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THE Σ12 COUNTERPARTS TO STATEMENTS THAT ARE EQUIVALENT
TO THE CONTINUUM HYPOTHESIS

ASGER TÖRNQUIST ANDWILLIAMWEISS

Abstract. We consider natural Σ12 definable analogues of many of the classical statements that have
been shown to be equivalent to CH. It is shown that these Σ12 analogues are equivalent to that all reals are
constructible. We also prove two partition relations for Σ12 colourings which hold precisely when there is a
non-constructible real.

§1. Introduction. In the mathematical literature, one finds a great number of
statements that have been proved to be equivalent to the Continuum Hypothesis
(CH). One such well-known equivalence is due to Sierpiński, and states that CH
is equivalent to the statement that the plane R2 is the union of two sets A,B ⊆ R2

such that each horizontal section ofA is countable, and each vertical section of B is
countable. Another example is Davies’ theorem, which states that CH is equivalent
to that every function f : R2 → R admits a representation

f(x, y) =
∞∑
n=0

gn(x)hn(y),

where gn, hn : R → R are functions, and the sum above has only finitely many
non-zero terms for every (x, y) ∈ R2.
In these types of theorems, usually the direct implication from CH is proved by a
straight-forward inductive construction by well-ordering the reals in order type�1,
and exploiting that each initial segment is countable. The result of the construction
will usually be definable from the well-ordering. Perhaps it is no surprise then that
if we work in Gödel’s constructible universe L where there is a canonical choice of
a well-ordering of R, which moreover is Σ12, then with some care it can be shown in
many cases that there are Σ12 definable witnesses to the direct implication.
On the other hand, the reverse implication often requires considerable ingenu-
ity and does not at first seem to conform to a set pattern. In light of the above
discussion about the situation in L, it is natural to ask what happens if we take a
statement which implies CH, and replace it with a corresponding Σ12 version. In [17]
we considered the Σ12 counterpart of Davies’ theorem, and showed the following
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“Σ12 Davies’ Theorem”: All reals are constructible (R ⊆ L) if and only if every
Σ12 function f : R

2 → R admits a representation

f(x, y) =
∞∑
n=0

g(x, n)h(x, n),

where g, h : R × � → R are Σ12 functions, and the sum above has finitely many
non-zero terms at each (x, y) ∈ R2.
It is natural to ask if this type of definable converse, which was found in the
case of Davies’ theorem, could hold for some of the many other statements that are
equivalent to CH. However, the proof in [17] did not give a clear indication in this
direction. In this paper we will prove that a number of the classical CH equivalents
admit natural Σ12 counterparts which turn out to be equivalent to that all reals are
constructible. Specifically:

Theorem 1.1. The following statements are equivalent:
(1) R ⊆ L.
(2) There are Σ12 sets A,B ⊆ R2 such that A ∪ B = R2, and all the sections
Ax = {y ∈ R : (x, y) ∈ A} and By = {x ∈ R : (x, y) ∈ B} are countable.

(3) There are Σ12 setsA1, A2, A3 ⊆ R3 such thatA1 ∪A2 ∪A3 = R3, and every line
l in the direction of the xi -axis meets Ai in finitely many points.

(4) There are uncountable Σ12 sets A0 and A1 such that A0 ∪ A1 = R and for all
a ∈ R the set (a +A0) ∩ A1 is countable.

(5) The plane can be covered by three Σ12 clouds
1 with centres in L.

(6) There is a Σ12 surjection f : R → R2 : x �→ (f1(x), f2(x)) such that either
f′
1(x) or f

′
2(x) exists for all x ∈ R.

Here (2) and (3) correspond to CH equivalences proven by Sierpiński [14]; (4)
to an equivalence due to Banach and Trzeciakiewicz, [1, 18]; (5) to an equivalence
due to Komjath [6]; and (6) to an equivalence proven by Morayne [11].
The proofs of the above equivalences also offer an explanation for why and
when a classical CH equivalence admits a Σ12 counterpart. The reason that the
above Σ12 translations work can be found in the structure of the proofs of the
corresponding classical CH equivalences. Though it is not always immediately clear
from the literature, there is a common underlying structure of the proofs of CH from
the given statement, and in fact of the statements themselves. Roughly speaking, the
structure is as follows: The statements are of the form that there exists certain sets (or
n-ary relations) R1, R2, . . . and functions f1, f2, . . . which satisfy some finiteness
or countability requirement, and that all reals must satisfy some relations that are
expressed in terms of the given sets and functions. The proof that such a statement
implies CH then can be cast in the following general form: One fixes a set of reals
of size ℵ1, and forms a “hull” of reals that satisfies the relevant relations with this
fixed set of reals. The countability condition on the sets and functions R1, R2, . . .,
f1, f2, . . . then implies that this “hull” must have size ℵ1. The statement is then seen
to imply that in fact all reals are in this hull, hence 2ℵ0 = ℵ1.
In practice, one more often argues indirectly by assuming ¬CH, and then use this
to produce a real which is “transcendental” in the sense that it fails to satisfy the

1See §3.3 for the definition of clouds.
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prescribed relations. In the Σ12 translations we consider, this corresponds to assum-
ing that there is a non-constructible real. In our proofs the finiteness/countability
conditions are then used, in conjunction with the Mansfield–Solovay perfect set
theorem (see Theorem 2.3), to prove that the constructible reals are indeed a suit-
able “hull”. Another important tool is the Shoenfield absoluteness theorem (see [13]
or [2, 25.20]), which allows us to work in a model of the form L[x], x ∈ R, which
for the purpose of counting arguments can then be assumed to satisfy ℵL[x]1 = ℵL1 ,
see Lemma 2.2.
Using the same ideas we also prove the following two partition relations which
hold for Σ12 colourings precisely when there are non-constructible reals.

