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Abstract
This paper presents a new method of graduation which uses parametric formulae together with

Bayesian reversible jump Markov chain Monte Carlo methods. The aim is to provide a method

which can be applied to a wide range of data, and which does not require a lot of adjustment

or modification. The method also does not require one particular parametric formula to be selected:

instead, the graduated values are a weighted average of the values from a range of formulae. In this

way, the new method can be seen as an automatic graduation method which we believe can be applied

in many cases without any adjustments and provide satisfactory graduated values. An advantage of

a Bayesian approach is that it allows for model uncertainty unlike standard methods of graduation.
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1. Introduction

Many methods have been proposed for graduating mortality data in order to provide smoother

values which can be used in practice. Parametric models, using maximum likelihood or weighted

least squares estimation, are very useful when there is sufficient data. Forfar et al. (1988) provides

a comprehensive introduction to the use of parametric models for graduation, with a particular

emphasis on standard tables. Forfar et al. (1988) define a family of models which are sufficiently

broad to be able to provide satisfactory results in many cases, which they called ‘‘Gompertz-

Makeham formulae’’. When classical estimation methods are used for Gompertz-Makeham (GM)

formula, it is necessary to fit a wide range of formula and search through these to find one particular

curve which provides a satisfactory graduation. The idea of this paper is to use GM formulae, but to

replace the classical estimation with a Bayesian method which does not require the process of

searching through a range of candidate models to identify the best one to use. Instead, the Bayesian

method calculates the posterior probability for each model and produces graduated values based on

these. In effect, the graduated values are a weighted average of the values from each GM formula,

where the weights are the posterior probabilities for each GM formula. If there is one GM formula

which is clearly the ‘‘best’’ model to use, then the posterior probability should be close to 1, and

the graduated values will be close to those from that formula. While this can happen in certain

circumstances, it is more likely that there is some doubt about which model is the best one
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(as can be seen from some of the examples in Forfar et al., 1988). In this case, the new method in

this paper has some advantages since it does not require a single formula to be chosen.

We believe that this new method may have a further advantage over the classical estimation

methods, since it is more flexible as well as automatic. It is more flexible since it can use a

combination of GM formulae, and we believe that this flexibility means that it is possible that the

method could be applied to a wider range of data than the straightforward GM formulae.

There have been a number of applications of Bayesian methods to the estimation of mortality rates.

These include, for example, Kimeldorf & Jones (1967), Broffit (1988) and Carlin (1992) which used

conventional Bayesian analysis. Markov chain Monte Carlo (MCMC) methods have been applied

to graduation by Scollnik (2001) and Neves & Migon (2007). Scollnik (2001) provides an excellent

introduction to the use of MCMC methods, with an example of the application to graduation.

Neves & Migon (2007) applies hierarchical dynamic models (Gamerman & Migon, 1993) to

graduation. Also, Czado et al. (2005) apply Bayesian estimation to Poisson log bilinear regression

for mortality forecasting, using MCMC methods.

In this paper, we use reversible jump Markov chain Monte Carlo methods, which are an extension

of the MCMC methodology applied to graduation in the actuarial literature. The reversible jump

algorithms allow us to consider cases where the dimension of the parameter vector is unknown: it is

not known, a priori, how many parameters are appropriate for a particular regression. We use the

generic reversible jump implementation in the package winBUGS (Lunn et al., 2000).

Bayesian methods have been transformed by the use of Markov chain Monte Carlo (MCMC)

methods: see, for example Gilks et al. (1996). For example, these methods have enabled statisticians

to apply complex Bayesian models to a very wide range of applications. The monograph by Congdon

(2006) provides many wide-ranging examples. As mentioned above, Scollnik (2001) provides an

excellent introduction with actuarial examples, and we would also recommend Johansen et al. (2010)

for details of the algorithms themselves. An important extension is the use of reversible jump MCMC

(RJMCMC) methods (Green, 1995), which allow the analysis of trans-dimensional models. The key

idea is to extend the range of models so that the number of variables is also unknown. In the context

of parametric models for graduation, we can therefore apply a set of models and allow the Bayesian

estimation process to indicate (through the posterior distributions) which are the most appropriate for

the data. This is all part of the model, and it is not necessary to make subjective decisions about how

many parameters to use for the graduation. In fact, the model can be used so that the graduated values

are weighted averages of values from a number of different GM models, with the weights chosen

according to the posterior probability for each model. In this way, it is possible to add some flexibility

to the family of GM models, which may enable them to be used when conventional estimation fails: in

other words, when the parametric models are abandoned in favour of a non-parametric approach (for

example). The approach we use is implemented within winBUGS, using the RJMCMC procedures

outlined in Lunn et al. (2009).

While parametric graduation has proved to be very successful in a number of contexts, there are many

other areas where it has not been found to be suitable. In general, this is when there is not enough

data, or where the underlying pattern of mortality rates is such that no parametric curve can be found

which proves satisfactory. In the latter case, the problems are usually caused by particular features

such as the accident hump or rapid changes in mortality rates during infant year, which are difficult to

model with a parsimonious model. There have been some suggestions for parametric models to cater
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for features such as this, including the model for the full age range by Heligman & Pollard (1980), and

it is possible that a trans-dimensional Bayesian approach could be used for this class of models as well.

However, the focus of this paper is on the family of GM formulae proposed by Forfar et al. (1988)

and we believe that the Bayesian approach will extend the number of cases where they prove suitable,

as well as providing a less subjective method for applying them. We recognise that there are some

features which they are not able to capture, and therefore this paper looks at the graduation of

mortality rates over adult years, from approximately 18 upwards. This may include the accident

hump, but some care will need to be taken to ensure that the fitted rates are suitable.

Alternative approaches that can be used when parametric modelling is not suitable include

non-parametric graduation such as Whittaker graduation (Whittaker, 1923) for which Verrall

(1993), proposed a Bayesian model, building on the work of Taylor (1990). These methods have the

advantage that they can be more flexible and adapt better to local features of the data. However,

they also suffer from some disadvantages and it cannot be claimed that they provide a panacea for

all graduation problems. In many ways, we believe that the use of the trans-dimensional approach

in conjunction with parametric models provides an ideal combination of the straightforwardness of

a mathematical formula together with the flexibility which is often required in practice.

The paper is set out as follows. In Section 2, the notation and methodology of the graduation

methods are outlined. Section 3 contains an introduction to the Bayesian methods we use, and

Section 4 describes how these can be applied to graduation. Section 5 contains two examples of the

application of the new approach to CMI data in Forfar et al. (1988), and Section 6 provides some

concluding comments.

2. Parametric graduation and Gompertz-Makeham models

In this section, the notation used is defined and the general class of parametric models is set out.

