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This article considers an important class of discrete time restless bandits, given by
the discounted multiarmed bandit problems with response delays. The delays in each
period are independent random variables, in which the delayed responses do not
cross over. For a bandit arm in this class, we use a coupling argument to show that in
each state there is a unique subsidy that equates the pulling and nonpulling actions
(i.e., the bandit satisfies the indexibility criterion introduced by Whittle (1988). The
result allows for infinite or finite horizon and holds for arbitrary delay lengths and
infinite state spaces. We compute the resulting marginal productivity indexes (MPI)
for the Beta-Bernoulli Bayesian learning model, formulate and compute a tractable
upper bound, and compare the suboptimality gap of the MPI policy to those of other
heuristics derived from different closed-form indexes. The MPI policy performs near
optimally and provides a theoretical justification for the use of the other heuristics.

1. INTRODUCTION

1.1. Motivation

Dynamic allocation of activity under uncertainty is a fundamental decision problem
faced by decision makers everyday. In each time period, unable to engage in (pull) all
of the existing projects (arms), the decision maker must carefully choose a subset of
the projects in which to engage. Once the projects are chosen, corresponding events
are set in motion and outcomes are observed, based on which the states of each projects
are updated. The objective of the decision maker is to utilize the given information
about the projects and choose the subset of projects each period that would maximize
the long-term horizon discounted rewards.

However, this widely studied dynamic decision model, a variant of a problem
better known as the multiarmed bandit problem, ignores an important dimension
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of response delays. In practice, a project’s outcome is not observed immediately,
but only after a delay (whose length might be random), during which the decision
maker continues to make decisions. Incorporating delays provide a powerful modeling
framework, as it can be generalized to aid decision making in many application areas.
We illustrate a few examples.

• Clinical Trials (Whittle [24]). In this setting, the arms correspond to medical
treatments. The state of an arm represents one’s state of knowledge on the
effectiveness of the corresponding treatment. Pulling an arm corresponds to
treating a patient with the corresponding medical treatment. One’s state of
knowledge on the effectiveness of the treatment will be updated only after
observing the patient’s treatment outcome.

• Dynamic Assortment (Caro and Gallien [7]). In this setting, the set of arms
represent the unproduced assortment of fashion items. The state of each
project represents one’s knowledge on how popular the item will be. The
knowledge of each item’s popularity will be refined only after observing the
sales, which is possible only after incurring production and distribution lead
time.

• Corporate Strategy (Bernardo and Chowdhry [3]). In this setting, the arms
correspond to regions where franchises can be opened. The state of the arms
represents the revenue expectations of each region prior to opening a fran-
chise. Once a franchise is opened, the actual sales is observed only after a
delay during which the franchise reaches out to the customers. During the
delay, the headquarters might decide to open more franchises in the region.

• Management of Employees. In this setting, the arms represent employees,
and the state of the arms represents the manager’s belief about the skill level
of each employee. After delegating assignments to different employees, the
manager can update his belief on each employee’s skill levels based on the
outputs, which occurs only after a delay.

Despite their practical relevance, the bandit problems with response delays have
received only moderate attention in the literature (see Sect. 1.2 for a review). One
reason is because the problem becomes an intractable restless bandit problem (Whittle
[24]), as the state of an arm that is not pulled (passive) might still change when a
backlogged decision is implemented.

Although they are difficult to solve optimally, many restless bandit problems can,
nonetheless, be solved near optimally using the marginal productivity index (MPI)-
based heuristic (Niño-Mora [19]), provided that the problem satisfies the indexability
criterion (Whittle [24]). Hence, indexability is a desirable property, as it makes the
restless bandit problem practically solvable by employing the MPI-based heuristic.

In this article, we prove that the discrete time bandit problems with stationary
random delays satisfy the indexability criterion as long as the delayed responses do
not cross over. After an overview of the related literatures in Section 1.2, we introduce
the multiarmed bandit problem with response delay and describe the basic properties
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in Section 2. In Section 3 we present the indexability result, and in Section 4 we
compute the indexes for the multiarmed bandit with delay for the canonical Beta-
Bernoulli learning model and test its performance and compare it to those of other
closed-form index heuristics. We conclude in Section 5.

1.2. Literature Review

The literature on restless bandit indexation was created when Whittle [24] first gen-
eralized the classic bandit framework (Gittins [13]) by allowing the passive arms to
change states and termed it the restless bandit problem. The restless bandit prob-
lems are computationally intractable to solve optimally; hence, the primary research
concerns the development of heuristic policies that can be shown to be near optimal.
Whittle formed a Lagrangian dual problem and defined a priority index as the Lagrange
multiplier associated with an arm that makes the decision maker indifferent between
pulling and not pulling the arm. He showed that this priority index generalizes the
Gittins index and devises a priority-index policy that pulls the arms with the highest
index values. He further conjectured the asymptotic optimality of the priority-index
policy, which Weber and Weiss [22] later largely validated and Weiss [23] showed a
special case for which the conjecture holds. However, Whittle stated that for the index
to be well defined, the restless bandit problem must first satisfy the indexability crite-
rion; that is, the Lagrange multiplier that equates the pulling and nonpulling actions
must be unique for every possible state of a given arm. He showed that indexibil-
ity cannot be taken for granted by providing counterexamples. Moreover, verifying
indexibility itself is nontrivial, and, until recently, sufficient conditions satisfied by a
broad subclass of restless bandits were unknown.

Niño-Mora [18] pioneered the field of restless bandit indexation to theoretically
provide sufficient conditions for indexability. In particular, Niño-Mora [18] general-
ized the Whittle priority index by defining the MPI in terms of the more general and
economically intuitive reward/work measure and showed that the MPI’s interpreta-
tion can be applied in an identical manner to many other classic index policies that
were shown to be optimal, including the celebrated Gittins index. Using the MPI,
he identified classes of restless bandit problems that satisfy the sufficient conditions,
mostly under the assumption of a finite state space (see Niño-Mora [19] and refer-
ences therein). Our work contributes to the literature by expanding the known class
of indexable restless bandit problems.

The problem of bandits with response delays has received only moderate attention
in the literature. Eick [10] examined the clinical trials setting in which a patient’s
lifetime is modeled as a geometric random variable and provided the first proof of
indexability for a delayed response bandit when the discount factor δ is than 1/2.
Wang and Bickis [21] extended this result to arbitrary lifetime distributions under
certain regularity conditions, but those conditions reduce to δ < 1/2 in the discrete
time case. In contrast, our result shows indexability for the more applicable discount
factors δ < 1. Hardwick, Oehmke, and Stout [15] considered the response delay bandit
model in which patients arrive according to a Poisson process with the treatment time
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having exponential response delays. They identified heuristics that perform well under
the objective of minimizing patient loss. However, the heuristics are randomized rules
that are not grounded in indexability theory. More recently, Niño-Mora [19] examined
a finite queue with a one-period response delay and showed its indexability. However,
the model lacks generality in that the state space must be finite and the delay is
limited to one period, whereas our model allows for infinite state space and arbitrary
delay lengths, which can be stationary random as long as the delayed responses do
not cross over. We refer the interested reader to Altman and Stidham [1] and Ehsan
and Liu [9] for other queuing applications with delayed information. Finally, Caro
and Galien [7] introduced a closed-form index, generalized it to incorporate response
delay, and showed that the resulting index policy has near-optimal performance. Our
work suggests that their method performs well because their closed-form index is a
good approximation of the MPI.

