specification and estimation of the threshold
model.

We consider several modifications of the Balke–Fomby procedure for testing
threshold cointegration. In their implementation of the two-step strategy, Balke and
Fomby focus on the properties of the univariate serieszt =β′pt−1 and not on the
properties of the multivariate process drivingpt . That is, in the first step they inves-
tigated the power properties of various residual-based tests for no cointegration on
zt in cases whereβ is known and unknown and in the second step they considered
power properties of several univariate tests for linearity ofzt . We adopt a similar
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two-step strategy as Balke and Fomby but focus instead on multivariate estimation
and testing procedures. The idea is that if the bivariate TVECM is the appropriate
model, then multivariate procedures that utilize the structure of the model should
have higher power than univariate procedures that ignore the restrictions imposed
by the multivariate structure. Accordingly, in the first step, we consider the power of
multivariate tests of the hypothesis of no cointegration, and, in the second step, we
consider the power of multivariate tests of linearity. In testing for no cointegration,
Balke and Fomby did not consider tests that made use of the threshold nature of the
alternative. We also add to their analysis by considering some recently developed
tests for unit roots that are designed to have power against threshold alternatives.
Finally, we add a third step to the analysis, consisting of a specification analysis of
the form of the threshold model based on nested hypothesis tests within a general
unrestricted threshold model. The following subsections describe our additions to
the Balke–Fomby methodology.

3.1. Testing for No Cointegration

Given that we assume the cointegrating vector is known and constant across
regimes under threshold cointegration, we avoid many complications associated
with estimating general multivariate threshold cointegration models.5 Still, the
power of tests for no cointegration against threshold cointegration depend on how
the test is constructed. We investigate tests of the hypothesis of no cointegration
against the alternative of linear cointegration and against the specific alternative
of threshold cointegration.

3.1.1. Testing no cointegration against linear cointegration.Given that the
cointegrating vectorβ is known, standard univariate unit root tests on the cointe-
grating residualzt =β′pt−1 can be used to test the no-cointegration null hypothesis.
The results of Pippenger and Goering (1993) and Balke and Fomby (1997) show
that standard unit root tests can have low power in EQ-TAR and BAND-TAR
models if the autoregressive coefficients in the outer regimes are close to 1 and/or
the width of the band relative to the variance of the errors is large. However, to
date no one has considered multivariate tests that are based on a known cointe-
grating vector. Since we assume that, under the alternative of cointegration,pt has
a VECM structure, we consider Horvath and Watson’s (1995) multivariate test for
no cointegration. The VECM forpt ignoring threshold effects is

1 pt = α+ γzt−1+
k−1∑
i=1

8i1 pt−i + εt (15)

and under the null hypothesis of no cointegrationγ= 0. Horvath and Watson’s
test statistic is the standard seemingly unrelated regression (SUR) Wald statistic
for testingγ= 0 and is given by

HW = γ̂var(γ̂)−1γ̂,
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whereγ̂ denotes the (equation-by-equation) OLS estimate ofγ and var (γ̂) is the
OLS estimate of the covariance matrix of ˆγ. Under the null of no cointegration,
the limiting distribution ofHW is a function of bivariate Brownian motions and
Horvath and Watson provide tables with the appropriate critical values.

Horvath and Watson (1995) show that their test can have much better power
against cointegrated alternatives than the univariate ADF unit root test onzt , es-
pecially when the correlation between the errors inεt is strong. Additionally,
Zivot (2000) shows that the Horvath–Watson test generally has higher power than
the ADF test when the dynamics of the data invalidate the common-factor re-
strictions imposed by the ADF test. Given that the Horvath–Watson test generally
performs better than the ADF test against linear cointegration alternatives, it is
conjectured that it will have higher power than the ADF test against threshold
cointegration alternatives as well.

3.1.2. Testing no cointegration against threshold cointegration.Recently,
Gonzáles and Gonzalo (1997), Caner and Hansen (1998), Enders and Granger
(1998), and Berben and van Dijk (1998, 1999) have addressed the issue of test-
ing for a unit root in a univariate autoregressive model against the alternative of
a stationary TAR model and they have developed unit root tests that can have
higher power than tests that ignore the specific nature of the threshold alternative.
It appears then that these methods can be applied to the cointegrating residual
zt =β′pt−1. However, we must be careful because some of these new tests require
assumptions about the nature of the transition variable,zt−1, that are not satisfied
in the present context. In particular, the tests of Gonz´alez and Gonzalo (1997) and
Caner and Hansen (1998) require the threshold variable to be stationary under the
unit root null. Since we use the cointegrating residual as the transition variable, the
tests of Gonz´alez and Gonzalo (1997) and Caner and Hansen (1998) are not ap-
plicable. The tests of Enders and Granger (1998) and Berben and van Dijk (1998,
1999) do not require the transition variable to be stationary and so are applicable
in the present context.

Enders and Granger (1998), hereafter EG, consider testing for a unit root in the
two-regime TAR model

1zt =
{
φ(2)(zt−1− c)+ ηt , if zt−1 > c,

φ(1)(zt−1− c)+ ηt , if zt−1 ≤ c,
(16)

which is like the BAND-TAR model (14) withµ(3)=µ(1)= c, so that the middle
regime vanishes. They estimate the threshold valuec using the sample mean of
zt−1 and test the null hypothesis thatφ(1)=φ(2)= 0 using the standardF-statistic
from the regression

1zt = φ(1)(zt−1− ĉ)I (zt−1 ≤ ĉ)+φ(2)(zt−1− ĉ)I (zt−1 > ĉ)+
k−1∑
j=1

ψ j1zt− j +ηt

(17)
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where ĉ is the mean ofzt−1. Under the null of a unit root, the distribution of
the F-statistic is a function of Brownian motion and EG provide the appropriate
critical values. EG find, rather surprisingly, that theirF-test actually has lower
power than the ADFt-test that ignores the threshold nature of the two-regime
alternative, but may have higher power than the ADF test in three-regime models
with asymmetric thresholds and dynamics. Hence, the EG test may prove useful
in the present context.

Berben and van Dijk (1999), hereafter BVD, point out that the low power of the
EG test relative to the ADF test is likely due to the fact that the test makes use of a
biased estimate of the threshold parameter under the alternative hypothesis. They
develop a more powerful test that uses a consistent estimate of the threshold under
the alternative. Their test is based on the standardF-statistic for testing the null
hypothesisφ(1)=φ(2)= 0 in (17), wherec is estimated from (16) by sequential
conditional least squares.6 BVD show that theirF-statistic can have much higher
power than EG’sF-statistic for the two-regime model (16) if the dynamics are
highly asymmetric. It remains to be seen how BVD’sF-statistic performs for
three-regime BAND-TAR models. Even though the BVD test is designed for two-
regime TAR alternatives, the test should also have power against three-regime
TAR alternatives. For example, if a three-regime TAR model is the true model,
then the results of Bai (1997) show that the least-squares estimate of the threshold
on the misspecified two-regime model will be consistent for one of the thresholds.
Hence, one of the estimated autoregressive coefficients in (17) should be less than
zero and this will give the test power.

3.2. Testing Linearity

Once it has been determined thatpt is cointegrated with the known cointegrating
vectorβ, the next step is to determine if the dynamics in the cointegrating relation-
ship are linear or exhibit threshold nonlinearity. Several univariate and multivariate
tests for linearity that have power against threshold nonlinear alternatives have been
proposed and we briefly review them here.

Balke and Fomby (1997) test for linearity in the univariate cointegrating residual
zt =β′pt−1 by testing for structural breaks in an arranged autoregression forzt . An
arranged autoregression forzt orders the data according to the value of the threshold
variable, herezt−1, instead of by time. The rearrangement of the data does not alter
the dynamic relationship betweenzt and its lags and is useful for detecting threshold
nonlinearity since the existence of a threshold in the time-ordered data translates
into a structural change in the rearranged data. Using arranged autoregressions
for zt , Balke and Fomby consider Tsay’s (1989) nonparametric test for structural
change based on recursive residuals as well as sup-Wald-type tests for one and
two breaks. Tsay’s test has the attractive property that it is independent of the form
of threshold nonlinearity and its limiting distribution is independent of nuisance
parameters. The distributions of the sup-Wald-type tests, however, are complicated
by the fact that the estimated break dates are not identified under the null hypothesis
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of linearity and need to be simulated or bootstrapped on a case-by-case basis. On
the basis of a small Monte Carlo study, Balke and Fomby find that the Tsay’s test
and the sup-Wald test for one break have similar power against the symmetric
three-regime EQ-TAR and BAND-TAR models and that the sup-Wald test for two
breaks has the best power, although it tends to be size distorted.

