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Abstract

The present paper studies the whistler wave interaction with an electron beam propagating through magnetized plasma. A
dispersion relation of whistler waves has been derived, and first-order perturbation theory has been employed to obtain the
growth rate of whistlers in the presence of parallel as well as oblique electron beam. For whistler waves propagating parallel
to the magnetic field, that is, parallel whistlers, only the cyclotron resonance appears with a parallel beam, while for
whistler waves propagating at an angle to the magnetic field, that is, oblique whistlers interaction with parallel beam or
parallel whistlers interaction with oblique beam, the Cerenkov and the cyclotron resonances both appear. The growth
rate is found to increase with an increase in the transverse component of beam velocity and with an increase in the
strength of magnetic field. The whistler wave frequency decreases with an increase in the beam velocity. The
obliqueness of the whistler mode modifies its dispersion characteristics as well as growth rate of the instability. For
purely parallel-propagating beams, it is essential for the growth of whistler mode that the wave number perpendicular
to the magnetic field should not be zero. The results presented may be applied to explain the mechanisms of the
whistler wave excitation in space plasma.
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1. INTRODUCTION

A whistler wave is a low-frequency electromagnetic wave
generated for instance by lightnings. Whistlers travel along
earth’s magnetic field from Northern hemisphere to Southern
hemisphere or vice versa. They are circularly polarized waves
in the audio frequency range. Whistler modes excited by en-
ergetic electrons are often observed in the outer earth’s radi-
ation belt and in the auroral kilometric radiation zone.
Low-frequency whistlers have low velocity and therefore
suffer dispersion in ionosphere and magnetosphere. They
can be driven in two ways, either by electron temperature an-
isotropy or by electron beams or heat fluxes (Cipolla et al.,
1977; Talukdar et al., 1989; James et al., 1995; Borcia
et al., 2000; Jalori et al., 2004; Dorf et al., 2010; Sharma
et al., 2010).

The theory shows that beam–plasma interactions lead to the
excitation of various kinds of waves depending on plasma
and beam parameters (Gupta & Sharma, 2004; Prakash &
Sharma, 2009; Gupta et al., 2010; 2014; Prakash et al.,
2013; 2014). Experiments performed with charged particle
beams, modulated or unmodulated, have exhibited Cerenkov
and cyclotron emission of whistler waves (Baranets et al.,
2012).

Whistler wave excitation by electron beam injection has
been studied extensively in many works during past decades
(Volokitin et al., 1995; Krafft & Volokitin, 1998; Starodubt-
sev et al., 1999). In particular, a large number of papers have
appeared regarding the theory of whistler wave excitation by
a pulsed or modulated thin beam injected parallel to the mag-
netic field in an unbounded homogeneous magnetoplasma.
The interest in such studies has been spurred by several
space and laboratory experiments on generation of the
whistler emissions due to the interaction of electron beams
with plasma (Krafft et al., 1994a; 1994b; Shoucri &
Gagne, 1978). Krafft et al. (1994a) have studied whistler
wave excitation in a magnetized laboratory plasma by a
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density-modulated electron beam for frequency modulation
below the gyro frequency. In this case, the maximum emis-
sion of the whistler waves occurred when the phase velocity
of the whistler wave was comparable with the beam velocity.
Krafft et al. (1994b) have studied the emission of whistler
waves by a density-modulated electron beam in a laboratory
plasma and results have been compared with the excitation
by loop antenna.
In this paper, we present a local theory of whistler wave

excitation by an electron beam in magnetoplasmas. Different
whistler excitation mechanisms have been studied with an
electron beam injected parallel to the static magnetic field
Bs and with an electron beam injected at an angle to the mag-
netic field. In Section 2, we study the plasma response to
whistler wave perturbation and in Section 3, the beam re-
sponse has been analyzed. Section 4 gives the dispersion re-
lation and growth rate of excited whistlers for different
propagation angles of beam and whistlers. In Section 5, we
discuss our results.

