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Abstract

We continue the analysis of large deviations for randomly connected neural networks
used as models of the brain. The originality of the model relies on the fact that the
directed impact of one particle onto another depends on the state of both particles, and
they have random Gaussian amplitude with mean and variance scaling as the inverse of the
network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)),
we show that under sufficient regularity assumptions, the empirical measure satisfies
a large deviations principle with a good rate function achieving its minimum at a
unique probability measure, implying, in particular, its convergence in both averaged and
quenched cases, as well as a propagation of a chaos property (in the averaged case only).
The class of model we consider notably includes a stochastic version of the Kuramoto
model with random connections.
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1. Introduction

We pursue the study of randomly connected neural networks inspired from neurobiology.
In the companion paper [5], we studied spatially extended neural networks with space-dependent
delays and random interactions with mean and variance depending on cell locations, and scaling
as the inverse of the network size. In that model, as well as in all previous works dealing
with similar interaction coefficient scalings, the fact that the interaction between two particles
may depend on the state of both particles was neglected. However, it is now accepted that
the interaction between two neurons depends on the state of both the pre-synaptic and post-
synaptic cell; see [8] and [9]. This type of state-dependent interaction is much more general
and actually ubiquitous in the life sciences, e.g. in models of collective animal behavior [6] or
natural coupled oscillators such as those described by the canonical Kuramoto model; see [11],
[12], [19], and [20]. In this paper we address the dynamics of networks with state-dependent
interactions and random coupling amplitudes in a general setting. In detail, we consider the
interaction of N agents described by a real state variable (X

i,N
t )i=1,...,N ∈ R

N and satisfying a
stochastic differential equation (SDE) of the type of [5, Equation (1)], i.e.

dX
i,N
t =

(
f (ri, t, X

i,N
t ) +

N∑
j=1

Jij b(X
i,N
t , X

j,N
t )

)
dt + λ dWi

t , (1.1)
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984 T. CABANA AND J. D. TOUBOUL

where f describes the intrinsic dynamics of the particle, Jij models the random interaction
amplitude, b(x, y) is the typical impact of a particle with state y on a particle with state x,
and each particle is subject to independent Brownian fluctuations (Wi

t ); see [5] for details of
this equation.

Following the general methodology introduced in [1]–[3] and [10], and also used in the
companion paper [5], we will show that using large deviations techniques the empirical measure
of system (1.1), averaged over the disorder parameters, satisfies a large deviations principle
(LDP), with an explicit good rate function that has a unique minimum implying convergence
of the network equations towards a non-Markovian complex mean-field equation. Taking
into account general interactions gives rise to a number of specific difficulties compared to
previous works. In particular, the dependence on the state of the particle induces complex
interdependences between processes that prevent us from isolating the exponential martingale
terms as carried out when b(x, y) = S(y). We handle this issue using specific estimates that
will lead us to restrict the time horizon.

The paper is organized as follows. We start by introducing the mathematical setting and main
results in Section 2. The proofs are found in the following sections. In Section 3 we establish a
partial LDP for the averaged empirical measure, which relies on the identification of the good
rate function as well as on exponential tightness and upper bounds on closed sets for the sequence
of empirical measures. (In the companion paper [5] we proved tightness and upper bounds only
for compact sets to avoid any constraint on the time horizon.) In Section 4 we demonstrate
that the good rate function admits a unique minimum Q and prove the averaged and quenched
convergence of the empirical measure towards Q using the methodology introduced in [5]. We
conclude with a discussion on a few perspectives as well as some open research directions.

2. Mathematical setting and statement of the results

The general mathematical setting was introduced in [5, Section 2]. The aim of this second
paper is to deal with complex interactions of the form b(x, y) which depend on the state of both
particles.

In order to expedite the analysis, we neglect spatial aspects already addressed in the first
paper and, in particular, consider the following:

(i) the synaptic coefficients identically distributed with law N (J̄ /N, σ 2/N),

(ii) diffusion coefficients independent of space, and

(iii) no interaction delay.

Formally, this amounts to assuming, in the general framework of [5, Section 2], that J (r, r ′) ≡
J̄ ∈ R, σ(r, r ′) ≡ σ ∈ R

∗+, λ(r) ≡ λ > 0, and τ(r, r ′) ≡ 0. Therefore, the initial conditions
are real variables (Cτ = R) and the trajectories belong to C = C([0, T ], R).

Our results hold under the condition that the horizon of time T is such that

2σ 2‖b‖2∞T

λ2 < 1. (2.1)

Compared to the results of the companion paper [5], this condition entails stronger results on
QN(μ̂N ∈ ·): an exponential tightness (Theorem 2.1) and an upper bound for closed sets (and
not restricted to compact sets, Theorem 2.2).

We summarize these results in the next theorems.
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Theorem 2.1. For small enough T for inequality (2.1) to hold, there exists a unique double-
layer probability distribution Q ∈ M+

1 (C × D) such that

QN(μ̂N ∈ ·) L−→ δQ(·) ∈ M+
1 (M+

1 (C × D))

exponentially fast, where ‘
L−→’denotes weak convergence of probability measures for processes.

The existence of Q and the exponential convergence results follow from:

(i) the exponential tightness of the sequence QN(μ̂N ∈ ·),
(ii) a partial LDP for the empirical measure relying on an upper bound for closed sets, and

(iii) a characterization of the set of minima of the good rate function.

Theorem 2.2. (Partial LDP.) For small enough T for inequality (2.1) to hold, we have:

(i) for any real number M ∈ R, there exists a compact subset KM such that for any integer N ,

1

N
log QN(μ̂N /∈ KM) ≤ −M.

(ii) there exists a good rate function H : M+
1 (C × D) such that for any closed subset F of

M+
1 (C × D),

lim sup
N→∞

1

N
log QN(μ̂N ∈ F) ≤ − inf

F
H.

The proof can be found in Section 3.

Theorem 2.3. (Minima of the rate function.) The good rate function H achieves its minimal
value at a unique probability measure Q ∈ M+

1 (C × D) satisfying

Q 
 P,
dQ

dP
(x, r) = E

[
exp

{
1

λ

∫ T

0
G

Q
t (x) dWt(x, r) − 1

2λ2

∫ T

0
(G

Q
t (x))2 dt

}]
,

where (Wt (·, r))t∈[0,T ] is a Pr -Brownian motion, and GQ(x) is under (�̃, F̃ , P ), a Gaussian
process with mean

E [GQ
t (x)] =

∫
C×D

J̄b(xt , yt ) dQ(y, r ′)

and covariance

E [GQ
t (x)GQ

s (x)] =
∫

C×D

σ 2b(xt , yt )b(xs, ys) dQ(y, r ′).

The proof of this theorem is the topic of Section 4. Combining both results, the general
result of Sznitman [21, Lemma 3.1] leads to the next theorem.

Theorem 2.4. (Propagation of chaos.) For small enough T for inequality (2.1) to hold, QN is
Q-chaotic in the sense that for any m ∈ N

∗, any collection of bounded continuous functions
ϕ1, . . . , ϕm : C × D → R, and any set of nonzero distinct integers k1, . . . , km, we have

lim
N→∞

∫
(C×D)N

m∏
j=1

ϕj (x
kj , rkj

) dQN(x, r) =
m∏

j=1

∫
C×D

ϕj (x, r) dQ(x, r).

Our results partially extend to the quenched case as stated in the next theorem.
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Theorem 2.5. (Quenched results.) For small enough T for inequality (2.1) to hold, we have
the quenched upper bound

lim sup
N→∞

1

N
log QN

r (J )(μ̂N ∈ F) ≤ − inf
F

H, P -a.s. for all closed F ⊂ M+
1 (C × D),

where H is the good rate function introduced in Theorem 2.2 and we abbreviate P -almost
surely to P -a.s. In particular, for almost every realization of r and J , QN

r (J )(μ̂N ∈ ·) is
exponentially tight and converges in law toward δQ exponentially fast. Eventually, this implies
P -almost sure convergence of the empirical measure to Q.