Theorem 1.2. The following are equivalent:

(1) R � L.
(2) For every Σ12 function f : R × R → � there are sets C,D ⊆ R such that

|C | = |D| = ℵ0 and f �C ×D is monochromatic.
(3) For every Σ12 colouring g : R → � there are four distinct x00, x01, x10, x11 ∈ R
of the same colour such that

x00 + x11 = x01 + x10.

This theorem, as well as Theorem 1.1, naturally relativizes to L[a] and Σ12(a),
where a ∈ R is a parameter.

§2. Definitions and preliminaries. In this section, we collect various general defi-
nitions and preliminary observations that are needed in our proofs. For this purpose,
it is immensely practical to follow the (effective) descriptive set-theoretic convention
and use R to stand for any recursively presented uncountable Polish space (which
is warranted since all such spaces are isomorphic by a Δ11 bijection, see [12]). This
convention will, however, cause problems later, where R will need to stand for the
actual (linearly ordered field of) real numbers. Henceforth, we will useR to denote
the descriptive set-theoretic reals and R for the actual real line.
We shall assume that the reader is familiar with the basic elements of (effective)
descriptive set theory, as found in e.g., [2, 3,9] or [12], though we briefly review the
most important notions below. Our notation is, for the most part, in line with that
of [12], and in particular, recursively presented Polish spaces are denoted with script
lettersX ,Y ,Z , . . ..

2.1. Σ12 sets and functions. In this paper, a Σ
1
2 set is a set that can be defined by a

Σ12 predicate, a Π
1
2 set is a set that is the complement of a Σ

1
2 set, and a Δ

1
2 set is a set

that is both Σ12 and Π
1
2. We denote by Σ

1
2(a), Π

1
2(a), and Δ

1
2(a) the corresponding

relativized pointclasses, where a is some real (i.e., a ∈ R).
In this paper, we will say that a (total) function f : X → Y is Σ12 (or, more
generally, Σ12(a)) if the graph of f is a Σ

1
2 (Σ

1
2(a)) subset of X × Y . If a function

has a Σ12 graph then in fact it is a Δ
1
2 graph since if �(x, y) is a Σ

1
2 predicate defining

(the graph of) f then

f(x) = y ⇐⇒ (∀z)(¬�(x, z) ∨ z = y),
which shows that f has a Π12 definition as well. We will say that a Σ

1
2 predicate

�(x, y) defines a function if there is a total function f : X → Y such that
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f(x) = y ⇐⇒ �(x, y). The reader should be warned that this notion is sensitive
to the model of set theory in which we work, since a predicate which defines a total
function in one model may only define a partial function in another (for example,
take�(x, y) to be a Σ12 predicate which says that x = y and x ∈ L). Note, however,
that

(∀x)(∀y, y′)�(x, y) ∧ �(x, y′) =⇒ y = y′ (2.1)

is Π12 and therefore absolute, and so if (2.1) is satisfied in one model, it is satisfied
in all. In other words, a Σ12 predicate which defines a partial function will do so in
any model, but it may fail to define a total function in all models even if it does so
in one.

2.2. Coding the Lα . Our notation follows that of [3, p. 167ff.], with very few dif-
ferences. For convenience we recall the definitions and facts that are most important
for the present paper.
The canonical well-ordering of L will be denoted<L. The language of set theory
(LOST) is denoted Lε . If x ∈ 2� then we define a binary relation on � by

m εx n ⇐⇒ x(〈m, n〉) = 1,
where 〈·, ·〉 refers to some (fixed) standard Gödel pairing function coding a pair of
integers by a single integer. We let

Mx = (�, εx)

be the Lε structure coded by x. If Mx is well-founded and extensional then we
denote by tr(Mx) the transitive collapse of Mx , and by �x : Mx → tr(Mx) the
corresponding isomorphism.
The following proposition encapsulates the basic descriptive set-theoretic corre-
spondences between x,Mx , and the satisfaction relation. We refer to [3, 13.8] and
the remarks immediately thereafter for a proof.

Proposition 2.1. (a) If ϕ(v0, . . . , vk−1) is a LOST formula with all free variables
shown then

{(x, n0 . . . , nk−1) ∈ 2� × � × · · · × � :Mx |= ϕ[n0, . . . , nk−1]}.
is arithmetical.
(b) For x ∈ 2� such thatMx is well-founded and extensional, the relation

{(m, y) ∈ � × R : �x(m) = y}
is arithmetical in x.
(c) There is a LOST sentence 	0 such that ifMx |= 	0 andMx is well-founded and
extensional, thenMx � L
 for some limit ordinal 
 < �1.
(d)There is a LOST formulaϕ0(v0, v1)which defines the restriction of the canonical
well-ordering <L of L to L
 for any limit 
 > �.

Define as in [3, p. 170] the restriction Mx � k, for x ∈ 2� and k ∈ �, to be the
Lε structure

Mx �k = ({n : n εx k}, εx).
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For X a recursively presented Polish space, let RX ⊆ X × 2� be defined
by

RX (y, x) ⇐⇒ Mx is well-founded, extensional, andMx |= 	0 ∧ (∃n)y = �x(n)∧
(∀z <L x)(Mz is well-founded, extensional, andMz |= 	0) =⇒ (∀k)�z(k) �= y

In other words,RX (y, x) holds iff x is the least code for an Lα , α a limit, such that
y ∈ Lα . The relation RX is Δ12.

2.3. Coding initial segments. Let ≺ denote <L� R, the canonical well-ordering
of R in L. This is a Δ12 well-ordering which has a good coding of initial segments.
More precisely, ≺ is a strongly Δ12 well-ordering, which means that ≺ has length �1
and IS ⊆ R × R≤� defined by

IS(x, v) ⇐⇒ (∀n)v(n) ≺ x ∧ (∀z ≺ x)(∃n)v(n) = z ∧ (∀i, j)i = j ∨ v(i) �= v(j)
is Δ12. The point is that quantifications over an initial segment of ≺ can be replaced
by a quantifier over � in hierarchy calculations, see [12, 5A.1] for details. We also
define a function IS∗ : R → R≤� and a partial function IS# : R × R → � by

IS∗(x) = v ⇐⇒ IS(x, v) ∧ (∀w ≺ v)¬ IS(x,w),
IS#(x, y) = n ⇐⇒ IS∗(x)(n) = y.