These models were first defined by Forfar et al. (1988). We assume that data are available for a set

of (not necessarily consecutive) ages. We denote the age by x, and the set of ages for which data are

available by RI, where I denotes all of the observed data which are available. For the sake of

notational simplicity, we assume that age is defined as age nearest birthday, although all of the

methods are trivially adapted to other definitions. Then it is assumed that the observed data, I,

consist of the number of deaths, dx, and the central exposure, EC
x , for x 2 RI. These data are to be

used to estimate the force of mortality, mx, over a range of ages which may be larger than RI (for

example, estimated values will be produced at any missing ages, and also may be required outside

the range of RI). In this paper, we will assume that data are generated by a set of independent lives,

and will therefore exclude the possibility of duplicate policies, or the case where the data are based

on amounts of insurance or annuity. The likelihood can therefore be written as

LI /
Y
x2RI

mdx
x e�EC

x mx

(see, for example, Macdonald, 1996), which is equivalent to the use of a Poisson likelihood

function. The force of mortality can be estimated by maximum likelihood estimation, with a

parametric model for mx inserted when carrying parametric graduation. Many parametric models

have been suggested for mx, of which two of the earliest and simplest are the Gompertz model

(Gompertz, 1825) and the Makeham model (Makeham, 1859). The Gompertz model is mx 5 Bcx,

and the Makeham model is mx 5 A 1 Bcx. While these models are usually too simple to provide
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satisfactory graduations, it is well known that they do capture some essential properties of the

progression of mortality rates over much of the range of life. The Gompertz formula models the

aging effect, which is the dominant effect over (approximately) ages 50 to 90. This is so

fundamental to the modelling of mortality rates that it is usually used as the base model in some

sense, even when non-parametric models are employed. The Makeham model contains this aging

effect, but includes a constant, A, which measures a non-age-dependent background mortality rate

which is particularly important below the age of 50. Various extensions to these two models have

been suggested and used, for example by the Continuous Mortality Investigation (CMI) in the UK in

the construction of mortality tables for use in the insurance industry. As a part of this process,

Forfar et al. (1988) suggest a general modelling framework which encompasses the Gompertz and

Makeham models, but allows a much wider range of models to be fitted. Forfar et al. (1988) notice

that many of the parametric models which had been suggested for mortality could be expressed in a

unified way and extended to a wider range of possible models. The advantage of this is that it

provides a range of models which can be searched through in order to find a reasonable graduation.

The general model is called a Gompertz-Makeham (GM) formula, because it starts from these basic

mortality models. The GM formula, of order (r,s) is

GMr;s xð Þ ¼
Xr

i¼1

aix
i�1 þ exp

Xrþs

i¼rþ1

aix
i�r�1

 !
ð2:1Þ

with the convention that the sums disappear when r 5 0 or s 5 0. With this notation, the Gompertz

model is a GM(0,2) and the Makeham model is a GM(1,2). The general strategy is to investigate

a large range of values of r and s in the GM formula in order to find a reasonable graduation.

It should be noted that a model with s , 2 will never be appropriate in the context of the graduation

of mortality data. Hence, like Forfar et al. (1988), we only consider models with sZ2.

In order to assess whether a graduation is ‘‘reasonable’’, some criteria are needed. There are a

number of tests of the fit and smoothness of a graduation, but the initial sifting through possible

models can be carried out using likelihood ratio test. Twice the change in the log-likelihood has

(approximately) a w2
n distribution, where the number of degrees of freedom, n, is the change in

the number of parameters (usually 1). The usual approach is to start with a simple model (the

Gompertz model) and add parameters one at a time, examining the likelihood ratio test statistic to

see whether it is justifiable to add that parameter. Forfar et al. (1988) contains a number of detailed

examples of this approach which are very useful in illustrating the overall approach. Each of these

examples relates to one of the CMI investigations for the period 1979 to 1982, and we use the data

from Section 15 (widows of life office pensioners) and Section 16 (male life office pensioners) of

Forfar et al. (1988) in the examples in Section 5 of this paper.

Before setting out the alternative Bayesian estimation method, it is necessary to consider some

detailed computational aspects of the GM models. It can be seen that the GM formula, (2.1),

contains powers of x, which may become very large: for example, x4 5 100,000,000 at age 100.

The effect of this is to make the corresponding parameter extremely small, which can cause

computational issues. To avoid this, it is usual to use a transformation of the age, instead of the age

itself. This transformation is chosen in order to ensure that it stays in the range [21, 1], and this can

be achieved by using x�u
v instead of x, where u ¼ xminþxmax

2 , v ¼ xmax�xmin

2 and xmin and xmax are the

minimum and maximum values, respectively, of x 2 RI. Finally, the GM formulae are defined in

terms of Chebycheff polynomials of the first kind, Cn (x), rather than {1, x, x2, x3, y}, where

C0 (x) 5 1, C1 (x) 5 x and Cn 1 1 (x) 5 2xCn (x)2Cn21 (x) for nZ1. The reason for using these

Chebycheff polynomials is again for computational efficiency, since they form an orthonormal
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basis: for further details of this, see Forfar et al. (1988). Thus, the exact form of the GM formula

which we use is

GMr;s xð Þ ¼
Xr

i¼1

aiCi�1
x� u

v

� �
þ exp

Xrþs

i¼rþ1

aiCi�r�1
x� u

v

� � !
ð2:2Þ

For the rest of this paper, GMr,s(x) refers to the form in (2.2) rather than (2.1). This parametric

formula forms the basis for all of the models that we use, and the form of the model depends on

which of the parameters, ai are non-zero. One difference between the approach of Forfar et al.

(1988) and the approach taken in this paper is that we do not insist that the models are nested, since

we are not using likelihood ratio tests to search through models. This means that we include models

where ai may be 0 for some i , r, even though ar is non-zero.

The specification of the model is completed by the distributional assumptions, which, as stated

above, are equivalent to the assumption that

dx� independent Poisson with mean EC
x mx

where mx ¼ GMr;s xð Þ.

The Bayesian approach uses models in the form of (2.2), assumes that they are all equally likely

(a priori) and estimates the posterior probability for each of them given the data. This entails

assessing a total of 2r 1 s models, of varying dimension and calculating the posterior probability for

each of these. This is done using MCMC methods, and since the number of parameters is not the

same for each model, it also entails using reversible jump methods, as described in Section 3.

3. Trans-dimensional models and Markov chain Monte Carlo methods

In this section, we give a very brief overview of the Bayesian techniques which are used in the new

graduation method. There are many books and papers on this methodology, including the books by

Congdon (2006) and Gelman et al. (1995). We do not provide the detailed algorithms, but Johansen

et al. (2010) provide an excellent introduction together with many more technical details than is

appropriate here. The application of the methods uses the software winBUGS, and the web page for

the BUGS project contains links to many on-line resources (http://www.mrcbsu.cam.ac.uk/bugs).

