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Closed and open hollow wakes are considered as analytic models for the two-
dimensional inviscid steady flow past a plate normal to the stream. It is shown that
only open configurations which satisfy the Kutta condition exist. The main argument
is based on considering a plate located on the edge of a step with varying height. It
is shown that solutions for open wakes exist for backward-, null and forward-facing
steps, while closed wakes only exist for backward-facing steps. The occurrence of
secondary separation has been modelled by adding a hollow region attached to the
downstream corner. Peculiar accuracy issues of the problem are pointed out which may
explain other contradictory results from the literature. It is shown how the Kirchhoff
wake is a limiting solution for certain values of the governing parameters.
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1. Introduction
Inviscid steady solutions for the flow past bluff bodies are relevant to wake control

and to the asymptotic theory of separated flows in the limit of the Reynolds number
going to infinity. It is often assumed that steady flows with recirculation regions with
closed streamlines are useful in stabilizing unstable steady flows at high Reynolds
numbers (see Protas 2008). The general discussion can be illuminated by consideration
of a particular geometry where specialized methods can be applied. This work aims to
do this for the intriguing and controversial features of two-dimensional inviscid models
of the wake past a flat plate normal to the flow. This simple geometry is the one which
was used in the first wake model using free streamlines, on which the magnitude of
the velocity is constant, Kirchhoff (1869) (and for instance, Lamb 1932).

The inviscid flow model is characterized by flow constrained to separate from the
sharp edges of the plate (Kutta condition) and by an arbitrary distribution of vorticity
inside the wake. In general, the wake can have a finite area with closed streamlines,
as in the Batchelor (1956b) wake model, or can extend to infinity, as in the Kirchhoff
wake model. A rich discussion and bibliography on this argument is offered, for
instance, by Chernyshenko (1998) and Sychev et al. (1998).

The inviscid two-dimensional steady flow is governed by the quasi-linear Poisson
equation ∇2ψ =−ω(ψ), where ψ is the stream function and ω the vorticity. Different
models are characterized by different choices of the function ω(ψ); by assuming the
wake formed by vortex patches bounded by vortex sheets, it becomes

ω =−
∑

j

ωjH(ψ − αj)+
∑

k

βk δ(ψ − γk) (1.1)
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(c) (d)(a) (b)

FIGURE 1. Closed hollow wake models.

(a) (b)

FIGURE 2. Open hollow wake models.

where H and δ denote the Heaviside and Dirac functions, respectively, αj and γk are
the values of the stream function at the patch boundaries and on the vortex sheets,
ωj is the vortex patch vorticity and βk the jump of the Bernoulli constant across the
vortex sheets. Batchelor (1956a) showed that the steady inviscid limit of a region with
closed streamlines, for the Reynolds number Re→∞, is a vortex patch bounded by a
vortex sheet, which belongs to this general wake model.

‘Hollow wake’ models are adopted here; they are based on assuming ωj = 0. As
a consequence the vorticity is concentrated on vortex sheets which bound irrotational
regions. For ψ = const. on the wake boundary, irrotationality implies, by the maximum
principle for the Laplace equation, ψ = const. inside the wake, which thus is ‘hollow’,
that is, formed by fluid at rest . The point vortex model is included in this scenario,
it corresponds to letting |γk| → ∞. Sychev et al. (1998) considered this model as a
generalization of the Batchelor model and attributed it to Lavrentiev (1962).

This model has the merit that it allows a fully, or almost fully, analytic study which
avoids most of the uncertainties of other approaches. Examples of studies based on
this model have been recently offered by Crowdy & Green (2011), Telib & Zannetti
(2011) and Llewellyn Smith & Crowdy (2012).

We explore two classes of wake models: one pertinent to finite-area wakes with
closed streamlines and the other one pertinent to open wakes which extend, a la
Kirchhoff, to infinity. Figures 1 and 2 summarize the patterns considered for the two
classes. They are schematic. Indeed, the main result of this work is that the fulfillment
of the Kutta condition makes the patterns of figure 1, pertinent to closed wakes,
unlikely to exist.

Figure 1(a) is pertinent to the point vortex model; in figure 1(b) a hollow region
is added in the corner to model the effect of a secondary separation, in figures 1(c)
and 1(d) the point vortex is desingularized into a hollow region. Figures 2(a) and 2(b)
show the considered open wakes models, without and with a secondary separation,
respectively.

The non-existence of inviscid closed wakes for a normal flat plate has been recently
discussed in the literature. Since the non-existence of a solution in which the
wake vorticity is concentrated on a point vortex is known (Smith & Clark 1975),
continuation arguments, as those by Gallizio et al. (2010), imply that finite-area
desingularized solutions do not exist either. This result is controversial. In fact, there
are several examples in the literature which contradict it. For instance, Turfus (1993)
studied the problem, equivalent to the present one, of a normal plate in a channel
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Models for inviscid wakes past a normal plate 379

and found a solution with a finite-area vortex patch. Gallizio (2004) considered the
same problem and arrived at the opposite result. Alimov & Mazo (2002) considered
the same flow in an unbounded domain and found a solution which satisfies the Kutta
condition, but they stated difficulties in accurately enforcing the Kutta condition. Lin
& Landweber (1977) computed a finite-area hollow wake according to the model of
figure 1(c), but their result has been refuted by Telib & Zannetti (2011).