These are Σ12.

2.4. The size of L ∩ R. There are several counting arguments below that rely on
having some information about the cardinality of sets of reals in L. The following
simple observations are extremely useful for this purpose:

Lemma 2.2. (1) If there is a non-constructible real in V , then there is a non-
constructible real x ∈ V such that ℵL[x]1 = ℵL1 .
(2) Suppose � is a Σ12(a) predicate defining the set A, where a ∈ L. Then if A is
uncountable, then A ∩ L is uncountable in L.
Proof. (1) If ℵV1 = ℵL1 , then any non-constructible x ∈ V will do. If ℵL1 is
countable in V , then there must be a real x ∈ V which is Cohen over L. For any
such x it holds that ℵL[x]1 = ℵL1 .
(2) If A ∩ L is countable in L then there is some v : N → R in L such that

(∀x)(�(x) −→ (∃n)v(n) = x)
holds. Since this is Π12(a, v) it is absolute, and so A is countable. �
The typical application of (1) above will be that if we know that some state-
ment which is downwards absolute holds in V , and R � L, then the statement
holds in some L[x] where x /∈ L, and the constructible reals have cardinality ℵ1
in L[x].
Finally, we recall the perfect set theorem for Σ12 sets by Mansfield and Solovay
which will be used often:

Theorem 2.3 (Mansfield [8], Solovay [15]). Let A be a Σ12(a) set. Then either
A ⊆ L[a], or else A contains a perfect set. In particular, if a Σ12 set contains a
non-constructible real then it is uncountable.
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§3. Results.

3.1. Sierpiński’s equivalences. In this section we consider the Σ12 counterparts
of two of Sierpiński’s classical CH equivalences (see e.g., [14]). The first is the
counterpart to: CH is equivalent to the existence of two sets A,B ⊆ R2 with
A ∪ B = R2 such that all vertical sections of A are countable and all horizontal
sections of B are countable.
We include a version of this that is stated in terms of covering the plane by graphs
of countably many functions, since this is needed later in Section 3.4 below.

Theorem 3.1. The following are equivalent:

(1) R ⊆ L.
(2) There is a Σ12 linear order < of R such that for all x ∈ R the initial segment

{y ∈ R : y < x} is countable.
(3) There are Σ12 sets A,B ⊆ R2 such that A ∪ B = R2, and all the sections
Ax = {y ∈ R : (x, y) ∈ A} and By = {x ∈ R : (x, y) ∈ B} are countable.

(4) There are Σ12 functions FA : R × � → R and FB : R × � → R such that
A = {(x, FA(x, n)) : x ∈ R, n ∈ �} and B = {(FB(y, n), y) : y ∈ R, n ∈ �}
satisfy (3).

Proof. (1) =⇒ (4). Let z be the≺-least element with an infinite initial segment.
Let

FA(x, n) = IS∗(max≺(x, z))(n)

and

FB(x, n) =

{
x if n = 0,

IS∗(max≺(x, z))(n − 1) if n > 0

where max≺(x, z) is the larger of x and z in ≺.
(4) =⇒ (3) is clear. For (3) =⇒ (1), suppose that there is x0 ∈ R \ L but
that (3) holds. By Lemma 2.2 we may assume that ℵL[x0]1 = ℵL1 and thatV = L[x0],
since if (3) holds it holds in L[x0]. Since the section Ax0 is countable we can find
y ∈ (R ∩ L) \ Ax0 , and so (x0, y) ∈ B since A ∪ B = R2. But this means that
By , which is a Σ12(y) set, contains a non-constructible real (namely x0), and so
since y ∈ L it follows by the perfect set theorem (Theorem 2.3) that it must be
uncountable, a contradiction.
Finally, (1) =⇒ (2) is clear, since the canonical well-ordering of R in L satisfies
(2), and (2) =⇒ (3) follows since defining A = {(x, y) ∈ R2 : y < x} and
B = {(x, y) : x ≤ y} clearly works. �
Next we consider the Σ12 counterpart to the following CH equivalence due to
Sierpiński (see [14]): CH holds iff there are setsA1, A2, A3 ⊆ R3 such thatA1∪A2∪
A3 = R3, and every line l in the direction of the xi -axis meets Ai in finitely many
points.

Theorem 3.2. All reals are constructible if and only if there areΣ12 setsA1, A2, A3 ⊆
R3 such thatA1 ∪A2 ∪A3 = R3, and every line l in the direction of the xi -axis meets
Ai in finitely many points.

https://doi.org/10.1017/jsl.2014.20 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.20


Σ12 COUNTERPARTS 1081

Proof. Suppose all reals are constructible. Define, for i = 1, 2, 3, the set Ãi by

(x1, x2, x3) ∈ Ãi ⇐⇒ if xj = max≺{x1, x2, x3} then xj �= xi ,
and if k �= i, j then IS#(xj, xi) < IS#(xj, xk)

⇐⇒ (∀j)(xj = max≺{x1, x2, x3} =⇒ (xj �= xi∧
((∀k ≤ 3)(k �= i ∧ k �= j) =⇒ IS#(xj, xi) < IS#(xj, xk)).