2. PLASMA RESPONSE

Consider a plasma immersed in a dc magnetic field Bs∥ ẑ,
with electron density ne0, electron mass me, and electron
charge, e. An electromagnetic whistler wave propagates
through it, with electric field

E = Ae−i(ωt−k•r),

where k = kxx̂+ kzẑ.
The magnetic field of the wave is B= ck × (E/ω).
The equation of motion, governing the drift velocity of

electron fluid is

me
∂ve
∂t

+ ve ·∇ve

[ ]
= −eE− e

c
ve × BS + B( ). (1)

In equilibrium (i.e., in the absence of the wave), ve= 0.
When wave is present, E and B of the wave are treated as
small or perturbed quantities and the resultant electron drift
ve becomes the perturbed electron velocity ve1.
On linearizing Eq. (1), we obtain

∂ve1
∂t

= − eE
me

− ve1 × ẑωce, (2)

where ωce= eBs/mec.
Writing x, y, z-components of Eq. (2), we obtain the per-

turbed electron velocities

ve1x = − e iωEx + ωceEy

( )
me ω2 − ω2

ce

( ) , (3)

ve1y =
e ωceEx − iωEy
( )
me ω2 − ω2

ce

( ) , (4)

ve1z = eEz

meiω
. (5)

The perturbed electron current density

Je1=− ne0eve1. (6)

Substituting Eqs. (3)–(5) into Eq. (6), we get

Je1x = ne0
e2

me

iωEx + ωceEy

( )
ω2 − ω2

ce

( ) , (7)

Je1y = −ne0
e2

me

ωceEx − iωEy

( )
ω2 − ω2

ce

( ) , (8)

Je1z = −ne0
e2Ez

meiω
. (9)

3. BEAM RESPONSE

A uniform electron beam is propagating inside the plasma
with density nb0, mass me, and equilibrium beam velocity
vb0 = vb0xx̂+ vb0zẑ. The quasineutrality condition at equi-
librium is given by ene0+ enb0= eni0. The equilibrium is
perturbed by an electromagnetic whistler wave. We consid-
er two cases of beam propagation viz. parallel to the mag-
netic field, along the ẑ-direction and oblique propagation,
in the x–z plane, in the presence of parallel whistlers or ob-
lique whistlers in the plasma.
The response of parallel/oblique beam electrons to the

parallel/oblique whistler wave perturbation is governed by
the equation of motion, which on linearization yields the per-
turbed beam velocities as

vb1x = e

ime

�ω2

ω �ω2 − ω2
ce

( )Ex − e

me

�ωωce

ω �ω2 − ω2
ce

( )Ey

− ie

me

kxvb0�ω

ω �ω2 − ω2
ce

( )Ez,

(10)

vb1y = e

me

�ωωce

ω �ω2 − ω2
ce

( )Ex − ie

me

�ω2

ω �ω2 − ω2
ce

( )Ey

+ e

me

kxvb0ωce

ω �ω2 − ω2
ce

( )Ez,

(11)

vb1z = − ie

me�ω
Ez − ie

me

kzvb0x
ω�ω

Ex, (12)

where

�ω = ω− kxvb0x + kzvb0z
( )

.
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Substituting the perturbed beam velocities given by Eqs.
(10)–(12) in the equation of continuity, we obtain the per-
turbed beam density as

nb1 = inb0ekx
meω �ω2 − ω2

ce

( ) −�ωEx + iωceEy − kxvb0zEz

[ ]

− inb0ekz
meω�ω2 kzvb0xEx + ωEz[ ].