We here present further arguments in favour of the non-existence thesis, and we
show how the counterexamples in the literature could be affected by inaccuracy
inherent to peculiar aspects of the problem.

For two-dimensional potential flows, the inverse problem of determining the shape
of streamlines along which the velocity distribution is prescribed can in general be
solved by the hodograph-plane method.

The method consists of determining the function z(λ) which maps a suitably chosen
canonical domain of the parameter λ-plane onto the flow domain of the physical
z-plane. Briefly, it is based on exploiting the chain rule D{w(z(λ))} = w′(z)z′(λ),
rearranged as

dz

dλ
= dw/dλ

dw/dz
, (1.2)

where z = x + i y is the complex coordinate of the physical z-plane, w is the complex
potential and λ is the complex coordinate of the parameter plane. Let τ = dw/dz be
the complex coordinate of the hodograph dw/dz-plane, then the shape of the flow
field boundary on the τ -plane, that is, the velocity distribution along the boundary,
is provided by the formulation of the inverse problem. The solution is obtained by
conformally mapping the domain of the τ -plane onto a canonical domain of the
parameter λ-plane. Once the complex velocity dw/dz is expressed as a function of λ,
the right-hand side of (1.2) is a known function of λ and the mapping function z(λ)
can be obtained by integration.

It should be remarked here that this process depends on the velocities on the
boundary tracing out relatively simple curves in the τ -plane. If the geometry is
polygonal then the boundary in the τ -plane consists of straight lines and circular arcs
corresponding to the free streamlines, but even then the situation can be complicated.
For fairly simple objects the domain in the τ -plane may be a Riemann surface, as in
Elcrat (1982).

The canonical domain of the λ-plane can be arbitrarily chosen. For a simply
connected flow domain, typical choices are half-planes, disks and rectangles. They
lead to equivalent solutions by the Riemann mapping theorem. A large number of
examples and variations on the method can be found in the literature; Gurevich (1965),
for instance, is a rich source on this matter.

2. A point vortex behind a step
We begin with an example which can be solved directly analytically. This will serve

to set notation and give the context for our main work. The physical configuration is
given in figure 3.

We have a vertical flat plate BC with a backward-facing step BD in a uniform flow
from left to right. There is a point vortex at V and we enforce a Kutta condition at
the top of the plate at C. The streamline emanating from C reattaches to the horizontal
behind the step at F. In a careful formulation of this problem we find things that might
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FIGURE 3. Physical plane for a point vortex.

not have been anticipated. On the streamline AB there is a maximum speed, larger than
the speed at infinity (A), normalized to be qA = 1, which is taken on at the point H.
In the recirculation region CFGDC there is necessarily a maximum speed at a point G
between F and D, but there is also a maximum speed larger than the separation speed
at C located at a point E on DC. The existence of these points E, G and H will play
an essential role in our subsequent discussion. The above picture holds whether or not
the vortex is in equilibrium. We will vary the location of the coordinates of V in order
to achieve equilibrium. Figure 3 is an actual flow configuration, not a schematic.

If we map the flow domain onto the upper half of the λ-plane, the
Schwarz–Christoffel formula with λ = −1, 0, a,∞ corresponding to B, C, D, A
respectively yields

dz

dλ
= b

λ√
(λ+ 1)(λ− a)

(2.1)

and, by integration,

z= b

[√
(λ+ 1)(λ− a)+ a− 1

2
log(1− a+ 2λ+ 2

√
(λ+ 1)(λ− a)+ c

]
, (2.2)

where c, b, a are defined by zB = 0, |zC − zB| = 1 and by the free selection of step
height BD.

The complex potential w can be defined in the λ-plane as the combination of a
uniform flow, a point vortex plus its mirror image. By assuming as reference velocity
the flow velocity at infinity, it is

w= b λ+ γ

2πi
log
(
λ− λv
λ− λv

)
, (2.3)

where λv = ξv + iηv is the vortex location and γ is the vortex circulation. The complex
velocity on the λ-plane is thus

dw

dλ
= b+ γ

2πi

(
1

λ− λv −
1

λ− λv

)
. (2.4)

The Kutta condition (dw/dλ)0 = 0 yields

γ =−bπ
ξ 2
v + η2

v

ηv
. (2.5)
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FIGURE 4. Hodograph for the point vortex.

