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According to magnetohydrodynamics (MHD), the encounter of two collisional
magnetized plasmas at high velocity gives rise to shock waves. Investigations
conducted so far have found that the same conclusion still holds in the case of
collisionless plasmas. For the case of a flow-aligned field, MHD stipulates that the
field and the fluid are disconnected, so that the shock produced is independent
of the field. We present a violation of this MHD prediction when considering
the encounter of two cold pair plasmas along a flow-aligned magnetic field. As the
guiding magnetic field grows, isotropization is progressively suppressed, resulting in a
strong influence of the field on the resulting structure. A micro-physics analysis allows
us to understand the mechanisms at work. Particle-in-cell simulations also support
our conclusions and show that the results are not restricted to a strictly parallel field.
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1. Introduction

When a shock propagates into a neutral fluid, upstream particles slow down at the
shock front as a result of collisions with particles in the slower-moving downstream
gas. In fact, binary collisions are the only possible microscopic mechanism for an
upstream particle to slow down. As a consequence, the shock front is a few mean-
free-paths thick (Zel’dovich & Raizer 2002).

In situ measurements of the Earth’s bow shock within the solar wind show that its
front is far smaller than the mean free path of the ions at the same location, which
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is comparable to an astronomical unit (Bale, Mozer & Horbury 2003; Schwartz et al.
2011). Such shocks, where the mean free path is much larger than the front, have
been dubbed ‘collisionless shocks’. Instead of being sustained by binary collisions,
these shocks are mediated by collective plasma effects acting on much shorter time
and length scales than binary Coulomb collisions (Petschek 1958; Sagdeev 1966).

Collisionless shocks are believed to occur in a wide variety of astrophysical
settings: active galactic nuclei, pulsar wind nebulae, planetary environments, supernova
remnants, etc. The absence of collisions allows particles to gain energy without
sharing it immediately with other particles. As a result, such shocks have been found
to be excellent particle accelerators and now count among the main candidates for
the production of high energy cosmic rays (Blandford & Eichler 1987; Sironi, Keshet
& Lemoine 2015; Marcowith et al. 2016). They are also believed to play a role in
the generation of gamma-ray bursts (Mészáros & Rees 2014; Pe’er 2015) and fast
radio bursts (Falcke & Rezzolla 2014; Lyubarsky 2014).

Starting with the pioneering work of Sagdeev in the 1960s (Sagdeev 1966), our
knowledge of collisionless shocks has grown tremendously, particularly in the
past decade thanks to the advent of large scale particle-in-cell (PIC) simulations
(Spitkovsky 2005; Martins et al. 2009). However, as recently as the 1990s, there
were still doubts about the very existence of collisionless shocks (Sagdeev & Kennel
1991). While the Earth bow shock measurements have definitely eliminated these
doubts, the micro-physics of collisionless shock formation, and the mechanism of
particle acceleration, are still under investigation.

Given the omnipresence of collisionless shocks and their important role in many
phenomena, especially in astrophysics, the conditions for such shocks to form are
worthy of investigation. A detailed understanding is all the more important that
electrostatic collisionless shocks∗ have been observed in the laboratory (Ahmed et al.
2013), while the production of Weibel mediated shocks such as the ones discussed
here, is expected within the next few years (Huntington et al. 2015; Lobet et al. 2015;
Park et al. 2016). Note that the ‘Weibel instability’ we refer to is sometimes labelled
the ‘filamentation instability’ or the ‘beam Weibel’ instability (Silva et al. 2002;
Deutsch et al. 2005; Hill et al. 2005). It is the instability of two counter-streaming
flows with respect to perturbations with wave vectors normal to the flow.

When a collisionless shock forms from the encounter of two plasma shells, the
downstream plasma may be thermalized by collisionless processes (see Bret (2015a)
and references therein). As a consequence, the equations of magnetohydrodynamics
(MHD) can be applied, so that both collisionless shocks and MHD shocks can in
principle be analysed using the same fluid approach†. For the case of a flow-aligned
field, MHD prescribes that the fluid and the field are decoupled (Majorana & Anile
1987), so that the very same shock should form, regardless of the field intensity.