At the heart of Bayesian modelling is Bayes’ theorem, where all of the parameters are assumed to be

unknown random variables. Thus, the distribution of the observed data, I, is denoted by f Ijy;Mð Þ

and depends on the unknown parameters y for a specific model M. It is assumed that M belongs to a

class of models, SM. The model and model parameters are assigned prior distributions, f(M) and

f yjMð Þ, and the posterior distribution is given by f y;MjIð Þ / f Ijy;Mð Þf yjMð Þf Mð Þ. It can be seen

from this result that parameter uncertainty is included through the prior distribution of the

parameters (conditional on the model); and also model uncertainty is included through the prior

distribution for M. It is the inclusion of the prior distribution for M which is the new feature of this

paper, and which requires the use of the methods set out in Section 3.1. Note that it is assumed that

a GM formula is appropriate for the data, although the values of r and s are not known. Thus, the

model uncertainty included in this paper is within the family of GM models.
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For graduation purposes, we require the posterior distribution of the mortality rates, mx, given the

data I. A more limited aim would be to choose a model first, and then derive the posterior

distribution of mx, conditional on the model M and the data I:

f mxjM; I
� �

¼

Z
f mxjM; y
� �

f yjM; Ið Þdy: ð3:1Þ

Note that this is a standard Bayesian analysis, which can be used to estimate the parameters for a

particular model. The more complete problem is not to condition on M, which then enables us to

include inference about the models in SM. This is addressed in Section 3.1, and this will give the

posterior probability of each model M, given the data, I. In this way, model uncertainty (within SM)

is summarised in these posterior probabilities. It is possible to take into account this type of model

uncertainty when producing graduated mortality rates in two different ways. Either we can choose

the most likely model (a posteriori), Mmax, and base the graduation on this, or we can estimate mx

using a weighted average of all models, using the posterior probabilities for each model as the

weights. In other words, the choice is between

f mxjMmax; I
� �

ð3:2Þ

and
X

M2 SM

f mxjM; I
� �

P MjIð Þ: ð3:3Þ

We believe that (3.3) is preferable, since it is usually the case that there is not one particular model

which clearly has the highest posterior probability. It is sometimes the case that one model does indeed

dominate, and we could then use (3.2). However, it is also the case that this model would then

dominate the sum in (3.3) and hence the graduated mortality rates. If it is desired that the graduated

rates should follow precisely a parametric curve, then (3.2) should be used, and it will be necessary to

go through a similar method of model choice as for classical estimation methods (as in Forfar et al.,

1988). However, we believe that the added flexibility of leaving all of the models in the estimation,

albeit with possibly very small posterior probabilities in (3.3), is very useful in the context of

graduation. Also, it is often the case that there are a number of models whose posterior probabilities

are quite similar and it may be difficult to decide which model is the best one to use when using (3.2).

This is certainly true in Forfar et al. (1988), much of which is devoted to deciding which single model

should be used to produce the graduated values. For example, Section 16.2 considers the ‘‘Choice of

Order of Formula’’ for the male life offices pensioners’ data. A total of 15 models are considered, of

which the GM1,3 (x) and GM1,5 (x) are identified as the best candidates, based on a battery of tests

and consideration of the shape and smoothness of the graduated values. We replace this selection

process with the Bayesian fitting procedure described in the following section.

3.1 Reversible Jump MCMC

In this section, we extend (3.1) so that the model uncertainty is also included. Thus, the posterior

distribution of mxjI, taking into account model uncertainty as well as parameter uncertainty, can be

written as

f mxjI
� �

¼

Z
f mxjM; y
� �

f y;MjIð Þd M; yð Þ

and in some cases this distribution may be obtained exactly in a straightforward way. However, in

most cases it is not possible to obtain the posterior distribution in closed form, for example when
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the model is unknown and the parameter vector is high dimensional, or complex. In these cases,

simulation methods can be highly effective and the recent advances in Bayesian methodology use

simulation based on Markov chains: the so-called Markov chain Monte Carlo methods.

In MCMC methods, a Markov chain M bð Þ; y bð Þ
� �n o1

b¼1
is generated whose equilibrium distribution is

the required posterior distribution, f y;MjIð Þ. The distribution for any required quantity can then be

approximated by a Monte Carlo average. In this case, an estimate of the mortality rate can be

obtained as

f mxjI
� �

�
1

N

XN
a¼1

f mxjM
ðBþtaÞ; yðBþtaÞ

� �
ð3:4Þ

where B is the ‘‘burn-in’’ (a number of iterations of the Markov chain before it converges to the

equilibrium distribution) and t is a thinning variable (which is often chosen as 1). The MCMC

methodology provides a general framework of generating the Markov chain, and there are a

number of different algorithms that can be used, such as Gibbs sampling (Geman & Geman, 1984,

and Gelfand & Smith, 1990) and the Metropolis-Hastings algorithm (Metropolis et al., 1953 and

Hastings, 1970). For more details of these algorithms, see Johansen et al. (2010). The basic idea of

MCMC methods is to simulate a sequence of values in such a way that they converge to the required

posterior distribution. This is then extended to allow jumps between different models by the use of

reversible jump MCMC methods. The term ‘‘reversible jump’’ refers to a technical property of the

sampling procedure that ensures that it converges to the required posterior distribution. Given the

current state, (M(b), y(b)), a subsequent state (M, y) is drawn from some proposal distribution p and

is either accepted or rejected, so that the next state is (M(b 1 1), y(b 1 1)), where

Mðbþ1Þ; yðbþ1Þ
� �

¼

M; yð Þ if ðM; yÞ is accepted

M
ðbÞ

; yðbÞ
� �

if ðM; yÞ is rejected

(

For variable dimension models, the sampling procedure has to be designed quite carefully in order

to ensure convergence. This involves an extension to the Metropolis-Hastings algorithm, which

leads to a sampling procedure known as the reversible jump algorithm, and which was proposed by

Green (1995).

3.2 Trans-dimensional models in BUGS

Bayesian models which allow for model uncertainty where the number of parameters is one of the

unknown quantities are often referred to as ‘‘trans-dimensional’’ models. It is possible to construct

computer programmes separately from first principles for each application, but winBUGS is freely

available and has been designed to be ‘‘flexible software for the Bayesian analysis of complex

statistical models using Markov chain Monte Carlo (MCMC) methods’’. Hence, the applications in

this paper make use of winBUGS, together with the RJMCMC add-ons which are also available

from the BUGS project web site. There is also a useful User Manual available (‘‘winBUGS Jump

Interface: User Manual’’). This Manual allows us to apply the type of models described above, in

which the structure of the model itself is unknown. There are two main classes of models that can be

used within winBUGS, one of which will be used in this paper (see Lunn et al., 2009 for more

details). This class is described in this section, in general terms, with the application to graduation

specified in Section 4. The distinctive feature of a trans-dimensional model is that the number of

parameters that is included in the model is not fixed a priori. Instead, we denote the number of
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parameters included by k, where k can take any value from 0 up to a maximum of Q (and the value

of Q is always clear from the context). The prior distribution for k is specified so that all values of k

are equally likely (a priori). This means that each parameter is either included or excluded, so that a

binomial distribution is the appropriate prior for k, with parameters Q and 1
2.

