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ABSTRACT: Predictive modelling of deep-sea species and assemblages with multibeam acoustic

datasets as input variables is now a key tool in the provision of maps upon which spatial planning

and management of the marine environment can be based. However, with a multitude of methods

available, advice is needed on the best methods for the task at hand. In this study, we predictively

modelled the distribution and extent of three vulnerable marine ecosystems (VMEs) at the assem-

blage level (‘Lophelia pertusa reef frameworks’; ‘Stylasterids and lobose sponges’; and ‘Xenophyo-

phore fields’) on the eastern flank of Rockall Bank, using three modelling methods: MaxEnt;

RandomForests classification with multiple assemblages (gRF); and RandomForests classification

with the presence/absence of a single VME (saRF). Performance metrics indicated that MaxEnt

performed the best, but all models were considered valid. All three methods broadly agreed with

regard to broad patterns in distribution. However, predicted extent presented a variation of up to

35 % between the different methods, and clear differences in predicted distribution were observed.

We conclude that the choice of method is likely to influence the results of predicted maps, poten-

tially impacting political decisions about deep-sea VME conservation.

KEY WORDS: Cold-water corals, conservation, habitat mapping, model evaluation, vulnerable

marine ecosystems

Anthropogenic pressure on deep-sea habitats is growing,

through fisheries and, specifically, through bottom trawling

(Rooper et al. 2011; Norse et al. 2012; Puig et al. 2012), climate

change, including rising deep ocean temperatures (Balmaseda

et al. 2013) and ocean acidification (Form & Riebesell 2011),

and more recently, deep-sea mining (Colman Collins et al.

2013). Globally, there is increasing awareness of the need to

develop and implement biodiversity conservation policy, to

ensure appropriate and sustainable management of these eco-

systems (Ban et al. 2013).

From an international perspective, the United Nations

General Assembly resolution 61/105 (UN General Assembly

2003) requires the protection of vulnerable marine ecosystems

(VMEs) from damaging fishing practices. From a regional

perspective, Annex V of the OSPAR Convention (‘On the Pro-

tection and Conservation of the Ecosystems and Biological

Diversity of the Maritime Area’) provides a list of Threatened

and/or Declining Species and Habitats again for which con-

servation measures are required (OSPAR 2008). At a European

level, the Marine Strategy Framework Directive (MSFD) re-

quires an initial assessment of the current environmental status

of European Union members’ marine waters. Effective imple-

mentation of these policies requires a sound understanding of

the extent and distribution of benthic biological assemblages

as a starting point.

Maps have proved to be a useful method of summarising

biological information concerning the seabed. There is now

momentum towards the generalised mapping of the seafloor

to provide information on which effective conservation policy

can be based (Dolan et al. 2008; McBreen et al. 2011;

Kenchington & Hutchings 2012). However, large-scale map-

ping programmes have tended to focus on mapping the physi-

cal environment. While a vital first step, these physical maps

provide only a coarse-level representation of the biology that

is the subject of conservation efforts (Ward et al. 1999; Stevens

& Connolly 2004; Williams et al. 2009). They do not provide

the comprehensive understanding of the extent and distribu-

tion of biological assemblages required by managers in order

to make assessments on the potential impact of human use

and decisions on appropriate management measures. As a re-

sult, and where data are available, maps of biological assemb-

lages, often referred to as biotopes, are desirable.

Mapping at the level of biotopes or assemblages is a major

problem in the deep sea, where sampling is expensive and

logistically challenging, due to the deep sea’s remoteness and

depth, and the relatively poor ecological knowledge of the

residing fauna. Recently, the use of species distribution model-

ling (SDM) has been applied to assemblages to map the distri-

bution of deep-sea fauna over large areas (Howell et al. 2011;

Rengstorf et al. 2013; Ross & Howell 2013). In addition,

smaller-scale site-based mapping of multiple assemblages

has also applied predictive modelling techniques (Gonzalez-

Mirelis & Lindegarth 2012). Predictive modelling is a promis-

ing tool in this area, potentially reducing the cost of compre-

hensive field surveys by allowing the targeting of important

areas, and filling data gaps for large areas of un-sampled seabed

(Elith & Leathwick 2009; Galparoso et al. 2009; Dambach &

Rodder 2011; Robinson et al. 2011).

Many different modelling methods are now available. Each

has its strengths and weaknesses and the model has to be

chosen carefully, considering the nature of the data available

and the question or hypothesis under consideration. In practice,

implementation difficulties, time consumption, output format

or personal knowledge of its functioning also play a part in
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the choice of method. Elith & Graham (2009) evaluated the

most popular methods and stated that guidance in choosing an

appropriate modelling method was incomplete and scattered

across scientific literature, making objective choice difficult.