2. PROBLEM DESCRIPTION

2.1. Model Basics

The decision problem is defined in discrete time, where each period is indexed by t,
representing t steps to go, and the rewards are discounted by δ < 1 each period. The
response delay � is also a discrete quantity. In each time period, with S available arms
but only able to pull N (N < S), the decision maker must carefully assess the state
of each arm s. Once the arms are pulled, the outcomes are observed � periods later,
at which point the state of the arm changes. The objective of the decision maker is to
pull the N arms each period to maximize the long-term discounted rewards.

Let xs ∈ � denote the state of arm s and the vector x ∈ �S denote the state of all
S arms. Let Rs(xs) denote the reward of arm s that depends on its state. For simplicity,
we assume that the reward functions Rs are uniformly bounded, but this assumption
can be relaxed (for instance, see Condition B in Gittins [14, p. 17] or the Bayesian
formulation given in Burnetas and Katehakis [6]). The decision on arm s each period
is represented by us ∈ {0, 1}, where a value of us = 1 corresponds to a (Pull) decision,
whereas a value of us = 0 corresponds to a (NotPull) decision. In each period, it is not
possible to pull more than N arms (i.e.,

∑S
s us ≤ N). The vector u ∈ {0, 1}S denotes

the decision on all S arms, and each of the vectors (v1, . . . , v�) represent the decisions
that had been made in previous periods, with v1 being the oldest decision that will be
implemented this period and the v� being the most recent decision.

Each arm s follows an independent Markovian process. If v1
s = 1, the func-

tion fs(xs, v1
s , ws) denotes the state that the arm s transitions to from state xs given

the decision v1
s and the random component ws(xs), which depends on state xs; if

v1
s = 0, fs(xs, v1

s , ws) = xs, signifying that the state of the arm remains unchanged.
Letting the vector w(x) ∈ �S represent a vector of random variables ws(xs), the vec-
tor f (x, v1, w) ∈ �S represents state that all the arms transitions to state x given the
decision vector v1 and the random component w.
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Let J∗
t (x, v1, . . . , v�) denote the maximum discounted reward with t steps to go,

given the arms’ state x and the decisions of the previous periods v1, . . . , v�. Then the
multiarmed bandit problem with delay can be expressed as the following dynamic
program:

(BD) : J∗
t (x, v1, . . . , v�)

= maxu

{
S∑

s=1

Rs(xs)v
1
s + δEwJ∗

t−1(f (x, v1, w), v2, . . . , v�, u)

}

s.t. u ∈ {0, 1}S ,
S∑

s=1

us ≤ N

for t > �, and for t ≤ �,

J∗
t (x, v1, . . . , v�) =

S∑
s=1

Rs(xs)v
1
s + δEwJ∗

t−1(f (x, v1, w), v2, . . . , v�)}, J∗
0(·) ≡ 0.

Because a passive arm’s state can change when the delayed (Pull) decision is
implemented (i.e., v1

s = 1), the problem is a restless bandit problem (Whittle [24]),
which is intractable.A known heuristic that can solve the restless bandit problems near
optimally is the MPI-index policy, but this policy is well defined only if the problem
satisfies the indexability criteria. We explain this next.

2.2. Indexability Criterion and the Equivalence Relation

Whittle [24] formed the Lagrangian dual of the restless bandit problem, where the
dual variable λ has the interpretation of subsidy for not pulling the arm and defines
the priority index as the value of λ that makes the decision indifferent between pulling
and not pulling the arm. If the index λ is to be meaningful however, it must induce
a consistent ordering of the arms, in that any arm that is not pulled under a subsidy
λ will also be not pulled under a higher subsidy λ′ > λ. An equivalent statement in
terms of cost is that if any arm is pulled under a cost λ, it must also be pulled under a
lower cost λ′ < λ. The formal definition of indexability for a single independent arm
is the following:

Definition (Whittle [24]): Let Ds(λ) be the set of values of xs for which project s
would be rested under a λ-subsidy policy. Then the project is indexable if Ds(λ)

increases monotonically from ∅ to ϒs as λ increases from −∞ to +∞, where ϒs is
the full state space for project s.

A restless bandit problems is indexable if each one of its arms is indexable. The
proof given in the next section shows that a single-arm bandit with response delay
satisfies Whittle’s definition. Therefore, the multiarmed bandit problem with response
delays (BD) is indexable.
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Before showing the main indexibility result, note that there are potentially four
possible formulations of our problem, due to the four different ways of accounting
for the Lagrange multiplier λ in the rewards. First, from the definition, λ can either
have a subsidy or cost interpretation. Moreover, it might be accounted for when the
pull/not pull decision is made (before the delay) or when the decision gets implemented
(after the delay). Accounting for λ before the delay has been more prevalent in the
literature. For instance, Wang and Bickis [21] and Caro and Gallien [7] considered
the subsidy and cost interpretations, respectively, under that framework. In our proof
of indexibility we found it easier to account for λ after the delay. Regardless of this
choice, our first proposition shows that the accounting method does not affect the
indexability result. Furthermore, because the order of the indexes do not change,
the priority indexes policy whose indexes are derived from four different accounting
methods would be identical.

Proposition 1: Suppose one formulation is indexable. Then the other three formula-
tions are also indexable. Moreover, the ranking of the indexes does not change from
one formulation to the other.

Proof: See Appendix A. �

In the next section, without a loss of generality, we examine the formulation
where λ represents a subsidy for not pulling and rewards (including the subsidy) are
accounted when the decisions are implemented after the delay.

3. STRUCTURAL RESULTS

In this section, we establish the indexability of multiarmed bandit problem with (1)
constant delay, and then (2) with stationary random delays in which the delayed
responses do not cross over. We do so by showing that the single-arm bandit with
response delay is indexable.

We point out that the underlying bandit problem is not restless; in other words,
the state of arm that is not pulled does not change � periods later. Only after the
incorporation of the response delay does the problem become “restless.” We exploit
this underlying nonrestless structure of the problem in the proof by matching sample
paths based on a coupling argument.

Let Jλ
t,s(z) denote the maximum profit-to-go function of an arm s with a subsidy

λ for a state z with t periods to go. To show that arm s satisfies Whittle’s indexibility
definition, for each state z a unique index λ must exist such that the expected discounted
profit from pulling is equal to that from not pulling. More formally, if we denote the
maximum profit-to-go function of the arm after it is pulled and after it is not pulled
respectively as

Jλ
t,s(z)

(Pull) and Jλ
t,s(z)

(NotPull),

we would want to show that there exists a unique λ such that Jλ
t,s(z)

(Pull) =
Jλ

t,s(z)
(NotPull). We can achieve this if we show that �Jλ

t,s(z) ≡ Jλ
t,s(z)

(Pull) −
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Jλ
t,s(z)

(NotPull) is a decreasing function of λ for every state z and then take the limit
when t → ∞.

3.1. Indexability of Constant Delay

Consider a single-arm s and a constant response delay of � periods. The maximum
profit-to-go function at time t and state xs with delayed orders (v1

s , . . . , v�
s ) is given by

Jλ
t,s(xs, v1

s , . . . , v�
s ) = Rs(xs)v

1
s + λ(1 − v1

s )

+ δ max
{
Ews J

λ
t−1,s(fs(xs, v1

s , ws), v2
s , . . . , v�

s , 1),

Ews J
λ
t−1,s(fs(xs, v1

s , ws), v2
s , . . . , v�

s , 0)
}

.

The expectation is taken with respect to the random variable ws, which has an arbitrary
distribution that is dependent on the current state xs. When necessary, we will write
ws(xs) to make the parameter dependence explicit.