According to the Routh (1881) rule (see also Clements 1973), the vortex velocity

˙̄zv = lim
z→zv

(
dw

dz
− γ

2πi
1

z− zv

)
(2.6)

can be expressed as

˙̄zv =
(
λ̄′v −

γ

4πi
d

dλv
log

dzv
dλv

)
dλv
dzv

, (2.7)

with

λ̄′v = lim
λ→λv

(
dw

dλ
− γ

2πi
1

λ− λv

)
= b− γ

2πi(λv − λv)
. (2.8)

The equation which expresses the equilibrium of a vortex which satisfies the Kutta
condition is thus

λ̄′v −
γ

4πi
d

dλv
log

dzv
dλv
= 0, (2.9)

with λ̄′v and γ given by the above equations.
The step in the above can in principle be any positive number (recall BC is

normalized to be 1). We may also consider a zero step and a forward-facing step in
which CD is smaller than BC. Following the same approach as in Zannetti (2006), we
have plotted the zero-level curves for the real and imaginary parts of the function in
(2.9) in various cases. For the backward-facing step these curves cross at a unique
point, but, as BD is made smaller, determination of the crossing point becomes
delicate. When the step is zero the two curves are parallel. When the step transitions
to forward facing the curves diverge. Hence, there is no equilibrium position for a
point vortex behind a forward-facing step as well as for the previously known case of
a zero step.

We can get insight into the dependence on parameters by observing the values of
the velocities at equilibrium qE, qG and qH . In particular, the value of qH is significant.
Consider the hodograph or complex velocity plane for these flows shown in figure 4.
In this figure the hodograph domain is the exterior of the T-shaped curve, and we
see that the velocity at H is qH = 1.00024, barely above the free-stream velocity
qA = 1. Further, the location of H in the z-plane is very far upstream as shown in
figure 3 (zH = −199.3). We see that qH depends sensitively on the step length; the
value qH = 1.00024 considered here is relevant to the step BD= 0.3.

It is possible to give an analysis of these ‘steps with point vortex’ flows in channels.
(The Kutta condition is imposed, but equilibrium is left aside.) With reference to the
physical and hodograph planes shown in figure 5, when the step is zero (d = d′)
the asymptotic upstream and downstream velocities are qA = qA′ = 1. As the top wall
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FIGURE 5. (a) Physical and (b) hodograph planes for a point vortex in a channel (equilibrium
not imposed).
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FIGURE 6. Flow past a point vortex and corner vortex.

recedes to infinity, we find that the geometry implies that the limiting value of qH must
be qH = qA = qA′ = 1.

3. Hollow corner vortices and desingularization of point vortices by hollow
vortices

3.1. Point vortices with hollow corner vortices

We proceed now to investigate the configuration shown in figure 1(b). Our intent is
to investigate how the results of a point vortex behind a step change when a ‘hollow’
vortex, i.e. a zero flow region, is added to simulate secondary separation on the corner
at the plate base D. This is inspired by Turfus & Castro (2000), who considered
secondary separation in their inviscid model for the flow past a cascade of plates.

We begin with a hollow corner added at the corner as shown in figure 6. The
problem is normalized by taking the plate length CB and the velocity at infinity qA

as reference values. As before there is a point vortex at V and the Kutta condition is
imposed at C, but now the streamline coming back from G detaches before the corner
at D and reattaches on the plate at L. Bernoulli’s equation implies that the speed q
is constant on this ‘free streamline’ DL. This problem cannot be solved directly, but
we will give a solution using the classical hodograph method. We assume a plausible
geometry for the hodograph and find the physical domain as an inverse problem in
which parameters are adjusted. The hodograph here is the exterior domain in the
τ -plane depicted in figure 7. An essential role is played by the velocity maxima that
we found for a point vortex which we now assume for the corner flow. We may
think of q, qE, qG and qH as free parameters. We approximate the circular arc LD
by a polygon with N = 40 vertices, and use a variant of the Schwarz–Christoffel
transformation to map the exterior domain into the unit disk of the λ-plane. The
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FIGURE 7. (a) Hodograph for the flow past a point vortex and corner vortex. (b) λ-plane.

mapping is thus

τ = A+ C
∫ λ

ν−2
∏

k

(
1− ν

λk

)1−αk

dν, (3.1)

where λk are the locations of the ‘prevertices’ and παk are the polygon angles. This
transformation has been computed using SCTOOLBOX (Driscoll 1996).

The mapping is such that τ =∞, that is, the point vortex, is mapped onto the centre
λv = 0 of the unit disk and the stagnation point τB = 0 is mapped onto λB = 1. This
allows the values of the constants A and C and of the prevertices λk to be determined.