Tsay (1998) generalizes his univariate test for threshold nonlinearity based on
arranged autoregressions to multivariate models and shows that it is also valid
for cointegrated processes. Hence it is of interest to see how his multivariate test
performs relative to his univariate test in the present context. To implement his test
in the present context, we need to consider an arranged multivariate regression for
the VECM. Details of this test are complicated and are described in Appendix A.

Hansen (1997, 1999) describes another method for testing the null hypothesis of
linearity versus the alternative of a TAR(m) model, wherem denotes the number
of regimes, based on nested hypothesis tests. To illustrate, consider the TAR(3)
model for zt =β′pt−1 in (6). A linear autoregressive, or TAR(1), model results
under the restrictions thatδ( j )= δ andρ( j )= γ, ∀ j . Hansen’s linearity test is a test
of the null hypothesis of TAR(1) against the alternative of TAR(m) for somem> 1
using sup-F-type (sup-Wald) tests of the form

F1m = T

(
S1− Sm

Sm

)
,

whereS1 and Sm denote the sum of squared residuals from the estimation of a
TAR(1) model and a TAR(m) model, respectively. A drawback of this procedure
is that the asymptotic distributions of the sup-F tests are influenced by the uniden-
tified threshold parameters under the null hypothesis of linearity, the so-called
Davies problem [see Davies (1977, 1987)], and simulation techniques must be
used to evaluate these distributions on a case-by-case basis. Hansen shows that a
simple bootstrap procedure can be used to computep-values for various linearity
tests and we use this procedure in our analysis. A useful by-product of this test-
ing strategy is the estimation of the parameters of the TAR(m) models. Hansen’s
linearity testing procedure has the apparent advantage over Tsay’s nonparametric
procedures since it is based on the specific form of the threshold model under the
alternative. Hansen’s testing procedure has not been investigated against BAND-
TAR models and we evaluate it here.7

We note that Hansen’s method for testing linearity in univariate TAR models
based on nested hypothesis tests can be easily extended to test linearity in multi-
variate TVECM’s. We simply test the null hypothesis of a linear VECM against
the alternative of a TVECM(m) for somem> 1. The most convenient test statistic
to use in this case is the sup-LR statistic (which is equivalent to the sup-Wald),

L R1m = T(ln(|6̂|)− ln(|6̂m(ĉ, d̂)|))

where6̂ and 6̂m(ĉ, d̂) denote the estimated residual covariance matrices from
the linear VECM andm-regime TVECM, respectively. When the arguments of
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Hansen (1997) are used, the distribution of the sup-LR statistic will be nonstandard.
We use Hansen’s bootstrap procedure to computep-values for various linearity
tests based onL R1m.

3.3. Model Specification

Given that we reject no cointegration and linearity, how do we determine which
kind of threshold model is appropriate for the data? How many regimes are in
the model? In a three-regime model, are the threshold values symmetric? Is a
continuous threshold model specification appropriate? Is an EQ-TAR model or
EQ-TVECM more appropriate than a BAND-TAR model or BAND-TVECM?
These are the kinds of questions that need answering in an empirical analysis.
Two approaches generally have been taken to determine the appropriate threshold
specification of a model. The first approach, advocated by Tong (1990), Clements
and Krolzig (1998), and Tsay (1998), uses a model selection criterion such as
AIC to determine the best specification from the data. The second approach, re-
cently reviewed by Hansen (1999), uses a sequential testing procedure based on
nested models. We follow Hansen and consider nested hypothesis tests based on
unrestricted estimation of TAR models and TVECM’s.

The transaction-cost theory of commodity arbitrage reviewed in Section 2 im-
plies a three-regime symmetric threshold and symmetric-adjustment BAND-TAR
model forzt as well as a three-regime symmetric threshold and symmetric adjust-
ment BAND-TVECM forpt . The symmetric BAND-TAR model is nested within
an unrestricted TAR(3) model and the symmetric BAND-TVECM is nested within
an unrestricted TVECM(3). This nested structure allows for a systematic specifi-
cation analysis.

Consider first the determination of the number of regimes. Given that linearity
is rejected in favor of threshold nonlinearity, to determine if a TAR(3) model forzt

is appropriate, we can follow Hansen (1999) and test the null of a TAR(2) model
against the alternative of a TAR(3) model using theF-statistic,8

F23 = T

(
S2− S3

S3

)
,

where S2 and S3 denote the sum of squared residuals from the estimation of
an unrestricted TAR(2) model and an unrestricted TAR(3) model, respectively.
Similarly, to determine if a TVECM(3) forpt is appropriate, we can test the null
of a TVECM(2) against the alternative of a TVECM(3) using the LR statistic,

L R23 = T [ln(|6̂2|] − ln[|6̂3(ĉ, d̂)|)],

where 6̂2(ĉ, d̂) and 6̂3(ĉ, d̂) denote the estimated residual covariance matri-
ces from the unrestricted TVECM(2) and TVECM(3), respectively. As with the
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linearity tests discussed previously, the asymptotic distributions ofF23andLR23are
nonstandard, and bootstrap methods can be used to compute approximatep-values.

Next, consider specification tests for the BAND-TAR model and the BAND-
TVECM. Chan (1993) shows that the threshold estimates from estimating unre-
stricted (stable) TAR models are superconsistent (converge at rateT) and that the
remaining parameter estimates are asymptotically normally distributed, with the
usual formulas for covariance matrices, and independent of the threshold estimates.
Tsay (1998) gives analogous results for the parameters of stable or cointegrated
TVAR models. The superconsistency of the thresholds means that the estimated
thresholds can be treated as the true thresholds for inference purposes regarding
the remaining parameters. Hence, Wald tests of restrictions on the parameters (ex-
cluding the thresholds) can be computed in the usual way and these tests have
asymptotic chi-square distributions. LR tests can also be computed but are more
costly than Wald tests because they require the estimation of restricted threshold
models.9 Inference regarding the thresholds, however, is problematic since the lim-
iting distribution of the thresholds from unrestricted estimation is nonstandard and
generally depends on the nuisance parameters and the data; see Hansen (1997).

4. MONTE CARLO RESULTS

In this section we use Monte Carlo methods to compare the performance of the
univariate and multivariate procedures to analyze a bivariate threshold cointegra-
tion model. We compare the performance of tests for no cointegration against the
alternatives of linear cointegration and threshold cointegration. We compare the
performances of tests designed to capture threshold nonlinearity. We compare dif-
ferent estimation strategies for various kinds of threshold models, and we evaluate
specification tests based on nested hypothesis tests. Unless noted otherwise, all
experiments are based on 1,000 replications.

4.1. Design of the Experiments

The design for our set of Monte Carlo experiments is the one used by Balke and
Fomby (1997).10 They specify a cointegrated system forpt = (p1t , p2)

′ as

p1t − 3p2t = zt ,

p1t − 2p2t = Bt ,

Bt = Bt−1+ ut ,

wherezt follows either a continuous symmetric EQ-TAR model as in (2), with
φ0= 0, or a continuous symmetric BAND-TAR model as in (1). In both cases,ηt

andut are i.i.d.N(0, 1) random variables;φ= ρ− 1=−0.6; c= 3, 5, and 10; and
T = 100, 250, and 500. The implied continuous and symmetric BAND-TVECM
is given by (12) and (13) withγ ( j )

1 =−1.8 andγ ( j )
2 =−0.6( j = 1, 3), and the

correlation between the errors in the BAND-TVECM is corr(ε1t , ε2t )= 0.98. This
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implied parameterization of the BAND-TVECM is a bit odd since the speed-of-
adjustment coefficients are negative and the errors are very highly correlated.

4.2. Results for Balke–Fomby Design

Table 1 summarizes the results for the tests of no-cointegration for the EQ and
BAND models. The powers of all tests are higher for the EQ specification than for
the BAND specification and the power is higher for smaller values of the thresholds.
For the tests that ignore the threshold nature of the alternative, the multivariate
Horvath–Watson (HW) test has about twice the power as the univariate ADF tests
for both the EQ and BAND models. However, the powers of the EG and BVD tests,
which take account of the threshold nature of the alternative, have higher power
than the HW test. In particular, the BVD test has excellent power for moderate
sample sizes.

Table 2 gives the results for the linearity tests. As with the tests for no cointegra-
tion, the linearity tests have higher power for the EQ specification. For the BAND
specification, all of the tests have low power for small sample sizes and the power
decreases with the magnitude of the thresholds. Somewhat surprisingly, the univari-
ate tests generally have higher power than the multivariate tests, even for large sam-
ple sizes. However, this could be due to the restrictive nature of the data-generating
process. The univariateF12 andF13 statistics have slightly higher power than the
univariate Tsay statistic, withF12 having higher power thanF13, and the multivari-
ateL R12 andL R13 statistics have higher power than the multivariate Tsay statistic.