(13)

The perturbed current density is given as

Jb1 = − enb0vb1 − enb1vb0xx̂− enb1vb0zẑ. (14)

Writing the x, y, and z components of Eq. (14) and using
Eqs. (10)–(13), we obtain

Jb1x = ie2nb0
meω

�ω2

�ω2 − ω2
ce

( )+ k2z v
2
b0x

�ω2

( )
Ex + �ωωce

i �ω2 − ω2
ce

( )Ey

[

+ kxvb0z�ω

�ω2 − ω2
ce

( )+ kzvb0xω

�ω2

{ }
Ez

] (15)

Jb1y = −e2nb0
meω �ω2 − ω2

ce

( ) �ωωceEx − i�ω2Ey + kxvb0zωceEz

[ ]
, (16)

Jb1z = ie2nb0kxvb0z
meω �ω2 − ω2

ce

( ) �ωEx − iωceEy + kxvb0zEz

[ ]

+ ie2nb0
me�ω2 kzvb0xEx + ωEz[ ]. (17)

For parallel whistler wave perturbation to the oblique beam
electrons, the perpendicular wave number kx= 0, and the
beam current densities from Eqs. (15)–(17) become

Jb1x = ie2nb0
meω

�ω2

�ω2 − ω2
ce

( )+ k2z v
2
b0x

�ω2

( )
Ex

+ e2nb0ωce

meω

�ω

�ω2 − ω2
ce

( )Ey + ie2nb0
me

kzvb0x
�ω2 Ez,

(18)

Jb1y = −e2nb0ωce�ω

meω �ω2 − ω2
ce

( )Ex + ie2nb0�ω2

meω �ω2 − ω2
ce

( )Ey, (19)

Jb1z = ie2nb0
me

ω

�ω2 Ez + ie2nb0
me

kzvb0x
�ω2 Ex, (20)

For parallel beam propagation, vb0x= 0 and the response of
parallel beam electrons to the oblique whistler wave

propagation yields current densities as

J ′b1x =
ie2nb0
meω

�ω2

�ω2 − ω2
ce

( )Ex + e2nb0ωce

meω

�ω

�ω2 − ω2
ce

( )Ey

+ ie2nb0
me

kxvb0z�ω

ω �ω2 − ω2
ce

( )Ez,

(21)

J ′b1y =
−e2nb0ωce�ω

meω �ω2 − ω2
ce

( )Ex + ie2nb0
meω

�ω2

�ω2 − ω2
ce

( )Ey

− e2nb0
meω

kxvb0zωce

�ω2 − ω2
ce

( )Ez,

(22)

J ′b1z =
−e2nb0
me

�ω

iω

kxvb0z
�ω2 − ω2

ce

( )
Ex + e2nb0

me

ωce

ω

kxvb0z
�ω2 − ω2

ce

( )Ey

+ ie2nb0
me

k2x v
2
b0z

ω �ω2 − ω2
ce

( )Ez + ie2nb0
me

ω

�ω2 Ez.

(23)

In case of parallel beam electrons perturbed by parallel whis-
tlers, we substitute kx= 0 and vb0x= 0, therefore the beam
current densities, Eqs. (15)–(17) can be written as

J ′′b1x =
ie2nb0�ω2

meω �ω2 − ω2
ce

( )Ex + e2nb0ωce

meω

�ω

�ω2 − ω2
ce

( )Ey, (24)

J ′′b1y =
−e2nb0ωce�ω

meω �ω2 − ω2
ce

( )Ex + ie2nb0�ω2

meω �ω2 − ω2
ce

( )Ey, (25)

J ′′b1z =
−e2nb0ω

ime�ω2 Ez. (26)

4. DISPERSION RELATION AND GROWTH RATE

The mode structure of low-frequency electromagnetic whis-
tler waves is governed by the wave equation given as

∇2E−∇ ∇ · E( ) + ω2

c2

( )
E = − 4πiω

c2
J1. (27)

We write the x, y, and z components of Eq. (27) and a non-
trivial solution of these equations demands that the determi-
nant of coefficients of Ex, Ey, and Ez must vanish; therefore,
we get ε̂E = 0, where ε̂ is the dielectric tensor, given as

ε̂ = ε̂p + ε̂b =
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎡
⎣

⎤
⎦,

where ε̂p is the plasma dielectric tensor, and ε̂b is the beam
contribution to the dielectric tensor.
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We consider the most general case of beam interaction
with whistlers, where the electron beam or whistler waves
are propagating at an arbitrary angle to the magnetic field.
Using Eqs. (15)–(17) in Eq. (27), we get the dielectric

tensor elements as:

ε11 = −k2z c
2 + ω2 − ω2

peω
2

ω2 − ω2
ce

( )− ω2
pb�ω

2

�ω2 − ω2
ce

( )− ω2
pbk

2
z v

2
b0x

�ω2 ,

ε12 =
iωωceω2

pe

ω2 − ω2
ce

( )+ i�ωωceω2
pb

�ω2 − ω2
ce

( ) ,

ε13 = kxkzc
2 − ω2

pbkxvb0z�ω

�ω2 − ω2
ce

( )− ω2
pbωkzvb0x

�ω2 ,

ε21 = − iωωceω2
pe

ω2 − ω2
ce

( )− i�ωωceω2
pb

�ω2 − ω2
ce

( ) = −ε12,

ε22 = −k2c2 + ω2 − ω2
peω

2

ω2 − ω2
ce

( )− ω2
pb�ω

2

�ω2 − ω2
ce

( ) ,

ε23 = − ikxvb0zω2
pbωce

�ω2 − ω2
ce

( ) ,

ε31 = kxkzc
2 − ω2

pbkxvb0z�ω

�ω2 − ω2
ce

( )− ω2
pbωkzvb0x

�ω2 = ε13,

ε32 =
ikxvb0zω2

pbωce

�ω2 − ω2
ce

( ) = −ε23,

ε33 = ω2 − ω2
pe −

ω2
pbω

2

�ω2 − k2x c
2 − ω2

pbk
2
x v

2
b0z

�ω2 − ω2
ce

( ) ,
where

ω2
pb =

4πnb0e2

me
, ω2

pe =
4πne0e2

me
.

The tensor elements proportional to kx and k2x arise due to the
obliqueness of whistler waves and the tensor elements pro-
portional to vb0x and v2b0x arise due to the obliqueness of elec-
tron beam, with respect to the external magnetic field. We
examine here right-hand polarized electromagnetic whistler
waves in the frequency range ωci= ω= ωce. The ions contri-
butions have been neglected due to the range of frequencies
considered.

The dispersion relation can be obtained by putting
determinant

ε̂| | = 0, (28)

or

ε11ε22 + ε212
( )

ε33 + 2ε12ε13ε23 − ε213ε22 = 0. (29)

Considering the following cases:

(a) Parallel beam and parallel whistlers.

For parallel beam, vb0x= 0 and for parallel whistlers, kx= 0,
therefore ɛ13= 0, ɛ23= 0, ɛ31= 0, ɛ32= 0, and ɛ11= ɛ22.
Substituting these values into Eq. (29), we get

ε211 + ε212 = 0. (30)

It gives two distinct modes of wave propagation, one is left
circularly polarized wave and another is right circularly po-
larized whistler wave. Considering only the latter wave
mode, we get from Eq. (30)

ω− ω1( ) ω− ω′
1

( ) = ω2
pb�ω

�ω− ωce( ) , (31)

where

ω1 =
−ω2

pe

2ωce
+ 1

2

ω4
pe

ω2
ce
+ 4k2z c

2

[ ]1/2

, (32)

which leads to the dispersion relation of parallel whistler
waves for a dense plasma, and

ω′
1 =

−ω2
pe

2ωce
− 1

2

ω4
pe

ω2
ce
+ 4k2z c

2

[ ]1/2

.

It may be noted from Eq. (31) that Cerenkov interaction be-
tween parallel beam and parallel whistlers is not possible as
there is only a cyclotron interaction term on right-hand side
(RHS) of Eq. (31).
Assuming perturbed quantities ω= ω1+ δ and

�ω = ωce + δ in Eq. (31), we get

δ = − ω2
pbωce

ω1 − ω′
1

( )
[ ]1/2

.