Here, we present a specific example of departure from this expected MHD
behaviour. We consider the encounter of two collisionless cold pair plasmas. A
flow-aligned magnetic field is present, and the system is relativistic. In § 3, we
explain the predictions of MHD for this system. Then, in § 4, we describe a series of
∗Before they collide, two plasmas display a Debye sheath at their border, with an associated potential jump

(Gurnett & Bhattacharjee 2005). At a low energy of collision, the encounter is mediated by the interaction of
these sheaths, and an electrostatic shock is formed. At higher energy, the interaction is rather mediated by the
counter-streaming instabilities arising from the overlapping of the plasmas (Stockem et al. 2014; Bret 2015a).
If the dominant instability is the Weibel one (see conditions in Bret, Gremillet & Dieckmann (2010)), then a
‘Weibel shock’ is formed.

†One source of discrepancies are the accelerated particles which escape the Rankine–Hugoniot ‘budget’
(Stockem et al. 2012; Sironi, Spitkovsky & Arons 2013; Caprioli & Spitkovsky 2014; Bret 2015a).
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FIGURE 1. Set-up of the system considered. Two collisionless cold pair plasmas of density
n0 and initial Lorentz factor γ0 collide over a flow-aligned magnetic field B0.

simulations using the PIC technique. These simulations work at the microscopic level,
and show a departure from the MHD predictions beyond a critical magnetization. In
§ 5, we present a micro-physics analysis of the shock formation process explaining
the departure from MHD.

2. System considered

The system considered is shown schematically in figure 1. Two identical pair plasma
shells of density n0 head toward each other with initial velocity ±v0 and Lorentz
factor γ0= (1− v2

0/c
2)−1/2. The whole system is embedded in an external field B0 ‖ v0

and aligned with the x axis. We denote by ‘upstream frame’ the frame of reference
of the right shell, and by ‘downstream frame’ the frame where the total momentum
is zero. When a shock forms, these frames become the upstream and downstream
frames of the shock, respectively. The strength of the magnetic field is measured by
the magnetization parameter,

σ = B2
0/4π

γ0n0mc2
, (2.1)

where all quantities are measured in the downstream frame.

3. MHD predictions

An MHD plasma sustains 3 kinds of modes: the slow mode, Alfvén mode and fast
mode (Kulsrud 2005). The phase velocities of these modes satisfy the hierarchy vslow<

vAlfven < vfast. Because of this hierarchy, the Alfvén mode is sometimes dubbed the
‘intermediate mode’ (Kulsrud 2005). In the cold limit considered here, vslow→ 0 and
vfast→ vAlfven.

A ‘fast shock’ has its front moving faster than the upstream fast mode, while a
‘slow shock’ only moves faster than the upstream slow mode. For fast shocks, the
shock front also propagates faster than the downstream Alfvén speed; in slow shocks,
it propagates slower. An intermediate regime exist, where the flow is super-Alfvénic
upstream and sub-Alfvénic downstream (crossing of the Alfvénic point, see e.g. Kirk
& Duffy (1999)). However, such solutions of the MHD jump equations do not survive
when produced and are called ‘extraneous’ (Kulsrud 2005); they typically split into a
pair of ‘fast’ and ‘slow’ shocks.
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FIGURE 2. The MHD thresholds for slow and fast shocks are represented by the thick
black lines, with the thin vertical lines showing the large γ0 limits, σ = 2/3, 2. Extraneous
shocks occur in between the two thick black lines. The Weibel instability governs systems
located above and to the left of the orange curve. The Weibel filaments at saturation are
able to stop the incoming flow, and initiate shock formation, only for systems to the left
of the blue curve ((5.5) with κ = 2/3).