3. The LDP

In this section we prove the existence of a partial LDP for the averaged empirical measure.
We start by constructing the appropriate good rate function before obtaining an upper bound
and an exponential tightness result. Many points of the proof proceed as in the companion
paper [5] or as in earlier works; see [1], [4], and [10]. To avoid repetition we will often refer to
these contributions and focus our attention on the new difficulties arising in this state-dependent
interactions setting.

3.1. Construction of the good rate function

For μ ∈ M+
1 (C × D), we define the two following functions respectively on [0, T ]2 × C

and [0, T ] × C:

Kμ(s, t, x) := σ 2

λ2

∫
C×D

b(xt , yt )b(xs, ys) dμ(y, r ′),

mμ(t, x) := J̄

λ

∫
C×D

b(xt , yt ) dμ(y, r ′).

Both functions are well defined as (y, r) → b(xt , yt )b(xs, ys) and (y, r) → b(xt , yt ) are
continuous for the uniform norm on C × D, and μ is a Borel measure. They are bounded, i.e.

|Kμ(s, t, x)| ≤ σ 2‖b‖2∞
λ2 and |mμ(t, x)| ≤ J̄‖b‖∞

λ
.

They are also continuous by the dominated convergence theorem.
Since Kμ has a covariance structure, we can define a probability space (�̂, F̂ , γ ) and a family

of stochastic processes (Gμ(x))x∈C, μ∈M+
1 (C×D) such that Gμ(x) is a centered Gaussian process

with covariance Kμ(·, ·, x) under the measure γ . We denote by Eγ the expectation under γ .

Remark 3.1. For the sake of measurability under Borel measures of M+
1 (C × D), it is conve-

nient to choose a family (G
μ
t (x))μ,x regular in x, which can be achieved by constructing the

process explicitly as in [10, Remark 2.14].

We recall that for any Gaussian process (Gt )t∈[0,T ] of (�̂, F̂ , γ ), and any t ∈ [0, T ],

	t(G) := exp

{
−1

2

∫ t

0
G2

s ds

}(
Eγ

[
exp

{
−1

2

∫ t

0
G2

s du

}])−1

.

We also define for any ν ∈ M+
1 (C × D), (x, r) ∈ C × D, and t ∈ [0, T ],

Lν
t (x, r) :=

∫ t

0
Gν

s (x)(dWs(x, r)−mν(s, x) ds), V ν
t (x, r) := Wt(x, r)−

∫ t

0
mν(s, x) ds.
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Moreover, we introduce

dγK̃t
ν,x

(ω) := 	t(G
ν(ω, x)) dγ (ω) for all ω ∈ �̂,

for any t ∈ [0, T ], x ∈ C, ν ∈ M+
1 (C × D). Neveu [15] proved that γK̃t

ν,x
is a probability

measure, under which Gν(x) is a centered Gaussian process with covariance

K̃t
ν,x(s, u) := Eγ [Gν

u(x)Gν
s (x)	t (G

ν(x))].
Moreover, for any fixed N ∈ N

∗ and for all (x, r) ∈ (C × D)N , let

XN
i (x, r) :=

∫ T

0
G

i,N
t (x) dWt(x

i, ri) − 1

2

∫ T

0
G

i,N
t (x)

2
dt,

where G
i,N
t (x) := (1/λ)

∑N
j=1 Jij b(xi

t , x
j
t ). As proved in [5], we have the following good

properties.

Proposition 3.1. There exists CT > 0 such that for any ν ∈ M+
1 (C × D), x ∈ C, t ∈ [0, T ],

sup
0≤s,u≤t

K̃ t
ν,x(s, u) ≤ CT , 	t (G

ν(x)) ≤ CT , (3.1)

Eγ

[
exp

{
−1

2

∫ T

0
Gν

t (x)
2 dt

}]
= exp

{
−1

2

∫ T

0
K̃t

ν,x(t, t) dt

}
.

Moreover, if (Gt )0≤t≤T and (G′
t )0≤t≤T are two centered Gaussian processes of (�̂, F̂ , γ ) with

uniformly bounded covariance, then there exists C̃T > 0 such that for all t ∈ [0, T ],
|	t(G) − 	t(G

′)| ≤ C̃T

{∫ t

0
Eγ [(Gs − G′

s)
2]1/2 ds +

∫ t

0
|G2

s − G′
s

2| ds

}
. (3.2)

Lemma 3.1. It holds that
dQN

dP ⊗N
(x, r) = exp{N�̄(μ̂N)},

where

�̄(μ̂N ) := 1

N

N∑
i=1

log Eγ

[
exp

{∫ T

0
(G

μ̂N
t (xi) + mμ̂N

(t, xi)) dWt(x
i, ri)

− 1

2

∫ T

0
(G

μ̂N
t (xi) + mμ̂N

(t, xi))2 dt

}]
.

As in [5], this lemma suggests that a version of Varadhan’s lemma and an LDP might hold.
In the next lemma we properly define the associated Varadhan functional.

Proposition 3.2. Let

Xμ(x, r) :=
∫ T

0
(G

μ
t (x) + mμ(t, x)) dWt(x, r) − 1

2

∫ T

0
(G

μ
t (x) + mμ(t, x))2 dt.

The map

� := μ ∈ M+
1 (C × D) →

⎧⎨⎩
∫

C×D

log Eγ [exp{Xμ(x, r)}] dμ(x, r) if I (μ | P) < ∞,

+∞ otherwise

is well defined in R ∪ {+∞}, and satisfies:

(i) � ≤ I (· | P),

(ii) If 2σ 2‖b‖2∞T/λ2 < 1, there exists ι ∈ (0, 1), e ≥ 0, |�(μ)| ≤ ιI (μ | P) + e.
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The proof differs slightly from that of [5, Proposition 3] as the dependence of the Gaussian
process Gμ in x prevents us from extracting it from the integral over Pr . We thus reproduce
the important lines of the proof, and rely on Hölder’s inequality to deal with this new problem.

Proof of Proposition 3.2. We suppose that I (μ | P) < +∞ and μ � P as the result is
otherwise trivial. As W(·, r) is a Pr -Brownian motion, Girsanov’s theorem ensures that the
stochastic integral

∫ T

0 (G
μ
t (x) + mμ(t, x)) dWt(x, r) is well defined γ -a.s. under μ.

(i) Following the proof of [5, Proposition 3], we obtain, for any α ≥ 1,

α

∫
C×D

log(Eγ [exp{Xμ(x, r)}] ∨ M−1) dμ(x, r)

≤ I (μ | P) + log

{
M−α + Eγ

[∫
D

∫
C

exp{αXμ(x, r)} dPr(x) dπ(r)

]}
, (3.3)

α

∫
C×D

(log Eγ [exp{Xμ(x, r)}])− dμ(x, r)

≤ I (μ | P) + αCT + log

{
Eγ

[∫
D

∫
C

exp{αXμ(x, r)} dPr(x) dπ(r)

]}
, (3.4)

with the right-hand side of these two inequalities being possibly infinite. Moreover, W(·, r)
being a Pr -Brownian motion, the martingale property yields, for α = 1,

Eγ

[∫
D

∫
C

exp{αXμ(x, r)} dPr(x) dπ(r)

]
= 1,

so that the result follows by sending M → +∞.
(ii) Let α > 1. Using the martingale property and Hölder’s inequality, we have∫

C×D

Eγ [exp{αXμ(x, r)}] dP(x, r)

≤
{∫

C×D

Eγ

[
exp

{
α2(α + 1)

2

∫ T

0
(G

μ
t (x) + mμ(t, x))2 dt

}]
dP(x, r)

}(α−1)/α

.