There is evidence to suggest that the choice of modelling

method may have a significant effect on both model performance

and spatial prediction (Elith et al. 2006; Elith & Leathwick 2009;

Reiss et al. 2011; Downie et al. 2013). If maps produced using

predictive modelling are to become established in the tool box

of marine environmental managers, it is vital that the implica-

tions of model selection on model performance and, ultimately,

spatial prediction are more widely understood.

This study focuses on creating three different high-resolution

model maps for three benthic biological assemblages (biotopes)

on the northeastern flank of Rockall Bank: the Lophelia pertusa

(Linnaeus, 1758) reef (LpReef); the xenophyophore Syringam-

mina fragilissima (Brady, 1883) aggregations (XeFi); and an

assemblage characterised by dense aggregations of stylasterids

and lobose sponges found on bedrock and mixed substrates

(described by Long et al. 2010) (StyLSp). Each offers habitat

complexity, enhancing three-dimensional (3D) structure and

known to increase associated diversity (Buhl-Mortensen et al.

2010).

Lophelia pertusa is the dominant reef-building cold-water

coral in the NE Atlantic, with the ability to form expansive

reefs and carbonate mounds up to 300 m high. The framework

formed by its skeleton increases habitat complexity, offering

shelter for a highly diverse fauna (Roberts et al. 2006). Although

the species may also be found as isolated colonies attached

to patches of hard substrate (Wilson 1979; Mortensen & Buhl-

Mortensen 2004, 2005; Hovland 2005), the distribution of reefs

is restricted to a much narrower set of environmental condi-

tions (Howell et al. 2011). Here, we have focused on the reef

habitat, which has an ecologically more important role in the

deep sea.

Xenophyophore fields are found exclusively in the deep sea.

Xenophyophores are single-celled organisms, up to 25 cm in

diameter. Syringammina fragilissima is one of the largest and

most commonly observed species in the NE Atlantic, forming

aggregations of up to 7–10 individuals per m2 (Tendal 1972,

1996; Gooday & Tendal 2000; Roberts et al. 2000; Bett

2001). Sediments adjacent to large xenophyophore tests have

been found to contain significantly more metazoan macro-

fauna than surrounding sediments (Levin et al. 1986; Levin &

Thomas 1988), and the tests themselves can provide micro-

habitats for small meiofaunal-sized metazoans (Gooday 1984)

and foraminifera (Gooday & Haynes 1983; Gooday 1991;

Shires et al. 1994). Levin (1991, 1994) also suggests that xeno-

phyophore tests may provide a structural habitat for epifauna.

The stylasterids and lobose sponges assemblage is described

by Long et al. (2010) as characterised by saddle oysters, brachio-

pods, Munida, serpulids, stylasterid corals, Cidaris cidaris

(Linnaeus, 1758) and lobose sponges. This biotope has been

described from Rockall Bank as associated with mixed sub-

strate (a combination of different substrates types), boulders

and bedrock, at temperatures of 9.2–9.7�C and at depths of

387–685 m. This assemblage fits the description of a VME,

facing the same threats, and therefore is considered as such in

this study.

All three habitats qualify as VMEs, whilst LpReef is also

classed as a ‘threatened and/or declining species and habitat’

under the OSPAR Convention. The 3-D structure is fragile

and can be broken by any physical actions, such as trawling,

or weakened by poor calcification conditions, such as are oc-

curring with increasing ocean acidification (Form & Riebesell

2012). Additionally, the very slow growth rate of most of the

species forming such 3-D habitats makes their recovery rate

very slow (Althaus et al. 2009; Williams et al. 2010; Rooper

et al. 2011). A better understanding of their distribution is

critical to successful spatial management of these important

habitats. The aim of this study was to investigate how con-

sistently the distribution of habitats is described by the three

different modelling approaches, with increasing ease of use:

(i) prediction of the probability of presence, converted to an

estimate of presence and absence using a probability thresh-

old, applying Maximum Entropy modelling (MaxEnt, Phillips

et al. 2006) separately for each habitat; (ii) prediction of presence

or absence by Random Forest classification (Breiman 2001)

separately for each habitat; and (iii) prediction of the most

likely habitat by RandomForest. The impact of model choice

on the predicted distribution of benthic assemblages was

assessed using three VMEs as a case study, to highlight the im-

plications of model plasticity for habitat mapping and environ-

mental management.