For a flow-aligned field, the fluid motion decouples from the field (Majorana &
Anile 1987). The shock formed is therefore the same, regardless of the magnetization
parameter σ . Nevertheless, its front velocity can still be compared to the phase speeds
of the three modes. In the present cold limit, and for γ0→∞, the shock is expected to
be ‘fast’ for σ < 2/3, ‘slow’ for σ > 2, and ‘extraneous’ in between (see appendix A).
Figure 2 shows these limits for a range of γ0 in the (σ , γ0) plane.

The MHD predictions for the present system are therefore very clear: the same
shock should form regardless of the σ parameter, simply because the fluid and the
field are perfectly decoupled here. The MHD simulations run in appendix A confirm
this conclusion.

4. PIC simulations
We now turn to PIC simulations to conduct a micro-physical, i.e. kinetic, analysis

of the system under scrutiny. We use the three-dimensional (3-D) electromagnetic PIC
code TRISTAN-MP (Spitkovsky 2005), which is a parallel version of the publicly
available code TRISTAN (Buneman 1993) that has been optimized for studying
relativistic collisionless shocks (Spitkovsky 2008a,b; Sironi & Spitkovsky 2009, 2011;
Sironi et al. 2013). We employ simulations in 2-D computational domains, but all
three components of particle velocities and electromagnetic fields are tracked (see
more details in appendix B).

We probe the regime γ0= 10 and 0<σ < 3. Note that the parameter space in Bret
(2016a) is parameterized is terms of γ0 and ΩB, the latter being related to the present
σ through ΩB =√2γ0σ

‡. For clarity, table 1 gives the values of the values of ΩB of
Bret (2016a) corresponding to the values of σ sampled here.

Figure 3 shows the y-integrated density profile of the system for γ0= 10 (figure 3a),
at a relatively early time, ωpt = 450, where ω2

p = 4πn0q2/γ0m. The magnetization

‡The factor 2 comes from the fact that the plasma frequency in Bret (2016a) is the one of the electrons
(or the positrons) alone, while the density n0 in σ is the total density of one pair beam.
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(a)

(b)

FIGURE 3. Shock structure from a series of 2-D PIC simulations with γ0=10, 0.26σ 63,
at ωpt = 450. We plot the y-averaged density profile (a) and a measure of the plasma
anisotropy (b), as defined in (4.1). The vertical dashed line indicates the position of the
front, assuming that it propagates at c/3. The angle between the field and the flow is
θ = 0.

σ 0.2 0.4 0.6 0.8 1 1.5 2 3
ΩB 2.0 2.8 3.5 4.0 4.5 5.5 6.3 7.7

TABLE 1. Values of the parameter ΩB =√2γ0σ used in Bret (2016a) corresponding to
the values of σ sampled here and for γ0 = 10.

parameter varies from 0.2 to 3, as indicated in the legend. In figure 3(b), we quantify
the isotropization of the particle distribution function by plotting the ratio ϕ between
the momentum dispersion along the transverse directions (y and z) as compared to the
longitudinal direction x, namely,

ϕ = Var(py)+Var(pz)

2Var(px)
. (4.1)

We notice that, for σ . 0.4, the shock structure is independent of the magnetization, in
line with the MHD predictions. In the downstream (left of the vertical dashed line),
the density approaches the value predicted by the MHD jump conditions (∼4.2 for
γ0= 10, and ∼4 in the limit γ0� 1). Correspondingly, the shock speed approaches the
value ∼c/3 predicted by MHD (indicated by the dashed line). Figure 3(b) shows that
for low magnetizations the downstream plasma is nearly isotropic. However, for higher
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(a)

(b)

FIGURE 4. Same as in figure 3, but at a later time: ωpt= 3600.

magnetizations (σ & 0.6), the downstream density is lower than the value predicted by
MHD. Consequently, the shock speed is faster than the MHD prediction ∼c/3.

It is noteworthy that the width of the density jump increases with σ . For small
values, the shock front is ∼70c/ωp thick. But for σ = 3, the transition region between
the ‘upstream’ and the ‘downstream’ is ∼300c/ωp.