Under the short-time hypothesis 2σ 2‖b‖2∞T/λ2 < 1, we can proceed as in [5, Proposition 9]
to prove finiteness of the right-hand side for small enough α − 1, as we are able to rely on the
following identity, valid for ζ ∼ N (α, β) with β < 1:

E

[
exp

{
1

2
ζ 2

}]
= 1√

1 − β
exp

{
α2

2(1 − β)

}
= exp

{
1

2

(
α2

1 − β
− log(1 − β)

)}
.

Hence, by the Jensen and Fubini inequalities, it follows that there exists a constant CT uniform
in x ∈ C such that

Eγ

[
exp

{
α2(α + 1)T

2

∫ T

0
(G

μ
t (x) + mμ(t, x))2 dt

T

}]
≤ eCT ,

which implies that∫
C×D

Eγ [exp{αXμ(x, r)}] dP(x, r) ≤ exp{(α − 1)CT }. (3.5)
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Inequalities (3.3)–(3.5) ensure that, under the condition 2σ 2‖b‖2∞T/λ2 < 1 and for α > 1,

|�(μ)| ≤ ιI (μ | P) + e

with ι := 1/α and e := (2α − 1)CT . �
Define

H(μ) :=
{

I (μ | P) − �(μ) if I (μ | P) < ∞,

∞ otherwise;

for any ν ∈ M+
1 (C × D),

�ν := μ ∈ M+
1 (C × D) →

⎧⎨⎩
∫

C×D

log Eγ [exp{Xν(x, r)}] dμ(x, r) if I (μ | P) < ∞,

+∞ otherwise,

Hν : μ →
{

I (μ | P) − �ν(μ) if I (μ | P) < +∞,

+∞ otherwise,

as well as the following probability measure on C × D:

dQν(x, r) := exp{�̄ν(δ(x,r))} dP(x, r) := Eγ [exp{Xν(x, r)}] dP(x, r). (3.6)

As in [5, Theorem 6], we have the relatively intuitive result of the next theorem.

Theorem 3.1. It holds that Hν and I (· | Qν) are equal on M+
1 (C × D). In particular, Hν is

a good rate function that attains its unique minimum at Qν .

We introduce the Wasserstein distance on M+
1 (C × D), compatible with the weak topol-

ogy, i.e.

dV
T (μ, ν) := inf

ξ

{∫
(C×D)2

[‖x − y‖2∞,T + ‖r − r ′‖2
Rd ] dξ((x, r), (y, r ′))

}1/2

,

where the infimum is taken on the laws ξ ∈ M+
1 ((C ×D)2) with marginals μ and ν. Moreover,

we denote for any t ∈ [0, T ], and any (x, r), (y, r ′) ∈ C × D,

dt ((x, r), (y, r ′)) := (‖x − y‖2∞,t + ‖r − r ′‖2
Rd )

1/2,

where we recall that ‖x − y‖∞,t := sup0≤s≤t |xs − ys |2, and also

dV
t (μ, ν) := inf

ξ

{∫
(C×D)2

dt ((x, r), (y, r ′))2 dξ((x, r), (y, r ′))
}1/2

.

The metric dV
T controls the regularity of the mean and variance structure of the Gaussian inter-

actions and, in the long run (see Theorem 3.2), of the error between H and its approximation Hν ,
as we show in the next proposition.

Proposition 3.3. There exists CT > 0 such that for any μ, ν ∈ M+
1 (C×D), x ∈ C, t ∈ [0, T ],

and u, s ∈ [0, t],
|mμ(t, x) − mν(t, x)| + |Kμ(t, s, x) − Kν(t, s, x)| + |K̃t

μ,x(s, u) − K̃t
ν,x(s, u)|

≤ CT dV
T (μ, ν). (3.7)
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Proof. First, observe that for any ξ ∈ M+
1 ((C × D)2) with marginals μ and ν,

|mμ(t, x) − mν(t, x)| =
∣∣∣∣ J̄λ

∫
C×D

b(xt , yt ) d(μ − ν)(y, r ′)
∣∣∣∣

≤ J̄

λ

∫
(C×D)2

|b(xt , yt ) − b(xt , zt )| dξ((y, r ′), (z, r̃ ′))

≤ J̄Kb

λ

{∫
(C×D)2

‖y − z‖2∞,t dξ((y, r ′), (z, r̃ ′))
}1/2

,

where the second inequality follows from the Cauchy–Schwarz inequality, so that |mμ(t, x) −
mν(t, x)| ≤ CT dV

T (μ, ν).
Fix now ξ ∈ M+

1 ((C×D)2) with marginals μ and ν. Letting (G, G′) be a γ -bi-dimensional
centered Gaussian processes with covariance, i.e.

Kξ(s, t, x) := σ 2

λ2

∫
(C×D)2

(
b(xs, ys)b(xt , yt ) b(xs, ys)b(xt , zt )

b(xs, zs)b(xt , yt ) b(xs, zs)b(xt , zt )

)
dξ((y, r ′), (z, r̃ ′)),

(3.8)
we easily obtain (see [5, Proof of Proposition 5]) the inequalities

|Kμ(t, s, x) − Kν(t, s, x)|
≤ CT {Eγ [(Gt − G′

t )
2]1/2 + Eγ [(Gs − G′

s)
2]1/2},

|K̃t
μ,x(s, u) − K̃t

ν,x(s, u)|

≤ CT

{(∫ t

0
Eγ [(Gv − G′

v)
2] dv

)1/2

+ Eγ [(Gs − G′
s)

2]1/2 + Eγ [(Gu − G′
u)

2]1/2
}
,

where the last inequality follows from (3.1) and (3.2).
We remark that

Eγ [(Gt − G′
t )

2] = σ 2

λ2

∫
(C×D)2

(b(xt , yt ) − b(xt , zt ))
2 dξ((y, r ′), (z, r̃ ′))

≤ σ 2K2
b

λ2

∫
(C×D)2

dT ((y, r ′), (z, r̃ ′))2 dξ((y, r ′), (z, r̃ ′))

and taking the infimum over ξ yields the result. �
In the following theorem we control the error between H and Hν and ensure that the former

is a good rate function under the time condition (2.1).

Theorem 3.2. It holds that:

(i) there exists CT > 0 such that for every μ, ν ∈ M+
1 (C × D),

|�ν(μ) − �(μ)| ≤ CT (1 + I (μ | P))dV
T (μ, ν).

(ii) If 2σ 2‖b‖2∞T/λ2 < 1, H is a good rate function.

Proof. The basic mechanism for the proof is similar to [5, Lemma 4] or [1, Lemmas 3.3
and 3.4]. However, the dependence in x of the Gaussian Gμ(x) is problematic as we cannot
take it out of the integrals on x. In order to deal with this difficulty, we rely on tools from
probability theory, such as Fubini’s theorem for stochastic integrals, or the Dambis–Dubins–
Schwarz (DDS) theorem. We focus our attention on (i), whereas (ii), previously shown without
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restriction on time in cases where b(x, y) = S(y) (see [4] and [5]), is now valid only under the
short-time hypothesis of Proposition 3.2(ii).

As proved in [5], �ν can be expressed as �ν(μ) = �1,ν(μ) + �2,ν(μ) with

�1,ν(μ) := −1

2

∫ T

0
(K̃t

ν,x(t, t) + mν(t, x)2) dt dμ(x, r),

and

�2,ν(μ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2

∫
C×D

∫
�̂

Lν
T (x, r)2 dγK̃T

ν,x
dμ(x, r)

+
∫

C×D

∫ T

0
mν(t, x) dWt(x, r) dμ(x, r) if I (μ | P) < ∞,

+∞ otherwise.