Tables 3 and 4 present Monte Carlo means and standard deviations for the esti-
mated parameters of the BAND specification obtained from unrestricted univariate

TABLE 1. Tests for no-cointegration, empirical rejection frequency of 5% testsa

EQ-TAR BAND-TAR

c T ADF HW EG BVD ADF HW EG BVD

3 100 0.416 0.944 0.961 1 0.139 0.206 0.221 0.625
3 250 0.989 1 1 1 0.616 0.946 0.983 1
3 500 1 1 1 1 0.997 1 1 1

5 100 0.135 0.272 0.325 0.916 0.092 0.127 0.132 0.383
5 250 0.636 0.996 0.998 1 0.193 0.256 0.273 0.869
5 500 0.996 1 1 1 0.612 0.874 0.949 1

10 100 0.085 0.134 0.155 0.609 0.062 0.104 0.091 0.250
10 250 0.144 0.219 0.265 0.898 0.109 0.121 0.131 0.458
10 500 0.335 0.536 0.658 0.998 0.127 0.159 0.159 0.732

aADF, HW, EG, and BVD denote the augmented Dickey–Fuller, Horvath–Watson, Enders–Granger, and Berben–van
Dijk tests, respectively. The critical values for the HW test are taken from Horvath and Watson (1995, Table 1); the
values for EG test are taken from Enders and Granger (1998, Table 1); the values for the BVD test are taken from
Berben and van Dijk (1999, Table 1). The lag lengths for all of the tests are fixed at the true value of 1. Number of
simulations= 1,000.
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TABLE 3. Unrestricted TAR(3) estimates, Monte Carlo means and standard
deviationsa

(True Model: Continuous, symmetric threshold and symmetric
adjustment BAND-TVECM)

c T c(1) c(2) µ(1) ρ(1) α(2) ρ(2) µ(3) ρ(3)

3 100 −1.13 1.20 −1.88 0.51 0.30 0.33 2.88 0.45
(1.77) (1.71) (13.58) (0.50) (4.87) (2.19) (10.95) (0.54)

3 250 −1.53 1.53 −2.32 0.47 0.07 0.57 1.10 0.47
(1.52) (1.49) (8.19) (0.34) (2.10) (0.85) (29.64) (0.35)

3 500 −1.94 2.00 −2.44 0.47 0.01 0.84 2.46 0.46
(1.13) (1.10) (1.61) (0.24) (0.69) (0.37) (2.89) (0.24)

5 100 −1.44 1.44 −2.95 0.54 −0.46 0.48 2.50 0.57
(3.02) (2.98) (8.70) (0.52) (7.56) (2.01) (15.47) (0.52)

5 250 −2.11 2.10 −3.76 0.58 0.06 0.68 4.48 0.55
(2.62) (2.65) (37.98) (0.33) (3.03) (0.76) (21.83) (0.27)

5 500 −2.77 2.80 −3.29 0.56 −0.05 0.86 2.91 0.55
(2.22) (2.30) (7.84) (0.27) (1.30) (0.33) (15.63) (0.27)

10 100 −1.39 2.01 −0.67 0.66 0.27 0.58 9.10 0.62
(5.97) (5.97) (80.87) (0.44) (10.93) (1.49) (268.5) (0.49)

10 250 −2.48 2.51 −6.02 0.72 0.06 0.76 4.81 0.70
(6.00) (5.89) (64.06) (0.31) (5.56) (0.72) (13.68) (0.32)

10 500 −3.38 3.70 −9.60 0.73 0.00 0.85 5.68 0.71
(5.87) (5.78) (115.8) (0.27) (3.07) (0.37) (34.74) (0.28)

aStandard deviations are in parentheses. The estimated unrestricted model is (6). The true value ofρ is 0.4. The
regime-specific means are computed asµ( j ) =α( j )/(1− ρ( j )) for j = 1, 3. Number of simulations= 1,000.

TAR models and multivariate TVECM’s. The estimated univariate model is (6) and
the estimated multivariate model is (10). Estimation of the models is performed
using sequential conditional least squares as outlined by Hansen (1999) and ex-
plained in Appendix A. First, consider the estimated thresholds. The univariate
and multivariate estimates of the thresholds both capture the symmetry of the true
thresholds and are numerically very close. They are both biased toward zero, with
the bias increasing with the magnitude of the thresholds, and the bias slowly de-
creases with the sample size. The apparent slow convergence of the thresholds is
surprising given the result from Chan (1993) that the thresholds are superconsis-
tent. Figure 1 illustrates the asymmetric distribution of the threshold estimates for
the band specification withc= 3 andT = 250. The histogram of the thresholds
clearly shows that there is considerable uncertainty in the estimates for moderate
sample sizes. Next, consider the estimates of the regime-specific means. For both
univariate and multivariate models, the estimated means are downward biased but
closer, on average, to the true thresholds (which are equal to the true means in
the continuous specification used here) than the estimated thresholds. However,
there is substantially more uncertainty in the estimated means than in the estimated
thresholds. Finally, consider the estimates of the speed-of-adjustment parameters.
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TABLE 4. Unrestricted TVECM(3) estimates, Monte Carlo means and standard
deviationsa

(True Model: Continuous, symmetric threshold and symmetric
adjustment BAND-TVECM)

c T c(1) c(2) µ(1) γ
(1)
1 γ

(1)
2 γ

(2)
1 γ

(2)
2 µ(3) γ

(3)
1 γ

(3)
2

3 100−1.07 1.07 −2.24 −1.54 −0.53 −2.23 −0.88 5.54 −1.60 −0.55
(1.83) (1.80) (38.2) (1.87) (0.73) (7.98) (3.14) (99.2) (2.10) (0.83)

3 250−1.37 1.45 14.06−1.51 −0.52 −1.66 −0.64 3.92 −1.58 −0.55
(1.60) (1.56) (523) (1.17) (0.44) (3.22) (1.25) (18.9) (1.27) (0.48)

3 500−1.78 1.81 −3.78 −1.60 −0.55 −0.90 −0.35 3.34 −1.63 −0.56
(1.32) (1.27) (34.9) (0.90) (0.33) (1.71) (0.66) (27.9) (0.90) (0.33)

5 100−1.34 1.42 −4.48 −1.29 −0.45 −1.36 −0.52 5.09 1.47−0.52
(3.01) (3.00) (159) (1.75) (0.67) (6.84) (2.69) (84.5) (2.01) (0.79)

5 250−1.91 1.92 −4.03 −1.27 −0.44 −1.31 −0.50 23.82−1.27 −0.44
(2.67) (2.70) (18.8) (1.17) (0.43) (2.71) (1.04) (628) (1.13) (0.42)

5 500−2.38 2.50 −4.80 −1.25 −0.44 −0.70 −0.27 5.52 −1.28 −0.44
(2.38) (2.36) (14.4) (0.90) (0.32) (1.44) (0.56) (12.4) (0.91) (0.33)

10 100−1.27 1.84 6.55 −1.02 −0.36 −1.82 −0.70 7.59 −1.12 −0.40
(6.22) (6.12) (346) (1.71) (0.66) (6.41) (2.49) (187) (1.84) (0.72)

10 250−2.17 2.58 −0.03 −0.85 −0.30 −0.99 −0.37 4.21 −0.93 −0.33
(5.99) (5.93) (485) (1.04) (0.38) (2.74) (1.07) (185) (1.12) (0.42)

10 500−3.52 3.20 −7.35 −0.84 −0.29 −0.43 −0.17 6.19 −0.78 −0.27
(5.67) (5.67) (112) (0.86) (0.31) (1.37) (0.53) (54.5) (0.83) (0.30)

aStandard deviations are in parentheses. The estimated unrestricted model is (10). The regime-specific mean is
computed asµ( j ) =β ′α( j )/β ′γ ( j ) for j = 1, 3. Number of simulations= 1,000.

The estimates in the outer regimes are very similar, capture the symmetry of the
true model, are closest to the true values forc= 3, and tend to be biased toward
nonstationary values as the threshold band increases. The estimates in the middle
regime are generally biased toward stationary values but show considerably more
sampling uncertainty than the outer-regime estimates. Overall, all of the estimates
look reasonable on average but there is considerable sampling uncertainty, even
for fairly large sample sizes.