The difference in value at time t between the (Pull) and (NotPull) decisions has
the following expression:

�Jλ
t,s(xs, v1

s , . . . , v�
s )

= Rs(xs)v
1
s + λ(1 − v1

s ) + δEws J
λ
t−1,s(fs(xs, v1

s , ws), v2
s , . . . , v�

s , 1)

− {
Rs(xs)v

1
s + λ(1 − v1

s ) + δEws J
λ
t−1,s(fs(xs, v1

s , ws), v2
s , . . . , v�

s , 0)
}

= δEws{Jλ
t−1,s(fs(xs, v1

s , ws), v2
s , . . . , v�

s , 1) − Jλ
t−1,s(fs(xs, v1

s , ws), v2
s , . . . , v�

s , 0)}.

Letting zs = (xs, v1
s , . . . , v�

s ) denote the augmented state, we can rewrite the value
function as

Jλ
t−1,s(zs) = Jλ

t−1,s(zs)
(Pull) + [�Jλ

t−1,s(zs)]− = Jλ
t−1,s(zs)

(NotPull) + [�Jλ
t−1,s(zs)]+,

where [r]+ = max{0, r} and [r]− = max{0, −r}.
We now prove the monotonicity result. For notational simplicity, we will omit

the subscript s in the proof.

Proposition 2: For all augmented state z, �Jλ
t (z) is decreasing in λ.

Proof: Using induction, we show that for any λ1 > λ2, �Jλ1
t (z) < �Jλ2

t (z) for all z.
The proof is for � ≥ 2. For � = 1, the notation would have to be slightly different, but
the argument is exactly the same.
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Base Case: t = � + 1. Here, we make the (Pull)/(NotPull) decision only once
and observe the expected outcome in the remaining � periods. We have

�Jλ
�+1(x, v1, . . . , v�)

= δEw1

{
Jλ
� (f (x, v1, w), v2, . . . , v�, 1) − Jλ

� (f (x, v1, w), v2, . . . , v�, 0)
}

= δ�Ew1 Ew2 · · · Ewl

{
Jλ

1 (f ◦�(x, v, w), 1) − Jλ
1 (f ◦�(x, v, w), 0)

}
= δ�{EwR(f ◦�(x, v, w)) − λ},

where the vector v represents all the delayed decisions (v1, . . . , v�), the vector
w represents the series of dependent random variables (w1, w2, . . . , w�), and
f ◦�(x, v, w) is a short-hand notation for f (f · · · f (f (f (x, v1, w1), v2, w2), v3, w3),
. . .), v�, w�). Each wi’s distribution depends on the sample path of the states,
and the expression Ew represents an �-iterated expectation framework. This
expression is clearly decreasing in λ, ∀z.

Induction Step: t > � + 1. Assume that ∀z = (x, v1, . . . , v�) and λ1 > λ2,
�Jλ1

t−1(z) < �Jλ2
t−1(z). We will show that ∀z = (x, v1, . . . , v�) and λ1 > λ2,

�Jλ1
t (z) < �Jλ2

t (z).
We write out the expression for �Jλ1

t−1(z) and �Jλ2
t−1(z) as follows:

�Jλ1
t (x, v1, . . . , v�) = δEw1

{
Jλ1

t−1(f (x, v1, w1), v2, . . . , v�, 1)

−Jλ1
t−1(f (x, v1, w1), v2, . . . , v�, 0)

}
,

�Jλ2
t (x, v1, . . . , v�) = δEw′

1

{
Jλ2

t−1(f (x, v1, w′
1), v2, . . . , v�, 1)

−Jλ2
t−1(f (x, v1, w′

1), v2, . . . , v�, 0)
}

.

The difference between the first and second expressions gives us the following:

DIFF ≡ �Jλ1
t (x, v1, . . . , v�) − �Jλ2

t (x, v1, . . . , v�)

= δEw1

{
Jλ1

t−1(f (x, v1, w1), v2, . . . , v�, 1)

− Jλ1
t−1(f (x, v1, w1), v2, . . . , v�, 0)

}
−

(
δEw′

1

{
Jλ2

t−1(f (x, v1, w′
1), v2, . . . , v�, 1)

− Jλ2
t−1(f (x, v1, w′

1), v2, . . . , v�, 0)
})

.

After rewriting each row’s expression J = max{J(Pull), J(NotPull)} in terms
of J = J(Pull) + [J(NotPull) − J(Pull)]+ and J = J(NotPull) + [J(NotPull) − J(Pull)]−
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and rearranging the terms, we have

DIFF = δEw1

{
Jλ1

t−1(f (x, v1, w1), v2, . . . , v�, 1)(NotPull)

−Jλ1
t−1(f (x, v1, w1), v2, . . . , v�, 0)(Pull)

}
− δEw′

1

{
Jλ2

t−1(f (x, v1, w′
1), v2, . . . , v�, 1)(NotPull)

− Jλ2
t−1(f (x, v1, w′

1), v2, . . . , v�, 0)(Pull)
}

+ δEw1 [�Jλ1
t−1(f (x, v1, w1), v2, . . . , v�, 1)]+

− δEw′
1
[�Jλ2

t−1(f (x, v1, w′
1), v2, . . . , v�, 1)]+

− δEw1 [�Jλ1
t−1(f (x, v1, w1), v2, . . . , v�, 0)]−

+ δEw′
1
[�Jλ2

t−1(f (x, v1, w′
1), v2, . . . , v�, 0)]−.

Each of the last two rows is less than or equal to zero via the induction assump-
tion, and we will denote the sum of the last two rows as C ≤ 0.After evaluating
out each term in the first two rows—for example

Jλ1
t−1(f (x, v1, w1), v2, . . . , v�, 1)(NotPull)

= R(f (x, v1, w1))v
2 + λ1(1 − v2)

+ δEw2 Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)

we arrive at the following expression:

DIFF = δEw1{R(f (x, v1, w1))v
2 + λ1(1 − v2)

+ δEw2 Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)}

− δEw1{R(f (x, v1, w1))v
2 + λ1(1 − v2)

+ δEw2 Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1)}

− δEw′
1
{R(f (x, v1, w′

1))v
2 + λ2(1 − v2)

+ δEw′
2
Jλ2

t−2(f (f (x, v1, w′
1), v2, w′

2), v3, . . . , v�, 1, 0)}
+ δEw′

1
{R(f (x, v1, w′

1))v
2 + λ2(1 − v2)

+ δEw′
2
Jλ2

t−2(f (f (x, v1, w′
1), v2, w′

2), v3, . . . , v�, 0, 1)} + C

≤ δ2Ew1 Ew2{Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)

− Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1)}

+ δ2Ew′
1
Ew′

2
{Jλ2

t−2(f (f (x, v1, w′
1), v2, w′

2), v3, . . . , v�, 0, 1)

− Jλ2
t−2(f (f (x, v1, w′

1), v2, w′
2), v3, . . . , v�, 1, 0)}.
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We now introduce the coupling argument. Consider the bandit with subsidy
λ1 starting from two different states. The first, which we refer to as System A,
with time t − 2 to go from state f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0), follows
the optimal policy. The second, which we refer to as System B, starts from
state f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1), but it implements the same deci-
sion as System A in the first � stages, and after that, it follows its own optimal
policy. Let π∗ denote the optimal policy of System A (which is followed by
System B for the first � periods). Note that both System A and System B start
from the same (nonaugmented) state f (f (x, v1, w1), v2, w2) and experience the
same number of state transitions within the next � periods. Moreover, these
transitions have exactly the same Markovian dynamics, so by defining the
two processes on a common probability space, we can assume that the actual
transitions are the same.

Let Gλ1
π∗

t−2
(z) represent the value of being in state z with time t − 2 to go and

following the policy π∗. Then we have

Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)

= Gλ1
π∗

t−2
(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)

and

Jλ1
t−2(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1)

≥ Gλ1
π∗

t−2
(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1).