Why do the results for σ & 0.6 deviate from MHD? One might think then, that
because the PIC simulations are limited to early times, the shock has not formed yet.
How much time should the formation of a shock take? For the present system, the
growth rate δW of the Weibel instability is given by (Stockem, Lerche & Schlickeiser
2006; Bret 2016a),

δW =ωp

√
2β2

0 − σ , (4.2)

where β0 = v0/c. The shock formation time typically amounts to a few tens of e-
folding times (Bret et al. 2013, 2014). With the parameters used here, 20δ−1

W is at
most 28ω−1

p for σ = 1.5 (δW vanishes for σ > 2β2
0 ). Therefore, the time t= 450ω−1

p to
which the simulations in figure 3 have been run, exceeds by a factor of 15 the slowest
expected shock formation time.

To verify the above argument, we have evolved the simulations to much longer
times: ωpt= 3600 (figure 4). We again find that the density profile strongly varies with
σ , contrary to the MHD prescriptions. For magnetizations σ & 0.6, the system settles
into a quasi-stationary state which does not satisfy the usual MHD jump conditions.
Ultimately, the fact that the density jump and the shock speed do not agree with the
MHD jump conditions is related to the lack of isotropy in the downstream plasma.
As shown in figures 3(b), 4(b), for σ & 0.6, the downstream particle distribution is
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hotter along the longitudinal direction than in the transverse directions§. For large σ ,
we find downstream ϕ < 1 (left of the vertical dashed lines), which means that the
flow is not isotropized even at late times.

The width of the density jump is again worth emphasizing. For small values of σ ,
the shock front on figure 4 is still ∼70c/ωp thick. But for σ = 3, the transition region
is now ∼2000c/ωp.

The micro-physical analysis discussed next in § 5 predicts that the departure from
the MHD behaviour we just observed, is γ0 independent at large γ0. This prediction
has been successfully tested in appendix B by running a series of PIC simulations
with γ0= 30. We also confirm in appendix B that these results are not restricted to a
perfectly flow-aligned field (θ = 0) but survive even for a misaligned field.

5. Micro-physics of the shock formation
From the discussion so far, it appears that the observed departure of the system

under consideration from the predictions of MHD, boils down to the non-isotropization
of the downstream particle distribution function, even at late times. The following
kinetic analysis of the shock formation process allows us to understand why
isotropization fails.

Weibel shocks are mediated by purely collective phenomena. When the two plasma
shells start interpenetrating, the overlapping region turns unstable to counter-streaming
instabilities. Many linear instabilities compete (Bret et al. 2010), but the Weibel
(filamentation) instability, with a k normal to the flow, grows faster than all others,
provided (Bret 2016a),

γ0 >

√
2

4/3− σ . (5.1)

The line corresponding to this limit is shown in figure 2 by the orange curve. The
Weibel instability dominates the unstable spectrum of the system for all points of the
(σ , γ0) plane above and to the left this line.

The micro-physics of shock formation depends on the ability of the Weibel
instability to form magnetic filaments capable of blocking the plasma that keeps
entering the overlapping region. In the case of un-magnetized pair plasmas, for
example, this condition is already met at saturation of the Weibel instability (Bret
et al. 2013, 2014). As a result, the density quickly builds up in the overlapping region,
and a shock forms. Distribution functions are quickly isotropized in the overlapping
region and MHD considerations apply.

The magnetic filaments generated by the Weibel instability are of the form,

Bf = Bf sin(ky)ez, (5.2)

where k is the fastest growing wavenumber. When there is no external magnetic field,
an analysis of the motion of a particle of mass m and charge q in such filaments (Bret
2015b) shows that it is stopped inside if

k−1 >
v0

ωBf

, with ωBf =
qBf

γ0mc
, (5.3)

§Note that, since the particle momenta are measured in the downstream frame of the simulations, we do
not expect ϕ = 1 in the upstream medium (but rather ϕ ∝ 1/γ0), despite the fact that the upstream plasma is
isotropic in its own rest frame.
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where v0 is the initial, flow-aligned velocity of the particle and γ0 is its Lorentz factor.
Although the model from which this conclusion is derived is highly simplified, the
condition is consistent with the results of PIC simulations (Bret et al. 2014).