The complex velocity dw/dλ is given by the combination of a doublet at λ = λA,
representative of the asymptotic uniform flow in the physical plane, and by a vortex
located at λ = λv = 0. By adjusting the doublet orientation to make the unit circle a
streamline, we have

dw

dλ
= Q

[
i λA

(λ− λA)
2 +

γ /Q

2πi λ

]
, (3.2)

where Q is the momentum of the doublet and γ is the circulation of the vortex. In
(1.2), Q plays the role of a scale factor and its value can be adjusted a posteriori
to set the unit length of the plate. At λ = λF, τF = 0, since for the physical wall
to be regular at F, (dz/dλ)F must be finite, and, hence (dw/dλ)F = 0. This defines
the circulation γ /Q=−π/sin2[(ϕF − ϕA)/2], with ϕF = arg(λF) and ϕA = arg(λA). The
complex velocity dw/dλ has a second zero in λC = exp[i (2ϕA − ϕF)]; this defines the
λ image of the edge C of the plate and the velocity τC = τ(λC).

As derived in the Appendix, (2.9), which expresses the equilibrium of the vortex,
assumes the form

A

C
+ 2π
γ /Q λA

= 0. (3.3)

This is a complex equation and its satisfaction reduces to two the degrees of freedom
of the problem. Accordingly, we organize the computations as follows: the two degrees
of freedom are represented by the free choice of the velocity qH and of the velocity
ratio q/qE, then q and qG are determined so that the vortex is in equilibrium. We have
computed solutions for a range of values of qH and q/qE. Note that 0 6 q/qE 6 1,
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FIGURE 8. Error versus q for q/qE = 0.5 and qH = 1 and qH = 1.00024.
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FIGURE 9. A corner vortex with q/qE = 1 (q= 0.5597, qG = 2.9483, qC = 0.5363).

the limiting cases being no corner vortex and maximum possible speed on the corner
vortex boundary.

This combination was arrived at after much trial and error, and we have formulated
a check on the correctness of our solution based on these experiments. In figure 8
we have plotted the magnitude of the minimum error for values of qG with q fixed.
For qH > 1 the geometry results in a positive step and there is a clear indication of
a minimum which is consistent with the error passing through zero. For qH = 1 the
geometry corresponds to a zero step. Here the magnitude of the error becomes fairly
small but does not have a minimum. Moreover, as the error decreases, the vortex
moves towards downstream infinity. We take this as an indication that a solution for
equilibrium does not exist. Our first computations converged for such cases if the
accuracy requested was modest, say 10−3, but we were not able to get smaller errors.
We believe that results such as those in figure 8 explain this.

In conclusion, the answer to the question of whether including the corner vortex
makes a zero step possible is no. The argument follows the same line as for a point
vortex without a corner vortex. By considering related flows in channels we can
deduce that qH must be 1 when the step is 0, and for qH = 1 the above analysis shows
that there is no solution.

We have found a direct relation between q/qE and the size of the corner vortex. This
is illustrated in figures 9 and 10.
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FIGURE 10. A corner vortex with q/qE = 0.5 (q= 0.3733, qG = 2.9517, qC = 0.6491).

3.2. Desingularization of point vortices by hollow vortices.
We consider now the flow pattern shown in figure 1(c), where the point vortex is
desingularized in a finite-area hollow. The resulting wake model coincides with the
Lavrentiev (1962) model; it consists of a layer of potential flow which surrounds
a body of fluid at rest. If the Kutta condition is satisfied, there is a single infinity
of solutions which depends on the free choice of the constant velocity qh along the
hollow boundary.

This flow has been studied by Lin & Landweber (1977), who used a hodograph-
plane method and found solutions for the zero-step case. Recently, Telib & Zannetti
(2011) have proposed a different method and have cast doubts on the existence of
those solutions. Further arguments are presented here.

Lin & Landweber (1977) used a hodograph method in which the BD step height
is part of the solution. According to an iterative method, they used the zero-step
constraint to tune the parameters on which the solution depends. We show here how
this constraint is delicate and a very small violation may induce a false solution.
Moreover, in their hodograph method the Kutta condition is implicitly satisfied and
solutions which violate it cannot be explored.

The method by Telib & Zannetti (2011) is a direct rather than an inverse
formulation. In that method the shape of the solid wall is fixed and is not part of
the solution; this means that the step height BD is set a priori and is not the result
of a trial and error process. Moreover, the Kutta condition can be explicitly enforced
and can be violated as well. In Telib & Zannetti (2011) a zero step was assumed, and
it was shown that solutions with wakes with the lengths given by Lin & Landweber
(1977) violated the Kutta condition.

To provide further arguments, we here adopt that same method for non-zero-step
configurations by using the mapping (2.2). We show that the behaviour of the solutions
for decreasing step heights suggests that zero-step solutions are unlikely to exist.

An example of a solution for a non-zero step is shown in figure 11. In the same
figure the point vortex solution is also represented. The hollow wake separatrix is
represented by a solid line and the point vortex separatrix by a dotted line. For the
plate length CB taken as reference length, the solutions pertinent to three different
steps (BD = 0.51, 0.16, 0.06) are compared in figure 12. As the step height is
decreased, the wake lengths increase and the hollow vortices move downstream with
strongly nonlinear behaviour. It can be deduced that, as for the point vortex solution,
the hollow location and the wake length tend to infinity as BD goes to zero. In a
numerical approach, solutions with quite small values of BD could be mistaken as an
indication of existence of a solution for BD= 0.