The first equality and the second inequality follow because π∗ is optimal for
System A but suboptimal for System B. The same coupling argument can be
used for the bandit with subsidy λ2, only that System A would start in state
(. . . , 0, 1) and System B would start in (. . .,1,0). Denoting π∗∗ as the optimal
policy of System A, we have

Jλ2
t−2(f (f (x, v1, w′

1), v2, w′
2), v3, . . . , v�, 0, 1)

= Gλ2
π∗∗

t−2
(f (f (x, v1, w′

1), v2, w′
2), v3, . . . , v�, 0, 1)

and

Jλ2
t−2(f (f (x, v1, w′

1), v2, w′
2), v3, . . . , v�, 1, 0)

≥ Gλ2
π∗∗

t−2
(f (f (x, v1, w′

1), v2, w′
2), v3, . . . , v�, 1, 0).

By subtracting these smaller values of Gλ2
π∗∗

t−2
and Gλ1

π∗
t−2

, the DIFF can be
bounded above as follows:

DIFF ≤ δ2Ew1 Ew2

{
Gλ1

π∗
t−2

(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)

−Gλ1
π∗

t−2
(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1)

}
(DIFF.1)
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+ δ2Ew′
1
Ew′

2

{
Gλ2

π∗∗
t−2

(f (f (x, v1, w′
1), v2, w′

2), v3, . . . , v�, 0, 1)

−Gλ2
π∗∗

t−2
(f (f (x, v1, w′

1), v2, w′
2), v3, . . . , v�, 1, 0)

}
(DIFF.2).

We now evaluate expressions (DIFF.1) and (DIFF.2). (DIFF.1):

δ2Ew1 Ew2 Gλ1
π∗

t−2
(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 1, 0)

= δ�Ew1 Ew2 · · · Ew�
Gλ1

π∗
t−l

(f ◦�(x, v, w), 1, 0, u∗
1, . . . , u∗

�−2)

= δ�Ew1 Ew2 · · · Ew�
{R(f ◦�(x, v, w))

+ δEw�+1 Gλ1
π∗

t−�−1
(f (f ◦�(x, v, w), 1, w�+1), 0, u∗

1, . . . , u∗
�−2, u∗

�−1)}
= δ�Ew{R(f ◦�(x, v, w)) + δEw�+1(λ1 + δJλ1

t−�−2

× (f (f ◦�(x, v, w), 1, w�+1), u∗
1, . . . , u∗

�−1, u∗
�))},

where u∗
τ means the optimal τ th action for System A. Similarly,

δ2Ew1 Ew2 Gλ1
π∗

t−2
(f (f (x, v1, w1), v2, w2), v3, . . . , v�, 0, 1)

= δ�Ew1 Ew2 · · · Ew�
Gλ1

π∗
t−l

(f ◦�(x, v, w), 0, 1, u∗
1, . . . , u∗

�−2)

= δ�Ew1 Ew2 · · · Ew�
{λ1 + δGλ1

π∗
t−�−1

(f ◦�(x, v, w), 1, u∗
1, . . . , u∗

�−2, u∗
�−1)}

= δ�Ew{λ1 + δ(R(f ◦�(x, v, w))

+ δEw�+2 Jλ1
t−�−2(f (f

◦�(x, v, w), 1, w�+2), u∗
1, . . . , u∗

�−1, u∗
�))}.

Both w�+1 and w�+2 have dependence on the same state f ◦�(x, v, w)

and hence have the same distribution. Therefore, the last terms from the
expressions, δEw�+1 Jλ1

t−�−2(·) and δEw�+2 Jλ1
t−�−2(·) cancel and we have

(DIFF.1) = δ�(1 − δ)EwR(f ◦�(x, v, w)) − δ�(1 − δ)λ1.

Following the same sequence of reasoning, we get the expression for (DIFF.2):

(DIFF.2) = δ�(1 − δ)λ2 − δ�(1 − δ)Ew′R(f ◦�(x, v, w′)).

Summing expressions (DIFF.1) and (DIFF. 2),

DIFF ≤ (DIFF.1) + (DIFF.2)

= δ�(1 − δ)λ2 − δ�(1 − δ)λ1

+ δ�(1 − δ)EwR(f ◦�(x, v, w)) − δ�(1 − δ)Ew′R(f ◦�(x, v, w′)).

The initial w1 and w′
1 share the same distribution because it is dependent on the

original state of the arm x at time t. Also, since v are identical, the expression
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involving the expectations cancel and we have that DIFF is bounded above by

DIFF ≤ δ�(1 − δ)λ2 − δ�(1 − δ)λ1

= (λ2 − λ1)δ
�(1 − δ) < 0, ∀δ < 1. �

We now present the result that multiarmed bandit problems with constant response
delay are indexable.

Theorem 1: The multiarmed bandit problem with constant response delay � is
indexable.

Proof: First, we have �Jλ
t (z) decreasing in λ, ∀t, z, and it is easy to see that �J0

t (z) >

0 and �J∞
t (z) < 0. Thus, to show that a well-defined λ exists such that �Jλ

t (z) = 0,
it suffices to show that �Jλ

t (z) is continuous in λ. We do this by induction.
When t = �, we have �Jλ

� (x, v1, . . . , v�) = Ew(R(x) − λ) and Jλ
� (x, v1, . . . , v�) =

max{Ew(R(x)), λ}, which are clearly continuous in λ for all z. Suppose that �Jλ
t−1(z)

and Jλ
t−1(z) are continuous in λ for all z. Then

�Jλ
t (x, v1, . . . , v�) = δEw{Jλ

t−1(f (x, v1, w), v2, . . . , v�, 1)

− Jλ
t−1(f (x, v1, w), v2, . . . , v�, 0)}

and

Jλ
t (x, v1, . . . , v�)

= max{EwJλ
t−1(f (x, v1, w), v2, . . . , v�, 1), EwJλ

t−1(f (x, v1, w), v2, . . . , v�, 0)}
are clearly continuous in λ. Moreover, as R(x) is uniformly bounded (by problem
assumption), Jλ

t (z) converges as t → ∞. Hence, there is a well-defined λ such that
�Jλ(z) = 0. �

3.2. Indexability of Stationary Random Delay

In many practical settings, delays might be random. We show that the indexability
result can be generalized to bandit problems with stationary random delays, in which
the delayed responses do not cross over (i.e., the stochastic delay � ∈ {m, m + 1} for
some fixed integer m). If, however, the randomness in the delay lengths permits the
delayed responses to cross over (i.e., � ∈ {m, . . . , m + K}, K > 1), then the bandit
problem is no longer indexable.

Theorem 2: The bandit with stationary random delay is indexable if the delayed
responses do not crossover. However, indexability need not hold if the delayed
responses are allowed to cross over.

Proof: See Appendix B. �
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This result is analogous to the inventory systems with stochastic lead times. In
particular, if the random delay process does not have order crossovers, the base-stock
policy is shown to be optimal (e.g., Kaplan [16], Muharremoglu and Yang [17]).
However, Robinson, Bradley, and Thomas [20] showed that the base-stock policy is
no longer optimal when the order are allowed to cross over.

4. NUMERICAL WORK

In this section, we examine the Beta-Bernoulli learning model in which the prior dis-
tribution of the success probability p of the Bernoulli random variable is characterized
by a Beta distribution with parameters (α, β). The latter also represents the state of an
arm that is updated in a Bayesian manner: to (α + 1, β) after observing a success or to
(α, β + 1) after observing a failure (see Gittins [14]). Since the uniform distribution
on [0, 1] can be written as a Beta with parameters (1, 1), a bandit in state (α, β) is
statistically equivalent to one that began with its success probability p having an a
priori uniform distribution and that has now shown α − 1 successes and β − 1 failures
in α + β − 2 pulls.