How is (5.3) modified in the presence of a flow-aligned magnetic field? One would
expect a guiding field to suppress the transverse scattering of particles and to thereby
help particles go through the filaments without stopping. Indeed, analysis shows that
regardless of their initial velocity or initial position along the y axis, all particles
stream through the filaments whenever (Bret 2016b)

B0 >
1
2 Bf . (5.4)

Since Bf arises from the growth of the Weibel instability, its magnitude can be
quantified (Stockem et al. 2006; Bret 2016a). Therefore, the above criterion can
eventually be expressed in terms of σ and β2

0 = 1 − 1/γ 2
0 , giving (see details in

appendix C),
σ > κβ2

0 , (5.5)

where κ = 2/3 if equipartition is assumed at saturation of the Weibel instability. The
boundary corresponding to the criterion (5.5) with κ = 2/3 is shown in figure 2 by
the blue curve.

The region between the bounds corresponding to (5.1) and (5.5), i.e. the region
between the orange and blue lines in figure 2, corresponds to a range of parameters
where the Weibel instability governs the linear phase of the overlapping region, but
the filaments at saturation are not strong enough to stop the flow. The expected
consequence, as indeed observed in our PIC simulations, is that the flows are not
trapped in the overlapping region but keep streaming through. Isotropization is not
achieved and MHD does not apply.

The reader may have noticed that for σ = 2 and 3, the Weibel instability does
not govern the linear phase of the initial interaction between to two shells. How is
it then that the system still fails to follow MHD? We conjecture that the analysis
described above, where we were able to quantify all the steps because the Weibel
instability is well understood, must be a particular case of the following more general
argument. Instead of the Weibel filaments described by (5.2), consider a turbulent
electromagnetic perturbation

∑
k Ek + Bk (with 〈Ek〉 = 〈Bk〉 = 0) that is present in

the overlapping region and that can potentially isotropize the incoming flow. Consider
also a superimposed, flow-aligned field B0. In the limit B0 = 0, the incoming flow is
isotropized, and usual MHD applies. In the opposite limit B0→∞, the incoming flow
is strongly guided by the mean field, and will ignore the weaker underlying turbulence.
Hence, MHD prescriptions are violated. When does the switch from one regime to the
other happen? We conjecture that particles will tend to follow the mean field instead
of being randomized whenever the energy density B2

0/8π of the mean field exceeds a
fraction of order unity of the turbulent energy ET . Now, if the turbulence is caused by
an instability of the counter-streaming flows, its energy will be a fraction of the flow
energy density, i.e. ET .γ0n0mc2. As a consequence, the system will depart from MHD
beyond a critical value of (B2

0/8π)/γ0n0mc2 = σ/2. We thus conclude that, regardless
of which instability is initially triggered in the overlapping region, the MHD behaviour
is inhibited for values of σ greater than about unity. This is indeed what is observed
in our PIC simulations.
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6. Conclusions
In summary, we have found a departure from MHD behaviour when two

collisionless pair plasma shells with a flow-aligned magnetic field collide. While
MHD stipulates that the very same shock should form regardless of the σ parameter,
the micro-physics analysis of the shock formation allows to understand why the
standard shock formation scenario can be jeopardized beyond a critical magnetization.

PIC simulations have confirmed the theoretical analysis. The results are similar
when considering an angle θ = 5◦ between the field and the flow (see appendix B).
This shows that the observed MHD departure is not a ‘Dirac delta’ effect, strictly
restricted to θ = 0.

What about an electron/proton plasma? It is difficult at this stage to draw definite
conclusions about that case. When protons are accounted for instead of positrons, the
asymmetric role of electrons and protons results in an upstream current which, in
the presence of a flow-aligned magnetic field, is likely to trigger the Bell instability
(Bell 2004). This instability is not triggered here because of the symmetric role of
electrons and positrons. But if excited, the upstream Bell turbulence, when transported
downstream, could help isotropizing the flow. Yet, in spite of some differences with
pair plasmas (Stockem Novo et al. 2015), shock formation in electron/proton plasmas
eventually still boils down to the capability of an instability generated turbulence to
stop the flow. If the conjecture enounced at the end of § 5 turns out to be valid, we
could recover a σ threshold for the validity of MHD in electron/proton plasmas as
well, since the energy of the downstream turbulence should remain a fraction of the
upstream kinetic energy. Further studies will be necessary to sort out this important
issue.

