
J. Plasma Physics (2006), vol. 72, part 6, pp. 861–864. c© 2006 Cambridge University Press

doi:10.1017/S0022377806005022 Printed in the United Kingdom
861

The sidebands instability
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Abstract. We study numerically the role of mode coupling mechanisms in the
generation and growth of sideband modes, during the long time evolution of the
nonlinear Landau damping of a large-amplitude wave. The results suggest that
a rich variety of wave coupling mechanisms develops during the evolution of the
system.

1. Introduction
The nonlinear evolution of a large-amplitude wave in a one-dimensional Vlasov
plasma is studied with close attention to mode coupling mechanisms as the physical
origin of the growth of the sideband modes. The Vlasov equation is solved in phase
space by a fractional steps method reported in the literature (Cheng and Knorr
1976; Shoucri and Gagné 1977, 1978; Pohn et al. 2005). In the present work, we
allow for longer wavelength modes to be excited by taking the length of the system
to be larger than the wavelength of the initially excited wave. We take advantage
of the low noise level of the Eulerian Vlasov code by allowing the sidebands to grow
from round-off errors.

2. The pertinent equations and the results
The pertinent equations are the Vlasov–Poisson system of equations, written in
dimensionless form for the electrons in the two-dimensional phase-space x–v as

∂tf + v · ∂xf − Ex · ∂vf = 0 (2.1)

where f = f(x, v, t) is the electron distribution function and ∂ denotes partial de-
rivatives. The spatial dimension x is periodic. Equation (1) is coupled to Poisson’s
equation:

∂2ϕ

∂x2
= −(1 − ne) where ne =

∞∫

−∞

f dv and Ex = −∂ϕ

∂x
(2.2)

Time is normalized to ω−1
p , where ωp is the electron plasma frequency, velocity is

normalized to the thermal velocity vt, and space is normalized to the Debye length
λDe = vt/ωp. The distribution function is initialized at time t = 0:

f(x, v, 0) = f0(v)(1 + αn cos(knx) + αl11 cos(kl11x) + αu13 cos(ku13x)) (2.3)

where f0(v) is the Maxwellian f0(v)= (2π)−1/2e−v2/2.
The main plasma wave is excited with a perturbation αn = 0.18. We take L=

80π for the length of the system and n= 12, which leads to a wave number
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Figure 1. Time evolution of the Fourier mode with (a) n = 12 and (b) n = 24. (c) Tail of the
distribution function.

kn =2πn/L= 0.3. The lower sideband with n= 11 and a wave number kl11 =0.275
and the upper sideband with n= 13 and a wave number ku13 =0.325 are excited
initially with an amplitude of αl11 = 10−5 and αu13 =10−5, respectively, to trigger
more rapidly the evolution of the system. If we do not excite them initially, they
will grow by themselves from the round-off errors, which will make the evolution
of the system very slow since the Vlasov code has a very low noise level.
Details of the Eulerian Vlasov code used to integrate (1) and (2) have been

previously reported (Cheng and Knorr 1976; Shoucri 1978, 1979). With kn =0.3, the
linear theory gives, for the real and imaginary parts of the frequency, ωn = 1.1598
and γ =0.0126. The initial kinetic energy of the plasma is 0.5, and the initial
electric energy is 0.09. We truncate the distribution function at |Vmax| = 7. We
use 256 points in velocity space, so the recurrence time for the main wave is
TR =2π/(kn∆v) ≈ 381.5ω−1

p .We also use 128 points in space, and a time-step∆t = 1
8 .

The evolution of the main wave amplitude is shown in Fig. 1(a) on a logarithmic
scale. It shows an initial decay with a damping rate of γ = 0.03while oscillating with
a frequency of ωn = 1.13. The difference in the values of γ and ωn with respect to
the linear values is due to the initial large-amplitude wave. The bounce frequency
of the trapped electrons is ωb =(αn/2)1/2 =0.3, resulting in a bounce period of
Tb ≈ 21ω−1

p . At a time t around Tb, the decay of the wave amplitude stops and the
amplitude starts growing again (see Fig. 1(a)), then settles to an oscillation that is
modulated with a period of approximately 35ω−1

p . This modulation corresponds to
a similar oscillation in the bump appearing in the tail of the distribution function,
shown in Fig. 1(c) at t = 120ω−1