We compute the indexes for the multiarmed bandit model with constant delay
�. Then, using the indexes, we examine the performance of the resulting MPI policy
against an upper bound and compare it to those of other existing closed-form indexes.

4.1. Index Computation

Compared to the classical multiarmed bandit problem (with no delay), the indexes
from Theorems 1 and 2 do not have an equivalent representation as an optimal
stopping-time problem. Therefore, an approach to compute the indexes based on
this property, which Gittins [14] called the direct approach, is not available. Instead,
we adopt the calibration approach, which uses dynamic programming value iteration
(see Gittins [14] for further discussion of both approaches).

The indexes for the bandit problem without delay using the Beta-Bernoulli
learning model have been computed and tabulated in Gittins [14]. We extend this
table by adding the indexes for delays � ∈ {1, 2, 3, 4, 5} and discount factors δ ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99} and make it available online for public use (see the
authors’website). The indexes have been computed using the subsidy/implementation
framework, and by Proposition 1, the index values under other reward accounting
methods are the same up to a constant factor, which does not affect the actions
suggested by the MPI-index policy.

4.2. Numerical Simulation

In this subsection, we examine the performance of the MPI policy for the Beta-
Bernoulli learning model (DeGroot [8]) with constant delays. We compute a perfor-
mance upper bound by solving a relaxed multiarmed bandit problem in which the
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TABLE 1. Closed-Form Index Formulas.

Name Closed-Form Index Index-Specific

Myopic (MYO) E[B]
Caro–Gallien (CG) E[B] + zδ,�

√
V [B](V [B]/V [Y ])cδ,� zδ,�, cδ,�

Brezzi–Lai (BL) E[B] + √
V [B]ψ

(
V [B]

ln(1/δ)V [Y ]
)

ψ(·)
Ginebra–Clayton (GC) E[B] + kδ,�

√
V [B] kδ,�

Note: Here B denotes the Beta prior with parameters (α, β) and a delayed-adjusted variance equal to V [B] =
αβ

(
(α + β)2(α + β + ∑�

τ=1 vτ + 1)
)−1

, where vτ is the τ th delayed action. Accordingly, Y denotes a Bernoulli random

variable with success probability α(α + β)−1. For index-specific coefficients and functions, refer to the original articles.

TABLE 2. Suboptimality Gap for the MPI Policy and the Closed-Form Benchmark
Policies.

� MYO (%) CG (%) BL (%) GC (%) MPI (%) UpperBnd

1 7.96 0.74 0.69 0.53 0.51 60.30
2 8.80 1.43 1.66 1.31 1.53 59.65
3 8.98 2.26 2.72 2.71 2.15 59.01
4 7.23 2.61 2.81 2.80 2.82 58.38
5 6.34 3.56 3.51 3.66 3.63 57.80

Note: (α, β) = (1, 1), (S, N) = (32, 4), δ = 0.95.

constraint that does not allow more than N arms pulled per period is only required to
hold on average (see the Appendix C for the upper bound formulation). We use this
to gauge the suboptimality of the MPI policy. We then compare its performance with
the myopic policy (MYO) that maximizes the single-period reward (see, for instance,
Aviv and Pazgal [2]), and the closed-form index policies developed by Caro and Gal-
lien ([7]; denoted CG), Brezzi and Lai ([5]; BL), and Ginebra and Clayton ([12]; GC),
in which the respective index formulas (shown in Table 1) have been modified as in
Caro and Gallien [7] to account for delays.1

The simulation and the upper bound optimization codes are written in Matlab
and are available from the authors upon request. Using a discount rate of δ = 0.95,
we run a series of simulations for five delay periods � ∈ {1, 2, 3, 4, 5} for T periods
such that

∑∞
t=T+1 δt < 10−6 to approximate infinite horizon. We let our initial prior

to be the uniform distribution, corresponding to the Beta distribution with parameter
(α, β) = (1, 1), as it best represents the initial state of knowledge. We did an extensive
simulation study and here we show the results for a few representative instances.

The simulation results where the decision maker pulls 4 arms out of a total of 32
arms (i.e., (S, N) = (32, 4)) are shown in Table 2. The first observation is that MPI
index policy is near optimal since the suboptimality gap is very small. In general, it

1 The index-specific coefficients of the CG and GC formulas were obtained through least squares using
a small sample of exact MPI values.
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TABLE 3. Asymptotic Suboptimality Gap.

(S,N): (32,4) (S,N): (160, 20) (S,N): (320,40)

� MYO (%) MPI (%) MYO (%) MPI (%) MYO (%) MPI (%)

1 7.96 0.51 8.65 0.64 8.78 0.07
2 8.80 1.53 7.64 0.65 7.72 0.28
3 8.98 2.15 4.75 0.47 4.62 0.45
4 7.23 2.82 3.97 0.87 3.74 0.68
5 6.34 3.63 4.75 1.60 4.77 1.17

Note: (α, β) = (1, 1), δ = 0.95.

was less than 4% in all, of the simulations we ran, and in most cases, it was actually
less than 2%. The gap has a slight tendency to increase with the length of the delay
�. This could suggest that the MPI policy becomes slightly worse. However, it could
also be that the upper bound deteriorates with longer delays.

We also note that all the delay-incorporated closed-form index policies perform
very close to the MPI policy and that the differences are not statistically significant.
We attribute the performance similarity to the fact that all the values of the modified
closed-form indexes provide good approximations of the MPIs. We do, however, find
that the myopic policy performs significantly worse than all other policies. This is
to be expected because the myopic policy ignores the delayed actions as well as the
future benefits from learning.

Computing a large table of necessary MPIs often requires a high level of com-
putational complexity. Our finding suggests that, in such cases, one should adjust the
existing closed-form indexes and use the policy as a substitute for the MPI policy and
attain comparable results.

Furthermore, we find that as the number of projects S and the number of allow-
able pulls N increase while maintaining a constant ratio N/S, the suboptimality gap
of the MPI policy approaches zero. The suboptimality gaps for (S, N) = (32, 4),
(S, N) = (160, 20), and (S, N) = (320, 40) are shown in Table 3. Whittle [24] initially
conjectured that the MPI index policy is asymptotically optimal. This was largely val-
idated by Weber and Weiss [22] for finite-state restless bandits. Our results support
the conjecture for infinite-state bandits with response delay.

5. CONCLUSION

In this article, we prove the indexability of the multiarmed bandit problem with
response delay, where the delays are of arbitrary length and are allowed to be sta-
tionary random as long as the delayed responses do no cross over. We show that,
under the stationarity assumption, the problem is not indexable if the order is allowed
to cross over. The MPI policy performs near-optimally, and the closed-form index
policies when adjusted for delay represent good estimations of the MPI and perform
well.
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Further refinements of these policies are worth studying. For example, Kaplan
[16] formulated a stochastic lead-time process in which the delays for each period
are identically distributed but statistically dependent random variables so that orders
do not cross over. It would be worthwhile to examine whether our results hold for
nonstationary random delays. Another interesting variation is to make the pulls irre-
vocable; that is, once an arm stops being pulled, it can never be pulled again. This can
be a desirable property from a practical standpoint and the results available for the
classical bandit problem show a high performance that might extend to the case with
response delays (see Farias and Madan [11]).
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APPENDIX A.

Equivalence Relation

There are potentially four different ways of accounting for the Lagrange multiplier λ, which
are given below and are summarized in Table A.1

Ĵλ
t (x, v1, . . . , v�) = R(x)v1 + max

{
δEwĴλ

t−1(f (x, v1, w), v2, . . . , v�, 1),

λ + δEwĴλ
t−1(f (x, v1, w), v2, . . . , v�, 0)

}
.