The previous decomposition has the effect of splitting the difficulties, i.e. |�ν(μ)−�(μ)| ≤
|�1,ν(μ) − �1(μ)| + |�2,ν(μ) − �2(μ)|. The first term is easily controlled by CT dV

T (μ, ν)

using Proposition 3.3. We now prove that

|�2,ν(μ) − �2(μ)| ≤ CT (1 + I (μ | P))dV
T (μ, ν).

The inequality is trivial when I (μ | P) = ∞. We now assume that I (μ | P) < ∞ implying
that μ � P and the finiteness of �(μ) and �ν(μ). In particular, μ has a Borel-measurable
density ρμ with respect to P , i.e.

dμ(x, r) = ρμ(x, r) dP(x, r).

Let ε > 0, and let ξ ∈ M+
1 ((C × D)2) with marginals μ and ν be such that{∫

(C×D)2
dT ((y, r ′), (z, r̃))2 dξ((y, r ′), (z, r̃))

}1/2

≤ dV
T (μ, ν) + ε.

Also let (G(x), G′(x))x∈C be a family of bi-dimensional centered Gaussian process from the
probability space (�̂, F̂ , γ ) with covariance Kξ defined by (3.8). In the expressions of �2,ν(μ)

and �2(μ), we can then replace the triplet (Gμ, Gν, γ ) by (G, G′, γ ) so that we choose their
covariance in terms of Kξ (see [5, Remark 3]). As proved in Proposition 3.3, we can show that
there exists a constant CT > 0 such that for any t ∈ [0, T ], x ∈ C,

Eγ [(Gt (x) − G′
t (x))2] ≤ (dV

T (μ, ν) + ε)2.

Also, for any t ∈ [0, T ],

Lt(x, r) :=
∫ t

0
Gs(x) dV μ

s (x, r), L′
t (x, r) :=

∫ t

0
G′

s(x) dV ν
s (x, r).

Then

|�2,ν(μ) − �2(μ)| ≤ 1

2

∣∣∣∣ ∫
C×D

Eγ [L′
T (x, r)2(	T (G′(x)) − 	T (G(x)))] dμ(x, r)

∣∣∣∣
+ 1

2

∣∣∣∣ ∫
C×D

Eγ [(LT (x, r)2 − L′
T (x, r)2)	T (G(x))] dμ(x, r)

∣∣∣∣
+

∣∣∣∣ ∫
C×D

∫ T

0
(mν − mμ)(t, x) dWt(x, r) dμ(x, r)

∣∣∣∣.
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Observe that, by (3.2), we have∣∣∣∣ ∫
C×D

Eγ [L′
T (x, r)2(	T (G′(x)) − 	T (G(x)))] dμ(x, r)

∣∣∣∣
≤ CT

{
(dV

T (μ, ν) + ε)

∫
C×D

Eγ [L′
T (x, r)2] dμ(x, r)

+
∫

C×D

∫ T

0
Eγ

[
|Gt(x)2 − G′

t (x)2|L′
T (x, r)2

]
dt dμ(x, r)

}
≤ CT (dV

T (μ, ν) + ε)

∫
C×D

Eγ [L′
T (x, r)2] dμ(x, r),

where the second equality follows from the Cauchy–Schwarz inequality, since Isserlis’ theorem
ensures that

Eγ [(G′
t (x) − Gt(x))2L′

T (x, r)2]
= Eγ [(G′

t (x) − Gt(x))2]Eγ [L′
T (x, r)2] + 2Eγ [(G′

t (x) − Gt(x))L′
T (x, r)]2

≤ 3Eγ [(G′
t (x) − Gt(x))2]Eγ [L′

T (x, r)2]
≤ 3(dT (μ, ν) + ε)2Eγ [L′

T (x, r)2],
again using Cauchy–Schwarz for the first inequality and, similarly,

Eγ [(G′
t (x) + Gt(x))2L′

T (x, r)2] ≤ CT Eγ [L′
T (x, r)2].

As a consequence, and again using Cauchy–Schwarz,

|�2,ν(μ) − �2(μ)|

≤ CT

{ ∏
ε=±1

(∫
C×D

Eγ

[(∫ T

0
(Gt (x) + εG′

t (x)) dV ν
t (x, r)

)2]
dμ(x, r)

)1/2

︸ ︷︷ ︸
B1

+ (dV
T (μ, ν) + ε)

∫
C×D

Eγ [L′
T (x, r)2] dμ(x, r)︸ ︷︷ ︸

B2

+
(∫

C×D

∣∣∣∣ ∫ T

0
(mν − mμ)(t, x) dWt(x, r)

∣∣∣∣2

dμ(x, r)

)1/2

︸ ︷︷ ︸
B3

+
∏

ε=±1

(∫
C×D

Eγ

[{∫ T

0
Gt(x)((1 + ε) dWt(x, r)

−(mμ(t, x) + εmν(t, x)) dt)

}2]
dμ(x, r)

)1/2

︸ ︷︷ ︸
B4

}
.

We remark that these four terms can be cast in the form∫
C×D

Eγ

[(∫ T

0
Ht(G, G′, μ, ν)(x)(α dWt(x, r) − Mt(μ, ν)(x) dt)

)2]
dμ(x, r)

with α equal to 0 or 1. Controlling such terms is the aim of the next technical lemma.
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Lemma 3.2. Let μ ∈ M+
1 (C × D) with μ � P and let the filtration (F x

t )t∈[0,T ] on C be
F x

t := σ(xs, 0 ≤ s ≤ t) (the σ -algebra on C generated by the coordinate process up to
time t). Also let:

• x ∈ C → (Mt(x))t∈[0,T ] be a bounded time-continuous process progressively measur-
able for the filtration (F x

t )t∈[0,T ] and continuous in x,

• (x, ω) ∈ C × �̂ → (Ht (x, ω))t∈[0,T ] be a progressively measurable process for the
filtration (F x

t ⊗ F̂ )t∈[0,T ] such that (Ht (x, ·), t ∈ [0, T ])x∈C is a continuous family of
γ -Gaussian processes (possibly deterministic) with uniformly bounded covariance,

and define

A(μ) :=
∫

C×D

∫
�̂

(∫ T

0
Ht(x, ω)(α dWt(x, r) − Mt(x) dt)

)2

dγ (ω) dμ(x, r)

with α ∈ {0, 1}. Then, there exists a constant CT > 0 independent of μ such that

A(μ) ≤ CT

{
α(I (μ | P) + 1) + sup

x∈C, t∈[0,T ]
M2

t (x)
}

sup
x∈C, t∈[0,T ]

Eγ [H 2
t (x)]

with the right-hand side being possibly infinite.