Moreover, if, instead of the plate length BC, we assume as reference length the
wake length, we can also deduce that the zero-step (BD = 0) solution is pertinent to a
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FIGURE 11. Hollow wake (qh = 3) past a normal plate with a positive step (BD= 0.51).
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FIGURE 12. Hollow wakes for qh = 3 and BD= 0.51, 0.16, 0.06 (a,b,c).

H B

C E

A G
L

A
FD

FIGURE 13. Closed hollow wake with hollow corner separation
(qH = 1.00024, q/qE = 0.5, qh = 7).

plate with vanishing length (BC = 0) and it coincides with the finite-area hollow vortex
above an infinite flat wall found by Pocklington (1895).

For given BD, the solutions depend on the free choice of qh > 1. As for the other
wall geometries considered by Telib & Zannetti (2011), the method fails to converge
for small values of qh. We have not been able to detect if there is a limit value
different from qh = 1, which pertains to the Kirchhoff wake.

3.3. Closed hollow wake with secondary corner separation
We consider now the flow of figure 13, which shows a solution pertinent to the pattern
shown in figure 1(d), where the point vortex of § 3.1 is desingularized by a hollow
vortex. The hodograph is as depicted in figure 14. A magnification of the details in (a)
are shown in b). It consists of a doubly connected domain where the inner boundary
has the same T-shape as for the above point vortex case (figure 7) and the outer
boundary is a circle whose radius qh is the velocity along the hollow vortex standing
in the wake core.
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FIGURE 14. Hodograph for the closed vortex: (a) doubly connected domain, (b) inner profile.

As above, the inner profile is defined by the maxima of the wall velocity (qH, qE, qG)
and by the q velocity along the corner hollow separation. In addition to q, qH, qE, qG,
the problem now depends also on the qh value of the flow velocity at the hollow
vortex boundary. We follow the same hodograph method as in § 3.1, with the
variation that the doubly connected domain of the hodograph-plane domain is mapped
conformally onto an annulus of the λ-plane. With this mapping function in hand, an
inverse problem can be formulated for the determination of the flow domain in the
physical plane. A system of two equations for closure of the hollow vortex can be
given which replaces the system for equilibrium of the point vortex. For given values
of qH , qh and q/qE, the independent variables are again q and qG, and the same
equation solving routine is used.

The mapping onto the annulus is done in two steps. First, the Schwarz–Christoffel
mapping (3.1) is used to define the function τ(λ1) which maps the domain external to
the profile of figure 14(b) into the interior of the unit disk of the intermediate λ1-plane.
The doubly connected hodograph is thus mapped onto a doubly connected region of
the λ1-plane, bounded by the unit circle and by the quasi-circular image of the qh

circle. The Garrick (1936) mapping, as formulated by Ives (1976)

λ1 = λ exp

{
i b0 +

N−1∑
n=1

[(−an + i bn) (R λ)
n+(an + i bn) (R/λ)

n]
}
, (3.4)

is then used to map this region into an annulus of the λ-plane bounded by the unit
circle and by an inner circle with radius R. The an, bn coefficients and radius R are
computed by the iterative process suggested by Ives (1976).

In order to define the complex velocity dw/dλ, it is convenient to consider the
further mapping χ = log λ. On the χ -plane the hodograph domain is mapped onto the
rectangular region bounded by thick lines in figure 15. According to the geometrical
periodicity of the horizontal sides and to the infinite reflections needed to make the
vertical side streamlines, the function dw/dχ has to be a doubly periodic elliptic
function with a second-order pole at χA to represent the uniform flow at infinity. The
periodic domain is shown in figure 15; its half-periods are ω = − log R and ω′ = iπ.
From λ(dw/dλ)= dw/dχ , the complex velocity on the λ-plane is thus

dw

dλ
= i Q

λ
[℘(log λ− χA;ω,ω′)+ κ)], (3.5)
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FIGURE 15. χ -plane.

where ℘ is the Weierstrass ℘ function. The value of κ is determined by the location of
the stagnation point χF, that is, κ =−℘(χF − χA). As a consequence of the properties
of the zeros of the elliptic functions, dw/dχ = 0 also at χC = 2χA − χF, which defines
the λC = expχC location of the λ-image of the plate edge C. According to (1.2), Q
plays the role of a scale factor and its value is determined a posteriori to enforce the
plate length CB= 1.