Table 5 presents results for the estimated parameters of the restricted BAND-
TAR model and the restricted BAND-TVECM as well as Wald and LR tests for the
restrictions imposed by these models. The Wald and LR tests based on the TAR
model (6) are for the null hypothesis of a band specification with symmetric adjust-
ment with equal regime-specific means:ρ(1)= ρ(3), δ(1)=−δ(3), ρ(2)= 1, δ(2)= 0.
The tests based on the TVECM (5) are for the restrictionsγ

(1)
1 = γ (3)1 , γ

(1)
2 = γ (3)2 ,

α
(1)
1 =−α(3)1 , α

(1)
2 =−α(3)2 ,γ(2)= 0,α(2)= 0. The restricted estimates of the thre-

sholds are much closer to the true values than the unrestricted estimates and the
sampling uncertainty is also much smaller. This result is striking, given Chan
and Tsay’s (1998) result that the threshold estimates from a continuous TAR
model converge at a slower rate than the threshold estimates from an unrestricted
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TABLE 5. Restricted TAR(3) and TVECM(3) estimates, Monte Carlo means, stan-
dard deviations, and specification testsa

(True Model: Continuous, symmetric threshold and symmetric
adjustment BAND-TVECM)

TAR TVECM

c T c ρ LR Wald c γ1 γ2 LR Wald

3 100 2.82 0.25 0.38 0.65 2.80 −2.23 −0.74 0.18 0.83
(0.87) (0.43) (0.90) (1.44) (0.52)

3 250 2.97 0.32 0.40 0.56 2.89 −1.96 −0.65 0.16 0.68
(0.50) (0.27) (0.61) (0.85) (0.30)

3 500 2.98 0.37 0.34 0.42 2.97 −1.87 −0.62 0.12 0.56
(0.34) (0.17) (0.36) (0.55) (0.19)

5 100 4.36 0.31 0.45 0.75 4.21 −2.00 −0.66 0.22 0.88
(1.41) (0.42) (1.51) (1.51) (0.54)

5 250 4.73 0.35 0.38 0.66 4.71 −1.93 −0.64 0.17 0.80
(0.97) (0.28) (0.97) (0.95) (0.34)

5 500 4.89 0.38 0.31 0.56 4.90 −1.91 −0.63 0.14 0.67
(0.52) (0.19) (0.55) (0.64) (0.23)

10 100 7.54 0.47 0.56 0.84 7.34 −1.61 −0.54 0.26 0.97
(3.04) (0.45) (3.15) (1.42) (0.52)

10 250 8.36 0.54 0.53 0.82 8.26 −1.38 −0.46 0.24 0.92
(2.57) (0.51) (2.67) (0.95) (0.34)

10 500 9.05 0.51 0.46 0.76 8.96 −1.41 −0.47 0.17 0.86
(1.91) (0.23) (1.99) (0.71) (0.25)

aFor c and ρ, the Monte Carlo standard deviations are in parentheses. The estimated restricted TAR(3)
and the estimated restricted TVECM are (14) and (11), respectively, with the additional restrictions
c= c(2) =−c(1), µ(3) = c, µ(1) =−c, andγi = γ (3)i = γ (1)i . The empirical rejection frequencies of 5% tests based
on an asymptoticχ2 distribution are reported for likelihood ratio and Wald tests. The true value ofρ is 0.4, γ1 is
−1.8 andγ2 is−0.6. Number of simulations= 1,000. In various trials of our simulations, Monte Carlo errors seem
to be significant even for 1,000 simulations.

(discontinuous) TAR model. The restricted estimates of the common autoregres-
sive coefficient in the outer regimes is slightly downward biased for small values
of the threshold and slightly upward biased for large values. The 5% Wald and LR
tests of the restrictions imposed by the continuous, symmetric threshold models are
substantially size-distorted even for large sample sizes. The large size distortions
indicate that the asymptotic normal distributions of the estimated parameters are
not good approximations to the finite sample distributions and that specification
tests based on nested hypothesis tests are essentially useless.

5. APPLICATION TO U.S. DISAGGREGATED PRICE DATA

5.1. Data Description

We use U.S. Bureau of Labor Statistics monthly Consumer Price Indexes (not
seasonally adjusted)11 from December 1986 through June 1996. These consist of

https://doi.org/10.1017/S1365100501023057 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023057


554 MING CHIEN LO AND ERIC ZIVOT

43 categories of goods for 29 cities, although due to missing data in some se-
ries we restrict our analysis to 41 categories. Details of the data can be found in
Appendix B. The data are the same as those used recently by Engel and Rogers
(1998a). Compared to the individual goods price data used by Parsley and Wei
(1996) and O’Connell and Wei (1997), our data are less specific and more ag-
gregated but cover a larger geographical dispersion. An advantage of using price
index data is that the price index for a particular good is less likely to be affected
by the marketing behavior of one or a few manufacturers or wholesalers, which
can distort the effect of arbitrage forces on prices.

We consider bivariate systems of log prices of common goods in different lo-
cations relative to a benchmark city. Following O’Connell and Wei (1997), we
choose New Orleans as our benchmark city. Letpi

k,t denote the log price of good
k in locationi (excluding the benchmark location) at montht and letpNO

k,t denote
the log price of goodk in New Orleans, our benchmark city. With 41 goods and 28
cities (excluding the benchmark) we have 1,148 bivariate systems of log prices.
Under the assumption that log prices areI (1), the LOP indicates that, for alli and
k considered,(pi

k,t , pNO
k,t )
′ is cointegrated with cointegrating vector (1,−1). Ac-

cordingly, for each system of log prices, we also construct the log price differential
(cointegrating residual) defined aszi

k,t = pi
k,t − pNO

k,t . We note that our analysis of
LOP deviations differs from that of O’Connell and Wei (1997) in that we do not
group similar goods, or all goods from a particular city, into panels. Our view is
that panel models impose too many restrictions on price dynamics that are likely
to be violated in the data.

5.2. Testing Threshold Cointegration

In this subsection, we perform some preliminary analysis on the data to illustrate
some properties and stylized facts. As the first step in our analysis of the LOP,
we test the null hypothesis of no cointegration for bivariate systems of log price
data. We then investigate a measure of persistence in the deviation from the LOP
by fitting linear AR(1) models and computing half-lives. Next, we summarize the
adjustment behavior of log price differences by fitting linear VECM’s. Finally, we
test for linearity.

Table 6 gives the results of various tests for no-cointegration. For each test, we
count the number of bivariate price systems in each category of the 28 goods and
services for which we reject the null hypothesis of no cointegration at the 10%
level. We would expect the LOP to hold and, hence, cointegration to be found for
systems of prices of tradable homogeneous goods in the absence of government
price controls. ADF tests on the LOP deviationzi

k,t , however, generally indicate
the presence of unit roots. Some exceptions are tradable goods such as fresh fruits
and vegetables, fuels, men’s and boy’s apparel, and motor fuels. More sugges-
tive results emerge from the application of the multivariate Horvath–Watson test.
Cointegration is generally found in categories with relatively homogeneous prod-
ucts (meats, fresh fruits and vegetables, eggs, fuels, fish and seafood, poultry,
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TABLE 6. Number of rejections for no cointegration at 10% levela

Categories ADF HW EG BVD

Alcoholic beverages 0 2 1 2
Apparel services 7 7 8 10
Appliances, incl. electronic equipment 6 10 12 12
Automobile maintenance & repairs 2 3 4 1
Cereals and bakery products 3 12 15 26
Eggs 7 24 26 28
Entertainment commodities 5 10 11 16
Entertainment services 11 26 27 24
Fish & seafood 15 28 28 28
Food away from home 5 6 6 6
Footwear 15 26 28 24
Fresh fruits and vegetables 20 27 28 28
Fuels 15 24 24 25
Furniture & bedding 8 20 24 26
Homeowners’ costs 10 5 5 27
Hospital & related services 9 16 12 15
Household maintenance & repairs 0 0 0 1
Housekeeping services 1 4 3 10
Housekeeping supplies 10 12 16 12
Infants’ and toddlers’ apparel 3 2 3 4
Meats 5 26 26 28
Medical care commodities 3 11 6 13
Men’s and boy’s apparel 25 21 23 28
Motor fuel 21 23 21 27
New vehicles 14 21 25 18
Other apparel commodities 0 0 1 5
Other food at home 7 23 27 28
Other furnishings 9 18 21 13
Other renter’s costs 6 8 8 19
Other utilities & public services 6 21 22 21
Personal & educational expenses 1 2 3 7
Personal care 5 7 9 11
Poultry 7 26 27 28
Processed fruits and vegetables 0 3 3 26
Professional medical services 7 11 8 7
Public transportation 2 3 3 9
Residential rent 11 4 4 25
Textile housefurnishings 6 21 23 28
Tobacco & smoking products 3 7 4 8
Used cars 1 6 6 26
Women’s and girl’s apparel 1 22 26 23

aAIC is used to search for the most appropriate number of lags for the ADF and the BVD tests. Given that the
sample size is small, the maximum possible lags (at the level) is set at six. We adopt the recommendation of
Enders and Granger (1998) and use a nonlinear version of AIC for the EG test, which utilizes the variance
from the TAR model. For the Horvath–Watson test, we restrict it to a VAR(0) model so as to maintain a
reasonable degree of freedom, given the small sample size in a bivariate framework.
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motor fuels) and generally is not found in categories that contain relatively het-
erogeneous goods and services (used cars), categories of goods subject to severe
federal or state government interventions such as taxation and sale regulations
(alcoholic beverages, tobacco and smoking products), and domestically oriented
goods and services (household maintenance and repairs, personal and educational
expenses, residential rent, automobile maintenance and repairs). The results from
the EG and BVD tests are almost the same as those from the HW test and indi-
cate that a few more tradable goods categories exhibit cointegration (cereals and
bakery products, processed fruits and vegetables). However, it is puzzling that
the BVD test finds cointegration in the nontradable or very heterogeneous cat-
egory such as other renter’s costs, residential rent, and used cars. One possible
explanation is that both EG and BVD tests are misspecified because they assume
a two-regime non-BAND-TAR model in the alternative, and so, they may cap-
ture a different type of nonlinearity in these catergories that has not been investi-
gated.