Therefore, Growth rate,

γ = Im(δ) = 0. (33)
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The real part of the whistler wave frequency is ω1r= ω1+
Real(δ),

ω1r =
−ω2

pe

2ωce
+ 1

2

ω4
pe

ω2
ce
+ 4k2z c

2

[ ]1/2

− ω2
pb ω− kzvb0z
( )
ω1 − ω′

1

( )
[ ]1/2

.

(34)

In resonance, the background electrons and beam electrons
satisfy ω1= ωce+ kzvb0z or vb0z= (ω1− ωce)/kz.
Since ω1= ωce; therefore the resonant electrons move in

the direction opposite to the beam. From Eq. (34), we can
say that as the beam velocity increases, the real frequency
of the resonant whistler electrons shifts to lower frequencies,
while remaining in the whistler range ωci= ω= ωce. Equa-
tion (33) implies that the parallel whistlers do not show any
growth in the presence of parallel electron beam.

(b) Oblique beam and parallel whistlers

For oblique beam, the beam velocity has a parallel compo-
nent vb0z as well as a perpendicular component vb0x. Also
for parallel whistlers kx= 0; therefore ɛ23=−ɛ32= 0 and
Eq. (29) becomes

ε11ε22 + ε212 = 0, (35)

where we have retained only those terms which go as �ω2 or
(�ω2 − ω2

ce).
On simplifying Eq. (35) in the absence of beam, we get the

dispersion relation of whistler waves as

ω2
2 =

k4z c
4ω2

ce

ω2
pe ω2

pe + 2k2z c
2

( ) .

In the presence of beam, Eq. (35) gives

k4z c
4 − 2k2z c

2
ω2
peω

2

ω2
ce

− ω4
peω

2

ω2
ce

= −2ω2
pb�ω

2

�ω2 − ω2
ce

( )
k2z c

2 + ω2
pe
ω

�ω

( )
+ ω2

peω
2

ω2
ce

− k2z c
2

( )
k2z v

2
b0x

ω2
pb

�ω2 ,

or

ω2 − ω2
2 =

2ω2
pb�ω

2ω2
ce

�ω2 − ω2
ce

( ) k2z c
2 + ω2

pe
ω

�ω

( )
ω2
pe ω2

pe + 2k2z c
2

( )

+ ω2
peω

2

ω2
ce

− k2z c
2

( )
k2z v

2
b0xω

2
ceω

2
pb

�ω2 .

(36)

In Cerenkov interaction ω− kzvb0z
( )2

≈ 0; therefore neglect-
ing the first term on RHS in Eq. (36) and assuming perturbed

quantities ω= ω2+ δ and ω= kzvb0z+ δ, where δ is the
small frequency mismatch, the growth rate is obtained as

γ = Im(δ) =
��
3

√

2

(ω2
pe + k2z c

2)
2(ω2

pe + 2k2z c
2)
v2b0x
c2

ω2ω
2
pb

[ ]1/2

. (37)

In cyclotron interaction ω− kzvb0z
( )2

≈ ω2
ce; therefore ne-

glecting the second term on RHS in Eq. (36), we get slow cy-
clotron interaction from ω− kzvb0z≈−ωce and fast cyclotron
interaction from ω− kzvb0z≈ ωce.

Considering slow cyclotron interaction and assuming per-
turbed quantities ω= ω2+ δ and ω= kzvb0z− ωce+ δ, the
growth rate is obtained as

γ = ω2
pbω2ωce

2k2z c
2

[ ]1/2

. (38)

Now, considering fast cyclotron interaction and assuming
perturbed quantities ω= ω2+ δ and ω= kzvb0+ ωce+ δ,
the growth rate is obtained as

γ = 0. (39)

That is, in case of fast cyclotron interaction, there is no grow-
ing mode, as was the case in parallel beam interaction with
parallel whistlers, as ω= ωce. However, an oblique beam re-
sults in growth of whistler mode via slow cyclotron interac-
tion [Eq. (38)] and via Cerenkov interaction [Eq. (37)]. From
Eq. (37), we can say that as the transverse component of
beam velocity increases, the growth rate increases. Also the
growth rate increases with an increase in the strength of mag-
netic field in Cerenkov as well as cyclotron interactions.