Would it be possible to modify MHD so that it keeps fitting the kinetic results for
σ & 0.6? A tentative pathway, beyond the scope of this work, would be to include the
downstream anisotropy within the MHD analysis. Indeed, bottom panels of figures 3
and 4 clearly show that the downstream is not isotropized because of the magnetic
field. One could therefore try to quantify this anisotropy in terms of the field before
inserting the corresponding temperature anisotropy in the Rankine–Hugoniot jump
conditions analysis (Karimabadi, Krauss-Varban & Omidi 1995; Vogl et al. 2001;
Gerbig & Schlickeiser 2011).

Future work will also explore in detail the angular dependence of our results,
together with the expected consequences for astrophysics.
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Appendix A. MHD predictions
A.1. MHD criterion for slow shocks

A key quantity is the speed of the shock front relative to the phase velocity of the fast
mode. Consider first the upstream fast mode. Its phase velocity vfast, which is also the
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phase velocity of the Alfvén mode, is given in the upstream frame by (Kirk & Duffy
1999; Keppens & Meliani 2008)¶,

v2
fast = c2 σ ′

1+ σ ′ , with σ ′ = B2
0

4πn′0mc2
, (A 1)

where the prime stands for quantities measured in the upstream frame. Note that the
field has no prime because it is aligned with the axis of the Lorentz transformations.

Regarding the velocity of the shock front, it is in two dimensions and for large γ0,
βs ≡ vs/c = 1/3 in the downstream frame (Kirk & Duffy 1999). In this frame, the
upstream propagates at v0 (figure 1). Therefore, the speed v′s of the shock front in
the upstream frame is

v′s
c
≡ β ′s =

βs + β0

1+ βsβ0
∼ 1− 1

4γ 2
0

if γ0� 1. (A 2)

The condition vfast > v
′
s reads therefore (γ0� 1),

σ ′

1+ σ ′ >
(

1− 1
4γ 2

0

)2

⇒ σ ′ > 2γ 2
0 .

 (A 3)

We need now to express the left-hand side of this equation in terms of the
σ parameter (2.1). Since the field B0 is aligned with the axis of the Lorenz
transformation, it does not change. Regarding the density, there is a relativistic
bunching between n′0, the upstream density in the upstream frame, and n0, the
upstream density in the downstream frame, with

n0 = γ0n′0. (A 4)

Combining with (2.1), (A 3), we finally obtain,

σ > 2. (A 5)

Therefore, MHD shocks with σ > 2 have to be of the slow type. This limit is pictured
on figure 2 in the (σ , γ0) phase space, together with a refined calculation accounting
for the γ0 dependence of the threshold.

Our calculation has been conducted in two dimensions in order to compare with
the PIC simulations. In three dimensions, one has βs = 1/4 and (A 5) reads σ > 5/3
instead. We now turn to the same analysis, but for the downstream.

A.2. MHD criterion for extraneous shocks
Measured in the downstream, the downstream Alfvén and fast mode velocities, read

β2
fast =

σw

1+ σw
, (A 6)

¶The following expression allows for the relativistic corrections needed when the field energy density B2
0/8π

approaches the matter energy density n0mc2. In such circumstances, the field participates in the inertia of the
medium and modifies the speed of the waves.
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σ <2/3 <2 >2

Upstream Super-A Super-A Sub-A
Downstream Super-A Sub-A Sub-A
Shock type Fast Extraneous Slow

TABLE 2. Summary of the MHD conditions for super-Alfvénic gflow upstream and
downstream for γ0 � 1, (A 5), (A 10). The interval 2/3 < σ < 2 pertains to extraneous
solutions.