Jλ
t (x, v1, . . . , v�) = R(x)v1 + λ(1 − v1) + max

{
δEwJλ

t−1(f (x, v1, w), v2, . . . , v�, 1),

δEwJλ
t−1(f (x, v1, w), v2, . . . , v�, 0)

}
.

Ĥλ
t (x, v1, . . . , v�) = R(x)v1 + max

{
−λ + δEwĤλ

t−1(f (x, v1, w), v2, . . . , v�, 1),

δEwĤλ
t−1(f (x, v1, w), v2, . . . , v�, 0)

}
.

Hλ
t (x, v1, . . . , v�) = (R(x) − λ)v1 + max

{
δEwHλ

t−1(f (x, v1, w), v2, . . . , v�, 1),

δEwHλ
t−1(f (x, v1, w), v2, . . . , v�, 0)

}
.

Proof of Proposition 1: Through induction on t it can be shown that �Jλ
t (z) = �Hλ

t (z) =
�Ĵδ�λ

t (z) = �Ĥδ�λ
t (z) for every (augmented) state z, where the operator � denotes the dif-

ference between the expected profits under the Pull and NotPull decisions. Clearly, if the
difference is decreasing in λ for any of the formulations, then it is also decreasing for the other
formulations. The proposition follows from this observation. �
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TABLE A.1. Four Different Representations

As Subsidy for As Cost for
Lagrange Multiplier λ Accounted: Not Pulling Pulling

When decision made Ĵλ
t Ĥλ

t

When decision implemented Jλ
t Hλ

t

APPENDIX B.

Indexability of Random Delay Without Order Crossover

We first establish the following monotonicity result using the coupling argument as was done
previously for Proposition 2.

Proposition B.1: For all states z, �Jλ
t (z) is monotonically decreasing in λ for stationary

random delay � if the orders do not cross over (i.e., � ∈ {m, m + 1}).

Proof: We show that if � ∈ {m, m + 1}, then the problem is indexable.
We show that for any λ1 > λ2, �Jλ1

t (z) < �Jλ2
t (z) for all z, via induction. For simplicity

of illustration, we will assume that m = 0—in other words, that the delay is uncertain between
no delay and a delay of period 1. The structure of the proof remains identical for m > 0.

Base Case: t = 1: In the final decision period t = 1, there will be zero delay with
probability p0, and a delay of one period with probability p1. We have

Jλ
1 (x, 1) = R(x) + max{p0Ew1 R(f (x, 1, w1)) + p10, p0λ + p10},

Jλ
1 (x, 0) = λ + max{p0R(x) + p10, p0λ + p10},

Jλ
1 (x, ∅) = 0 + max{p0R(x) + p10, p0λ + p10},

and

�Jλ
1 (x, 1) = p0{Ew1 R(f (x, 1, w1)) − λ},

�Jλ
1 (x, 0) = �Jλ

1 (x, ∅) = p0{R(x) − λ}.
All are clearly decreasing in λ.

Induction Step: Suppose that ∀z, λ1 > λ2, �Jλ1
t−1(z) < �Jλ2

t−1(z). We will show that

∀z, λ1 > λ2, �Jλ1
t (z) < �Jλ2

t (z).
Again, there will be no delay with probability p0 and a delay of one period with

probability p1. We have

Jλ
t (x, 1) = R(x) + max{p0(Ew1 R(f (x, 1, w1)) + δEw2 Jλ

t−1(f (f (x, 1, w1), 1, w2), ∅))

+ p1(δJλ
t−1(f (x, 1, w1), 1)), p0(λ + δEw1 Jλ

t−1(f (x, 1, w1), ∅))

+ p1(δEw1 Jλ
t−1(f (x, 1, w1), 0))},
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Jλ
t (x, 0) = λ + max{p0(R(x) + δEw1 Jλ

t−1(f (x, 1, w1), ∅)) + p1(δJλ
t−1(x, 1)),

p0(λ + δJλ
t−1(x, ∅)) + p1(δJλ

t−1(x, 0))},
Jλ

t (x, ∅) = 0 + max{p0(R(x) + δEw1 Jλ
t−1(f (x, 1, w1), ∅)) + p1(δJλ

t−1(x, 1)),

p0(λ + δJλ
t−1(x, ∅)) + p1(δJλ

t−1(x, 0))},
and

�Jλ
t (x, 1) = p0(Ew1 R(f (x, 1, w1)) − λ) + p0(δEw2 Jλ

t−1(f (f (x, 1, w1), 1, w2), ∅)

− δEw1 Jλ
t−1(f (x, 1, w1), ∅)) + p1(δJλ

t−1(f (x, 1, w1), 1)

− δEw1 Jλ
t−1(f (x, 1, w1), 0)),

�Jλ
t (x, 0) = �Jλ

t (x, ∅)

= p0(R(x) − λ) + p0(δEw1 Jλ
t−1(f (x, 1, w1), ∅) − δJλ

t−1(x, ∅)),

+ p1(δJλ
t−1(x, 1) − δJλ

t−1(x, 0)).

For simplicity, we will examine the indexability for state z = (x, 0), but the identical
argument holds for other states. We have

DIFF ≡ �Jλ1
t (x, 0) − �Jλ2

t (x, 0)

= p0

{
(λ2 − λ1) + δEw1 Jλ1

t−1(f (x, 1, w1), ∅) − δJλ1
t−1(x, ∅)

−δEw′
1
Jλ2

t−1(f (x, 1, w′
1), ∅) + δJλ2

t−1(x, ∅)
}

+ p1

{
δJλ1

t−1(x, 1) − δJλ1
t−1(x, 0) − δJλ2

t−1(x, 1) + δJλ2
t−1(x, 0)

}
.

After rewriting the expression and rearranging the terms, we have

DIFF = p0

{
(λ2 − λ1) + δEw1 Jλ1

t−1(f (x, 1, w1), ∅)(NotPull) − δJλ1
t−1(x, ∅)(Pull)

−δEw′
1
Jλ2

t−1(f (x, 1, w′
1), ∅)(NotPull) + δJλ2

t−1(x, ∅)(Pull)
}

+ p1

{
δJλ1

t−1(x, 1)(NotPull) − δJλ1
t−1(x, 0)(Pull)

− δJλ2
t−1(x, 1)(NotPull) + δJλ2

t−1(x, 0)(Pull)
}

+ p0

{
δEw1 [�Jλ1

t−1(f (x, 1, w1), ∅)]+ − δEw′
1
[�Jλ2

t−1(f (x, 1, w′
1), ∅)]+

−δ[�Jλ1
t−1(x, ∅)]− + δ[�Jλ2

t−1(x, ∅)]−
}

+ p1

{
δ[�Jλ1

t−1(x, 1)]+ − δ[�Jλ2
t−1(x, ∅)]+

− δ[�Jλ1
t−1(x, 0)]− + δ[�Jλ2

t−1(x, 0)]−
}

.
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Eliminating the bottom two expressions, which are both nonpositive by the induction
assumption, we have

DIFF ≤ p0

{
(λ2 − λ1) + δEw1 Jλ1

t−1(f (x, 1, w1), ∅)(NotPull) − δJλ1
t−1(x, ∅)(Pull)

−δEw′
1
Jλ2

t−1(f (x, 1, w′
1), ∅)(NotPull) + δJλ2

t−1(x, ∅)(Pull)
}

+ p1

{
δJλ1

t−1(x, 1)(NotPull) − δJλ1
t−1(x, 0)(Pull)

− δJλ2
t−1(x, 1)(NotPull) + δJλ2

t−1(x, 0)(Pull)
}

= p0

{
(λ2 − λ1) + p0

{
δEw′(λ1 + δJλ1

t−2(f (x, 1, w1), ∅)) − δ(R(x)