(c) Parallel beam and oblique whistlers

For parallel beam, vb0x= 0 and for oblique whistlers, the
wave number k has a parallel component kz as well as a per-
pendicular wave number kx. Therefore, from Eq. (29), we get
the dispersion relation of oblique whistlers in the absence of
beam as

ω3 = kkzc2ωce

ω4
pe + 2k2c2ω2

pe + k2x k
2c4

( )1/2 . (40)

If kx= 0 that is, for parallel whistlers, then Eq. (40) gives

ω3 = k2z c
2ωce

( )
/ω2

pe

[ ]
, which is the standard parallel whis-

tler wave dispersion relation (Krall & Trivelpiece, 1973).
In the presence of beam, there can be Cerenkov or cyclo-

tron interaction.
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Following the same method as used in case (b), we get the
growth rate in Cerenkov interaction as

γ =
��
3

√

2

ω2
pbω

3
3

2ω2
pe

1−
ω2
pe k2 + k2z

( )
c2 + ω2

pe

[ ]
ω4
pe + 2k2c2ω2

pe + k2x k
2c4

( )
⎧⎨
⎩

⎫⎬
⎭

⎡
⎣

⎤
⎦

1/3

. (41)

Similarly, the growth rate in slow cyclotron interaction is ob-
tained as

γ = ω2
pbω3

4ω2
peωcek2k2z c

4
ω2
peω

2
ce k2 + 2k2z
( )

c2
{[

− 2ω2
peω3ωce ω2

pe + k2x c
2

( )
+ k2x k

2c4ω2
ce

+2k2x c
2kzvb0z ω3ω

2
pe − k2c2ωce

( )}]1/2

.

(42)

It may be noted from Eq. (41) that if kx= 0, γ= 0, that is, for
parallel whistler wave interaction with parallel beam, the
growth rate turns out to be zero, which is the same result as
obtained in case (a). The obliqueness of whistler waves mod-
ifies its dispersion characteristics as well as the growth rate in
beam-wave interaction.

5. DISCUSSION

In this paper, we show the possibility to excite whistler waves
by an electron beam interacting with a magnetized plasma.
The excitation by a parallel beam and an oblique beam has
been studied analytically for parallel as well as oblique whis-
tlers. The dispersion relation of the whistler modes has been
derived for parallel beam–parallel whistlers interaction, obli-
que beam–parallel whistlers interaction and parallel beam–o-
blique whistlers interaction.
In the case of parallel beam interaction with magnetized

plasma, whistlers excite through Doppler resonance and
propagate opposite to the beam direction. Cerenkov interac-
tion between parallel beam and parallel whistlers does not
take place. On the contrary, for parallel beam interaction
with oblique whistlers, Cerenkov as well as cyclotron interac-
tions are observed, which excite the whistlers. It should also
be mentioned here that if the beam has a finite perpendicular
velocity, that is, with oblique beam, even parallel whistlers
with kx= 0 can be excited. However, for purely parallel prop-
agating beams, kx≠ 0 is essential for the growth of wave. The
main physical process occurring during beam–wave interac-
tion is that the beam electrons bunch along the magnetic
field, which are continuously accelerated or decelerated
while keeping resonance with the emitted wave. The bunches
are the main cause which supports the wave emission, where-
as the non-resonant beam electrons practically do not ex-
change energy with the wave. All the loss of the resonant
beam particles’ energy is transformed into emitted wave
energy and the wave grows. The growth rate is sensitive to

beam velocity in the case of Cerenkov interaction but is
quite insensitive in cyclotron interaction. The results of
beam-excited whistlers presented here may be applied to ex-
plain the mechanisms of whistler wave excitation in space
plasmas, either by artificial beams injected from spacecraft
in the ionosphere or the magnetosphere like the recent satel-
lite measurements in the Earth’s radiation belt (Sauer &
Sydora, 2010), which describe the discovery of large ampli-
tude whistlers aboard the satellite STEREO-B .
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