Proof. As (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R,

A(μ, ν) ≤ 2
∫

C×D

∫
�̂

{
α

(∫ T

0
Ht(x, ω) dWt(x, r)︸ ︷︷ ︸

NT (x,ω,r)

)2

+
(∫ T

0
Ht(x, ω)Mt(x) dt

)2}
dγ (ω) dμ(x, r)

≤ 2α

∫
�̂

∫
C×D

N2
T (x, ω, r) dμ(x, r) dγ (ω)

+ 2T

∫
C×D

∫ T

0
M2

t (x)Eγ [H 2
t (x)] dt dμ(x, r)

using Cauchy–Schwarz and Fubini in the second inequality.
Define the Radon–Nikodym density ρμ(x, r) := (dμ/dP)(x, r) and note that for every

r ∈ D, (Nt (, ·, ·, r)) is, γ -a.s., a well-defined Pr -martingale. Itô calculus yields, γ -a.s., the
indistinguishable equality

N2
T (x, ω, r) = 2

∫ T

0
Ht(x, ω)Nt (x, ω, r) dWt(x, r) +

∫ T

0
H 2

t (x, ω) dt

under Pr so that, γ -a.s.,∫
C×D

N2
T (x, ω, r)ρμ(x, r) dP(x, r)

= 2
∫

C×D

∫ T

0
Ht(x, ω)Nt (x, ω, r) dWt(x, r)ρμ(x, r) dP(x, r)

+
∫

C×D

∫ T

0
H 2

t (x, ω) dtρμ(x, r) dP(x, r).
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Relying again on Fubini’s theorem,

A(μ, ν) ≤ 4α

∫
C×D

Eγ

[∫ T

0
Ht(x)Nt (x, r) dWt(x, r)

]
ρμ(x, r) dP(x, r)

+ 2
∫

C×D

∫ T

0
Eγ [αH 2

t (x)] dt dμ(x, r)

+ 2T

∫
C×D

∫ T

0
M2

t (x)Eγ [H 2
t (x)] dt dμ(x, r). (3.9)

Under the favorable assumptions of the lemma, the last two terms on the right-hand side of
(3.9) are easily controlled taking the supremum of their integrand on C × [0, T ]. In order to
control the first term, we rely on the stochastic Fubini theorem (see [17, Theorem IV.65]) to
show that, P -a.s.,

ÑT (x, r) :=
∫ T

0
Eγ [Ht(x)Nt (x, r)] dWt(x, r) = Eγ

[∫ T

0
Ht(x)Nt (x, r) dWt(x, r)

]
.

In doing so, we need to ensure that:

(i) for all r ∈ D,

(x, ω) → (H̃t (x, ω, r) := Ht(x, ω)Nt (x, ω, r))t∈[0,T ] is F̂ ⊗ P -measurable,

where P is the σ -algebra generated by continuous (F x
t )t∈[0,T ]-adapted processes,

(ii) the following integrability condition holds for all r ∈ D:∫
C

∫ T

0

∫
�̂

H̃t (x, ω, r)2 dγ (ω) dt dPr(x) < ∞.

The first hypothesis is a direct consequence of the regularity and measurability hypotheses of
the lemma. We now demonstrate that the second hypothesis is valid. Indeed, for any t ∈ [0, T ],∫

C

∫
�̂

H̃t (x, ω, r)2 dγ (ω) dPr(x) =
∫

C
Eγ [Ht(x, r)2Nt(x, r)2] dPr(x)

≤
{∫

C
Eγ [H 4

t (x)] dPr(x)

}1/2

Eγ

[∫
C

N4
t (x, r) dPr(x)

]1/2

≤ CT Eγ

[∫
C
〈N〉2

t (x) dPr(x)

]1/2

≤ CT

{∫
C

∫ t

0
Eγ [H 4

s (x)] ds dPr(x)

}1/2

< +∞,

using Cauchy–Schwarz and Fubini for the first and third inequalities and the Burkhölder–Davis–
Gundy inequality for the second inequality. Hence, the theorem applies so that∫

C×D

Eγ

[∫ T

0
Ht(x)Nt (x, r) dWt(x, r)

]
dρμ(x, r) dP(x, r) =

∫
C×D

ÑT (x, r) dμ(x, r).
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Note that [5, Equation (10)] in conjunction with Cauchy–Schwarz yields∫
C×D

ÑT (x, r) dμ(x, r) ≤ 2

(∫
C×D

〈Ñ〉T (x, r) dμ(x, r)

)1/2

×
(

I (μ | P) + log

{∫
C×D

exp

{
Ñ2

T (x, r)

4〈Ñ〉T (x, r)

}
dP(x, r)

})1/2

.

As Ñ(·, r) is a Pr -local martingale for every r ∈ D, the DDS theorem ensures that
ÑT (·, r)2/4〈Ñ(·, r)〉T has the same law as B2

〈Ñ〉T /4〈Ñ〉T , where B is some Pr -Brownian

motion, so that there exists a constant C > 0 satisfying

log

{∫
C×D

exp

{
Ñ2

T (x, r)

4〈Ñ〉T (x, r)

}
dP(x, r)

}
≤ C.

We can therefore conclude that there exist two constants: C̃ > 0 independent of time and
CT > 0 increasing with T such that∫

C×D

Ñt (x, r) dμ(x, r)

≤ C̃

(∫
C×D

∫ T

0
Eγ [Ht(x)Nt (x, r)]2 dt dμ(x, r)

)1/2

(I (μ | P) + 1)1/2

≤ 2C̃ sup
(x,t)∈C×[0,T ]

{Eγ [〈N〉t (x)H 2
t (x)]}1/2

×
(∫ T

0
Eγ

[∫
C×D

N2
t (x, r)

4〈N〉t (x)
dμ(x, r)

]
dt

)1/2

(I (μ | P) + 1)1/2

≤ CT sup
C×[0,T ]

{Eγ [H 2
s (x)H 2

t (x)]}1/2(I (μ | P) + 1),

using Cauchy–Schwarz and Fubini for the first inequality, and DDS in the second, and [5,
Equation (10)]. An application of Isserlis’ theorem then yields the result. �

Returning to the Proof of Theorem 3.2, it is easy to check that B1, . . . , B4 are of the form of
the terms handled in Lemma 3.2, satisfying, in particular, the adaptability conditions (we recall
that the law ofGν

t (x)depends on the trajectory ofx up to time t). To conclude, we emphasize that
the quantities supx∈C, t∈[0,T ]Eγ [(Gt (x) − G′

t (x))2] and supx∈C, t∈[0,T ](mμ(t, x) − mν(t, x))2,
are bounded by (dV

T (μ, ν) + ε)2 (see (3.7) for the term involving the means). �
3.2. Upper bound and tightness

We are now in a position to demonstrate a partial LDP relying on the exponential tightness
of the family (QN(μ̂N ∈ ·))N , and an upper-bound inequality for closed subsets. To prove the
first point, we rely on the exponential tightness of P ⊗N and the short-time hypothesis (2.1),
and follow the approach proposed by Ben Arous and Guionnet in [1], [10]. The second point
is a consequence of an upper bound for compact sets obtained similarly as in [5, Theorem 7],
and both the exponential tightness of (QN(μ̂N ∈ ·))N and the suitability of H extending this
bound to every closed set.

Theorem 3.3. Under the condition 2σ 2‖b‖2∞T/λ2 < 1, we have the following:

(i) the sequence (μ̂N )N is exponentially tight under QN ,
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(ii) for any closed subset F of M+
1 (C × D),

lim sup
N→∞

1

N
log QN(μ̂N ∈ F) ≤ − inf

F
H.