+ δEw1 Jλ1
t−2(f (x, 1, w1), ∅)) − δEw′

1
(λ2 + δJλ2

t−2(f (x, 1, w′
1), ∅)) + δ(R(x)

+ δEw′
1
Jλ2

t−2(f (x, 1, w′
1), ∅)) + p1

{
δ2Ew1 Jλ1

t−2(f (x, 1, w1), 0) − δ2Jλ1
t−2(x, 1)

−δ2Ew′
1
Jλ2

t−2(f (x, 1, w′
1), 0) + δ2Jλ2

t−2(x, 1)
}}}

+ p1

{
p0

{
δ(R(x) + λ1 + δEw1 Jλ1

t−2(f (x, 1, w1), ∅)) − δ(λ1 + R(x)

+ Ew1 Jλ1
t−2(f (x, 1, w1), ∅)) − δ(R(x) + λ2 + δEw′

1
Jλ2

t−2(f (x, 1, w′
1), ∅))

+ δ(λ2 + R(x) + Ew′
1
Jλ2

t−2(f (x, 1, w′
1), ∅))

+ p1

{
δ(R(x) + δEw1 Jλ1

t−2(f (x, 1, w1), 0)) − δ(λ1 + δJλ1
t−2(x, 1))

−δ(R(x) + δEw′
1
Jλ2

t−2(f (x, 1, w′
1), 0)) + δ(λ2 + δJλ2

t−2(x, 1))
}}}

= p0(λ2 − λ1) + δ(λ1 − λ2)(p
2
0 − p2

1)

+ p1

{
δ2Ew1 Jλ1

t−2(f (x, 1, w1), 0) − δ2Jλ1
t−2(x, 1)

− δ2Ew′
1
Jλ2

t−2(f (x, 1, w′
1), 0) + δ2Jλ2

t−2(x, 1)
}

.

We now introduce the coupling argument. Consider the bandit with subsidy λ1 start-
ing from two different states. The first, which we refer to System A, starts from the
augmented state (f (x, 1, w1), 0) at time t − 2. The second, which we refer to as System
B, starts from state (x, 1) but implements the same decisions as System A in the first
stage, and after that, it follows its own optimal policy. Let π∗ denote the optimal policy
of System A.

Let Gλ1
π∗

t−2
(z) represent the value of being in state z for λ1 at time t − 2 and following

the policy π∗. Then we have

Jλ1
t−2(f (x, 1, w1), 0) = Gλ1

π∗
t−2

(f (x, 1, w1), 0) and Jλ1
t−2(x, 1) ≥ Gλ1

π∗
t−2

(x, 1).

The same coupling argument can be used for the bandit with subsidy λ2, only that Sys-
tem A would start in state (x, 1) and System B would start in (f (x, 1, w′

1), 0). Denoting
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π∗∗ as the optimal policy of System A, we have

Jλ2
t−2(x, 1) = Gλ2

π∗∗
t−2

(x, 1) and Jλ2
t−2(f (x, 1, w′

1), 0) ≥ Gλ2
π∗∗

t−2
(f (x, 1, w′

1), 0).

By subtracting these smaller values of Gλ1
π∗

t−2
and Gλ2

π∗∗
t−2

, the right-hand side of the

inequality, and therefore DIFF, is bounded above by

DIFF ≤ p0(λ2 − λ1) + δ(λ1 − λ2)(p
2
0 − p2

1)

+ p1

{
δ2Ew1 Gλ1

π∗
t−2

(f (x, 1, w1), 0) − δ2Gλ1
π∗

t−2
(x, 1) (DIFF.1)

+δ2Gλ2
π∗∗

t−2
(x, 1) − δ2Ew′

1
Gλ2

π∗∗
t−2

(f (x, 1, w′
1), 0)

}
. (DIFF.2)

We now elaborate the expressions (DIFF.1) and (DIFF.2):

(DIFF.1) = p1

{
δ2Ew1

{
p0(λ1 + R(f (x, 1, w1))u

∗ + λ1(1 − u∗)

+ δEw2 Gλ1
π∗

t−3
(f (f (x, 1, w1), u∗, w2), ∅))

+ p1(λ1 + δEw1 Gλ1
π∗

t−3
(f (x, 1, w1), u∗))

}
− δ2

{
p0(R(x) + Ew1 R(f (x, 1, w1))u

∗ + λ1(1 − u∗)

+ δEw2 Gλ1
π∗

t−3
(f (f (x, 1, w1), u∗, w2), ∅))

+ p1(R(x) + Ew1 Gλ1
π∗

t−3
(f (x, 1, w1), u∗))

}}
= p1{δ2(λ1 − R(x))}.

Following the same argument, we have

(DIFF.2) = p1{δ2(R(x) − λ2)}.
Thus, after summing the expressions, we have

DIFF = p0(λ2 − λ1) + δ(λ1 − λ2)(p
2
0 − p2

1) + p1δ
2(λ1 − λ2)

= (λ2 − λ1)(p0 − δp2
0 + δp2

1 − δ2p1)

= (λ2 − λ1)(p0(1 − δp0) + δp1(p1 − δ)) < 0.

Notice that if p0 = 1 and p1 = 0, or p0 = 0 and p1 = 1, the above inequality reduces
to respectively

(λ2 − λ1)(1 − δ) < 0 and (λ2 − λ1)δ(1 − δ) < 0,

which is consistent with the result of Proposition 2. �

Proposition B.2: If the delayed responses are allowed to cross over, then �Jλ
t (z) is not

necessarily monotonically decreasing.
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Proof: We provide an example of a range of λ’s in which �Jλ
t (z) is increasing when the

delayed responses are allowed to cross over. In particular, consider � ∈ {0, 2}, z = (x, 0, ∅) at
time t = 4, and Jλ

0 (·) = 0. We have

Jλ
4 (x, 0, ∅) = λ + max{δJλ

3 (x, ∅, 1), δJλ
3 (x, ∅, 0)},

�Jλ
4 (x, 0, ∅) = δ{Jλ

3 (x, ∅, 1) − Jλ
3 (x, ∅, 0)}.

We elaborate the necessary Jλ
3 (·)’s and J2(·)′s:

Jλ
3 (x, ∅, 1) = max{R(x) + δEwJλ

2 (f (x, 1, w), 1, ∅), λ + δJλ
2 (x, 1, ∅)},

Jλ
3 (x, ∅, 0) = max{R(x) + δEwJλ

2 (f (x, 1, w), 0, ∅), λ + δJλ
2 (x, 0, ∅)},

δEwJλ
2 (f (x, 1, w), 1, ∅) = δEwR(f (x, 1, w)) + δ2EwEw′ max{R(f (f (x, 1, w), 1, w′)), λ},

δJλ
2 (x, 1, ∅) = δR(x) + δ2Ew max{R(f (x, 1, w)), λ},

δEwJλ
2 (f (x, 1, w), 0, ∅) = δλ + δ2Ew max{R(f (x, 1, w)), λ},

δJλ
2 (x, 0, ∅) = δλ + δ2 max{R(x), λ}.

We consider the following independent binary random process as shown in Figure A.1. Let
R(x) = x, and for simplicity, let us take x = 1 and let λ1 = 1.67, and λ2 = 1.55, with δ = 0.9.
Substituting these values into the above expression, we have

Jλ1
3 (x, ∅, 1) = 4.597, Jλ1

3 (x, ∅, 0) = 4.530, Jλ2
3 (x, ∅, 1) = 4.390, Jλ2

3 (x, ∅, 0) = 4.335,

giving us

�Jλ1
4 (x, 0, ∅) = δ

{
Jλ1

3 (x, ∅, 1) − Jλ1
3 (x, ∅, 0)

}
= 0.9(0.067) = 0.0603,

�Jλ2
4 (x, 0, ∅) = δ

{
Jλ2

3 (x, ∅, 1) − Jλ2
3 (x, ∅, 0)

}
= 0.9(0.055) = 0.0495.