Clearly Ãi is Δ12. Let Ai = Ãi ∪ {(x, y, z) : x = y = z}. Then R3 = A1 ∪ A2 ∪ A3.
If l is a line parallel to an axis, say l = {(x, b, c) : x ∈ R}, then by definition there
are only finitely many x such that (x, b, c) ∈ A1.
For the converse, suppose there is x0 ∈ R \ L. As before, we may assume that
V = L[x0] and that ℵL[x0]1 = ℵL1 . If (u, v) ∈ R2 ∩ L, then the line {(u, v, x) : x ∈
R} ∩ A3 is a finite Σ12(u, v) set, and so by Theorem 2.3 it does not contain a non-
constructible real. Thus (u, v, x0) /∈ A3 for all u, v ∈ R ∩ L. For any u ∈ Q the
set {(u, x, x0) : x ∈ R} ∩ A2 is finite, and so since ℵL1 = ℵ1 there must be some
x1 ∈ R ∩L such that (u, x1, x0) /∈ A2 for all u ∈ Q. Since A1 ∩ {(u, x1, x0) : u ∈ R}
is finite, it follows that there is x2 ∈ Q such that (x2, x1, x0) /∈ A1 ∪ A2 ∪ A3. �
3.2. Banach–Trzeciakiewicz’s equivalence. [1] and [18] contain the following
equivalence: CH holds if and only if there are uncountable sets A0, A1 ⊆ R such
that A0 ∪ A1 = R and for each a ∈ R the set (a + A0) ∩ A1 is countable. We have
the following Σ12 counterpart:

Theorem 3.3. All reals are constructible if and only if there areuncountable Σ12 sets
A0 andA1 such thatA0 ∪A1 = R and for all a ∈ R the set (a+A0)∩A1 is countable.
Proof. If R ⊆ L, it is easy to see that there is a Δ12 Hamel basisH ⊆ R for R. (In
fact, by [10] there even is a Π11 Hamel basis for R.) Define a function f : R → R<�

by

f(x) = (x1, . . . , xn)

⇐⇒ x1, . . . , xn ∈ H ∧ x1 ≺ · · · ≺ xn ∧ (∃q1, . . . , qn ∈ Q \ {0})x =
n∑
i=1

qixi .

Clearly f is Δ12. Write H = H0 ∪ H1, where H0 and H1 are disjoint uncountable
Δ12 sets, and define

x ∈ Ai ⇐⇒ (∃(x1, . . . , xn) ∈ R<�)f(x) = (x1, . . . , xn) ∧ xn ∈ Hi.
Then Ai is Σ12 (in fact, Ai is Δ

1
2) and A0 ∪ A1 = R. Fix a ∈ R, and note that if

maxf(a) ≺ maxf(x) andx ∈ A0 then a+x ∈ A0. Thus (a+A0)∩A1 is countable
since {x ∈ R : maxf(x) � maxf(a)} is.
For the converse, suppose that there is a non-constructible real x0 ∈ R \ L. By
Lemma 2.2.(1) we may assume that ℵL[x0]1 = ℵL1 . From this and Lemma 2.2.(2) it
follows thatA0∩L andA1∩L are uncountable, and soA0∩L[x0] andA1∩L[x0] are
uncountable inL[x0]. By assumption, for each a ∈ A0 we either have a+x0 ∈ A0 or
a+x0 ∈ A1. If the latter held for uncountably many a ∈ A0∩L then (x0 +A0)∩A1
would be uncountable, contrary to our assumption. Thus we can find a ∈ L ∩ A0
such that a + x0 ∈ A0. Similarly, there is b ∈ A1 ∩ L such that b + x0 ∈ A1. But
since b + x0 = a + x0 + (b − a) we now have that b + x0 ∈ ((b − a) + A0) ∩ A1,
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and so this set, which is Σ12(b − a), contains the non-constructible real b + x0, and
so is uncountable. �
3.3. Komjath’s clouds. A cloud in R2 is a set A ⊆ R2 such that for some point
�x ∈ R2 (called a centre of A) it holds that each infinite ray from �x meets A in at
most finitely many points. In [6] the following was shown:

Theorem 3.4 (Komjath). CH is equivalent to that the plane can be covered by
three clouds.

Theorem 3.5. R ⊆ L is equivalent to that the plane can be covered by three
Σ12 clouds with centres in L.

Proof. Assume that R ⊆ L. We will give Σ12 definitions of clouds A0, A1, and
A2 centered at a0 = (0, 1), a1 = (1, 0) and a2 = (0, 0), respectively, such that
R = A0 ∪ A1 ∪ A2. For y ∈ R2 \ {a0, a1, a2} let aiy denote the infinite ray starting
at ai extending through y. Let E be the set of all infinite rays from a0, a1 or a2.
The set of E can be identified with the union of the three disjoint circles centered at
a0, a1 and a2, and so E is a recursively presented Polish space in a natural way. Let
Eα = E ∩ Lα .
We define the set A′

i ⊆ R2 × 2� as follows: (y, x) ∈ A′
i if and only if

(1) RE (aiy, x), i.e., x is ≺-least such thatMx � Lα for the smallest limit α > �
such that aiy ∈ Lα .

(2) If (jl )l∈� is a strictly increasing sequence enumerating the set

{j ∈ � : �x(j) ∈ Eα \
⋃

{E
 : 
 < α, 
 a limit}}
and the ray aiy is �x(jl ), then y is a point of intersection of �x(jl ) and one
of the rays �x(j0), . . . , �x(jl−1) or ajak , j �= k and j, k �= i .

Then A′
i is Σ

1
2 since (2) can (given that (1) holds) be expressed by saying (where

j, k �= i)
(∃l)[�x(l) = aiy∧((y ∈ aiy∩aj0aj1 )∨((∃j < k)RE (�x(j), x)∧y ∈ �x(j)∩ai y))].
Let Ai = {y ∈ R2 : (∃x)A′

i (y, x)}, which clearly is a Σ12 set, and note that if
y ∈ R2 ∩ L then there must be some i ∈ {0, 1, 2} such that y ∈ Ai , and so
A0 ∪ A1 ∪ A2 = R2 ∩L, as required.
For the converse, assume that there are Σ12 clouds A0, A1, and A2 with centres
in L covering the plane. After possibly applying an affine transformation (defined
in L), we may assume that A0, A1, and A2 are centered at (0, 1), (1, 0), and (0, 0),
respectively.
By the usual arguments, we can assume that V = L[r] for some r ∈ R \ L and
that ℵ1 = ℵL1 . Define an equivalence relation in (0, �4 ) by

α ∼ α′ ⇐⇒ 1− tan(α′)
1− tan(α) ∈ Q+.