1. Method

1.1. Site description
Rockall Bank is situated in the NE Atlantic Ocean, 40 km

west of the UK mainland. It forms part of the larger Rockall

Plateau, comprising Hatton Bank, Rockall Bank, George

Bligh Bank and the intervening Hatton Basin (Fig. 1). The

Rockall Bank itself is approximately 450 km long, running

NE–SW, and 150 km wide at its widest point between the

1000 m-depth contours. It ranges in depth from 0 m to

P1500 m. This study is focused on the eastern and northeast-

ern flanks of the bank that fall away very steeply from 250 m,

descending into the Rockall Trough at 1000–1900 m depth.

1.2. Survey
The study area was surveyed during research cruises in 2005,

2009 and 2011 (Stewart et al. 2009; Jacobs et al. 2006; Long

et al. 2010; Huvenne 2011). High-resolution multibeam

echosounder data were acquired in 2005 on S/V Kommander

Jack, using an EM120 system (12 kHz; 191 beams); and in

2009 on M/V Franklin, using an EM710 system (70–100 kHz;

400 beams). Sound velocity measurements were performed at

regular intervals to account for hydrology effects during all

three surveys. Multibeam echosounder data were processed

on board ship and onshore by OSAE Ltd. in 2005 and by

Marin Mätteknik AB in 2009. Data were gridded at resolu-

tions appropriate to the quality of the data (2005: 25 m grids;

2009: 20 m grids (East Rockall area C1 A–D), with all other

survey areas gridded at 15 m). Minimum water depths en-

countered within the study area were 160 m; maximum water

depths were 1900 m (Fig. 1). As the modelling methods re-

quire all environmental data to have the same geographic

bounds and cell size, all multibeam echo sounder datasets

were regridded in ArcGIS to 25 m and merged to produce a

single data layer, which was then used to produce subsequent

derived layers.

A total of 19 transects, from 500 m to 1500 m long, were

undertaken along the northern and eastern flanks of Rockall

Bank to acquire video/still images. Seventeen transects were

completed in 2009 using a drop frame camera system; two

were achieved in 2011 using an ROV. Detailed technical spec-

ifications of the survey and camera systems are available in the

source literature.

1.3. Biotope data
Fifteen distinct benthic assemblages were identified at the site

as part of a separate study. Three of these assemblages are

VMEs and were selected as the focus of this study. A total of
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1029 records (the presence of an assemblage in a grid cell)

were included in the biotope dataset (Table 1). At each sample

location, the assemblage observed was assigned to one of the

fifteen specified assemblages. A presence–absence dataset was

extracted for each VME by assigning the observations of other

assemblages as absences. Sample data were reduced to one

data point per cell of topographic data. Cells where both

presence and absence were recorded were assigned a presence.

1.4. Predictor variables
Some of the factors that are suggested to influence strongly the

distribution of deep-sea species include temperature and

pressure (Tyler & Young 1998), substrate (Howell et al.

2010), food supply (Ruhl & Smith 2004), water mass structure

(Miller et al. 2011), current speed and direction (Rice et al.

1990; White et al. 2005) and oxygen concentration (Rogers

2000). High-resolution data layers for these variables are not

available for most of the deep sea, and where data layers are

available they are usually derived from models subject to

error. Multibeam bathymetry, on the other hand, provides

true full-coverage, high-resolution data on seabed topography.

It is relatively inexpensive to collect and a number of national

mapping programmes are currently underway (MAREMAP

(UK); MAREANO (Norway); Deep-Sea Coral Research and

Technology Program (USA.); MESH-Atlantic (international)),

thereby providing a vast dataset. Bathymetry and topographical

variables derived from it, such as slope and rugosity, provide

proxies for many other deep-sea variables, including tempera-

ture (where biogeography is taken into account), current speed,

water mass structure, food availability and sediment type

(Howell et al. 2002; Howell 2010).

Eight topographic predictor variables were included in

this study, based on their expected significance as proxies for

environmental factors that drive species distributions in the

Figure 1 Full extent of the area covered by MBES survey. Black diamonds mark locations of video transects.
Location abbreviations: AD ¼ Anton Dohrn; GB ¼ George Bligh Bank; HB ¼ Hatton Bank; RB ¼ Rockall
Bank; RI ¼ Rockall Island; RT ¼ Rockall Trough. Bathymetry outside the study area is GEBCO and is
displayed as 100 m isobaths to 2000 m depth, then at 500-m intervals. Map is projected in WGS 1984.
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deep sea; namely, bathymetry, slope, rugosity, plan curvature

(plan), profile curvature (prof ), combined curvature (plan and

profile combined (curv)), and bathymetric position index (BPI).

Slope provides terrain gradient in degrees and serves as a proxy

for the local hydrodynamic regime (Guinan et al. 2009).