According to (1.2), the function dz/dλ can now be determined. The condition that
the hollow vortex has to be closed is expressed by the complex equation∮

|λ|=R

dz

dλ
dλ= 0, (3.6)

which allows the unknown values of q and qG to be computed.
The same arguments as used above for channel flow can be used to show that the

zero step corresponds to qH = 1. We have performed the same numerical check as
in § 3.1 and obtained a confirmation of that result. In figure 16, as in figure 8, we
have plotted the magnitude of the minimum error |Err| for values of qG with q fixed.
For qH > 1 the geometry results in a positive step and there is a clear indication
of a minimum which is consistent with the error passing through zero. For qH = 1
the geometry corresponds to a zero step. Here the magnitude of the error becomes
fairly small but does not have a minimum. The figure is relevant to q/qE = 1 and
qh = 7. The same behaviour was seen for other values of the parameters that we have
explored.

Figure 17 presents two examples of solutions with the same qH = 1.00024 value
and with different values of 0 6 q/qE 6 1 and qh > 1. It shows how the hollow corner
region, the hollow wake core and the wake length depend on these parameters. The
general indication is that wake length increases as qh decreases, and one would expect
that for qh→ 1 the wake approaches the Kirchhoff wake, but, as in § 3.2, the failure of
the method for small values of qh did not allow this outcome to be verified.
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FIGURE 16. Error versus q for q/qE = 1 and for qH = 1 and qH = 1.00024.

(a) (b)

FIGURE 17. Examples of closed wakes: (a) qH = 1.00024, q/qE = 0.5, qh = 7;
(b) qH = 1.00024, q/qE = 1, qh = 2.7.
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FIGURE 18. Open hollow wake without corner separation: (a) physical plane;
(b) hodograph plane.

4. Normal plate and infinite hollow wakes
We consider now two models for infinite open wakes past a normal plate. First

we will consider the case without secondary separation, and then we will include, as
above, a hollow region on the downstream corner to model a secondary separation.
The solution is obtained by means of the hodograph method. As shown below, these
models are capable of describing wakes for negative, null or positive steps.

4.1. Open wakes without secondary corner separation
The flow in the physical plane is shown in figure 18(a). The wake consists of an
infinite hollow region bounded by a layer of potential flow. The relevant hodograph on
the τ -plane is shown in 18(b). It consists of a half unit circle with a cut extending
from the origin B to the maximum velocity qE attained along the plate. As above,
this maximum velocity in general does not coincide with the velocity qC at the plate
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edge C. The problem is normalized by assuming as reference velocity the velocity qA

at infinity and the length CB of the plate. By assuming uniform pressure at infinity,
the hollow pressure has to be equal to the pressure at infinity and, as a consequence,
the constant velocity q on its boundary has to be equal to the velocity at infinity,
that is q= qA = 1. Note that the hodograph geometry depends on the single parameter
0 6 qE 6 1.

The hodograph can be mapped onto a rectangle by the Jacobi sine-amplitude
function. Therefore it is convenient to adopt this rectangle, traced by thick lines in
figure 19, as the canonical domain in the transformed λ-plane. The mapping is

τ =−i qE sn(λ,m), (4.1)

where the parameter m is found by solving the implicit equation

sn
[

i
2

K(1− m),m

]
= i

qE
, (4.2)

and K is the complete elliptic integral of the first kind.
The complex velocity dw/dλ has to be such that the sides of the rectangle result as

streamlines. As a consequence, it is a doubly periodic function whose periodic domain
is shown in the figure by dotted lines. To represent the uniform flow at infinity, a
quadrupole has to be located in λA; the flow in the potential layer from G to A has
to be represented by a source in λG and a sink in λA. By enforcing periodicity, the
complex velocity is thus the elliptic function

dw

dλ
=M{℘ ′(λ− λA;ω,ω′)+ Q[ζ(λ− λG;ω,ω′)− ζ(λ− λA;ω,ω′)+ κ]}, (4.3)

where the Weierstrass functions ℘ ′ and ζ have been introduced, and the half-periods
are ω = 2λE and ω′ = λA. From (1.2), M plays the role of a scale factor and it can be
set a posteriori to enforce the plate length CB = 1. Since ℘ ′(−λA) = 0, the condition
that B is a stagnation point yields κ = ζ(λG) − ζ(λA). The constant Q represents
a further degree of freedom of the problem, its value defines the location of the
λC image of the plate edge C. By enforcing the Kutta condition (dw/dλ)C = 0, the
relationship between Q and λC is

Q=− ℘ ′(λC − λA)

ζ(λC − λG)− ζ(λC − λA)+ κ . (4.4)

From the physical point of view, the quantity ṁ = (π/2)M Q is the mass flow in the
wake potential layer. Geometrically, by using (1.2), for a given qE, Q defines the step
height BD, which can be positive (backward-facing step), null (flat plane) or negative
(forward-facing step). In the examples shown here, it has been adjusted to attain a null
step BD= 0.

By integrating dw/dλ, the complex potential

w=M

{
℘(λ− λA;ω,ω′)+ Q

[
log

σ(λ− λG;ω,ω′)
σ (λ− λA;ω,ω′) + κλ

]}
, (4.5)

results, where the ℘ and σ Weierstrass functions have been introduced. Figure 19
shows the streamline pattern on the λ-plane for the zero-step case displayed in
figure 18(a), relevant to qE = 0.5.