Then ∼ has countable classes and α ∈ L iff [α]∼ ⊆ L.
For α, � ∈ (0, �4 ), let lα denote the straight line in the plane given by the equation
tan(α)x + y = 1, and t� be the line given by x + tan(�)y = 1. Note that the
intersection point (x, y) of lα and t� satisfies

y
x =

1−tan(α)
1−tan(�) .
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Consider α ∈ (0, �4 ) ∩L. Since lα ∩A0 is a finite Σ12(α) set, it cannot contain any
non-constructible points (by Theorem 2.3, for example). Thus if � ∈ (0, �4 ) \ L,
then the intersection of lα and t� cannot be in A0. So fix �0 ∈ (0, �4 ) \ L. Since
A1 ∩ {t� : � ∈ [�0]∼} is countable there must be some α0 ∈ (0, �4 ) ∩ L such that
t� ∩ tα � A1 for all � ∈ [�0]∼ and α ∈ [α0]∼, whence t� ∩ tα ⊆ A2 for such α and
� . For n ∈ N, choose αn ∈ [α0]∼ and �n ∈ [�0]∼ such that

1− tan(α0)
1− tan(αn) = n =

1− tan(�0)
1− tan(�n) .

Then for all n ∈ � the intersection point (xn, yn) ∈ lαn ∩ t�n satisfies
yn
xn
=
1− tan(αn)
1− tan(�n) =

1− tan(α0)
1− tan(�0) .

and so they are all on the same line through (0, 0), and since (xn, yn) ∈ A2 for all
n ∈ N this contradicts that each ray from (0, 0) meets A2 in finitely many points. �
Remark 3.6. It is interesting to note that in the previous proof, the assumption
that A1 and A2 are Σ12 were never used. Thus we have:

Corollary 3.7. R ⊆ L is equivalent to that the plane can be covered by three
clouds with centres in L, one of which is Σ12.

3.4. Differentiable functions after Morayne. A Peano function is a surjection
f : R → R × R. In [11], Morayne proved that CH is equivalent to the exis-
tence of a Peano function f(x) = (f1(x), f2(x)) such that at every x ∈ R at least
one of the derivativesf′

1(x) orf
′
2(x) exists. We obtain the following corresponding

Σ12 version:

Theorem 3.8. The following are equivalent:

(1) All reals are constructible
(2) There is a Σ12 surjection f : R → R2 : x �→ (f1(x), f2(x)) such that either
f′
1(x) or f

′
2(x) exists for all x ∈ R.

Proof of (1) =⇒ (2). We will show that the construction from CH due to
Morayne translates to the Σ12 setting.
For this, first define f1(t) = t sin(t) on t ∈ (−∞, 1) = I1 and f2(t) = t sin(t) on
t ∈ (−1,∞) = I2. The sets

C i = {(r, t) ∈ R× Ii : fi(t) = r},
i = 1, 2, are Δ11 and for each r ∈ R the section C ir = {t ∈ Ii : (r, t) ∈ C i} is count-
ably infinite. It follows from (the effective version of) the Lusin–Novikov Theorem
[5, 18.10] that there are Δ11 functions gi : R → I �i such that gi(r) enumerates C ir
injectively. Now let FA and FB be the functions from Theorem 3.1.(4), and define
for t ∈ R \ I1
f1(t) = y ⇐⇒ (∃r ∈ R)(∃n ∈ �)f2(t) = r ∧ g2(r)(n) = t ∧ FB(r, n) = y

and for t ∈ R \ I2
f2(t) = y ⇐⇒ (∃r ∈ R)(∃n ∈ �)f1(t) = r ∧ g1(r)(n) = t ∧ FA(r, n) = y.
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1084 ASGER TÖRNQUIST ANDWILLIAMWEISS

Note that whenever t /∈ I1 and f2(t) assumes the value r for the nth time as
enumerated by g2(r), then (f1(t), f2(t)) = (FB(r, n), r), and so the graph of t �→
(f1(t), f2(t)) covers B = {(FB(r, n), r) : r ∈ R, n ∈ �} as t ranges in I1. Similarly,
the graph of t �→ (f1(t), f2(t)) coversA = {(r, FA(r, n)) : r ∈ R, n ∈ �} as t ranges
over I2. Thus t �→ (f1(t), f2(t)) is a Σ12 Peano function with f1 differentiable on
I1 and f2 differentiable on I2. �
The proof of (2) =⇒ (1) in Theorem 3.8 requires several lemmata. We start
with a general observation about open Π12 sets. Recall that the class of Π

1
2 sets is

�-parametrized, meaning that for any recursively presented Polish X , there is a
Π12 set P

(X ) ⊆ � × X such that

P(X )n = {x ∈ X : (n, x) ∈ P}
enumerates the Π12 sets in X . In particular, there is such a set P(�) ⊆ � × �
parametrizing the Π12 subsets of �. We let

a = {〈n,m〉 : (n,m) ∈ P(�)},
where 〈·, ·〉 is some standard Gödel pairing function. Note that a ∈ L.
Lemma 3.9. Suppose A ⊆ X is an open Π12 set. Then there is a Σ

0
1(a) predicate

�(x) such that x ∈ A ⇐⇒ �(x).