We note that, for a GMr,s (x) formula, as given by equation (2.2), we will use two of these models:

one for
Pr

i¼1 aix
i�1 and the other for exp

Prþs
i¼rþ1 aix

i�r�1
� �

. However, these are estimated together

and details of the winBUGS code are given in the Appendix. The reason for using two separate

trans-dimensional models is that the distributional properties of the parameters are likely to be

different in each model. Within each trans-dimensional model, it will be assumed that the

parameters have the same variance. This is credible within each separate component,
Pr

i¼1 aix
i�1

and exp
Prþs

i¼rþ1 aix
i�r�1

� �
, but not for the complete set of parameters. Thus, since there are two

choices to make when fitting a GM model, we will use two of these trans-dimensional models in the

application to graduation. These will then be combined in the calculation of the mean, as specified

in equation (2.1), and the estimation performed in a single procedure. In this way, the RJMCMC

methods will allow us to consider graduations where the number of parameters in each of these

terms is unknown.

The posterior distribution for k is a part of the output, giving an indication of how many parameters

should be included. More importantly, the output also gives information on which parameters these

are. Note that it is possible that the Bayesian model will indicate that any set of parameters can be

included – there is no restriction on them being consecutive parameters. This is in contrast with the

conventional use of GM models (as implied by equation 3.4) where the choice of r and s implies that

all parameters, from a1 to ar (inclusive) and from ar 1 1 to ar 1 s (inclusive), are included.

4. Trans-dimensional models for graduation

In this section, we specify a trans-dimensional modelling framework which we believe is suitable for

many graduations. In particular, this framework should be suitable for graduations of mortality

rates over adult ages, although it may not capture all of the features that may be present at young

ages. Since a GM model has two components,
Pr

i¼1 aiCi�1
x�u

v

� �
and exp

Prþs
i¼rþ1 aiCi�r�1

x�u
v

� �� �
,

each of these will be modelled by a separate trans-dimensional model. Before specifying these in

detail, we first consider the range of GM models which should be included in the overall

framework. As was noted in Section 2, it is not appropriate to consider any models where s , 2,

since the Gompertz term will always be needed. Also, the Makeham term is often needed (r 5 1),

and may also be necessary to consider higher values of r in order to capture the progression

of mortality rates at younger ages. The terms in
Pr

i¼1 aiCi�1
x�u

v

� �
have to be more carefully

handled, since they can cause the model to produce negative values for the mortality rates.

However, it is unlikely that values of r higher than 3 will be needed since the higher terms in

exp
Prþs

i¼rþ1 aiCi�r�1
x�u

v

� �� �
usually capture the shape of the mortality curve satisfactorily. For these

reasons, the most complicated model we include is the GM3,6 (x). The trans-dimensional modelling

approach will allow each parameter to be included or excluded, and we believe that this provides a

sufficiently flexible framework for most graduations. The trans-dimensional models will be

specified in terms of the maximal model:

GM3;6 xð Þ ¼
X3

i¼1

aiCi�1
x�u

v

� �
þ exp

X9

i¼4

aiCi�r�1
x�u

v

� � !
: ð4:1Þ
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The parameter vector is (a1, a2, y a9) and, as explained above, we only consider models with sZ2.

This means that a4 and a5 are always included in the model. Because of the way that the trans-

dimensional models have been implemented in winBUGS by Lunn et al. (2009), it is necessary also

to always include a1. This means that the ‘‘base’’ model – the model with the lowest number of

parameters – that is considered is the Makeham model. It is possible that the simple Gompertz

model might be suitable, as is illustrated in Section 5.1, and in this case the estimated value for a1 is

negligibly small. We do not think that this is a particularly serious issue, since, for the majority of

cases, a1 will be needed and, in other cases its posterior distribution will have a mean of 0 if it is not

playing a significant role. This leaves 6 other parameters, (a2, a3) and (a6, a7, a8, a9), which can be

included or excluded, making a total of 64 different models in the trans-dimensional framework.

Each of the two sets of parameters, (a2, a3) and (a6, a7, a8, a9), will be modelled using a separate

trans-dimensional model and these are specified below. The prior distribution for the remaining

parameter, a4, is specified separately.

Lunn et al. (2009) set up the trans-dimensional models in winBUGS by defining a new variable

which is related to the parameter vector. For completeness, and in order that the winBUGS code can

be interpreted, we do the same here for the trans-dimensional models which are to be used for

graduation. However, we would emphasise that the important point is that the parameters (a2, a3)

and (a6, a7, a8, a9) which are included in the mean can be included or excluded from the model

according to the evidence from the data. Thus, we define vectors c(1) and c(2) as follows

cð1Þ ¼

cð1Þ1

cð1Þ2

cð1Þ3

0
BB@

1
CCA ¼

1 0 0

1 1 0

1 0 1

0
B@

1
CA

a1

a2

a3

0
B@

1
CA ð4:2Þ

and cð2Þ ¼

cð2Þ1

cð2Þ2

cð2Þ3

cð2Þ4

cð2Þ5

0
BBBBBBB@

1
CCCCCCCA
¼

1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0
BBBBBB@

1
CCCCCCA

a5

a6

a7

a8

a9

0
BBBBBB@

1
CCCCCCA

ð4:3Þ

The parameter vectors c(1) and c(2) can be seen in the winBUGS code, and it is straightforward to

recover the original parameters from the elements:

a1 ¼ cð1Þ1 ; a2 ¼ cð1Þ2 �c
ð1Þ
1 ; a3 ¼ cð1Þ3 �c

ð1Þ
1

and a5 ¼ cð2Þ1 ; ai ¼ cð2Þi�4�c
ð2Þ
1 ði ¼ 6; 7; 8; 9Þ:

As mentioned in Section 3.2, the prior distribution for the number of parameters included is chosen

such that all of the models are equally likely (a priori). In other words, P(M(1)) 5 222 for the first

trans-dimensional component, and P(M(2)) 5 224 for the second. The prior distributions of the

optional parameters, conditional on M(j) (j 5 1, 2), is set by default such that they are independently

normally distributed. It is possible to specify the model in winBUGS such that all parameters have

the same prior mean and variance, or such that the first parameter has a different mean and

variance. For the first trans-dimensional model, (4.2), we give all of the parameters the same mean

and variance, but for the second, (4.3), we give the first parameter a different prior mean and

variance in order to accommodate the second Gompertz parameter. We have found that the most

efficient way to proceed is to first fit a simple Gompertz model to the data, and use the maximum

likelihood estimates of the parameters as the prior means.
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In summary, the prior distributions are specified as follows (with all of the parameters being

assumed to be independent, a priori).

a1; a2; a3ð Þ � independent normal with mean 0 and variance s2
1

a4 � N a1; 10; 000ð Þ; a5 � N a2; 10; 000ð Þ;

where a1, a2 are the maximum likelihood estimates of the parameters in the simple Gompertz

model, and a large variance of 10,000 is used so that the prior distributions are relatively vague

a6; a7; a8; a9ð Þ � independent normal with mean 0 and variance s2
2

s�2
1 ; s�2

2 � independent G 0:001; 0:001ð Þ:

Finally, it is necessary to place some basic restrictions on the values of the parameters (a1, a2, a3), in

order to ensure that the values of the mortality rates, mx, should all be positive. Clearly, negative values

are not practically justifiable, and they may cause the programme to crash when it tries to calculate

ln(mx) in the log-likelihood. Thus, we place restrictions to ensure that
P3

i¼1 aiCi�1
x�u

v

� �
40 at low

ages, noting that exp
Prþs

i¼rþ1 aiCi�r�1
x�u

v

� �� �
will be close to zero at low ages. Firstly, we ensure that

a1 . 0, as a basic requirement of a sensible GM model. Secondly, we note that the second derivative ofP3
i¼1 aiCi�1

x�u
v

� �
should be positive, to reflect the expected convex shape of this contribution to the

mortality rates at low ages. Hence, the second restriction is a3 . 0. Finally, the value of a2 is restricted

so that
P3

i¼1 aiCi�1
x�u

v

� �
40 when x�u

v ¼ �1. This means that a12a2 1 a3 . 0 and hence the final

restriction is a2 , a1 1 a3. In the MCMC algorithms in winBUGS, it is straightforward to ensure that

these restrictions are not violated by simply replacing the sampled value when it is not satisfactory.

Thus, for example, negative values of a1 and a3 are replaced by 0. Again, this situation is not quite

ideal and the compromise we have suggested is necessary because the implementation in winBUGS

only allows normal prior distributions to be used. We do not believe that the effect of this is significant

since any negative values are unlikely to be much different from 0.

5. Examples

We illustrate the application of the automatic graduation method using two sets of data, which are

taken from Forfar et al. (1988). It should be emphasised that the same programme is used for each

data set, and the differences in the results are entirely due to the differing natures of the data

themselves. It will be seen that this graduation method deals satisfactorily with the data in each

case, without the need for any intervention from the graduator, and it is for this reason that we call

this an ‘‘automatic’’ graduation method.

In all cases, we have used an initial burn-in of 50,000 iterations (these are values which are

discarded), and have found that the models have then converged. In general, we would expect that

50,000 burn-in iterations would be sufficient for convergence, but it is always recommended that

this is checked (see, for example, Johansen et al., 2010, for tools to monitor convergence). After

this, we ran 50,000 iterations and used these for the results. Thus, in equation (3.4), B 5 50,000,

N 5 50,000 and t 5 1.

5.1 Example 1

The data for the first example are taken from table 15.5 of Forfar et al. (1988), and consist of data

from the CMI relating to the numbers of deaths for insured pensioners’ widows over the calendar

R.J. Verrall and S. Haberman

240

https://doi.org/10.1017/S1748499511000248 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499511000248


years 1979–82, grouped by age nearest birthday. Forfar et al. (1988) conclude that a satisfactory

graduation for mx could be provided by the simple Gompertz model, GM0,2 (x). Note that Forfar et al.

(1988) use u 5 70 and v 5 50, whereas we use u ¼ xminþxmax

2 ¼ 62:5, v ¼ xmax�xmin

2 ¼ 45:5. Hence, the

parameter estimates cannot be directly compared, although we could implement a simple conversion

to obtain corresponding values. Since Forfar et al. (1988) conclude that a Gompertz model provides a

satisfactory graduation, this example provides a test of whether the new graduation method is able to

come to a similar conclusion: in effect, we would expect the Bayesian model to tell us that none of the

optional parameters is required. As was explained in Section 4, we always start from the Makeham

model, and we would therefore also expect that the posterior mean of a1 should be close to 0.

We would also expect a2 and a3 not to be needed in the model. However, since we use a separate

trans-dimensional model for this part of the GM formula, the Bayesian model treats them separately

and indicates that they should be included in the model. However, this result is not a suprise since the

parameter estimates themselves are extremely small: in effect the trans-dimensional model assumes

that all of the parameters are very small and, relative to this, that they are all of the same magnitude

and should therefore be included. The estimates of these parameters are shown in Table 1.

It can be seen that these parameter estimates are so small that they will have no substantive effect on

the graduated values whether or not they are included in the model.

The second trans-dimensional model indicates that none of the optional parameters in

exp
Prþs

i¼rþ1 aiCi�r�1
x�u

v

� �� �
should be included, leaving just a4 and a5 in the model. The conclusion

from this is that the basic Gompertz model, mx ¼ exp a4 þ a5
x�u

v

� �� �
is indeed most likely to provide

a suitable graduation for these data. As noted in Section 3, we could either base inferences about

the mortality rates on the most likely model or we can use a weighted average of all models, with the

most likely models getting the most weight: see (3.2) and (3.3). In this paper, we use (3.3) and base

the estimates of the mortality rates on the means of their posterior distributions. Table 2 shows the

estimates of the parameters in exp
Prþs

i¼rþ1 aiCi�r�1
x�u

v

� �� �
.

For comparison purposes, the estimates of a4 and a5 using u 5 70 and v 5 50 would be 23.55139

and 4.26291, compared with 23.553013 and 4.316579 in Forfar et al. (1988). Alternatively, the

maximum likelihood estimates of the parameters of the Gompertz model using u 5 62.5 and v 5 45.5

are 24.2005 and 3.9281, which can be compared with the estimates of a4 and a5 in Table 2.

Figure 1 shows the results of the graduation (plotted on the log scale), together with the Gompertz

curve fitted by Forfar et al. (1988). The graduated rates for the Bayesian model are obtained by

averaging over the models using the posterior probabilities in (3.3), which explains why they do not

follow exactly a straight line. We believe that this is the best way to proceed in general, and it can be

seen that the new automatic graduation method has produced graduated values which are very close

to those which were deemed to be suitable in Forfar et al.