In conclusion, the open wake past a normal plate orthogonal to a zero-step plane
has one degree of freedom represented by the free choice of 0 6 qE 6 1. As shown
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FIGURE 19. Transformed λ-plane for an infinite hollow wake without corner separation.
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FIGURE 20. Infinite hollow vortices and their limiting case, qE = 0.1, 0.5, 0.95, 1.

in figure 20, pertinent to qE = 0.1, 0.5, 0.95, 1, the distance of the hollow from the
plate is a monotonic decreasing function of qE. For qE = 1, the above hodograph
degenerates onto a quarter-circle, and the solution is the Kirchhoff wake. The other
limit is qE = 0, for which the cut BE on the hodograph half-circle disappears and the
distance of the hollow from the plate goes to infinity. By assuming as reference length
the distance of the hollow from the plate, we see that qE = 0 corresponds to a plate
with a vanishing length, that is, the resulting flow is the flow which separates from a
point C of a flat plane and generates an infinite recirculating region with a hollow core.
As for the Kirchhoff wake, this flow has been known for a long time; for instance, it
was considered by Michell (1890) and Pocklington (1895).

While, according to the d’Alembert’s paradox, inviscid closed wakes have zero
drag, open wakes can experience non-null drag. In figure 21 the drag coefficient CD,
pertinent to the present model, is plotted versus the parameter qE. It is an increasing
function of qE which goes from CD = 0 for qE = 0 to CD = 0.88 for the limiting
Kirchhoff wake (qE = 1).

4.2. Open wakes with secondary corner separation

We consider now the flow represented in figure 22, in which a hollow corner region
has been added to model a secondary separation at the corner. This flow model
presents a further degree of freedom represented by the value q of the velocity on
the boundary of the corner hollow vortex. The pertinent hodograph τ -plane is shown
in figure 23(a); by taking log τ , the hodograph is mapped onto the polygon shown in
figure 23(b), with the vertex B located at infinity. The Schwarz–Christoffel mapping is
then used to map the interior of the polygon onto the upper half-λ-plane, as shown in
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FIGURE 21. CD versus qE for open hollow wakes.
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FIGURE 22. Open hollow wakes with secondary corner separation: (a) qE = 0.62, q= 0.496;
(b) qE = 0.8, q= 0.240.
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FIGURE 23. Open hollow wake with secondary corner separation: (a) hodograph τ -plane;
(b) log τ -plane; (c) λ-plane.
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figure 23(c). The λ→ τ mapping is thus

τ = exp

[
A+ C

∫ λ∏
k

(ν − λk)
αk−1 dν

]
, (4.6)

where λk are the polygon λ-prevertices and παk the angles. By assuming λB = ∞,
λE = −1 and λA = 1, the values of the other prevertices and of the constants A and
C are uniquely determined. The computation has been carried out by means of the
Driscoll (1996) SCTOOLBOX.

The complex velocity dw/dλ, is the velocity induced by a doublet located in λA,
representing the asymptotic uniform flow, and by a source in λG and a sink in λA,
representing the flow in the wake potential layer, that is

dw

dλ
=M

[
1

(λ− λA)
2 + Q

(
1

λ− λG
− 1
λ− λA

)]
. (4.7)

As in § 4.1, M is a scale factor which can be set a posteriori to enforce the unit
length of the plate, and Q is a parameter whose value defines the location of the
separation point, that is, of the image λC of the plate edge. From (dw/dλ)C = 0, we
get

Q=− 1

(λC − λA)
2[1/(λC − λG)− 1/(λC − λA)]

. (4.8)

Physically, ṁ= πM Q is the mass flow in the wake potential layer. For given values of
the free parameters 0 < qE < 1 and 0 < q 6 qE, the value of Q defines the step height
BD, which can be positive, null or negative. In our computations, we adjusted it in
order to attain a null step.

Figure 22 shows two cases with different values of qE and q. In case (a), the mass
flow in the potential layer is ṁ = 0.336 and in case (b) it is ṁ = 0.276. As for the
q = 0 case of § 4.1, the limit for qE → 1 appears to be the Kirchhoff wake, with
ṁ= 0.

5. Conclusions
We have considered inviscid hollow wake models for the flow past a normal plate,

with and without secondary corner separation. The closed wake models summarized in
figure 1 have been shown not to exist. The main argument is based on considering the
plate located on the edge of a step with varying height. It has been shown that closed
wakes only exist for positive, backward-facing steps.

The limiting flow configuration for a vanishing step is the Pocklington (1895)
hollow vortex standing above a flat plane.

Other results from the literature, which contradict the present ones, can be explained
by the peculiar accuracy aspects of the problem, which are related to the fulfillment of
the Kutta condition and of the zero-step requirement.

This outcome gives support to the thesis, based on continuation arguments as in
Gallizio et al. (2010), that the non-existence of a wake modelled by a point vortex
implies the non-existence of desingularized solutions.