Table 7 summarizes the results from estimating AR(1) models to the log price dif-
ferentials. Consistent with the outcomes of the HW, EG, and BVD no-cointegration
tests, the categories that, on average, have highly persistent LOP deviations are
goods and services that are relatively heterogeneous, goods subject to severe fed-
eral or state government interventions, and domestically oriented goods. Other ap-
parel commodities and infants’ and toddlers’ apparel are anomalies in this group.
Price differences of relatively homogeneous products tend to have stronger mean-
reverting behavior with half-lives less than 3 months. Interestingly, the standard
deviations of the autoregressive coefficients in each category of this group are
much higher than in the other groups.

To get an indication of the potential asymmetry of the dynamics in price ad-
justment, we estimate simple linear VECM’s for the price pairs that appear to
be cointegrated based on the outcomes of the no-cointegration tests. We gener-
ally find evidence for asymmetry in the adjustment of goods prices to the LOP
between certain locations. For example, Table 8 summarizes the estimated speed-
of-adjustment parameters for the VECM using the New York–New Orleans price
data. The estimated coefficients (γ NO) for New Orleans are relatively large and
positive (from 0.1 to 0.4). and the estimates (γ NY) for New York are mostly neg-
ative and close to zero. Apparently, prices in New Orleans tend to “catch up” to
prices in New York in response to LOP deviations whereas the prices in New York
are unaffected.

Given that cointegration is found in some categories, we proceed to test for
linearity. The results based on 10% tests are reported in Table 9. Both the univariate
and multivariate Tsay tests find more evidence of nonlinearity than the Hansen-
typeF andL R tests. This result may be due to the fact that the former two tests are
nonparametric and may be subjected to less model misspecification error. Also, the
rejections of linearity must be interpreted with care because the tests are designed
to test for linearity within a stationary null hypothesis. If the data have unit-root
or near-unit-root behavior, the size of the tests may be distorted. Nevertheless, all

https://doi.org/10.1017/S1365100501023057 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023057


THRESHOLD COINTEGRATION 557

TABLE 7. Summary of a simple AR(1) estimation on price differencesa

Categories Mean Median Std Dev Min City Max City Half-life

Used cars 1.0044 1.0049 0.0131 0.9707 AN 1.0279 BO NA
Household maintenance 0.9682 0.9736 0.0238 0.8902 TA 0.9965 NY 21.4608

& repairs
Personal & educational 0.9584 0.974 0.0557 0.7275 MS 1.0041 HO 16.3033

expenses
Other apparel 0.9526 0.9579 0.021 0.8694 MS 0.9799 MI 14.2723

commodities
Automobile maintenance 0.9512 0.9553 0.0383 0.8518 AN 1.0578 MI 13.8671

& repairs
Alcoholic beverages 0.9463 0.9445 0.0169 0.9108 PO 0.9856 AN 12.5467
Processed fruits 0.9382 0.9547 0.0514 0.7527 DA 0.9782 CL 10.8604

and vegetables
Residential rent 0.9367 0.9511 0.0483 0.7652 MI 0.9892 KC 10.5942
Tobacco & smoking 0.9339 0.9537 0.0693 0.6584 MA 0.9865 TA 10.1304

products
Infants’ and toddlers’ 0.9329 0.9405 0.0396 0.7704 CI 0.9666 BO 9.9739

apparel
Public transportation 0.9315 0.9423 0.0379 0.8013 AT 0.9653 SD 9.7699
Housekeeping services 0.9303 0.9428 0.0586 0.6891 AT 0.9979 HO 9.5894
Apparel services 0.9245 0.9321 0.0477 0.7705 CH 0.9852 MA 8.8276
Homeowners’ costs 0.9229 0.9429 0.06 0.7065 DA 0.9728 SD 8.6373
Food away from home 0.921 0.927 0.0534 0.7836 MI 0.9753 KC 8.4194
Medical care 0.9133 0.9256 0.0483 0.7812 PH 0.968 DN 7.6444

commodities
Personal care 0.9113 0.9288 0.0753 0.7108 MS 1.012 PI 7.4627
Professional medical 0.9073 0.9114 0.0422 0.8209 HO 0.972 BO 7.1261

services
Other renter’s costs 0.9015 0.932 0.0832 0.5778 CI 0.9701 AT 6.6843
Entertainment 0.8957 0.9118 0.053 0.7787 PO 0.9598 NO 6.2956

commodities
Hospital & related 0.8836 0.8904 0.0595 0.7273 SF 0.9927 SD 5.5996

services
Appliances, incl. 0.8769 0.8989 0.0712 0.7109 NO 0.9711 SD 5.277

electronic equipment
Housekeeping supplies 0.8701 0.8802 0.0679 0.7313 MS 0.9747 SL 4.9801
Cereals and bakery 0.8629 0.8916 0.0883 0.6571 SL 0.956 NY 4.6997

products
Other furnishings 0.8565 0.8661 0.0553 0.7291 MA 0.9451 NO 4.4745
Textile housefurnishings 0.8352 0.828 0.0632 0.7078 HS 0.9492 DA 3.85
Women’s and girl’s 0.8300 0.8488 0.0501 0.6848 PI 0.8882 BA 3.7193

apparel
Men’s and boy’s apparel 0.8209 0.8458 0.0924 0.6124 CL 0.9695 TA 3.5117
Motor fuel 0.8209 0.8296 0.0672 0.6527 MI 0.9083 NO 3.5132
New vehicles 0.8109 0.8271 0.0934 0.5604 KC 0.9197 MA 3.3066
Furniture & bedding 0.8008 0.8331 0.1166 0.526 HO 0.9603 BO 3.1201
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TABLE 7. (Continued.)

Categories Mean Median Std Dev Min City Max City Half-life

Meats 0.7921 0.806 0.082 0.5741 TA 0.9413 CI 2.9738
Footwear 0.7814 0.8005 0.0694 0.6126 DC 0.872 DT 2.8098
Other utilities & public 0.7672 0.8089 0.1839 0.2377 SL 0.9827 BO 2.6157

services
Other food at 0.7578 0.75 0.0995 0.5634 KC 0.9274 HS 2.499

home
Fresh fruits and 0.7406 0.7662 0.1063 0.4091 AT 0.8645 DC 2.3081

vegetables
Eggs 0.7397 0.7477 0.1377 0.3008 DT 0.957 SF 2.2988
Entertainment services 0.7249 0.7365 0.1262 0.4609 HS 0.9295 PO 2.1543
Fuels 0.6682 0.6768 0.1084 0.4126 CI 0.8551 HS 1.719
Fish & seafood 0.6682 0.6748 0.1692 0.1763 KC 0.8922 MA 1.7193
Poultry 0.6261 0.6454 0.1751 0.2519 DA 0.9208 CI 1.4801

Average 0.8589 0.8722 0.0736 0.6558 0.9592 2.7119

aThe mean, the median, and the standard deviation among the 28 data series in each category are reported in columns
1–3. The minimum and the maximum value of the AR(1) coefficients (and the corresponding city pair) are reported
in columns 4–7. Half-life is computed by the formula ln(0.5)/lnρ whereρ is the estimated coefficient of the model.
Unlike models elsewhere in this paper, the dependent variable of this AR regression is the level, not first difference.