Proof. (i) We use the exponential tightness of the sequence (μ̂N )N under P ⊗N provided by
Sanov’s theorem. Let KM be a compact of M+

1 (C × D) such that

1

N
log P ⊗N(μ̂N /∈ KM) ≤ −M,

and we remark that the Hölder inequality yields, for any conjugate exponents (p, q) with
(p + 1)p2σ 2‖b‖2∞T/λ2 < 1,

QN(μ̂N �∈ KM)

≤
(∫

(C×D)N
exp{pN�̄(μ̂N)} dP ⊗N(x, r)

)1/p

P ⊗N(μ̂N �∈ KM)1/q

≤
(∫

(C×D)N

N∏
i=1

Eγ (exp{pXμ̂N (xi, ri)}) dP ⊗N(x, r)

)1/p

P ⊗N(μ̂N �∈ KM)1/q,

using Jensen’s inequality for the second inequality. Let (X̃μ̂N ,i)1≤i≤N be independent copies
of Xμ̂N under the measure γ . Then, by independence, Hölder’s inequality, and the martingale
property, we have∫

(C×D)N

N∏
i=1

Eγ (exp{pXμ̂N (xi, ri)}) dP ⊗N(x, r)

= Eγ

[∫
(C×D)N

exp

{
p

N∑
i=1

X̃μ̂N ,i(xi, ri)

}
dP ⊗N(x, r)

]

≤
(∫

(C×D)N

N∏
i=1

Eγ

[
exp

{
p2(p + 1)

2

∫ T

0
(G

μ̂N
t (xi) + mμ̂N

(t, xi))2 dt

}]

× dP ⊗N(x, r)

)(p−1)/p

. (3.10)

We can now proceed as in the proof of Proposition 3.2(ii) to find that there exists a constant cT

such that ∫
(C×D)N

N∏
i=1

Eγ (exp{pXμ̂N (xi, ri)}) dP ⊗N(x, r) ≤ exp{(p − 1)cT N}.

As a consequence,

lim sup
N→+∞

1

N
log QN(μ̂N �∈ KM) ≤ (p − 1)cT − M

q
.

(ii) From (i) and since H is a good rate function, it is sufficient to prove the upper bound for
compact sets. We follow the method of [5, Theorem 7], relying on the following lemma. �
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Lemma 3.3. For any real number q > 1, if 2σ 2‖b‖2∞T/λ2 < 1 then there exist a strictly
positive real number δq and a function Cq : R

+ → R
+ such that limδ→0 Cq(δ) = 0, and, for

any δ < δq ,

∫
μ̂N∈K∩B(ν,δ)

Eγ

[ N∏
i=1

(exp{q(X̃μ̂N ,i(xi, ri) − X̃ν,i(xi, ri))} exp{X̃ν,i(xi, ri)})
]

dP ⊗N(x, r)

≤ exp{Cq(δ)N}.
Proof. Let

BN :=
∫

μ̂N∈K∩B(ν,δ)

Eγ

[ N∏
i=1

(exp{q(X̃μ̂N ,i(xi, ri)

− X̃ν,i(xi, ri))} exp{X̃ν,i(xi, ri)})
]

dP ⊗N(x, r).

We again split this quantity relying on the Hölder inequality with conjugate exponents (ρ, η), i.e.

BN ≤
{ BN

1︷ ︸︸ ︷∫
(C×D)N

N∏
i=1

Eγ [exp{ρXν(xi, ri)}] dP ⊗N(x, r)

}1/ρ

×
{∫

μ̂N∈B(ν,δ)

Eγ

[ N∏
i=1

exp{qη(X̃μ̂N ,i(xi, ri) − X̃ν,i(xi, ri))}
]

dP ⊗N(x, r)︸ ︷︷ ︸
BN

2

}1/η

.

On the one hand, we can proceed exactly as in (3.10) to obtain the existence of a constant cT

uniform in ρ and N such that

BN
1 ≤ exp{N(ρ − 1)cT },

so that we have to choose the proper relation between ρ − 1 and δ. On the other hand, the
second term can be handled exactly as in [5, Lemma 5]. �

4. Existence and characterization of the limit

4.1. Uniqueness of the minimum

This section is devoted to proving the existence and uniqueness of the minima of H in
order to obtain exponential convergence of the empirical measure. We then proceed as in [5,
Lemma 6] to obtain a convenient characterization of the minima of H .

Lemma 4.1. Let μ be a probability measure on C × D which minimizes H . Then

μ 
 P, μ = Qμ,

where μ → Qμ introduced in (3.6) is well defined from M+
1 (C × D) → M+

1 (C × D).

This leads to the next result.
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Theorem 4.1. The map μ → Qμ admits a unique fixed point.

Proof. As in [5, Lemma 3] or [1, Lemma 5.15], we can show that

dQμ

dP
(x, r) = exp

{∫ T

0
Oμ(t, x, r) dWt(x, r) − 1

2

∫ T

0
O2

μ(t, x, r) dt

}
,

where

Oμ(t, x, r) = Eγ [	t(G
μ(x))G

μ
t (x)L

μ
t (x, r)] + mμ(t, x).

Moreover, as in [5, Theorem 6], we introduce Qμ,r ∈ M+
1 (C) such as

dQμ(x, r) = dQμ,r(x) × dπ(r) for every (x, r) ∈ C × D.

An application of Girsanov’s theorem naturally leads us to introduce the following SDE with a
putative solution that has a law equal to Qμ,r :

dx
μ
t (r) = f (r, t, x

μ
t (r)) dt + λOμ(t, xμ(r), r) dt + λ dWt, x

μ
0 (r) = x̄0(r), (4.1)

where W is a P-Brownian motion and x̄0(r) ∈ R is the realization of the continuous version
for the family of initial laws (μ0(r))r∈D evaluated at r; see [5, Equation (3)]. We show, in
Lemma 4.2 below, that for any (r, μ) ∈ D ×M+

1 (C ×D), there exists a unique strong solution
(x

μ
t (r))t∈[0,T ] to (4.1). Let ν ∈ M+

1 (C × D), and define similarly xν
t (r) with same initial

condition and Brownian
path.
Note that

Wt(x
μ(r), r) =

∫ t

0
Oμ(s, xμ(r), r) ds + Wt,

L
μ
t (xμ(r), r) =

∫ t

0
Gμ

s (xμ(r))Ôμ(s, xμ(r), r) ds +
∫ t

0
Gμ

s (xμ(r)) dWs,

where for any x ∈ C, Ôμ(s, x, r) := (Oμ(s, x, r) − mμ(s, r)). Then

(x
μ
t (r) − xν

t (r))

=
∫ t

0
(f (r, s, xμ

s (r)) + λmμ(s, xμ(r)) − f (r, s, xν
s (r)) − λmν(s, x

ν(r))) ds

+ λ

∫ t

0
{Ôμ(s, xμ(r), r) − Ôν(s, x

μ(r), r)} ds

+ λ

∫ t

0

∫ s

0
(K̃s

ν,xμ(r)(s, v)Ôν(v, xμ(r), r)

− K̃s
ν,xν(r)(s, v)Ôν(v, xν(r), r)) dv ds

+ λ

∫ t

0

{
Eγ

[
	s(G

ν(xμ(r)))Gν
s (x

μ(r))

(∫ s

0
Gν

v(x
μ(r)) dWv

)]
− Eγ

[
	s(G

ν(xν(r)))Gν
s (x

ν(r))

(∫ s

0
Gν

v(x
ν(r)) dWv

)]}
ds. (4.2)
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Let ξ ∈ M+
1 ((C × D)2) with marginals μ and ν. We have

λ(mμ(t, xμ(r)) − mν(t, x
ν(r)))

= J̄

∫
(C×D)2

(b(x
μ
t (r), yt ) − b(xν

t (r), yt ))

+ (b(xν
t (r), yt ) − b(xν

t (r), zt )) dξ((y, r ′), (z, r̃))

≤ KbJ̄ (|xμ
t (r) − xν

t (r)| +
∫

(C×D)2
‖y − z‖∞,t dξ((y, r ′), (z, r̃)))

≤ C(|xμ
t (r) − xν

t (r)| + dV
t (μ, ν)), (4.3)

where we take the infimum on ξ .
Furthermore, let (G̃, G̃′) be a γ -bi-dimensional centered Gaussian process with covariance

σ 2

λ2

∫
(C×D)2

(
b(x

μ
s (r), ys)b(x

μ
t (r), yt ) b(x

μ
s (r), ys)b(xν

t (r), yt )

b(xν
s (r), ys)b(x

μ
t (r), yt ) b(xν

s (r), ys)b(xν
t (r), yt )

)
dν(y, r). (4.4)

Then

|K̃t
ν,xμ(r)(t, s) − K̃t

ν,xν(r)(t, s)|
= |Eγ [(	t (G̃) − 	t(G̃

′))G̃t G̃s + 	t(G̃
′)(G̃t − G̃′

t )G̃s + 	t(G̃
′)G̃′

t (G̃s − G̃′
s)]|.