Rugosity acts as a measure of terrain ‘roughness’, or structural

complexity, and also serves as a surrogate for substrate type

(Rinehart et al. 2004; Dunn & Halpin 2009). Profile curvature

measures convexity/concavity of the terrain perpendicular to

the direction of the maximum slope, whilst plan curvature is

the convexity/concavity of the terrain parallel to the direction

of the maximum slope and combined curvature regroups the

two dimensions in the same index (Holmes et al. 2008). Along

with slope, curvature also serves as a proxy for local-scale

hydrology. Profile curvature affects the acceleration and de-

celeration of flow and, therefore, influences erosion and deposi-

tion; whilst plan curvature influences convergence and diver-

gence of flow. BPI (equivalent to topographic position index)

uses neighbourhood analysis to calculate the relative elevation

of a cell, identifying topographic features such as ridges (posi-

tive BPI), valleys (negative BPI) and flat areas/constant slope

(0) (Wright et al. 2005). BPI can be a proxy of various environ-

mental features, such as exposure to current, current speed and

orientation or sedimentation.

All topographic variables were derived from the 25 m bathy-

metry grid. In order to capture any possible scale-dependent

relationships between predictor variable and habitat, all de-

rived layers were calculated at 25 m, 100 m and 200 m raster

cell size.

Slope (calculated as the maximum change in elevation over

the distance between a cell and its eight neighbours), plan

curvature, profile curvature and combined curvature were all

calculated using the spatial analyst toolbox in ArcGIS 10.0,

derived from a neighbourhood analysis.

Rugosity (calculated as the ratio of 3-D surface area to

planar area) and BPIs were calculated using the Benthic Terrain

Modeller extension (Wright et al. 2005). BPI was generated at

fine (BPIfine) and broad (BPIbroad) scales, to provide separate

layers defining small macrohabitats (sensu Greene et al. 1999)

such as mounds, and large macrohabitats (sensu Greene et al.

1999) such as bank flank. BPIfine was generated with an inner

radius of one cell and an outer radius of three cells (corre-

sponding to scale factors of 75 m, 300 m and 600 m, for the

25 m, 100 m and 200 m rasters, respectively); and BPIbroad

was generated with an inner radius of one cell and an outer

radius of five cells (scale factors of 125 m, 500 m, and 1000 m).

1.5. Modelling approaches
We selected two popular modelling methods, MaxEnt and

RandomForest. These two methods are widely used for SDM,

which makes their comparison valuable for future choices of

methods in habitat mapping. Both methods have the advantage

of being easily implemented, with a good capacity to cope with

correlated variables (Cutler et al. 2007; Elith & Graham (2009).

RandomForest (RF) is a machine learning method by which a

large number of classification or regression trees are built, and

responses are predicted based on averages (regression) or by

majority rules (classification) from all trees (Breiman 2001;

Cutler et al. 2007). It has been widely used in ecological model-

ling (Elith et al. 2006; Elith & Graham 2009; Hasan et al. 2012),

possibly as a result of its ease of use (only two parameters to

settle in the most commonly used RF implementation in R –

the number of variables in the random subset at each node and

the number of trees in the forest); its robustness to the inclusion

of correlated variables (because only a subset of predictors is

used to build each individual tree); and its flexibility of appli-

cation to either discriminate between multiple categories or

calculate the probability of occurrence of a single species or

assemblage. RandomForest has the advantage of being able to

produce one map from a single classification analysis. This

results in a significant time saving during analysis. However,

when used in this manner, its weakness is that the model is

forced to assign each cell to only one biotope. This fails to

reflect the potential occurrence of multiple assemblages in a

cell, and also does not allow cells to remain unassigned repre-

senting potentially novel assemblages. We used RF in two ways,

both based on the classification approach. A single classification

model, referred to as the global RandomForest (gRF), was

trained with input data consisting of samples classified into

one of the 15 assemblages identified from the study site. The

gRF model was used to predict to the whole study area, pro-

ducing a single map where each raster cell is classified into

the most probable of the fifteen assemblages. In the second

approach, referred to as the single-assemblage RandomForest

(saRF), a separate presence–absence classification model was

built for each of the three VMEs. These models were used

to predict the presence (as class) of each VME individually,

resulting in three separate map products. RF models were

fitted with the ‘RandomForest’ package version 4.6–7 in R

(Liaw & Wiener 2002). All models were run using the default

values of random sample (mtry) of the predictors (p1/2, where

p is the total number of predictors), with 1000 trees grown for

each model.

MaxEnt modelling is a modelling technique developed by

Phillips et al. (2006), Phillips & Dudı́k (2008) and Elith et al.