TABLE 8. Asymmetric adjustment of prices between New York and New Orleans

Categories γ NY γ NO |γ NY | −|γ NO| HW Stat

Meats −0.0165 0.2951 0.2786 20.4732
Fresh fruits and vegetables 0.0094 0.2006 0.1912 12.1468
Fuels −0.0469 0.2659 0.2190 22.1979
Appliance, incl. electronic −0.0605 0.1015 0.0410 9.9600

equipment
Women’s & girl’s apparel 0.0091 0.1624 0.1533 10.0989
Medical care commodities 0.0143 0.0898 0.0755 8.4475
Poultry −0.0932 0.2579 0.1647 23.9801
Fish & seafood −0.0197 0.4328 0.4131 35.6801
Eggs −0.0278 0.1228 0.0950 12.4674
Alcoholic beverages −0.0202 0.0377 0.0175 10.4786
Homeowners’ costs −0.0243 0.0230 −0.0013 11.4070
Other utilities & public services −0.0396 0.1137 0.0741 13.4433
textile housefurnishings −0.0270 0.1252 0.0982 9.2462
Footwear −0.0391 0.2810 0.2419 23.2207
Apparel services −0.0524 0.0333 −0.0191 20.8390
New vehicles 0.0172 0.1970 0.1798 13.9002
Motor fuels −0.0294 0.1870 0.1576 15.6482
Professional medical services −0.0325 0.0373 0.0048 10.4430
Hospital & related services −0.0618 0.0380 −0.0238 9.1319
Entertainment services −0.0300 0.3013 0.2713 26.5697
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TABLE 9. Number of rejections of linearity at 10% levela

Categories TU TM HU HM

Alcoholic beverages 2 10 2 2
Apparel services 2 15 1 4
Appliances, incl. electronic equipment 6 6 4 4
Automobile maintenance & repairs 3 5 1 3
Cereals and bakery products 18 6 10 3
Eggs 20 18 14 8
Entertainment commodities 2 8 2 2
Entertainment services 16 22 4 11
Fish & seafood 5 13 3 1
Food away from home 2 3 3 3
Footwear 6 13 2 4
Fresh fruits and vegetables 2 4 5 5
Fuels 12 5 5 5
Furniture & bedding 17 18 5 6
Homeowners’ costs 21 14 12 12
Hospital & related services 4 5 3 3
Household maintenance & repairs 0 5 4 4
Housekeeping services 8 13 2 8
Housekeeping supplies 4 3 4 4
Infants’ and toddlers’ apparel 3 16 2 1
Meats 15 14 17 12
Medical care commodities 5 4 7 7
Men’s and boy’s apparel 5 4 4 6
Motor fuel 4 11 2 13
New vehicles 5 11 8 8
Other apparel commodities 4 12 3 5
Other food at home 16 20 13 9
Other furnishings 7 13 8 8
Other renter’s costs 11 25 13 15
Other utilities & public services 15 15 5 16
Personal & educational expenses 11 12 6 6
Personal care 10 13 6 4
Poultry 12 18 7 9
Processed fruits and vegetables 12 15 15 7
Professional medical services 4 5 1 4
Public transportation 9 7 7 12
Residential rent 17 19 7 8
Textile housefurnishings 13 18 5 17
Tobacco & smoking products 5 4 12 9
Used cars 12 22 14 21
Women’s and girl’s apparel 7 7 7 5

aBoth univariate and multivariate Hansen’s tests are restricted with one lag (at the level).
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four tests fail to find the pattern of persistence in LOP deviations in Table 7 and
are not very informative.

5.3. Estimation Results for Threshold Models

Based on the results of the no-cointegration tests in the preceding section and our
finding that specification tests are likely severely size-distorted, we use the contin-
uous and symmetric versions of the TAR model (14) and TVECM in (11) to char-
acterize the nonlinear dynamics for categories that contains threshold-cointegrated
prices. We estimate models only for the city pairs of the categories that appear to
be threshold-cointegrated, at the 10% level, based on the outcome of the BVD
test, which we find to be the most powerful test for detecting BAND-TAR-type
cointegration. By estimating these models, we attempt to answer the following
questions: (i) Can we detect faster convergence to the LOP when threshold non-
linearity is observed? (ii) In the presence of threshold-type nonlinearity, is there
asymmetry in price adjustments between two cities?

Table 10 reports the estimated coefficients from the univariate and multivari-
ate threshold models. We summarize the results with the median estimates within
each category. The improvement in the estimated speed-of-price adjustment for
the univariate model is astonishing. The medians of the coefficient estimates of
the linear error correction model are very close to zero. That of the TAR model
is significantly smaller. This seems to be a feature of the TAR model where ad-
justment is forced toward either the bands or the equilibrium. Judging from the
half-lives computed, the persistence almost disappears. Asymmetry in dynam-
ics is also apparent in the estimates from the TVECM. Notice that, in general,
prices in New Orleans tend to catch up to the prices of the other cities much
faster than the latter prices tend to decrease. The coefficients of price adjustment
for other cities range from−0.3542 to 0.0297. Yet, for example, the coefficients
for New Orleans can be as high as 0.6483 (meats) and 0.7534 (entertainment
services).

The values of the symmetric thresholds estimated from the TVECM are graphed
in Figure 2. If the notion of commodity arbitrage is true, everything else being con-
stant, we should expect some patterns among the threshold estimates, indicating
that market frictions against price adjustment between two cities depends on some
characteristics of the city pair: for instance, distance.12 From Figure 2, we see no
apparent pattern. For example, the estimates for Anchorage, Alaska (represented
by the second-to-last dot from the right) is probably the farthest from New Orleans
by road; in fact, both people and goods have to pass through the U.S.–Canadian
border from New Orleans to anywhere in Alaska. We would expect, even if prices
converge between the two cities, that market friction would always be higher than
among most city pairs. However, this only holds for a few commodities and ser-
vices such as entertainment services, men’s and boy’s apparel, and textile and
house furnishings. The thresholds estimated for Anchorage–New Orleans in other
categories, especially the food categories, are rather small. In addition, judging
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from the scatter diagrams, only very mildly positive relationships between distance
(from New Orleans) and threshold estimates are found in cereals and bakery prod-
ucts, eggs, fish and seafood, furniture and bedding, other food at home, other utility
and public services, and processed fruits and vegetables, each with a significant
number of outliers. Hence, the estimated thresholds appear to be inconsistent with
the commodity arbitrage theory and we cannot interpret that the nonlinearity found
is due to the distance between cities.

These results imply two possibilities. First, distance is not the only crucial factor
for market segmentation. Among some of the figures, one feature is interesting:
For more homogeneous goods, such as fish and seafood, meats, motor fuel, and
poultry, the variation among the threshold estimates in each of these categories
is small; but for more heterogeneous goods, such as footwear, men’s and boy’s

TABLE 10.Symmetric band TAR(3) and TVECM(3) median estimates within each
selected group of categoriesa

AR TAR TVECM

Categories φ Half-life φ Half-life γ1 γ2

Cereals and bakery −0.1137 5.7415 −0.3086 1.8781 −0.2228 0.1588
products

Eggs −0.2523 2.3836 −0.6191 0.7181 −0.3542 0.2437
Entertainment services −0.3027 1.9229 −0.8083 0.4197 −0.0625 0.7534
Fish & seafood −0.3232 1.7757 −0.4509 1.1563 −0.0477 0.3594
Footwear −0.2210 2.7758 −0.3042 1.9110 −0.0921 0.2093
Fresh fruits and −0.2338 2.6025 −0.3829 1.4361 −0.1163 0.2222

vegetables
Fuels −0.3707 1.4967 −0.4241 1.2562 −0.2060 0.2071
Furniture & bedding −0.1688 3.7496 −0.6722 0.6214 −0.1133 0.5742
Meats −0.1940 3.2148 −0.7974 0.4341 −0.1174 0.6483
Men’s and boy’s −0.1704 3.7112 −0.2368 2.5656 −0.0806 0.1149

apparel
Motor fuel −0.1549 4.1194 −0.3044 1.9099 0.0297 0.2891
Other food at home −0.2500 2.4098 0.5943 0.7683−0.1228 0.4300
Other utilities & public −0.2057 3.0094 −0.4431 1.1840 −0.1559 0.1876

services
Poultry −0.3546 1.5830 −0.5762 0.8073 −0.3068 0.1881
Processed fruits and −0.0453 14.9619 −0.3722 1.4892 −0.2157 0.1150

vegetables
Textile housefignishings−0.1720 3.6726 −0.5242 0.9332 −0.0441 0.5171
Women’s and girl’s −0.1544 4.1318 −0.2410 2.5141 −0.0078 0.2235

apparel

aAR(1) model has a constant term and the TAR model and the TVECM are specified in the same way as in Table 5.
Number of lags is set at 1 at the level. All coefficients and half-lives reported are the median among the data series
used in each category. It is not clear if the computation of half-lives for linear model is applicablle for nonlinear
model. However, we report form here for a simple comparison.
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FIGURE 2. Threshold estimates from symmetric BAND-TVECM, by commodity. Distance
of city from New Orleans is based on city-center-to-city-center search results from Yahoo!
Driving Direction Maps on the Internet. We arbitrarily assign 5,000 miles for Honolulu be-
cause no road is connected between the continent and the island. Arranging from the shortest
to the longest distance, the order of the cities are Houston, Atlanta, Dallas, Tampa, St. Louis,
Detroit, Cincinnati, Miami, Kansas City, Chicago, Milwaukee, Cleveland, Washington, DC,
Pittsburgh, Baltimore, Philadelphia, Buffalo, Minneapolis, New York, Denver, Boston, San
Diego, Los Angeles, San Francisco, Portland, Seattle, Anchorage, and Honolulu. Note that
the measure isdriving distance, not the actual geographical distance.