Moreover, using Cauchy–Schwarz and (3.1),

Eγ [	t(G̃)(G̃t − G̃′
t )G̃s] ≤ CT Eγ [(G̃t − G̃′

t )
2]1/2

≤ CT

(∫
C×D

(b(x
μ
t (r), yt ) − b(xν

t (r), yt ))
2 dν(y, r ′)

)1/2

≤ CT |xμ
t (r) − xν

t (r)| (4.5)

and, using Cauchy–Schwarz and (3.2),

Eγ [(	t (G̃) − 	t(G̃
′))G̃t G̃s] ≤ CT |xμ

t (r) − xν
t (r)|,

so that
|K̃t

ν,xμ(r)(t, s) − K̃t
ν,xν(r)(t, s)| ≤ CT |xμ

t (r) − xν
t (r)|. (4.6)

We now focus on controlling the second term of (4.2). Choose another ξ ∈ M+
1 ((C × D)2)

with marginals μ and ν, and the couple (G, G′) of centered γ -Gaussian process with covariance
Kξ(·, ·, xμ(r)) given in (3.8). Replacing the couple (Gμ(xμ(r)), Gν(xμ(r))) by (G, G′) in the
term of interest, we obtain

Ôμ(s, xμ(r), r) − Ôν(s, x
μ(r), r) = Eγ [	s(G)GsLs − 	s(G

′)G′
sL

′
s],

where
Lt :=

∫ t

0
Gs( dWs(x

μ(r), r) − mμ(s, xμ(r)) ds),

L′
t :=

∫ t

0
G′

s( dWs(x
μ(r), r) − mν(s, x

μ(r)) ds).
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With the shorthand notation Ô(t) for Ôμ(t, xμ(r), r) and Ô ′(t) for Ôν(t, x
μ(r), r), we can

prove, as in [5, Theorem 9], the following:

Ô(t) − Ô ′(t)

≤ Eγ CT

(
[L2

t ]1/2
(∫

(C×D)2
‖y − z‖2∞,t dξ((y, r ′), (z, r̃))

)1/2

+ Eγ [(Lt − L′
t )

2]1/2
)

≤ CT

(
1 + Eγ

[(∫ s

0
Gv dWv

)2])(∫
(C×D)2

‖y − z‖2∞,s dξ((y, r ′), (z, r̃))
)

+ CT Eγ

[(∫ s

0
(Gv − G′

v) dWv

)2]
.

As a consequence, (4.2) becomes

‖xμ(r) − xν(r)‖2∞,t

≤ CT

∫ t

0

{
‖xμ(r) − xν(r)‖2∞,s + Eγ

[(∫ s

0
(Gv − G′

v) dWv

)2]
+

(
1 + Eγ

[(∫ s

0
Gv dWv

)2])(∫
(C×D)2

‖y − z‖2∞,s dξ((y, r ′), (z, r̃))
)

+
∣∣∣∣Eγ

[
	s(G

ν(xμ(r)))Gν
s (x

μ(r))

(∫ s

0
Gν

v(x
μ(r)) dWv

)]
− Eγ

[
	s(G

ν(xν(r)))Gν
s (x

ν(r))

(∫ s

0
Gν

v(x
ν(r)) dWv

)]∣∣∣∣2}
ds.

Relying on Gronwall’s lemma, taking the expectation over both initial conditions and the
Brownian path, making use of Fubini’s theorem, Itô isometry, and eventually taking the infimum
in ξ yields

E[‖xμ(r) − xν(r)‖2∞,t ]
≤ CT

∫ t

0

{(∫
(C×D)2

‖y − z‖2∞,s dξ((y, r ′), (z, r̃))
)

+ E

[∣∣∣∣Eγ

[
	s(G

ν(xμ(r)))Gν
s (x

μ(r))

(∫ s

0
Gν

v(x
μ(r)) dWv

)]
− Eγ

[
	s(G

ν(xν(r)))Gν
s (x

ν(r))

(∫ s

0
Gν

v(x
ν(r)) dWv

)]∣∣∣∣2]}
ds.

In order to deal with the last term on the right-hand side, we again let (G̃, G̃′) be a bi-
dimensional centered Gaussian process on the probability space (�̂, F̂ , γ ) with covariance
given by (4.4). Also let Eγ [·] := E[Eγ [·]]. Then, using the Cauchy–Schwarz inequality for the
two inequalities,

E

[∣∣∣∣Eγ

[
	s(G

ν(xμ(r)))Gν
s (x

μ(r))

(∫ s

0
Gν

v(x
μ(r)) dWv

)]
− Eγ

[
	s(G

ν(xν(r)))Gν
s (x

ν(r))

(∫ s

0
Gν

v(x
ν(r)) dWv

)]∣∣∣∣2]
= E

[
Eγ

[
	s(G̃)G̃s

(∫ s

0
G̃v dWv

)
− 	s(G̃

′)G̃′
s

(∫ s

0
G̃′

v dWv

)]2]
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≤ Eγ

[{
	s(G̃)G̃s

(∫ s

0
G̃v dWv

)
− 	s(G̃

′)G̃′
s

(∫ s

0
G̃′

v dWv

)}2]
≤ 3Eγ

[(∫ s

0
G̃v dWv

)4]1/2

(Eγ [(	t (G̃) − 	t(G̃
′))4G̃4

t ]1/2

+ Eγ [	t(G̃
′)4(G̃t − G̃′

t )
4]1/2)

+ 3Eγ [	t(G̃′)4G̃′4
t ]1/2

Eγ

[(∫ s

0
(G̃v − G̃′

v) dWv

)4]1/2

.

Gaussian calculus and (4.5) yield

Eγ [(G̃t − G̃′
t )

4] = CEγ [(G̃t − G̃′
t )

2]2 ≤ CT |xμ
t (r) − xν

t (r)|2.
Then relying on (3.1), (3.2), and the Burkhölder–Davis–Gundy inequality, we obtain

E[‖xμ(r) − xν(r)‖2∞,t ]
≤ CT

∫ t

0

{(∫
(C×D)2

‖y − z‖2∞,s dξ((y, r ′), (z, r̃))
)

+ E[‖xμ(r) − xν(r)‖2∞,s]
}

ds.

Another use of Gronwall’s lemma then yields, for any ξ ∈ M+
1 ((C × D)2) with marginals μ

and ν,

E[‖xμ(r) − xν(r)‖2∞,t ] ≤ CT

∫ t

0

(∫
(C×D)2

‖y − z‖2∞,s dξ((y, r ′), (z, r̃))
)

ds. (4.7)

We now prove the regularity in space of the left-hand side in the above inequality. In fact,
fix r ′ �= r ∈ D, and consider x

μ· (r ′) to be the strong solution of (4.1) with the same W but with
initial condition given by x̄0(r

′). Developing a similar analysis as above, we find that

E[‖xμ(r) − xμ(r ′)‖2∞,t ] ≤ CT {E[(x̄0(r) − x̄0(r
′))2] + ‖r − r ′‖2

Rd },

so that E[‖xμ(r) − xμ(r ′)‖2∞,t ] → 0 as ‖r ′ − r‖Rd ↘ 0, by using the continuity of the
initial condition; see [5, Equation (3)]. We then conclude, exactly as in [5, Theorem 9], that
r → E[dt ((x

μ(r), r), (xν(r), r)2] is continuous, and that μ → Qμ admits a unique fix point
relying on (4.7) and a Picard iteration. �

Lemma 4.2. For any r ∈ D and μ ∈ M+
1 (C × D), there exists a unique strong solution to

the SDE

dx
μ
t (r) = f (r, t, x

μ
t (r)) dt + λOμ(t, xμ(r), r) dt + λ dWt, x

μ
0 (r) = x̄0(r),

where W is a P-Brownian motion and x̄0(r) ∈ R is the realization of the continuous version
for the family of initial laws (μ0(r))r∈D .