Proof. Let d be a compatiblemetric onX and let (xn)n∈� be a dense sequence in
X such that (d, (xn)n∈�) is a recursive presentation ofX . Let (qm)m∈� enumerate
(effectively) the positive rationals, and define

a = {〈n,m〉 ∈ � : (∀x)d (x, xn) < qm =⇒ x ∈ A}.
Then the set a ⊆ � is Π12, and

x ∈ A ⇐⇒ (∃n,m)〈n,m〉 ∈ a ∧ d (x, xn) < qm
which gives a Σ01(a) definition of A, whence A is Σ

0
1(a). �

Lemma 3.10. Let �(x, y) be a Δ12 predicate which defines a function f : R → R.
Then:
(1) There is a Π02(a) predicate φ(x) such that in any model in which � defines a
function we have: φ(x) holds if and only if x is a point of continuity of f.
(2) There is aΠ02(b) predicate �̂(x, y) with parameter b ∈ L such that in anymodel
where � defines a function we have: �̂(x, y) if and only if �(x, y) ∧ φ(x).
Proof. (1) Recall that for x ∈ R, the oscillation of f at x is defined as

oscf(x) = inf{diam(f(U )) : x ∈ U ∧U ⊆ R is open},
and that x is a point of continuity precisely when oscf(x) = 0. Let φ(x, ε) be the
following predicate:

(∃q, r, 
 ∈ Q+)|x − q| < r ∧ [(∀x0, x1)(∀y0, y1)(f(x0) = y0 ∧ f(x1) = y1 ∧
|x0 − q| < r ∧ |x1 − q| < r) −→ |y0 − y1| < ε − 
].

This is Π12 and φ(x, ε) holds precisely when oscf(x) < ε. On the other hand, it
is easy to see that {(x, ε) ∈ R × Q+ : oscf(x) < ε} is open (when Q+ has the
discrete topology), and so {(x, ε) ∈ R× Q+ : �̂(x, ε} is an open Π12 set. It follows
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from Lemma 3.9 that there is a Σ01(a) predicate φ̂(x, ε) such that �̂(x, ε) iff φ̂(x, ε).
Thus if we let φ(x) be (∀ε ∈ Q+)φ̂(x, ε) then φ(x) is a Π02(a) predicate which holds
precisely when x is a point of continuity of f, and φ does so in any model where
�(x, y) defines a function.
(2) Fix a sequence (xn)n∈� in R ∩ L such that

L |= “(xn)n∈� is dense in {x ∈ R : φ(x)}”.
To say that (xn) is dense in {x ∈ R : φ(x)} can be expressed as

(∀ε ∈ Q+)(∀x)(φ(x) −→ (∃n)|xn − x| < ε),
which is Π11(a, (xn)n∈�), and so this statement is absolute. Let (yn)n∈� be the
sequence in R ∩ L defined by yn = f(xn), and let �̂(x, y) be the predicate

φ(x) ∧ (∀ε ∈ Q+)(∃n)|xn − x| < ε ∧ |yn − y| < ε.
Then �̂(x, y) is Π02(a, (xn)n∈�, (yn)n∈�) and since f is continuous on the set
{x ∈ R : φ(x)} it holds that

�̂(x, y) ⇐⇒ φ(x) ∧ �(x, y)
in any model where � defines a function, as required. �
Lemma 3.11. Let f : R → R be a function. Then:
(1) There is aΠ11 setH ⊂ R such that

{x ∈ R : f′(x) exists} ⊆ H
and {y ∈ R : f−1(y) ∩H is uncountable} is Lebesgue null.
(2) If f is defined by the Δ12 predicate �(x, y) then there is aΠ

1
1(b) predicate �(x)

with a parameter b ∈ L such if we let H = {x ∈ R : �(x)} then (1) holds for this H
and f defined by � in any model where �(x, y) defines a function.
Proof. (1) Let C be the set of points of continuity of f. It is well-known that
this is a G
 set. Define

x ∈ H ⇐⇒ x ∈ C ∧ (∃y)(∀ε > 0)(∃
 > 0)(∀z ∈ C \ {x})[
|x − z| < 
 =⇒ |f(x)− f(z)

x − z − y| < ε
]
. (3.1)

It is clear that if f′(x) exists then x ∈ H . Permitting a slight abus de langage here
and below, we extend the definition of f′(x) to all ofH be letting f′(x) = y where
y is such that (3.1) is satisfied.

Claim 3.12. H is Π11.

Proof. Let f̄ : R → R be a Borel function such that f̄ �C = f �C . We claim
that x ∈ H if and only if

x ∈ C ∧ (∀ε > 0)(∃q ∈ Q)(∃
 > 0)(∀z �= x)[
(z ∈ C ∧ |x − z| < 
) =⇒

∣∣∣∣∣ f̄(x)− f̄(z)x − z − q
∣∣∣∣∣ < ε

]
. (3.2)

If x is isolated in C then clearly (3.1) holds for x if and only if (3.2) holds. So
assume that x is not isolated. If (3.2) holds for x, let qn witness (3.2) with ε = 1

2n+1 .
Then |qn+1 − qn| ≤ 1

2n so qn is Cauchy, and if we let y = limn→∞ qn then y is easily

https://doi.org/10.1017/jsl.2014.20 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.20
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seen to be a witness to (3.1). Conversely, if (3.1) holds for x, and y is a witness to
this, then let qn ∈ Q be a sequence of rationals such that qn → y. Then it is clear
that for all ε > 0 we can find some n such that qn is a witness to that (3.2) holds.
Since (3.2) is Π11, the claim is proved. �
Claim 3.13. {y ∈ R : f−1(y) ∩H is uncountable} is Lebesgue null.
Proof. The proof uses the idea from [7, Ch. 5.15]. It clearly suffices to show for
all m ∈ N that the sets