(2011). It was chosen for this study because it has been found

to be amongst the highest-performing modelling techniques

for presence-only modelling (Elith et al. 2006). MaxEnt works

with presence-only data (when the coordinates of observed

presences only are available; i.e., it does not use absence

data). It is only able to predict the distribution of one response

variable (biotope) at once, and thus requires a model/map

to be produced for each assemblage separately, resulting in

significantly more analysis time. However, it has the advan-

tage of allowing cells to contain multiple assemblages and

remain unassigned. MaxEnt was used to construct probability

of presence models for each of the three VMEs, resulting in

the production of three individual map products, as with

saRF. MaxEnt was run using the samples-with-data (SWD)

approach, fitted on the presence records of each VME with

background points composed of all the sampled locations.

This method of ‘target-group’ background sampling controls

for sample bias and improves predictive performance (Phillips

& Dudı́k 2008). Each model was fitted in R with the ‘dismo’

package version 0.8–11 (Hijmans et al. 2013) and the MaxEnt

Java program version 3.3.3k (Phillips & Dudı́k 2008). Regu-

larisation settings were adjusted to reduce overfitting (Phillips

& Dudı́k 2008), resulting in a regularisation parameter of 2

for LpReef and 3 for XeFi and StylSp models. Each model

was then projected onto the study area environmental layers,

Table 1 Number of presences of each of the 15 assemblages described
on Rockall Bank

Record

number Assemblage name

45 Lophelia pertusa reef framework

158 Stylasterids and lobose sponges on bedrock and mixed

substrate

170 Xenophyophore fields

656 absences (other assemblages)
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producing a logistic probability map with values between 0

(low probability) and 1 (high probability) for each VME. One

master model was created for each listed habitat.

All models were built in R (R Development Core Team

2011). Elith & Leathwick (2009) highlighted the importance

of some expert pre-selection of variables to ensure relevance;

however, Elith et al. (2011) warn that stricter pre-selection is

unlikely to improve the model. Therefore, no predictor variable

pre-selection was undertaken and all models were constructed

using the same set of predictor variables.

1.6. Model evaluation
Model performance was evaluated through cross-validation,

by running each model on 100 randomly-generated splits into

75 % training and 25 % test data. Predictions of presence and

absence on the test set from each run were extracted and

average values for percentage of correctly classified (PCC),

sensitivity and specificity were calculated over the 100 evalua-

tions (Fielding & Bell 1997; Manel et al. 1999). In the gRF

predictions, the presence of any assemblage other than the

one being evaluated was considered as an absence. The proba-

bility of presence output by MaxEnt was converted into binary

presence–absence, applying the minimum receiver operating

characteristic (ROC) curve distance optimal threshold (Liu

et al. 2005). Each model was assessed using the ‘presence/

absence’ model evaluation library (Freeman 2007) in R.

1.7. Variable importance evaluation
MaxEnt and RF use different methods to weight the variables’

relative importance in their predictions. Thus, the results of

variable importance are not directly comparable across model-

ling methods. However, all three approaches rank the predictors

according to their importance in determining assemblage dis-

tribution. This relative importance can be compared.

1.8. Comparison of predicted distributions
Predictions from full models for each of the three VMEs from

MaxEnt and saRF, and the full model output from gRF, were

transferred to ArcGIS as raster grids. The spatial predictions

of each modelling method were compared by calculating the

extent (m2) and distribution of each VME within the study

area, as predicted by each of the models. Extent was derived

from the number of cells in the raster grid where the assem-

blage was present, given a grid cell is 25� 25 m (625 m2).

2. Results

2.1. Model evaluation
All models are considered valid, with MaxEnt being the best

in terms of performance. For the three VMEs, all models

achieved high PCC and specificity (all above 0.92), with fairly

low standard deviation (<0.013) (Table 2). Similarity of PCC

and specificity can be explained by the fact that the prevalence

of presence data is low (Table 1), and so the PCC reflects

mostly the ability of the model to predict absence, just as spe-

cificity does. All MaxEnt models had an excellent sensitivity

(above 0.9). RF models for XeFi and StylSp had a good sensi-

tivity (>0.818 for gRF and >0.916 for saRF), but sensitivity

for LpReef in both RF models was lower than for MaxEnt

(0.49 in gRF; 0.61 in saRF), with higher standard deviation

(0.11 and 0.15). The poorer performance of the RF models

for LpReef can be explained by the lower number of presence

records (Table 1).