Table 1. Estimates of the parameters in the first part of the GM formula

for the data from Example 1 of Forfar et al. (1988)

Parameter Estimate

a1 0.000012466

a2 0.000047652

a3 0.000063398
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In order to test the fit of the graduation, the same tests can be deployed as in Forfar et al. (1988).

The number of parameters is not completely determined in the Bayesian method, although it would

be reasonable to assume that it is close to 2, since the only significant parameters which were

indicated that should be included are a4 and a5. The x2 goodness-of-fit test statistic is 37.22. This

compares favourably with the value in Forfar et al. (1988), 38.29, but this is probably simply due to

the fact that the Bayesian model mixes in (with very low weights) some models with more

parameters and therefore achieves a slightly better fit. All the other tests are satisfactory, and we do

not repeat them here (the complete test results for Example 2 are shown below).

In conclusion, this example has shown that the Bayesian model has produced graduated values

which are very close to those of the Gompertz model, without the need for any input or model

choice.

5.2 Example 2

This example considers a case which is not as straightforward as Example 1, and uses the CMI data

from table 16.5 of Forfar et al. (1988). These data come from the mortality experience of male insured

pensioners over the calendar years 1967–70, and Forfar et al. (1988) conclude, after considering a
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Figure 1. Crude mortality rates, together with graduated rates from Forfar et al. (1988) (solid line)
and from the Bayesian model (dashed line) using the posterior weights to average over all models,
for the data from Example 1

Table 2. Estimates of the parameters in the second part of the GM

formula for the data from Example 1 of Forfar et al. (1988)

Parameter Estimate

a4 24.1908

a5 3.8792

a6 20.0191

a7 20.0194

a8 20.0212

a9 20.0293
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number of different possible models, that a GM(1,3) model s is the most suitable for graduating these

data. For comparison purposes, the fitted GM(1,3) model in Forfar et al. (1988) was

mx ¼ 0:00557291þ exp �5:4677þ 6:007755
x�63:5

44:5

� �
�1:3219 2

x� 63:5

44:5

� �2

� 1

 ! !
:

For this example, the Bayesian model suggests that a different model is more appropriate, and Table 3

shows the parameter estimates.

The posterior probabilities for the models in the first part of the GM formula are shown in Table 4.

The 0’s and 1’s in the first column refer to whether a2 and a3 should be included (a1 is always

included, as explained in Section 4).

Table 4 shows that, although the model structure 00 (with just a1) is the most likely model

(concurring with the choice of the GM(1,3) in Forfar et al. (1988), there are also reasonable

posterior probabilities for the other models. Table 5 shows the marginal probabilities that each

parameter should be included. When the fitted mortality rates are calculated using the weighted

average of these models, the effect of these probabilities will be seen at early ages.

Similarly, Tables 6 and 7 show the corresponding posterior and marginal probabilities for the

second part of the GM formula.

The model fitted by Forfar et al. (1988), a GM(1,3) corresponds to the model structure 1000, with

just a6 being included. It is interesting to note that the Bayesian model disagrees with this,

Table 3. Estimates of the parameters for the Bayesian model, for the data from

Example 2 of Forfar et al. (1988)

Parameter Estimate

a1 0.000000497

a2 20.017374

a3 0.00048041

a4 23.9033

a5 3.6430

a6 0.038876

a7 20.43482

a8 0.12235

a9 0.0120953

Table 4. Posterior probabilities for the set of possible models for the first part of

the GM formula

Model structure Posterior probability Parameters

00 0.35552 a1

01 0.3072 a1, a3

10 0.1752 a1, a2

11 0.16208 a1, a2, a3
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concluding that the parameter which definitely needs to be included is a7 (with a reasonably large

posterior marginal probability for a8 and a6). Since the GM models of Forfar et al. (1988) only

allow nested models, the only model structures that they would consider in this framework are

1000, 1100, 1110 and 1111. Again, it is interesting to note that the two most likely models from the

Bayesian model are not in this set. Of course, any judgment over which approach gives the better

graduation will depend on the fitted mortality rates. For this example, in contrast to example 1,

there are some significant differences between the results, in terms of the parameters and the

models, from the conventional GM approach and those from the Bayesian approach. However, it

can be seen from Figure 2 that the graduated values are remarkably similar, except at extreme ages.

The x2 goodness-of-fit test statistic value for the graduated values from the Bayesian method is, as in

Example 1, smaller than that of the GM(1,3): 53.03 compared with 54.72. It can be argued that the

Bayesian model is mixing in graduations with more than 4 parameters, and that its goodness-of-fit

should be better because of this feature.

It is difficult to make the kind of judgments in terms of the number of parameters to use that are

applied by Forfar et al. (1988). Their argument is that, if a graduation has too many parameters,

then its properties would be unsatisfactory in terms of its shape and ‘‘sheaf’’ (how wide the

Table 5. Marginal posterior probabilities for the parameters in the first part of

the GM formula

Parameter Marginal probability

a2 0.33728

a3 0.46928

Table 6. Posterior probabilities for the set of possible models for the second part

of the GM formula

Model structure Posterior probability Parameters

0110 0.27892 a4, a5, a7, a8

0100 0.27736 a4, a5, a7

1110 0.21612 a4, a5, a6, a7, a8

1100 0.08314 a4, a5, a6, a7

0111 0.04944 a4, a5, a7, a8, a9

1111 0.04078 a4, a5, a6, a7, a8, a9

0101 0.03856 a4, a5, a7, a9

1101 0.01568 a4, a5, a6, a7, a9

Table 7. Marginal posterior probabilities for the parameters in the second part of

the GM formula

Parameter Marginal probability

a6 0.35572

a7 1

a8 0.58526

a9 0.14446
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confidence intervals are around the graduated values). Figure 3 shows the graduated mortality rates,

together with the 95% confidence bands from the posterior distribution for Bayesian method.

As can be seen, this graduation is certainly satisfactory in terms of its sheaf. A comparison with

Figure 16.2 of Forfar et al. (1988) shows that this sheaf is similarly tight, although some of the

characteristics are different. In particular, the Bayesian model is less confident about the mortality

rates at high ages: this is probably due to the fact that the Bayesian model includes some model

uncertainty. It should be noted that the approach used by Forfar et al. (1988) does not make any

allowance for model uncertainty: a model is chosen and it is then assumed that this is the correct

model (with 100% certainty) when producing graduated mortality rates. We would argue that the

Bayesian model is more realistic in the sense that it acknowledges that the model may not be correct.