apparel, other food at home, and women’s and girl’s apparel, the variation is
larger and there are more outliers. Therefore, to test the transaction-cost theory
in future work, we may want to investigate individual goods markets because the
characteristics of a particular commodity may create some distortions in estimation
of threshold models. Second, the strongly restricted versions of threshold models
we estimate are potentially misspecified. Relaxing the assumptions of symmetric
bands, symmetric dynamics, and the continuous property of the models may give
us more informative estimates. We should also consider other nonlinear models,
such as STAR models, which allow more flexible changes in regime. This may be
important if we believe that transaction costs can vary over time.

6. CONCLUSION

This paper assesses a battery of cointegration and linearity tests that are useful
for testing for threshold cointegaration in bivariate systems of price data. We
find that tests of no cointegration that incorporate the threshold nature of the
alternative generally have higher power than tests that ignore the form of the
alternative model. Comparison within the group of linearity tests suggests that
multivariate tests have power similar to that of univariate tests. We also find that
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FIGURE 2. (Continued.)

estimates from unrestricted univariate TAR models and multivariate TVECM’s
behave similarly and that convergence to asymptotic normal distributions for the
estimated parameters is very slow for data generated from BAND-TVECM’s.
Moreover, we find simple specification tests based on Wald and LR statistics to be
almost useless for moderate to large sample sizes. For our empirical investigation,
we look for evidence of threshold-type nonlinearity in a large data set of U.S.
disaggregated goods prices. We find threshold-type nonlinearity mostly in goods
that are tradable and relatively homogeneous. In addition, we find that prices may
adjust at different speeds for different cities. Nevertheless, the threshold estimates
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FIGURE 2. (Continued.)

are not consistent with the motivation of commodity arbitrage. We suggest that, to
address the issue of nonlinearity with this particular motivation in mind, we may
want to investigate individual markets or adopt a different type of threshold model.

NOTES

1. As noted by Obstfeld and Taylor (1997), if the transactions cost theory is correct, then the width
of the band [−c, c] in the EQ-TAR and BAND-TAR models should be positively related to measures
of economic distance, transportation costs, and measures of trade barriers. Also, the magnitude of the
adjustment coefficientφ should be negatively related to these measures.
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FIGURE 2. (Continued.)

2. The half-life of a shock from a stationary AR(l) with autoregressive coefficientρ is given by
ln(0.5)/ln(ρ).

3. Chan et al. (1985) give stability conditions for the three-regime TAR model. We note that the
locations of the regime-specific meansµ(1) andµ(3) also influence the stability of the model. Sensible
models in the present context should have|µ(3)| ≤ |c(2)| and|µ(1)| ≤ |c(1)|. Tsay (1998) notes that
necessary and sufficient conditions for stationarity in general multivariate threshold models are largely
unknown.

4. Symmetric adjustment in the BAND-TAR model does not imply symmetric adjustment in the
BAND-TVECM since the restrictionρ(3)= ρ(1) occurs wheneverγ (3)1 − γ (3)1 = γ (1)2 − γ (1)2 .

5. González and Gonzalo (1999) discuss testing for threshold cointegration in a general framework
in which the cointegrating vector is unknown.
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FIGURE 2. (Continued.)

6. BVD derive the asymptotic distribution of theF-statistic based on the assumption of a “drifting
threshold” in terms of the maximum and minimum values ofzt−1 in the sample and show that it is a
function of standard Brownian motion and parametersτ1, τ2 ∈ (0, 1) that are determined from the data.
They tabulate critical values for various values ofτ1 andτ2 and provide an algorithm for computing
approximatep-values. Throughout this paper, we imposeτ1= τ2= 0.1; this allows a large range of
search for the threshold.

7. If the true model is the BAND-TAR model, one would like a direct test of the linear autoregressive
model against the BAND-TAR(m). However, the stationary TAR(1) is not nested within the general
BAND-TAR(m), except in very special circumstances, and so, Hansen’s LR-type tests based on nested
models are not appropriate.
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FIGURE 2. (Continued.)

8. The statistic is in the form of anF-statistic but its distribution is not the FisherF-distribu-
tion.

9. The estimation of restricted threshold models requires considerable programming costs and
hence the computation of LR tests is not trivial. However, the finite sample behavior of LR tests may
be better than the finite sample behavior of Wald tests.

10. We use the Balke–Fomby design mainly to check our code and to compare our multivariate
methods with the univariate methods used by Balke and Fomby.

11. It is possible that seasonal patterns are different across different locations in the United States,
which will affect price convergence. However, we believe this issue may be better addressed in another
paper.
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FIGURE 2. (Continued.)

12. For international data, we would also expect formal and informal trade barriers and exchange-
rate volatility to play a role, but this should not be the case in our domestic price data.

13. Bai (1997) shows that the sequential procedure gives consistent estimates. Additionally, he
shows that a simple iteration of the method yields asymptotically efficient estimates as
well.

14. In the estimation, the restriction that all three regimes have at leastTτ needs to be imposed.
Additionally, in the second- and third-stage searches, the requirement that at leastTτ observations
lie in the regime wherec(1) ≤ zt−d ≤ c(2) [or c(2) ≤ zt−d ≤ c(1) if c(2) < c(1)] needs to be
imposed.
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FIGURE 2. (Continued.)
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APPENDIX A: DETAILS OF THE TESTING
AND ESTIMATION PROCEDURES

Here we describe the technical aspects of some of the testing and estimation procedures
used in the paper.

A.1. ESTIMATION OF MULTIVARIATE TVECM

The estimation of univariate TAR models is outlined by Tong (1983) and has been reviewed
recently by Hansen (1999). The estimation of continuous univariate TAR models is discussed
by Chan and Tsay (1998) and Berben and van Dijk (1998, 1999). The main estimation
technique is sequential conditional least squares. The estimation of multivariate TVAR
models involves a strategy similar to that used for univariate models and is discussed by
Tsay (1998). Since the estimation of a TVECM with a known cointegrating vector has not
been discussed very much in the literature, we briefly review it here. Our strategy is to
combine Hansen’s treatment of the estimation of two- and three-regime TAR models with
Tsay’s treatment of the estimation of multivariate TVAR models.

Consider the unrestricted two-regime bivariate TVECM withk− 1 lags (10) written as
the multivariate regression

1 p′t =
{

x′t−12
(2) + ε′t , if zt−d > c,

x′t−12
(1) + ε′t , if zt−d ≤ c,

where x′t−1= (1, zt−1,1p′t−1, . . . , 1pt−k+1), zt−1=β′pt−1, β is known, and2( j ) is a
2(k + 1)× 2 matrix. DefiningIt (c, d)= I (zt−d < c), where I (·) is the indicator func-
tion such thatI (A)= 1 if A is true and 0 otherwise, the above model may be rewritten as
the multivariate regression model

1 p′t = x′t−12
(1) It (c, d)+ x′t−12

(2)[1− It (c, d)] + ε′t . (A.1)

The delay parameterd is integer valued and is assumed to be less than some upper-bound
d̄. Since the threshold valuec only arises through the indicator functionI (zt−d < c), there
is no loss in restricting the possible values forc to the observed values ofzt−d. Also, for
practical matters, it is necessary to restrict the thresholdc so that each regime contains a
minimal number of observations. LetTi denote the number of sample observations in regime
i and letT denote the sample size. Hansen (1999) suggests constraining the thresholds so
that asT→∞, Ti /T ≥ τ for someT ∈ (0, 1). Hansen suggests settingT equal to 0.1.

The model (A.1) may be estimated by sequential multivariate least squares in two steps.
In the first step, conditional on(c, d), the parameters(2(1), 2(2)) may be estimated by
multivariate least squares, giving the residual sum of squares

S2(c, d) = trace[6̂2(c, d)], [1pt]

where6̂2(c, d) denotes the multivariate least-squares estimate of6= var(εt ) conditional
on(c, d) for the two-regime model. In the second step, the least-squares estimates of(c, d)
are obtained as
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(ĉ, d̂) = arg min
c,d

S2(c, d).