Ym = {y ∈ [−m,m] : f−1(y) ∩H is uncountable}
are null; we will prove this for Y1, from which the other cases follow by rescaling
the codomain of f (or by an identical proof). For y ∈ Y1, pick ty ∈ f−1(y) ∩H
such that f′(ty) = 0. Such a ty exists since when y ∈ Y1 the set f−1(y) ∩ H is
uncountable and so it contains an accumulation point, and as f is constant on this
set we must have f′(t) = 0 at any accumulation point. Let T = {ty : y ∈ Y1}, and
note that f(T ) = Y1.
Let ε > 0, and for each t ∈ T let 1 > 
t > 0 be such that for all z ∈ C with

|t − z| < 
t we have ∣∣∣∣f(t)− f(z)t − z
∣∣∣∣ < ε,

and let It = (t − 
t , t + 
t). Note that for any z ∈ It ∩ C we have f(z) ∈ (f(t) −
ε
t , f(t) + ε
t), and so we have �(f(It ∩ C )) ≤ 2ε
t . Since the intervals It cover
T , we can find ti ∈ T , i ∈ N, such that U =

⋃
t∈T It =

⋃
i∈N
Iti . We claim that

�(f(U ∩ C )) ≤ 4ε. To see this it is enough to prove that �(f(K ∩ C )) ≤ 4ε
for all compact K ⊆ U . If K ⊆ U is compact, then we can find N ∈ N such
that K ⊆ ⋃N

i=1 Iti . Moreover, after possibly going to a subcover, we can assume
that each x ∈ K is contained in at most two different intervals Iti , and so we have∑N
i=1 2
ti =

∑N
i=1 �(Iti ) ≤ 4. Thus

�(f(C ∩K)) ≤ �(f(
N⋃
i=1

Iti ∩ C )) ≤
N∑
i=1

�(f(Iti ∩ C )) ≤
N∑
i=1

2ε
ti = 4ε,

as required. It follows that �(f(U ∩ C )) = 0, and so since T ⊆ U ∩ C we have
�(Y1) = �(f(T )) = 0. �
(2) Let φ(x) and �̂(x, y) be the predicates defined in Lemma 3.10, and let �(x)

be the predicate

φ(x) ∧ (∀ε > 0)(∃q ∈ Q)(∃
 > 0)(∀z)(∀y0, y1)
(φ(z) ∧ z �= x ∧ |x − z| < 
 ∧ �̂(x, y0) ∧ �̂(z, y1)) −→ |y0 − y1

x − z − q| < ε.

Then �(x) is Π11(b) (where b ∈ L is the parameter in �̂), and if �(x, y) defines a
function then the set {x ∈ R : �(x)} is equal to the setH defined in (3.1). �
Proof of Theorem 3.8. We may assume that ℵL1 = ℵ1. Fix f : R → R2 : x �→
(f1(x), f2(x)) as in the statement of the theorem. Applying Lemma 3.11 to f1 and
f2, there are Π11(b) (b ∈ L) sets H1 and H2 defined by Π11(b) formulas �1(x) and
�2(x) such that

Yi = {y ∈ R : |f−1
i (y) ∩Hi | > ℵ0}
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is Lebesgue null, and such that the points of differentiability of fi are contained in
Hi . Let

YLi = {y ∈ R ∩ L : L |= |f−1
i (y) ∩Hi | > ℵ0}.

We claim that Yi ∩ L = YLi . Since ℵ1 = ℵL1 it is clear that if y ∈ YLi then y ∈ Yi .
On the other hand, note that the set Γi,y = f−1

i (y)∩Hi is Δ12(b, y), and so if y ∈ L
then by Lemma 2.2 the set Γi,y is countable if Γi,y ∩ L is. So if y ∈ L \ YLi then
y /∈ Yi , as required.
Let R∗ = R \ (Y1 ∪ Y2), which has full measure, and let A1 = f(H2) and
A2 = f(H1). Then A1 and A2 are Σ12(b) sets, and since either f

′
1(t) or f

′
2(t) exists

for all t ∈ R we must have that R = A1 ∪ A2. For any r ∈ R∗ the set f−1
i (r) ∩Hi

is countable by the definition of R∗, and so there are at most countably many
t ∈ Hi such that fi(t) = r. Since YL1 ∪ YL2 is null in L there are uncountably
many constructible reals (xα : α < ℵ1) not belonging to YL1 ∪ YL2 , and therefore
not to Y1 ∪ Y2. On the other hand, since R∗ has full measure there is r ∈ R∗ \ L.
The horizontal section Axα1 contains only constructible reals since A

xα
1 is Σ

1
2(a, xα),

and so if it contained a non-constructible real then it would be uncountable by
Theorem 2.3. Since A1 ∪ A2 cover R2 it must then be the case that the vertical
section (A2)r contains all the points of the form (r, xα). But this contradicts that
(A2)r is countable. �
3.5. Polarized partitions. Another type of statement that can be proved by
counting arguments analogous to the above are polarized partition relations for
Σ12 colourings of R × R (where, as in Section 2, R refers to an uncountable recur-
sively presented Polish space). These may be viewed as regularity properties that
Σ12 colourings have in the presence of a non-constructible real.
We have the following definable analogue of [7, 24.27]:

Theorem 3.14. The following are equivalent:
(1) R � L.
(2) For every Σ12-definable function f : R ×R → � there are sets C,D ⊆ R such
that |C | = |D| = 2 and f �C ×D is monochromatic.

(3) For every Σ12-definable function f : R ×R → � there are sets C,D ⊆ R such
that |C | = |D| = ℵ0 and f �C ×D is monochromatic.

(4) For every Σ12-definable function f : R × R → � there are countably infinite
Σ12 sets C,D ⊆ R such that f �C ×D is monochromatic.

Proof. (4) =⇒ (3) =⇒ (2) is clear.
(1) =⇒ (3): We may assume that V = L[z] for some z /∈ L and that it holds that

ℵL1 = ℵ1. Assume (3) fails, and fix f witnessing this. For s ∈ [R]� , let
T (s, i) = {y ∈ R : (∀x ∈ s)f(x, y) = i}.