2.2. Predictor variable importance
All models predicted a distribution of the different assemb-

lages driven mainly by depth, slope (100 m and 200 m cell

size) and rugosity (200 m cell size). Exceptionally, saRF for

LpReef found that BPIbroad and BPIfine (200 m cell size)

were the most important, followed by depth.

2.3. VME distribution
There is little overlap in the predicted distribution of these

three assemblages. XeFi occupied the deepest part of the study

area at the base of the slope (deeper than 1000 m) (Fig. 2).

LpReef is predicted to be found between 600 m and 1000 m

depth on the flank, and associated with raised topographic

features. StylSp is predicted to occupy the upper part of the

flank (between 300 m and 800 m, but small patches may be

found as deep as 1200 m).

Table 2 Average and standard deviation of performance matrices (over 100 model runs) of each modelling method for the three VMEs
(XeFi ¼ xenophyophores fields; LpReef ¼ Lophelia Pertusa reef framework; StylSp ¼ Stylasterids and globose sponges on mixed substrate).
PCC ¼ percentage correctly classified; .sd ¼ standard deviation.

Maxent

VME PCC PCC.sd sensitivity sensitivity.sd specificity specificity.sd

XeFi 0.94 0.01 0.93 0.03 0.94 0.01

LpReef 0.92 0.01 0.91 0.06 0.92 0.01

StylSp 0.94 0.01 0.92 0.04 0.94 0.01

gRF

VME PCC PCC.sd sensitivity sensitivity.sd specificity specificity.sd

XeFi 0.94 0.01 0.82 0.05 0.96 0.01

LpReef 0.96 0.01 0.49 0.11 0.98 0.01

StylSp 0.94 0.01 0.82 0.05 0.96 0.01

saRF

VME PCC PCC.sd sensitivity sensitivity.sd specificity specificity.sd

XeFi 0.97 0.01 0.92 0.05 0.98 0.01

LpReef 0.97 0.01 0.61 0.15 0.99 0.01

StylSp 0.97 0.01 0.92 0.04 0.99 0.01
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2.4. Comparison of predicted distributions
For all VMEs, MaxEnt models predict a larger extent than

both RF models, but predicted extents for the global RF

model and MaxEnt are more similar than those predicted

from the saRF models (Table 3). In general, the saRF models

predict more restricted distributions for all VMEs (Fig. 2).

All models predict XeFi to have the greatest extent. The

gRF and MaxEnt models both predict large parts of the

deepest portion of the survey area to be suitable for XeFi,

whereas the saRF predicts a patchy distribution only in the

deepest parts of the study area.

MaxEnt predicts a greater extent of LpReef than StylSp,

whereas both RF models predict the opposite (Table 3). The

most striking difference in predictions of extent between

models occurs for LpReef, where the MaxEnt predicted extent

is 154 times larger than the saRF predictions. MaxEnt pre-

dicts the presence of LpReef in a wide band along the slope.

The gRF model predicts a similar but more restricted distribu-

tion for LpReef, whereas the saRF model predicts LpReef to

have a very patchy distribution in only the shallowest areas

predicted by the other two models.

For StylSp, gRF predicts a slightly deeper distribution than

the other two models, their presence extending on top of the

crests, and MaxEnt predicts a distribution which extends

onto shallower areas on the top of the slope.

3. Discussion

In this study, we have shown that the distributions of VMEs

can be successfully modelled and the predicted distributions

concur with what is previously known about their ecology

and distribution. Although all of the modelling methods per-

formed well in cross-validation, the selection of method was

found to have a considerable effect on the extent of the pre-

dicted distribution. The discrepancy between model predictions

has implications on their use in management applications, and

care should be taken to validate models adequately and estab-

lish their spatial error margins.

3.1. Model performance
All three methods were successful at predicting the extent and

distribution of the three targeted VMEs on northeast Rockall

Bank. However, in comparison, the MaxEnt models performed

best for all three VMEs, a finding consistent with previous

model comparisons that found MaxEnt was the most efficient

method for SDM (Elith et al. 2006; Elith & Graham 2009;

Reiss et al. 2011). The better overall performance of MaxEnt

in this study is most likely a result of the low prevalence in the

dataset, and the questionable reliability of absence data. The

limited number of presence records (only 45 presence records

for LpReef ) is probably responsible for the lower performance

Figure 2 Distribution of the three Vulnerable Marine Ecosystems (XeFi ¼ Xenophyophores fields; LpReef ¼
Lophelia Pertusa reef framework; StylSp ¼ stylasterids and globose sponges on mixed substrate) in subset of the
survey area predicted by (from left to right) MaxEnt models, single assemblage RandomForest (saRF) models and
global RandomForest models (gRF). Inset shows location of this survey area subset on Figure 1.
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of RF models to predict this VME, as MaxEnt is known to

deal better with small numbers of presence records (Wisz et al.