The requirement thatTi ≥ Tτ restricts the search overc to values ofzt−d that lie between the
T th and (1− T th) quantiles ofzt−d. The final estimates of2( j ) are given by2̂( j )= 2̂( j )(ĉ, d̂)
and the estimate of the residual covariance matrix is given by6̂2(ĉ, d̂).

Under mild regularity conditions, Tsay (1998) shows that the sequential conditional
multivariate least-squares estimates of(2(1), 2(2), c, d)are strongly consistent and the least-
squares estimates of2(1) and2(2) are asymptotically normally distributed independent of
c andd. Also, the estimates ofc andd converge at rateT .

Next, consider a general three-regime TVECM

1 pt =


x′t−12

(3) + ε′t , if zt−d > c(2),

x′t−12
(2) + ε′t , if c(1) ≤ zt−d ≤ c(2),

x′t−12
(1) + ε′t , if zt−d < c(1).

(A.2)

This model can be compactly expressed as

1 pt = 2(1)x′t−1 I (1)t (c, d)+2(2)x′t−1 I (2)t (c, d)+2(3)x′t−1 I (3)t (c, d)+ ε′t , (A.3)

wherec= [c(1), c(2)] ′ and I ( j )
t (c, d)= I [c( j−1) < zt−d < c( j )]. Conditional on(c, d), the

parameters(2(1), 2(2), 2(3)) may be estimated by multivariate least squares giving the
residual sum of squaresS3(c, d) and the estimates ofc andd may be found by minimizing
S3(c, d) using a three-dimensional grid search.

The above method is computationally burdensome because ifN points are evaluated
at each value ofc(1) andc(2), then the grid search over(c, d) in the second step involves
d̄× N2 regressions, which can be time-consuming ifN is reasonably large. Hansen (1999)
suggests a computational shortcut that is related to the sequential estimation of multiple
breakpoints proposed by Bai (1997). First, estimate the (misspecified) two-regime model
(A.1) giving least-squares estimates(d̂, ĉ1). The results of Bai (1997) indicate that estimate
d̂ will be consistent ford andĉ1 will be consistent for one of the threshold pairs [c(1), c(2)].
Next, estimatec= [c(1), c(2)] by least squares on (A.2) imposingd= d̂ and that one element
of c equalsĉ1. The resulting estimatêc2 will be consistent for the remaining element of
the pair [c(1), c(2)].13 This sequential procedure to estimate the three-regime model offers
considerable computational savings over a three-dimensional grid search and allows us to
conduct an extensive Monte Carlo analysis.14

To estimate the multivariate TVECM(9) where the constant is restricted to the error-
correction term, the above procedure needs to be modified because multivariate least squares
is no longer efficient, although it is consistent, due to the cross-equation restrictions. Since
c andd are superconsistent in the unrestricted model (A.2), a simple two-step estimation
procedure can be used. In the first step,c andd are estimated from the unrestricted model
(A.2). In the second step, the restricted constant three-regime model with the first-step
estimates ofc andd imposed is estimated using Zellner’s seemingly unrelated regression
(SUR) technique,

[
2̂
(1)
SUR(ĉ, d̂), 2̂

(2)
SUR(ĉ, d̂), 2̂

(3)
SUR(ĉ, d̂)

] = arg min
2(1),2(2),2(3)

1

2
log(|6SUR,3(ĉ, d̂)|),
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where

6SUR,3(ĉ, d̂) = 1

T

T∑
t=1

εt (ĉ, d̂)εt (ĉ, d̂)
′

and the parameters corresponding to the intercepts in2( j ) are given by and−µ( j )γ
( j )
1 and

−µ( j )γ
( j )
2 .

A.2. TSAY’S MULTIVARIATE TEST FOR THRESHOLD NONLINEARITY

Tsay (1998) discusses a multivariate generalization of his univariate test for threshold
nonlinearity. To implement his test in the present context, we need to consider an arranged
multivariate regression for the VECM

1 p′t = x′t−12+ ε′t , t = h+ 1, . . . , T,

whereh= max(k, d), x′t−1 = (1, zt−1,1pt−1, . . . , 1pt−k+1), zt−1 = β′pt−1, β is known
and2 is a 2(k + 1)× 2 matrix with the first row giving the coefficients for1p1t and the
second row giving the coefficients for1p2t . The threshold variablezt−d assumes values in
S={z1, . . . , zT−d}. Consider the order statistics forS and denote thei th smallest element
of S by z(i ) and lett (i ) denote the time index ofz( j ). Then, the arranged multivariate
regression will be

1p′t (i )+d = x′t (i )+d2+ ε ′t (i )+d, i = 1, . . . , T − h. (A.4)

Let 2̂m denote the multivariate least-squares estimate of2 from (A.4) using data from
i = 1, . . . ,m. Define

ε̂t (m+1)+d = 1 pt (m+1)+d − 2̂′mxt (m+1)+d

and

ξ̂t (m+1)+d =
ε̂t (m+1)+d[

1+ x′t (m+1)+dVmxt (m+1)+d

] 1
2

,

where

Vm =
(

m∑
i=1

xt (m+1)+d x′t (m+1)+d

)
as the predictive residual and the standardized predictive residual of the arranged regres-
sion computed using recursive multivariate least squares. Next, consider the multivariate
regression

ξ̂t (m+1)+d = xt (l )+d9 + w′t (l )+d, l = m0 + 1, . . . , T − h, (A.5)

wherem0 denotes the starting point of the recursive least-squares estimation. If there is no
threshold nonlinearity, then9 should be zero in (A.5). Tsay’s test statistic for testingH0:
9 = 0 versusH1: 9 = 0 in (A.5) is given by

C(d) = {T − h−m0 − [2(k− 1)+ 1]}{ln[det(S0)] − ln[det(S1)]}, (A.6)
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where

S0 = 1

T − h−m0

T−d∑
l=m0+1

ξ̂t (l )+dξ̂
′
t (l )+d,

S1 = 1

T − h−m0

T−d∑
l=m0+1

ŵt (l )+dŵ′t (l )+d,

andŵt is the least-squares residual from (A.5). Under the null of linearity,C(d) is asymp-
totically distributed as a chi-squared random variable with 2(k−1)+1 degrees of freedom.
The null hypothesis9 = 0 includes a zero intercept for all predictive residuals. Tsay (1998)
remarks that, due to finite sample bias, in some applications one may wish to exclude the
intercept terms from the nonlinearity test in (A.6). In this case,So should be mean corrected
and the resulting test has an asymptotic chi-squared distribution with 2(k − 1) degrees of
freedom.

APPENDIX B: DETAILS OF THE DATA

Categories Cities Abbv.

1. Alcoholic beverages 1. Anchorage AN
2. Apparel services 2. Atlanta AT
3. Appliances, incl. electronic equipment 3. Baltimore BT
4. Automobile maintenance & repairs 4. Boston BO
5. Cereals and bakery products 5. Buffalo BU
6. Eggs 6. Chicago CH
7. Entertainment commodities 7. Cleveland CL
8. Entertainment services 8. Cincinnati CI
9. Fish & seafood 9. Dallas DA

10. Food away from home 10. Denver DN
11. Footwear 11. Detroit DT
12. Fresh fruits and vegetables 12. Honolulu HO
13. Fuels 13. Houston HS
14. Furniture & bedding 14. Kansas City KC
15. Homeowners’ costs 15. Los Angeles LA
16. Hospital & related services 16. Miami MA
17. Household maintenance & repairs 17. Milwaukee MI
18. Housekeeping services 18. Minneapolis MS
19. Housekeeping supplies 19. New York NY
20. Infants’ and toddlers’ apparel 20. Philadelphia PH
21. Meats 21. Pittsburgh PI
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Categories Cities Abbv.

22. Medical care commodities 22. Portland PO
23. Men’s and boy’s apparel 23. San Diego SD
24. Motor fuel 24. San Francisco SF
25. New vehicles 25. Seattle SE
26. Other apparel commodities 26. St. Louis SL
27. Other food at home 27. Tampa Bay TA
28. Other furnishings 28. Washington, DC DC
29. Other renter’s costs
30. Other utilities & public services Benchmark:
31. Personal & educational expenses New Orleans NO
32. Personal care
33. Poultry
34. Processed fruits and vegetables
35. Professional medical services
36. Public transportation
37. Residential rent
38. Textile housefurnishings
39. Tobacco & smoking products
40. Used cars
41. Women’s and girl’s apparel
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