All of the usual tests of the graduation can be applied. For example, we can compare the results of

the tests for the Bayesian graduation with those in Table 16.3 of Forfar et al. (1988). Although these
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Figure 2. Crude mortality rates, together with graduated rates from Forfar et al. (1988) (solid line)
and from the Bayesian model (dashed line), for the data from Example 2
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Figure 3. Crude and graduated mortality rates, together with the 95% sheaf for the results of the
Bayesian model
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tests may not provide a comprehensive assessment of the goodness-of-fit of a graduation, it is useful

to compare the performance of the Bayesian methods using the same tests as Forfar et al. (1988).

The tests used are:

> Comparison of total actual and expected deaths. These should be close to each other, and can be

compared by looking at either the difference or the ratio.

> Signs Test. It is expected that there should be the same number of 1 and 2 signs, and this can be

tested using a binomial reference distribution.

> Runs Test. There should not be too few runs of the same sign of residuals, since this would indicate

a pattern in the residuals where the fit was not good. The Runs Test is a standard test for this.

> The Kolmogorov-Smirnov test can be used to compare two distributions, and is used here in order

to compare the actual and graduated distributions of deaths.

> Autocorrelations. The residuals should not show any systematic patterns, which should have

been captured in the graduation. Examinations of the autocorrelations can be used to assess one

aspect of this.

Comparison of total actual deaths (A) and total expected (E):

Forfar et al. (1988) Bayesian Model

Total A–E 1.00 20.93

Ratio A/E 100.00 100.00

Signs Test:

Forfar et al. (1988) Bayesian Model

Number of 1 23 22

Number of 2 24 25

P(pos) 0.5000 0.3854

Runs test:

Forfar et al. (1988) Bayesian Model

Number of Runs 29 29

P(runs) 0.9304 0.9304

The results of the Kolmogorov-Smirnov test are the same for both, with a maximum deviation of

0.0019. Figure 4 shows the auto-correlations for the residuals from the Bayesian model, together

with the 95% confidence limits. It can be seen from this Figure that none of the autocorrelations are

significant.

Overall, the conclusions from these detailed tests are that the graduated values from the Bayesian

model provide a satisfactory fit to the data.
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6. Conclusions

This paper has proposed a new method for graduating mortality data, which we believe to be suitable

for data over adult ages. The method has the great advantage that it is relatively automatic: in most

cases, the results can simply be taken as they stand without any further adjustment. We believe that this

is the major advantage of this new method over the more conventional process of searching through a

set of possible models and trying to choose one which is appropriate. In many cases, the estimation of

the parameters using maximum likelihood can be problematic because of the non-linear nature of the

mean. For the Bayesian model, we have not encountered any such problems although there is the

question of the restrictions on the parameters in Section 4. The complicated process described in Forfar

et al. (1988) where a large range of potential models have to be fitted and assessed separately is

replaced in the Bayesian method with a automatic procedure that requires little intervention from the

user. Clearly, every graduation should be checked, but we believe that this new automatic method will

produce a set of graduated rates which are acceptable for a large range of applications. Finally, we

would emphasise again that the Bayesian model includes some model error in the calculation of the

confidence intervals. We believe that this feature is more realistic than the conventional method where

the confidence intervals are calculated assuming that the model chosen is the correct model.

We have implemented the procedure in winBUGS, which has the advantage that it is possible for

anyone to use the code for their own data, and to experiment with any changes that they might like

to consider. A restriction of using winBUGS is that it is necessary to use the RJMCMC as it is

implemented in the software, as pointed out at various points in this paper. A further development

would be to implement the method using code created specifically for this purpose in a programme

such as Visual Basic.
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Appendix: WinBUGS code

This Appendix contains the WinBUGS code for the data in Example 2. This can be easily adapted

for other data.

model{
# Likelihood
  for(i in 1:78) {d[i]~dpois(mu[i]); 
  mu[i]<-e[i]*mufit[i] 
  mufit[i]<-lpr[i]+exp(lps[i]) 
  lpr[i]<-br1[1]+br1[2]*X[i,1]+br1[3]*X[i,2] 
  lps[i]<-
bs1[1]+bs1[2]*X[i,1]+bs1[3]*X[i,2]+bs1[4]*X[i,3]+bs1[5]*X[i,4]+bs1[6]*X
[i,5]
  } 

#Transdimensional models   
  psir[1:3]<-jump.lin.pred(XR2[1:3,1:2],kr1,tau1) 
  tau1~dgamma(0.001,0.001) 
  idr<-jump.model.id(psir[1:3]) 
  kr1~dbin(0.5,2) 
  psis[1:5]<-
jump.lin.pred.int(XS2[1:5,1:4],ks1,tau2,3.9799,0.0001)
  tau2~dgamma(0.001,0.001) 
  ids<-jump.model.id(psis[1:5]) 
  ks1~dbin(0.5,4) 

#Prior distribution of alpha4 
  bs1[1]~dnorm(-3.7435,0.0001) 

#Extraction of parameter values from transdimensional models, including 
constraints
  for (i in 1:3) { 
  br2[i]~dnorm(psir[i],1000) 
   } 
  for (i in 1:5) { 
  bs2[i]~dnorm(psis[i],1000) 
   } 
  bs1[2]<-bs2[1] 
  for (i in 1:4) {bs1[i+2]<-bs2[i+1]-bs2[1]} 
  br1[1]<-max(0,br2[1]) 
  br1[2]<-min(br1[1]+br1[3],br2[2]-br2[1]) 
  br1[3]<-max(0,br2[3]-br2[1]) 
}