2008). The quality and reliability of absence data have been

proved to be influential on the model performances (Smith et

al. 2013). These authors emphasised that high-quality absence

data were needed to assess SDMs quality, but also recognised

that these data were generally difficult, if not impossible, to

acquire. This statement is particularly true in the deep sea,

given the significant investment in time and money required to

collect a dataset.

3.2. Predicted distribution of the VMEs across the

northeast Rockall Bank
All three models agree to structure the distribution of the

three VMEs on Rockall Bank in depth bands, with each one

occupying a specific region on the flank of Rockall Bank. The

areas where our models predict the presence of the three

VMEs are consistent with current understanding of the distri-

bution of these habitats.

Xenophyophore fields have been observed at depths of 860–

1830 m, although most records are from around 1000 m water

depth (Hughes & Gooday 2004). They are found on sandy

silts and fine grained oozes; often in areas with enhanced

organic carbon fluxes, such as beneath highly-productive sur-

face waters, on sloped topography or near topographic fea-

tures such as caldera walls, basalt outcrops, or on the sides of

sediment mounds and small ridges (Tendal 1972, 1979; Levin

& Thomas 1988; Levin & Gooday 1992; Hughes & Gooday

2004). In this present study, XeFi was found below 1000 m

water depth at the base of the flank of Rockall Bank, suggest-

ing a potential association with the bank structure, likely to be

a result of favourable oceanographic conditions associated

with mixing or deflection caused by the bank structure. Xeno-

phyophore aggregations have also been observed associated

with the base of the neighbouring Anton Dohrn Seamount

(Davies 2012) and the Darwin Mounds area of the continental

slope (Bett et al. 2001). Ross & Howell’s (2013) recent broad-

scale model suggested Xenophyophore aggregations may be

common to the base of many raised topographic features in

the region, including the continental slope. The lower limit of

the predicted distribution for Xenophyopores in this study has

a high uncertainty associated with it, due to limited sampling

in the deepest part of Rockall Bank, meaning the data are

not fully representative of the entire niche occupied by this

assemblage.

Lophelia pertusa reefs form under a specific set of environ-

mental conditions. The largest reefs are known to occur in

depths of 500–1200 m, at temperatures of 4–12�C (Frederiksen

et al. 1992; Roberts et al. 2006; Wheeler et al. 2007). Factors

driving reef formation are poorly understood, but are likely to

be an interplay between local hydrography and sedimentary

dynamics (Thiem et al. 2006; Howell et al. 2011), with most

reefs being found on topographic highs and slopes (Strømgren

1971; Genin et al. 1986; Frederiksen et al. 1992; Davies et al.

2008), associated with features such as ridges (Sula Ridge),

escarpments (Pelagia Mounds, Hatton Bank) and channels

(Hovland Mounds) (Wheeler et al. 2007, Howell et al. 2011),

and in areas of strong currents and high productivity (Mortensen

et al. 2001; White et al. 2005; Thiem et al. 2006; Kiriakoulakis

et al. 2007; Davies et al. 2008). In this present study, MaxEnt

and gRF both predict a patchy, but more or less continuous,

band of LpReef at mid-slope depths (600–1000 m), whereas

saRF predicts a very patchy, more restricted and slightly shal-

lower (400–1000 m) distribution (Fig. 2). Although sensitivity

achieved by MaxEnt is higher, a continuous band of cold-

water coral reefs running along the slope of Rockall Bank is

unlikely. All models predict presence on areas of steep topog-

raphy, with probability of occurrence increasing on slopes

with a steepness of >10 %. Presence also appears to be asso-

ciated with troughs or peaks (high positive and/or negative

BPI), as suggested by previous studies. These areas are where

exposure to currents is highest. However, the small number

of presence records for this biotope should lead to a careful

interpretation of the results, and additional samples could be

needed in order to improve RF models performances.

The Stylasterids and globose sponges on mixed substrates

assemblage has only recently been described from Rockall

Bank, based on the data used for this study (Long et al.

2010). In this study, it is predicted to occupy the upper part

of the slope between 400 m and 700 m depth and the assem-

blage seems to prefer slopes steeper than 15–20 %. MaxEnt

and saRF predict a distribution in the same depth band,

although the MaxEnt model predicts a larger extent, whilst

gRF predicts a slightly deeper distribution range stretching

onto the tops of the ridges.