with,

σw = B2
0

4πw
, and w= nmc2 + γ̂

γ̂ − 1
nkBT, (A 7a,b)

where γ̂ = 4/3 is the adiabatic index, w the enthalpy density and n the downstream
density in its own frame. Writing (Service 1986),

nkBT = 4
3γ

2
0 n0mc2, (A 8)

and neglecting nmc2 in the enthalpy, we obtain

σw = 3
16

B2
0/4π

γ 2
0 n0mc2

. (A 9)

Since in the downstream frame, the shock front propagates at c/3, we need to compare
β2

fast with 1/9. The equation β2
fast = 1/9 gives,

σw = 1
8
⇒ B2

0/4π

γ 2
0 n0mc2

= σ = 2
3
. (A 10)

The corresponding σ limit is pictured on the same figure 2. Table 2 summarizes the
MHD conditions for super-Alfvénic flow upstream and downstream, (A 5), (A 10). As
it appears, the interval 2/3< σ < 2 defines a range of extraneous solutions. For σ <
2/3, MHD gives a fast shock and for σ > 2, it gives a slow shock.

A.3. MHD simulations
We performed 1-D MHD simulations of colliding magnetized flows in order to
confirm the previous analysis. We used the general relativistic magnetohydrodynamical
code KORAL (Sa̧dowski et al. 2014). The domain was filled initially with gas of
uniform comoving frame density, ρ = 1, and velocities set-up so that the gas collides
at x = 0 and on both sides of the contact surface the velocities correspond to the
given Lorentz factor γ0. The gas magnetization is described by the σ parameter and
tilt angle θ (zero tilt angle corresponds to field perfectly parallel to the flow). We
ran a few simulations for the flow-aligned case (θ = 0) as well as for a 5◦ tilt. The
results are shown in figure 5. For the flow-aligned field, the exact decoupling of the
fluid motion from the field (Majorana & Anile 1987) results in a shock independent
from σ . For the 5◦ tilt, the field couples to the fluid and the extraneous regime is
unravelled as the shock splits into 2 sub-shocks (Kulsrud 2005) for intermediate σ
parameters.
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FIGURE 5. MHD simulations of the collision of two cold pair plasmas with γ0= 10. The
extraneous regime requires a tilted field in order to appear.

Appendix B. PIC simulations
B.1. Simulation set-up

The shock is set-up by reflecting a cold ‘upstream’ flow from a conducting wall
located at x = 0. The interaction between the incoming beam (that propagates along
−ex) and the reflected beam triggers the formation of a shock, which moves away
from the wall along +ex. This set-up is equivalent to the head-on collision of two
identical plasma shells (figure 1), which would form a forward and reverse shock
and a contact discontinuity. Here, we follow only one of these shocks, and replace
the contact discontinuity with the conducting wall. The simulation is performed in
the ‘wall’ frame, where the ‘downstream’ plasma behind the shock is at rest.

We use a rectangular simulation box in the x, y plane, with periodic boundary
conditions in the y direction. The incoming plasma is injected through a ‘moving
injector’, which recedes from the wall along +ex at the speed of light. The simulation
box is expanded in the x direction as the injector approaches the right boundary of
the computational domain. This permits us to save memory and computing time,
while following the evolution of all the upstream regions that are causally connected
with the shock.

In two dimensions, each computational cell is initialized with 16 electrons and
16 positrons. The relativistic electron skin depth for the incoming plasma (c/ωp,
with ω2

p = 4πn0q2/γ0m) is resolved with 10 computational cells and the simulation
time step is 1t = 0.045ω−1

p . The computational domain is typically ∼102c/ωp wide
(corresponding to 1024 cells). The simulations extend typically up to ωpt ∼ 3600,
corresponding to a box length of ∼3600c/ωp, or ∼36 000 cells.

The incoming stream is injected along −ex with bulk Lorentz factor γ0. The
incoming plasma is cold, with thermal spread kBT/mc2 � 1. We vary the upstream
Lorentz factor between γ0 = 10 and 30, but we find that our results are nearly
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(a)

(b)

FIGURE 6. Same as figure 3, but for γ0 = 30.

insensitive to the choice of the Lorentz factor, as long as the flow is ultra-relativistic.
The upstream flow is seeded with a uniform magnetic field B0.