p and t =135ω−1
p . The oscillation of the bump settles

in the long run to a shape showing a wide bump with a flat minimum around
v ≈ 3.8 and a maximum around v ≈ 5. The phase velocity of the main wave settles
to 1.13/0.3 = 3.76. This phase velocity is located essentially at the flat minimum
of the distribution around v ≈ 3.8. The bump on the tail corresponds to vortice-
like structures appearing in the phase space x–v, which are traveling at the phase
velocity of the main wave (see Figs. 6 and 18 in Shoucri (1978)). We present in
Fig. 1(b) the time evolution of the harmonic k2n =0.6. It shows the presence of
a frequency of approximately 2.26, i.e. at the harmonic of the frequency of the
fundamental mode.
Figs 2(a)–(d) show the lower sidebands with wave numbers of kl11 =2π11/L=

0.275, kl10 = 0.25, kl9 = 0.225, and kl8 =0.2, respectively. The frequencies of the
lower sidebands observed numerically are ωl11 = 1.1, ωl10 =1.068, ωl9 = 1.046, and
ωl8 =1.00, respectively. The corresponding phase velocity for the mode kl11 is
ωl11/kl11 = 4, for the mode kl10 it is 4.272, and for the mode kl9 it is 4.64. These
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Figure 2. Time evolution of the Fourier mode with n = (11, 10, 9, 8, 13, 14, 15, 16)
for panels (a)–(h), respectively.
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modes have their phase velocities fall on the positive side of the slope of the bump,
and show a vigorous growth compared with the other sidebands. The mode kl8 has
a numerically observed frequency of 1.00, and the corresponding phase velocity is
1.00/0.2 = 5.00. We see in Fig. 2(d) that this sideband has an evolution different
from the previous three: it grows rapidly and then saturates, due to the fact that
the phase velocity corresponds to the local flat maximum of the bump in Fig. 1(c)
where the slope is zero at v = 5.
Figs 2(e)–(h) present the time evolution of the upper sidebands ku13 = 2π13/L =

0.325, ku14 = 0.35, ku15 = 0.375, and ku16 = 0.4. The frequencies of the first three
upper sideband modes are ωu13 = 1.141, ωu14 = 1.196, and ωu15 = 1.225. We note
that ωl11 + ωu13 = 2.241, kl11 + ku13 =0.6 and ωl10 + ωu14 =2.264, kl10 + ku14 =0.6,
ωl9 +ωu15 =2.271, kl9 + ku15 = 0.6. We see a good matching of these sidebands with
the wave number 0.6 and with the frequency of approximately 2.26 for the harmonic
n= 24. In Fig. 2(h) towards the end of the evolution, we note a frequency of
ωu16 =1.27 for the mode ku16. With ωl8 +ωu16 =2.27, kl8 + ku16 =0.6, this matches
with the frequency and wave number of the harmonic n= 24. We also note that
the upper sideband mode 16 is a harmonic of the lower sideband mode 8, which
adds to the complexity of the coupling mechanism. Hence, the combined action of
the coupling with the harmonic k2n = 0.6 and the positive slope of the distribution
acting on the lower sidebands seems to be the mechanism behind the growth. We
can also have the coupling of other modes such as kn26 = 0.65 (harmonic of the
upper sideband 13) with kl10 and ku16 (kl10+ku16 = 0.65, ωl10+ωu16 = 2.338), or we
can have the coupling of the mode kn26 = 0.65 with kl9 and ku17 (kl9 +ku17 = 0.65,
ωl9 + ωu17 = 2.37). Similar couplings can be studied with the mode kn22, the
harmonic of the mode 11. The excitation of harmonics by wave–wave coupling
has been also reported recently by Umeda et al. (2003).

3. Conclusions
The appearance of a bump in the tail of the electron distribution function, during
the evolution of a large-amplitude wave, is accompanied by the growth of sidebands.
A rich variety of wave coupling mechanisms has been studied. For the case treated
in Shoucri and Gagné (1978) where the sidebands remained small, the main plasma
wave reached indeed a constant amplitude at a phase velocity corresponding to the
minimum of a stable bump. In the present work, the evolution of the sidebands
has been stopped before they reach the level were they can affect the vortices-like
Bernstein–Greene-Kruskal (BGK) structures in phase space. If the sidebands were
excited at a higher level, they will reach a level at the end comparable to the main
wave, and will then interact with the BGK structures and saturate, while the tail
of the electron distribution is distorted to form a flat plateau (Shoucri 1979).
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