Since s is a countable sequence this quantification over s may be replaced by a
number quantifier over the domain of s . Thus T (s, i) is Σ12(s). By assumption we
have that |T (s, i)| < ℵ0 and so T (s, i) ⊆ L by Theorem 2.3. Let Ui = {x ∈ R ∩L :
f(x, z) = i}. Then |Ui | < ℵ0 since otherwise we could find si ⊆ Ui of size ℵ0 from
which z ∈ T (si , i) would follow, contradicting that z /∈ L. But now we have

R ∩L =
⋃
i∈�
Ui
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so that |R ∩ L| is countable, a contradiction.
(3) =⇒ (4): Fix a Σ12-definable function f and i ∈ � such that there exists
C,D ∈ [R]� with f(C ×D) = {i}. Since f is Σ12 the set

{(C,D) ∈ [R]� × [R]� : (∀(x, y) ∈ C ×D)f(x, y) = i}
is Σ12, and it is non-empty by the above. Thus by Σ

1
2-uniformization (e.g., [12, 4E.4])

it contains a Σ12 definable pair (C,D).
(2) =⇒ (1): Suppose R ⊆ L and let � denote the usual Σ12 well-ordering of
L ∩ R. Recall IS#(x, y) from 2.3, and define

f(x, y) =

⎧⎨
⎩
IS#(y, x) + 1 if x ≺ y,
IS#(x, y) + 1 if y ≺ x,
0 if x = y.

Let {x, x′}, {y, y} ⊆ R where x �= x′ and y �= y′, and assume that x, x′, y � y′.
Then f(x, y′) �= f(x′, y′), and so f �{x, x′} × {y, y′} is not monochromatic. �
3.6. A Schur type partition result. As an application of Theorem 3.14 we prove
the following definable analogue of [7, 24.37].

Theorem 3.15. There is a non-constructible real if and only if for any Σ12 colouring
g : R → � there are four distinct x00, x01, x10, x11 ∈ R of the same colour such that

x00 + x11 = x01 + x10.

Proof. AssumeR � L and let g : R → � be a colouring. By [5, 19.2] we can find
a continuous h : 2� → R such that h(2�) is linearly independent over Q. It may
be shown using [4] that this h can be taken to be Δ11. Now let f : 2

� × 2� → � :
(x, y) �→ g(h(x) + h(y)). Then by Theorem 3.14 we can find x0 �= x1 and y0 �= y1
such that f �{x0, x1}×{y0, y1} is monochromatic. If we let xij = h(xi)+ h(yj) for
0 ≤ i, j ≤ 1 then clearly x00 + x11 = x01 + x1,0 and these are distinct since h(2�) is
linearly independent over Q.
Conversely, assume that R ⊆ L. We define a function g : R → � by

g(x) = m ⇐⇒ (∃ε)RR(x, ε) ∧ �ε(m) = x,
where RR is defined as in Section 2.2. Then g is Σ12. Let x00, x01, x10, x11 ∈ R be
distinct, and let α < � be least such that xi,j ∈ Lα for all 0 ≤ i, j ≤ 1. It cannot be
the case that three of the xij are already in some L� where � < α, since the Lα are
closed under addition. Thus two of the xi,j are in Lα and not in any L� for � < α.
But then these two xi,j are coloured differently by g. �
Remark 3.16. It is clear from the above that what is really needed to make
all of the above theorems work for Σ1n (or more generally, Σ

1
n(a) versions) is an

inner model relative to which we have a Σ1n absoluteness principle and a perfect set
theorem for Σ1n . If we have this, then we will be able to prove that the Σ

1
n versions of

the statements in Theorem 1.1 and Theorem 3.14 are equivalent to all reals being in
that inner model.
For example, it is well-known (see [3, Section 15]) that if there is a measurable
cardinal κ, and U is an ultrafilter witnessing this, then the inner model L[U ] has
this relationship to the class of Σ13 sets, provided that 0

� does not exist. Thus in this
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context we obtain Σ13 versions of Theorem 1.1 and Theorem 3.14, with L replaced
by L[U ].
Philip Welch has further pointed out to us that you can more generally do this
using the core model K below one Woodin cardinal. Assume (i) there exists a
measurable cardinal and (ii) sharps for reals. Then this model is Σ13 correct, and so
the above theorems work over this model.

Remark 3.17. The referee has made the following remark, which expands on
Philip Welch’s observation above. Assuming the existence of appropriate large car-
dinals, the required correctness of the core model can be lifted throughout the
projective hierarchy, replacing K with Mn (see [16, 7.2] for the definition of Mn),
but this does not quite suffice to fully capture all reals in the analogues of the
theorems of the paper. Thus the question of level by level equivalences throughout
the full projective hierarchy appear interesting.
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[7] Péter Komjáth and Vilmos Totik, Problems and theorems in classical set theory, ProblemBooks

in Mathematics, Springer, New York, 2006.
[8] Richard Mansfield, Perfect subsets of definable sets of real numbers. Pacific Journal of

Mathematics, vol. 35 (1970), pp. 451–457.
[9] Richard Mansfield and Galen Weitkamp, Recursive aspects of descriptive set theory, Oxford

Logic Guides, vol. 11, The Clarendon Press Oxford University Press, New York, 1985.
[10] Arnold W. Miller, Infinite combinatorics and definability. Annals of Pure and Applied Logic,

vol. 41 (1989), no. 2, pp. 179–203.
[11]M. Morayne, On differentiability of Peano type functions. Colloquium Mathematicum, vol. 48

(1984), no. 2, pp. 261–264. MR 758535 (86i:26008)
[12] Yiannis N. Moschovakis, Descriptive set theory, second ed., Mathematical Surveys and

Monographs, vol. 155, American Mathematical Society, Providence, RI, 2009.

https://doi.org/10.1017/jsl.2014.20 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.20
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