Data
list(
d=c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,2,5,10,11,7,25,51,4
3,58,99,937,2408,
3008,3556,3945,4209,4448,4806,4808,5149,5047,5037,4867,4727,4456,4049,3
509,
3016,2448,2126,1775,1467,1234,1021,842,627,482,365,233,165,134,76,57,28
,25,11,8,2,0,0,0,2,0,1),
e=c(1,0.5,0.5,0.5,13,20,17,10.5,6,3.5,2,6,5.5,6.5,5.5,11.5,12.5,14.5,16
.5,25.5,53.5,63.5,84,121,206,341,442.5,537.5,617,1380.2, 2459.5, 2649, 
2884.8, 3271.8, 36460.2, 90619,101939,105445.2,104575.8,101021.8, 
96954, 92197.5, 86210.8, 80050.2, 73819.2, 67097.2, 60212, 52777, 
45130.2, 37312, 29974.2, 23539,18308.5,14281, 11134, 8578.5, 6622.2, 
5104.8, 3827.8, 2787.5, 1989.8, 1323.2, 895, 579.5, 376.8, 240.8, 159, 
95, 59, 32.2, 17.2, 5.5, 6.5, 4.5, 4, 2.5, 0.5, 0.5), 
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XR2=structure(
.Data=c(
0,0,
1,0,
0,1
),
.Dim=c(3,2)),
XS2=structure(
.Data = c( 
0,0,0,0,
1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1
),
.Dim = c(5,4)), 
X=structure(
.Data=c(
-1,1,-1,1,-1,
-0.775280899,0.202120944,0.461879884,-0.918294248,0.961992096,
-0.730337079,0.066784497,0.63278669,-0.991079662,0.81485776,
-0.662921348,-0.121070572,0.823441882,-0.970683833,0.463532189,
-0.640449438,-0.179649034,0.870561684,-0.935452449,0.327658307,
-0.617977528,-0.23620755,0.909919443,-0.888411987,0.188117844,
-0.595505618,-0.290746118,0.941787511,-0.83093339,0.047863492,
-0.573033708,-0.343264739,0.966438241,-0.764338638,-0.090454634,
-0.550561798,-0.393763414,0.984143984,-0.689900748,-0.224477991,
-0.528089888,-0.442242141,0.995177093,-0.608843777,-0.352128609,
-0.505617978,-0.488700922,0.999809921,-0.522342818,-0.471598082,
-0.483146067,-0.533139755,0.99831482,-0.431524003,-0.581336569,
-0.460674157,-0.575558642,0.990964142,-0.3374645,-0.680041793,
-0.438202247,-0.615957581,0.97803024,-0.241192517,-0.766648034,
-0.415730337,-0.654336574,0.959785466,-0.143687297,-0.840315129,
-0.393258427,-0.690695619,0.936502172,-0.045879123,-0.900417469,
-0.370786517,-0.725034718,0.908452712,0.051350684,-0.946532995,
-0.348314607,-0.757353869,0.875909437,0.147169767,-0.978432196,
-0.325842697,-0.787653074,0.8391447,0.24079473,-0.996067108,
-0.303370787,-0.815932332,0.798430853,0.33149114,-0.999560309,
-0.280898876,-0.842191642,0.754040249,0.418573525,-0.989193914,
-0.258426966,-0.866431006,0.706245239,0.501405377,-0.96539858,
-0.235955056,-0.888650423,0.655318177,0.579399148,-0.928742494,
-0.213483146,-0.908849893,0.601531415,0.652016255,-0.879920378,
-0.191011236,-0.927029415,0.545157305,0.718767074,-0.819742479,
-0.168539326,-0.943188991,0.486468199,0.779210947,-0.749123575,
-0.146067416,-0.95732862,0.425736451,0.832956174,-0.669071962,
-0.123595506,-0.969448302,0.363234412,0.87966002,-0.580678462,
-0.101123596,-0.979548037,0.299234434,0.919028713,-0.48510541,
-0.078651685,-0.987627825,0.234008871,0.950817441,-0.38357566,
-0.056179775,-0.993687666,0.167830075,0.974830354,-0.277361575,
-0.033707865,-0.99772756,0.100970397,0.990920567,-0.167774031,
-0.011235955,-0.999747507,0.033702191,0.998990154,-0.056151408,
0.011235955,-0.999747507,-0.033702191,0.998990154,0.056151408,
0.033707865,-0.99772756,-0.100970397,0.990920567,0.167774031,
0.056179775,-0.993687666,-0.167830075,0.974830354,0.277361575,
0.078651685,-0.987627825,-0.234008871,0.950817441,0.38357566,
0.101123596,-0.979548037,-0.299234434,0.919028713,0.48510541,
0.123595506,-0.969448302,-0.363234412,0.87966002,0.580678462,
0.146067416,-0.95732862,-0.425736451,0.832956174,0.669071962,
0.168539326,-0.943188991,-0.486468199,0.779210947,0.749123575,
0.191011236,-0.927029415,-0.545157305,0.718767074,0.819742479,
0.213483146,-0.908849893,-0.601531415,0.652016255,0.879920378,
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0.235955056,-0.888650423,-0.655318177,0.579399148,0.928742494,
0.258426966,-0.866431006,-0.706245239,0.501405377,0.96539858,
0.280898876,-0.842191642,-0.754040249,0.418573525,0.989193914,
0.303370787,-0.815932332,-0.798430853,0.33149114,0.999560309,
0.325842697,-0.787653074,-0.8391447,0.24079473,0.996067108,
0.348314607,-0.757353869,-0.875909437,0.147169767,0.978432196,
0.370786517,-0.725034718,-0.908452712,0.051350684,0.946532995,
0.393258427,-0.690695619,-0.936502172,-0.045879123,0.900417469,
0.415730337,-0.654336574,-0.959785466,-0.143687297,0.840315129,
0.438202247,-0.615957581,-0.97803024,-0.241192517,0.766648034,
0.460674157,-0.575558642,-0.990964142,-0.3374645,0.680041793,
0.483146067,-0.533139755,-0.99831482,-0.431524003,0.581336569,
0.505617978,-0.488700922,-0.999809921,-0.522342818,0.471598082,
0.528089888,-0.442242141,-0.995177093,-0.608843777,0.352128609,
0.550561798,-0.393763414,-0.984143984,-0.689900748,0.224477991,
0.573033708,-0.343264739,-0.966438241,-0.764338638,0.090454634,
0.595505618,-0.290746118,-0.941787511,-0.83093339,-0.047863492,
0.617977528,-0.23620755,-0.909919443,-0.888411987,-0.188117844,
0.640449438,-0.179649034,-0.870561684,-0.935452449,-0.327658307,
0.662921348,-0.121070572,-0.823441882,-0.970683833,-0.463532189,
0.685393258,-0.060472163,-0.768287684,-0.992686235,-0.592473223,
0.707865169,0.002146194,-0.704826737,-0.999990788,-0.710890558,
0.730337079,0.066784497,-0.63278669,-0.991079662,-0.81485776,
0.752808989,0.133442747,-0.55189519,-0.964386066,-0.900101809,
0.775280899,0.202120944,-0.461879884,-0.918294248,-0.961992096,
0.797752809,0.272819088,-0.362468421,-0.85113949,-0.995529417,
0.820224719,0.34553718,-0.253388447,-0.761208115,-0.995334978,
0.842696629,0.420275218,-0.13436761,-0.646737483,-0.955639383,
0.865168539,0.497033203,-0.005133559,-0.50591599,-0.870271638,
0.887640449,0.575811135,0.13458606,-0.336883074,-0.732648146,
0.91011236,0.656609014,0.285063599,-0.137729205,-0.535761703,
0.93258427,0.73942684,0.44657141,0.093504104,-0.272170497,
0.95505618,0.824264613,0.619381845,0.358824305,0.066012894,
0.97752809,0.911122333,0.803767258,0.660287812,0.487132508,
1,1,1,1,1
),
.Dim=c(78,5))
)

Initial values 

list(br2=c(0,0,0),bs2=c(3.98,3.98,3.98,3.98,3.98),
bs1=c(-3.7435,NA,NA,NA,NA,NA),tau1=10,tau2=10)
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