It has been shown that, according to the patterns of figure 2, solutions exist for
open wakes modelled by infinite hollow regions, with and without a secondary corner
separation. By varying the free parameters 0< qE < 1 and 0 6 q 6 qE, which represent
the maximum velocity attained on the plate and the velocity on boundary of the
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hollow corner vortex, respectively, different solutions exist with different non-null
values of the drag coefficient. The limiting cases are the Pocklington (1895) infinite
hollow (qE = 0) and the Kirchoff wake (qE = 1).

In general, the Kirchhoff wake does not depend on the shape of the body
downstream of the separation point. According to the present study, the Kirchhoff
wake is relevant to given downstream geometries, so it is not an isolated solution, but
it is the limiting case of a continuum of solutions.

Appendix. Computational procedures
In our exposition we have written little about the methods that we have used in

computing our solutions in order not to distract attention from our main points. We
will give more information here.

All of our work was done on our personal computers using the software packages
Mathematica (2008) and MATLAB (2010). In §§ 2 and 4.1, the complete solutions
were obtained analytically using Mathematica.

The |Err| plots of figures 8 and 16 have been computed by means of the MATLAB
(2010) routine fminbnd.m. For given q, it provides the value qG which minimizes
|Err|.

The hollow vortices depend on a conformal map of the hodograph domain onto
either the interior of the unit disk when there is a point vortex or the interior
of an annulus when there is a hollow vortex. For the former we use the exterior
map option in the Matlab Toolbox SCTOOLBOX (Driscoll 1996). Using extermap.m,
∞ is mapped to the origin in the unit disk. The circular arc in the hodograph is
approximated by a polygonal line with 40 segments.

Equation (3.3) follows from (2.9) with λ′v = i Q/λA and

d
dλv

log
dz

dλv
= lim

λ→0

(
d

dλ
log

dw

dλ
− d

dλ
log τ

)
= lim

λ→0

{[
−1
λ
− 2π
γ /Q

λA

(λ− λA)
2 + O(λ)

]
−
[
−1
λ
− A

C
+ O(λ)

]}
= A

C
− 2π
γ /Q

1
λA

(A 1)

where the expansion of the mapping (3.1)

τ(λ)= A− C

λ
+ O(λ) (A 2)

has been used. The value of the constant A is part of the Driscoll (1996)
SCTOOLBOX output, while the value of the constant C has been evaluated from

C =− 1
2πi

∮
τ(λ) dλ (A 3)

by approximating the contour integral on |λ| = 0.9 using 300 G quadrature points.
The accuracy of the prevertices obtained from SCTOOLBOX are of order 10−8 and
we need only the prevertices of qA and qF to evaluate the objective function for
determining equilibrium. Our tests indicate that we have sufficient accuracy in these
parts to be confident of 6 places of accuracy in the objective function. We have used
the Matlab routine fsolve.m to find the values of q/qE and qG at which equilibrium is
achieved. The output indicates at least 6 decimal places of accuracy in the solution.
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When the point vortex is desingularized to a hollow vortex we have found the
hodograph, shown in figure 14, by mapping a circle around the origin in the point
vortex hodograph to a quasi-circle inside the unit disk, and then performing Garrick
(1936) iterations to map this quasi-annulus onto an annulus.

The computation has been done using MATLAB (2010). The Garrick (1936)
mapping has been computed according to the Ives (1976) formulation. Let λ1 =
r exp(iϑ) and λ = ρ exp(iϕ). Let r = rh(ϑ) be the quasi-circular image of the hollow
vortex on the λ1 plane, then (3.4) yields

log rh = log R+
N−1∑
n=1

(1− R2n) an cos(nϕ)+ (1− R2n) bn sin(nϕ), (A 4)

ϑ = ϕ + b0 +
N−1∑
n=1

(1+ R2n) bn cos(nϕ)− (1+ R2n) an sin(nϕ). (A 5)

A distribution of 2N equispaced points have been taken on the unit circle of the
λ-plane, with N = 50, and the values of (R, an, bn) have been computed by fixed-point
iteration: from (A 5), the inverse FFT provides ϑk = ϑ(ϕk) (k = 0, . . . , 2N − 1); from
(A 4), the FFT on log(rk) = log[rh(ϑk)] provides new values for (R, an, bn). The value
of b0 is free; it defines a solid rotation. We selected b0 = −

∑N−1
n=1 (1 + R2n) bn so that

ϑ = 0 corresponds to ϕ = 0.
The function r = rh(ϑ) has been obtained by means of a cubic spline. The accuracy

on the solution (Fourier coefficients) has been set to 10−9.
MATLAB (2010) routines have been written to evaluate the Weierstrass elliptic

functions. As in Tricomi (1951), they have been expressed by means of their
relationships with the Jacobi ϑj functions, which have been coded according to their
rapidly converging power series.
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