3.3. Differences in predicted extent
Although all three models performed similarly well, the final

predictive maps produced by these models displayed differences

in the extent and distribution of the three VMEs. The model

validation results are all indicative of a valid model; yet, the

final maps presented up to 30–35 % variation in the predicted

extent of a VME, as well as clear differences in distributions

(Fig. 2). These were mainly shifts in depth range, or presence

on more or less vertical features. Previous authors have also

observed differences in spatial predictions when comparing

several modelling methods (Ready et al. 2010; Reiss et al.

2011; Downie et al. 2013). However, previous studies have

found MaxEnt models to be restrictive in predictions, concen-

trating presence prediction around recorded presence points

(Bentlage et al. 2009; Poulos et al. 2012; Downie et al. 2013).

In this present study, we observed the contrary, with MaxEnt

predicting the largest extent for all three VMEs (Table 3). The

apparent difference in MaxEnt’s prediction of restricted vs

extensive distribution in our study is likely a result of the use

of the pseudo-absence records as background in the ‘‘samples

with data’’ approach to MaxEnt modelling taken, rather than

allowing the use of random sampling across the study area.

3.4. Implications on using models in management
The observations in this study highlight the variability of

the predictions across modelling methods. Even when a single

Table 3 Extent of all three VMEs as predicted by the three modelling approaches (XeFi ¼ Xenophyophores fields; LpReef ¼ Lophelia Pertusa reef
framework; StylSp ¼ Stylasterids and globose sponges on mixed substrate).

Maxent global RF single RF

VME Km2 % total surface Km2 % total surface Km2 % total surface

XeFi 3714.57 62.66 3686.97 62.19 2552.61 43.06

LpReef 313.66 5.29 58.43 0.99 1.80 0.03

StylSp 185.36 3.13 167.11 2.82 113.84 1.92
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model appears to perform well, when measured against

validation statistics, and may be considered valid for use by

managers, the predictions resulting from the model are subject

to additional spatial error. This small but important point,

illustrating apparently equally good model performance yet

clear differences in spatial predictions, highlights the limits of

SDM as a tool for conservation planning. It is a relatively

straightforward process to produce a map, sparing the cost

and effort of extensive field sampling. Basing management

decisions on these maps is, thus, tempting and possibly inevi-

table, but we urge caution and recommend that predicted

maps are best used as a starting point for targeting future sur-

veys. If maps are to be used in the decision-making process,

independent validation of the maps is critical to the full under-

standing of model performance (Elith et al. 2006). The good

performance of the models in this study is encouraging, but it

is at least partly a result of the evaluation procedure being

based on random subsampling from the full dataset, as the

lack of true independence between testing and training data

sets, as well as spatial sorting bias, is known to artificially

inflate model performances (Veloz 2009; Hijmans 2012). How-

ever, the good cross-validation results demonstrate the stability

of the models over this dataset.

In this present study, the extent and distribution of the three

studied VMEs varied depending on the modelling method

used. The information about where multiple models predic-

tions differ is useful and can be used to illustrate spatial uncer-

tainty in predictions, highlighting to users the error potential

of predicted maps. Similarly, information about where multi-

ple models predictions agree may be used to identify possible

core areas (central to a species distribution), although the

effectiveness of this approach would have to be tested. Downie

et al. (2013) suggest the use of an ‘ensemble model’ approach

to mapping, combining the outputs of several models. How-

ever, other authors have found that whilst ensemble models

can be of use, they do not necessarily improve predictions

(Marmion et al. 2009; Grenouillet et al. 2011; Stohlgren et al.

2010). More research is needed in this area.

Whilst we recommend caution in the use of predictively

modelled maps for management purposes, faced with the

challenge of implementing conservation policy in vast areas

of deep sea and High Seas, decisions are currently being taken

based on ‘best available data’. To date, decisions regarding the

management of fisheries to protect VMEs have been taken on

the basis of maps produced using point data, which may itself

date back decades to more than 100 years ago (Aish et al.

2008; Auster et al. 2013). This essentially restricts conservation

efforts to areas that have been sampled, hampering progress in

sustainable management of the deep sea and High Seas. Thus,

while predictively modelled maps have clear limitations, they

do provide a scientifically robust and repeatable means of

estimating extent and distribution of species and assemblages,

and thus represent ‘best available data’. We therefore advocate

their use in marine management. However, it is important that

environmental managers consider SDM predictions as the

most probable distribution of the assemblage studied, given

the available data, rather than a definitive picture of the reality.

End users must always keep in mind that important aspects of

this distribution might not have been caught by the sampling

design. In addition, a good predictive model represents the

potential range of a species (and in this case biotope), rather

than the realised distribution (Downie et al. 2013) and, thus,

estimates of extent based on models must also be treated with

caution.
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