FIGURE A.1. Independent binary random process.
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In other words, although λ1 > λ2, we have �Jλ1
4 (x, 0, ∅) > �Jλ2

4 (x, 0, ∅), which implies that
�Jλ

4 (x, 0, ∅) is increasing in this interval. �

Proof of Theorem 2: The theorem is clear by following the outline of the proof of Theorem 1
and using the results of Proposition B.1 and B.2. �

APPENDIX C.

Upper-Bound Formulation

So far, we have focused on formulating a heuristic because the dynamic programming for-
mulation that defines the optimal policy is intractable. In this section, we formulate a tractable
Lagrangian upper bound of the problem by decoupling the dynamic program into S independent
arms. The upper bound enables us to provide a suboptimality guarantee of the resulting index
policy.

Proposition C.1: Define the following function:

Lλ
t (x, v1, . . . , v�) = Nλ + maxu

{
S∑

s=1

(Rs(xs) − λ)v1
s

+ δEwLλ
t−1(f (x, v1, w), v2, . . . , v�, u)

}

s.t. u ∈ {0, 1}S ,

for t > �, and for t ≤ �,

Lλ
t (x, v1, . . . , v�) = Nλ+

S∑
s=1

(Rs(xs) − λ)v1
s + δEwLλ

t−1(f (x, v1, w), v2, . . . , v�)}, Lλ
0 (·) = 0,

where the λ represents the cost when the arm is actually pulled, and

L∗
t (x, v1, . . . , v�) = minλ Lλ

t (x, v1, . . . , v�).

Then

J∗
t (x, v1, . . . , v�) ≤ L∗

t (x, v1, . . . , v�) ≤ Lλ
t (x, v1, . . . , v�).

Proof: We prove by induction. For t ≤ l, it is clear that the following holds given that∑S
s=1 vt ≤ N , ∀t ≤ �.

J∗
1 (x, v1) =

S∑
s=1

Rs(xs)v
1
s

≤ Nλ +
S∑

s=1

(Rs(xs) − λ)v1
s

= Lλ
1 (x, v1)
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and

J∗
t (x, v1, . . . , vt) =

S∑
s=1

Rs(xs)v
1
s + δEwJ∗

t−1(f (x, v1, w), v2, . . . , vt)

≤ Nλ +
S∑

s=1

(Rs(xs) − λ)v1
s + δEwLλ

t−1(f (x, v1, w), v2, . . . , vt)

= Lλ
t (x, v1, . . . , vt).

For t ≥ � + 1, suppose J∗
t−1 < Hλ

t−1. Then

J∗
t (x, v1, . . . , v�) = max

u∈{0,1}S :
∑S

s=1 us≤N

{
S∑

s=1

Rs(xs)v
1
s + δEwJ∗

t−1(f (x, v1, w), v2, . . . , v�, u)

}

≤ max
u∈{0,1}S :

∑S
s=1 us≤N

{
Nλ +

S∑
s=1

(Rs(xs) − λ)v1
s

+ δEwJ∗
t−1(f (x, v1, w), v2, . . . , v�, u)

}

≤ max
u∈{0,1}S :

∑S
s=1 us≤N

{
Nλ +

S∑
s=1

(Rs(xs) − λ)v1
s

+ δEwLλ
t−1(f (x, v1, w), v2, . . . , v�, u)

}

≤ max
u∈{0,1}S

{
Nλ +

S∑
s=1

(Rs(xs) − λ)v1
s + δEwLλ

t−1(f (x, v1, w), v2, . . . , v�, u)

}

= Lλ
t (x, v1, . . . , v�).

The first inequality follows because
∑S

s=1 v1
s ≤ N , and the second inequality holds because of

the induction assumption. The final inequality is because it is an optimization problem defined
over a larger set. �

We next show that the above expression for Lλ
t (x, v1, . . . , v�) can be formulated more

simply in terms of single-arm problems. Such similar decomposition has been shown previously
without delay (see Caro and Gallien [7] and Bertsimas and Mersereau [4]).

Proposition C.2:

(i) For t ≤ �,

Lλ
t (x, v1, . . . , vt) = Nλ

t∑
τ=1

δτ−1 +
S∑

s=1

Lλ
t,s(xs, v1

s , v2
s , . . . , vt

s),
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where

Lλ
t,s(xs, v1

s , . . . , vt
s) = (R(xs) − λ)v1

s + δEwLλ
t−1,s(f (x, v1, w), v2, . . . , vt).

(ii) For t ≥ � + 1,

Lλ
t (x, v1, . . . , vt) = Nλ

t∑
τ=1

δτ−1 +
S∑

s=1

Lλ
t,s(xs, v1

s , . . . , vt
s),

where

Lλ
t,s(xs, v1

s , . . . , vt
s) = max

{
(R(xs) − λ)v1

s + δEwLλ
t−1,s(f (x, v1, w), v2, . . . , vt , 1),

(R(xs) − λ)v1
s + δEwLλ

t−1,s(f (x, v1, w), v2, . . . , vt , 0)
}

.

Proof: We prove by induction.

(i) For delay of �, t = � + 1 is where we will make the final decision. Hence,
Lλ

� (x, v1, . . . , v�) can be considered a constant. where the decisions (v1, . . . , v�) get
carried out. We first evaluate the quantity for t ≤ �. Lλ

0 (·) = 0. First by Proposition C.1,
we have

Lλ
1 (x, v1) = Nλ +

S∑
s=1

(Rs(xs) − λ)v1
s + δEw{Lλ

0 (·)}

= Nλ +
S∑

s=1

Lλ
1,s(xs, v1

s ).

Then if we assume the expression holds for Lλ
t−1, we have

Lλ
t (x, v1, . . . , vt) = Nλ +

S∑
s=1

(Rs(xs) − λ)v1
s + δEw{Lλ

t−1(f (x, v1, w), v2)}

= Nλ +
S∑

s=1

(Rs(xs) − λ)v1
s + δEw

{
Nλ

t−1∑
τ=1

δτ−1

+
S∑

s=1

Lλ
t−1,s(f (xs, v1

s , ws), v2
s , . . . , vt

s)

}

= Nλ

t∑
τ=1

δτ−1 +
S∑

s=1

{(Rs(xs) − λ)v1
s

+ δEws L
λ
t−1,s(f (xs, v1

s , ws), v2
s , . . . , vt

s)}

= Nλ

t∑
τ=1

δτ−1 +
S∑

s=1

Lλ
t,s(xs, v1

s , . . . , vt
s).
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(ii) Now suppose t ≥ � + 1, and the expression holds for t − 1. Then, again from
Proposition C.1, we have the following expression:

Lλ
t (x, v1, v2, . . . , vt

s) = Nλ + maxu

{
S∑

s=1

(Rs(xs) − λ)v1
s + δEwLλ

t−1

× (f (x, v1, w), v2, . . . , vl , u)

}

= Nλ + maxu

{
S∑

s=1

(Rs(xs) − λ)v1
s

+ δEw

{
Nλ

t−1∑
τ=1

δτ−1 +
S∑

s=1

Hλ
t−1,s(f (xs, v1

s , w), v2
s , . . . , vt

s, us)

}}

= Nλ

t∑
τ=1

δτ−1 +
S∑

s=1

max
û

{
(Rs(xs) − λ)v1

s

+ δEwLλ
t−1,s(f (xs, v1

s , w), v2
s , . . . , vt

s)
}

= Nλ

t∑
τ=1

δτ−1 +
S∑

s=1

Lλ
t,s(xs, v1

s , v2
s , . . . , vt

s). �
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