Figure 6 shows the result of a series of simulations similar to those displayed on
figure 3, but for γ0 = 30. The weak γ0-dependence, expected from the micro-physics
analysis of § 5, is confirmed.

B.2. Oblique shocks
In most of our studies, the upstream field is aligned with the flow (i.e. we study a
‘parallel shock’), but we also consider quasi-parallel shocks in which the upstream
field makes an angle θ = 5◦ with the flow direction of propagation‖.

In figure 7, we present the results of a suite of 2-D simulations of nearly parallel
shocks, with obliquity θ = 5◦. In addition to the y-averaged profile of the particle
number density (figure 7a) and the measure of particle anisotropy (figure 7b), we
present the y-averaged profiles of the transverse magnetic field Bz, in units of the
upstream field B0. For such small field obliquity, most of the conclusions presented
above for the case of parallel shocks still hold. In particular, for σ & 0.6 the
downstream flow is no longer isotropic. As a result, the density jump is lower
than the MHD predictions.

‖In 2-D simulations, we initialize the magnetic field out of the plane of the simulations. Yet, we have
verified that our results do not change for an in-plane field with the same obliquity θ . In this case, we also
initialize a motional electric field E0 =−β0 × B0 in the upstream medium, where β0 =−β0ex is the three
velocity of the injected plasma.
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(a)

(b)

(c)

FIGURE 7. Shock structure from a series of 2-D PIC simulations with γ0=10, 0.26σ 63,
at ωpt = 450. We plot the y-averaged density profile (a), the y-averaged profile of the
transverse field Bz (b), and a measure of the plasma anisotropy (c), as defined in the
text. The vertical dashed line indicates the position of the shock front, assuming that it
propagates at c/3. The angle between the flow and the field is θ = 5◦.

Appendix C. Value of the parameter κ in (5.5)

The criterion (5.5) has been obtained in Bret (2016b) assuming equipartition at
saturation of the Weibel instability. We here elaborate on the parameter κ beyond what
is done in Bret (2016b).

For the present system, the growth rate δW of the Weibel instability is given by
(4.2). The instability grows the field given by (5.2) until (Davidson et al. 1972),

q
√
〈B2

f 〉
γ0mc

= qBf /
√

2
γ0mc

= ηδW, (C 1)
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where η= 1 means equipartition, as evidenced by (C 4), (C 5) below∗∗. The magnetic
filaments become unable to trap the particles, regardless of their initial y position or
velocities, for

B0 >
1
2 Bf . (C 2)

We now replace Bf in the equation above by its expression from (C 2). We then
express δW from (4.2) and find that B0 > Bf /2 is equivalent to,

σ >
η2

1+ η2/2
β2

0 ≡ κβ2
0 . (C 3)

The vertical asymptote defined by the blue curve on figure 2 relies therefore on
the parameter η. The constraints on its value stem from the degree of equipartition
reached at saturation of the Weibel instability. In this respect, let us compute the total
amount of magnetic energy contained in the magnetic field at saturation, and compare
it to the upstream kinetic energy. Using (C 1) to express B2

f we find,

(B2
f /2+ B2

0)/8π

γ0n0mc2
= η2β2

0 +
σ

2
(1− η2). (C 4)

Accounting only for the energy contained in the Weibel field, one finds,

(B2
f /2)/8π

γ0n0mc2
= η2(β2

0 − σ/2). (C 5)

In the relativistic regime where β0∼1, (C 4) gives unity for η=1 and is monotonically
increasing for η ∈ [0, 1] and σ < 2. Note that the regime σ > 2β2

0 is irrelevant in the
present context since (4.2) implies the instability vanishes there. (C 5) implies that the
relative amount of energy contained in the Weibel field varies like η2. For η= 1, (C 3)
give κ = 2/3, which is the values considered on figure 1.
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