Proof. The proof relies on Picard iterations. Let x0 ∈ C with x0
0 = x̄0(r), and define

recursively the sequence (xn
t , 0 ≤ t ≤ T )n∈N∗ by

xn+1
t = x̄0(r) +

∫ t

0
f (r, s, xn

s ) ds + λ

∫ t

0
Oμ(s, xn, r) ds + λWt for all t ∈ [0, T ].

https://doi.org/10.1017/apr.2018.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.43


1002 T. CABANA AND J. D. TOUBOUL

As a consequence, for any t ∈ [0, T ], we obtain, as in (4.2),

xn+1
t − xn

t =
∫ t

0
(f (r, s, xn

s ) − f (r, s, xn−1
s )) ds

+
∫ t

0
λ(Oμ(s, xn, r) − Oμ(s, xn−1, r)) ds

=
∫ t

0
(f (r, s, xn

s ) + λmμ(s, xn
s ) − f (r, s, xn−1

s ) − λmμ(s, xn−1
s )) ds

+ λ

∫ t

0

∫ s

0
(K̃s

μ,xn· (s, v)Ôμ(v, xn· , r) − K̃s

μ,xn−1·
(s, v)Ôμ(v, xn−1· , r)) dv ds

+ λ

∫ t

0

{
Eγ

[
	s(G

μ(xn· ))Gμ
s (xn· )

(∫ s

0
Gμ

v (xn· ) dWv

)]
− Eγ

[
	s(G

μ(xn−1· ))Gμ
s (xn−1· )

(∫ s

0
Gμ

v (xn−1· ) dWv

)]}
ds.

Then, using (4.3) and (4.6) to deal with the two first terms on the right-hand side, and controlling
the last term as in the proof of theorem 4.1, we find that, taking the expectation,

E[‖xn+1 − xn‖2∞,t ] ≤ CT

∫ t

0
E[‖xn − xn−1‖2∞,s] ds.

The conclusion follows using classical arguments. �
4.2. Convergence of the process and quenched results.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let δ > 0, and B(Q, δ) be the open ball of radius δ centered in Q

for the Wasserstein distance. We prove that QN(μ̂N /∈ B(Q, δ)) → 0 exponentially fast as
N → ∞. In fact, the upper bound of the LDP for the closed set B(Q, δ)c yields

lim sup
N→∞

1

N
log QN(μ̂N /∈ B(Q, δ)) ≤ − inf

B(Q,δ)c
H < 0,

where the last inequality comes from the fact that H attains its unique minimum at Q. This imp-
lies that QN(μ̂N /∈ B(Q, δ)) → 0 at least exponentially fast, so that the result is proved. �

Proof of Theorem 2.5. Given a closed set F ⊂ M+
1 (C × D), we can show that the average

upper bound of Theorem 3 is also valid for almost all realizations of the connectivity matrix J .
The proof relies on the Chebychev inequality and the Borel–Cantelli lemma, and proceeds
exactly as in [1, Theorem 2.7, Appendix C.]. To conclude on the quenched convergence, we
will however need a stronger result ensuring not only that for a given closed set an upper
bound is valid for almost all realizations of the environment variables, but that for almost all
environments, the upper bound is valid for all closed sets.

To show that this quenched upper bound holds almost surely for all closed sets, we proceed
as follows. Since M+

1 (C × D) is a Polish space, there exists a sequence of closed sets (Fi)i∈N

of M+
1 (C × D) such that for any closed set F ⊂ M+

1 (C × D), there exists a countable set
AF ⊂ N such that

F =
⋂

i∈AF

Fi.
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We now consider Am
F = AF ∩[[1, m]], the set of the first m indices in AF for some m ∈ N

∗, and
F (m) = ⋂

i∈Am
F
Fi . The sequence of closed sets F (m) is decreasing and converges towards F .

Moreover, since the subsets of [[1, m]] are countable for any m ∈ N, we have for any m ∈ N,
the P -almost sure upper bound

lim sup
N→∞

1

N
log QN

r (J )(μ̂N ∈ F) ≤ − inf
F (m)

H for all closed set F ⊂ M+
1 (C × D)P -a.s.

Taking the limit superior of the right-hand side of the inequality as m → ∞ and using the
lower semi-continuity of the good rate function H yields the desired inequality, ensuring the
P -almost sure upper bound for any closed set.

Moreover, a classical result of large-deviations theory ensures that the sequence of empirical
measures is P -a.s. exponentially tight, as a consequence of [7, Exercice 4.1.10(c)] (relying on
the results of [13, Lemma 2.6] and [18, Theorem P]).

Both the almost sure upper bound and exponential tightness in turn imply the P -almost sure
convergence of the empirical measure. Indeed, for any ε > 0, we have

QN
r (J )(μ̂N /∈ B(Q, ε)) = QN

r (J )(dT (μ̂N , Q) ≥ ε),

which is summable in N . We can thus conclude, using the Borel–Cantelli lemma, on the
quenched convergence result. �

5. Perspectives and open problems

In this paper we have investigated the dynamics of randomly interacting diffusions with
complex interactions depending on the state of both particles. From the mathematical viewpoint,
we have extended existing estimates on large deviations initially developed for spin-glass
systems [1], [10] to the present setting. The proof entailed a combination of Sanov’s theorem
and an extension of Varadhan’s lemma to a functional that does not directly satisfy the canonical
assumptions. The limit of the system is a complex non-Markovian process with dynamics that
are relatively difficult to understand at this level of generality. However, the limits obtained
are valid only in the presence of noise, since Girsanov’s theorem is used to relate the dynamics
of the coupled system to the uncoupled system. The limit of randomly connected systems
in the absence of noise is a complex issue with numerous applications, and this has received
little attention in the literature. One outstanding contribution that addresses a similar question
is the work of Ben Arous et al. [3] for spherical spin glasses. In that work, the authors
characterized the thermodynamic limit of this system and analyze its long-term behavior,
providing a mathematical approach for ageing. This approach uses the rotational symmetry
of the Hamiltonian allowing us, by a change of orthogonal basis, to rely on results on the
eigenvalues of the coupling matrix. A similar approach seems unlikely to readily extend to the
setting of the present work.

In the context of neuroscience, it may be useful to consider spatially extended systems with
delays in the communication, and possibly non-Gaussian interactions. It is not difficult to
combine our methods to those in [5] and the specific methods developed here to extend the
present results to spatially dependent interactions with space-dependent delays. Moreover, we
expect that the limit obtained is universal with respect to the distribution of the connectivity
coefficient as soon as their tails have a sufficiently fast decay, as demonstrated for a discrete-time
neuronal network in [14]. Eventually, the results hold in cases where the intrinsic dynamics
is not Lipschitz-continuous as soon as sufficient nonexplosion estimates are obtained on the
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solutions of the uncoupled system, as was the case in [1] and [10]. However, we mention
that in this case, the original fixed-point method developed in this paper to prove existence and
uniqueness of the solutions to the mean-field equations are no more valid and adequate methods
need to be employed such as the ones presented in [1] and [10].
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