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Direct numerical simulation (DNS) of elastically induced turbulent flows has posed
great challenges to researchers engaged in developing first-principle models and
simulations that can predict faithfully the complex spatio-temporal dynamics of
polymeric flows. To this end, DNS of elastically induced turbulent flow states in
the Taylor–Couette (TC) flow are reported here with the aim of paving the way for
a mechanistic understanding of this new class of flows. Specifically, the DNS not
only faithfully reproduce the key feature of elastically induced turbulent flows, namely,
substantial excitation of fluid motion at the smallest temporal and spatial scales, but
also for the first time demonstrate the existence of three distinct flow regions in the
gap for the inertio-elastic turbulence state: (i) a fluid-inertia (or outflow-) dominated
inner-wall region; (ii) a fluid-elasticity (or inflow-) dominated outer-wall region; and
(iii) an inflow/outflow core region. Based on this observation, a simple mechanism for
the inertio-elastic turbulence in the TC flow has been postulated.
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1. Introduction

In 1990, a purely elastic instability at vanishingly small Reynolds number, Re,
and O(1) Weissenberg number, We, in the Taylor–Couette (TC) flow of dilute
polymeric solutions was experimentally observed. Moreover, it was demonstrated that
this instability occurs due to significant macromolecular stretching around curved
streamlines and the consequent development of large elastic ‘hoop’ stresses. Under
these conditions, infinitesimal perturbations to the flow field will result in an unstable
stratification of ‘hoop’ stresses and flow instability. The secondary flow state is
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composed of stationary vortices stacked along the axis of the rotating inner cylinder
(Larson, Shaqfeh & Muller 1990; Larson 1992; Shaqfeh 1996).

Following the aforementioned discovery, much research was devoted to accurate
prediction of the instability onset conditions (Larson et al. 1990; Larson 1992;
Su & Khomami 1992; Shaqfeh 1996). However, isothermal linear and nonlinear
stability analyses identified a non-stationary antisymmetric mode of instability with
a critical We that was an order of magnitude greater than the experimentally
measured value (Larson et al. 1990; Avgousti & Beris 1993; Sureshkumar, Beris
& Avgousti 1994). After a decade of further studies, it was demonstrated that the
interplay between viscous dissipation and the thermal sensitivity of the high-viscosity
dilute polymeric solutions used in the experimental studies significantly decreases the
disturbance dissipation rate, leading to flow destabilization at We lower than that of
the corresponding isothermal flow. In fact, the prediction of the non-isothermal linear
stability analysis (Al-Mubaiyedh, Sureshkumar & Khomami 1999, 2000) was found
to be in excellent agreement with the experimentally observed onset conditions, i.e.
axisymmetric stationary vortices and O(1) We (White & Muller 2000, 2002a,b).

In the past decade, higher-order nonlinear flow transitions in viscoelastic TC
flow have also been extensively studied. Specifically, Groisman & Steinberg
(1996, 1997, 1998) observed three dominant flow patterns in dilute PAAm aqueous
solutions at high We and O(1) elasticity number, E ≡ We/Re, namely, diwhirls
(DW), oscillatory strips (OS) and disordered states (DO). Subsequently, these flow
patterns were reproduced via hi-fidelity direct numerical simulations (DNS) (Thomas,
Sureshkumar & Khomami 2006b; Thomas, Khomami & Sureshkumar 2009), i.e. the
We and E corresponding to transition from one flow state to another were faithfully
reproduced.

More recently, Dutcher & Muller (2009, 2011, 2013) have thoroughly examined
higher-order flow transitions in viscoelastic TC flow with a series of well-characterized
dilute PEO aqueous solutions. In particular, their studies have clearly demonstrated
elastic modification of the well-known Newtonian TC flow states even at small
E, including ‘turbulent like’ flows dubbed ‘elastically dominated turbulence’ that
exhibit broad spatial and temporal frequencies at E ∼ 0.1–0.2 and Re ∼ 180–207
(Dutcher & Muller 2013). Moreover, Latrache, Crumeyrolle & Mutabazi (2012) have
experimentally investigated transition to turbulence in flow of a semidilute shear-
thinning PEO solution at low E ∼ 0.01–0.05. Specifically, they observed a flow
state with a high degree of spatio-temporal intermittency followed by inertio-elastic
turbulence, where the later is characterized by inflow/outflow strips arranged randomly
in the time–space plots.

Groisman & Steinberg (2004) have also detected flow states with broad temporal
frequency spectra in TC flow of PAAm dilute solutions in the limit of vanishing Re
and Wec ∼ 5 (very large E), dubbed ‘elastic turbulence’. Specifically, they observed
broad frequency spectra in the radial velocity with two power-law decay regimes of
slope −1.1 and −2.2 at low and high frequencies, respectively. In addition, it was
shown that the probability density function (PDF) of the radial velocity at the middle
of the gap exhibited a weakly asymmetric shape instead of the Gaussian distribution.

Although numerical simulation of an elastically driven flow transition from a
stationary to randomly fluctuating states at vanishing Re and O(1) We, has been
recently performed, the computations are confined to two-dimensional or three-
dimensional periodic Kolmogorov flows excited by an external forcing (Berti
et al. 2008; Berti & Boffetta 2010; Zhang et al. 2013). Hence, the detailed
flow–microstructure coupling needed for elucidating the mechanism of ‘elastically
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induced turbulence’ is still lacking. To this end, the goal of this study is to perform
the first three-dimensional DNS of elastically induced turbulence in TC flow, and
ultimately to pave the way for a mechanistic understanding of this new class of flows.

2. Problem formulation

To perform DNS of the ‘elastically induced turbulent’ flow state we have modified
our fully spectral, three-dimensional parallel algorithm used earlier to elucidate higher-
order nonlinear flow transitions in viscoelastic TC flow (Thomas et al. 2006b, 2009).
In accord with our prior studies of polymer-induced turbulent drag reduction (Li,
Sureshkumar & Khomami 2006), the FENE-P (finitely extensible nonlinear elastic-
Peterlin) constitutive equation is used to model the polymer contribution to the total
stress. We have chosen d = R2 − R1, d/(R1Ω), R1Ω , ρ(R1Ω)

2, and ηPR1Ω/d as scales
for length, time, velocity u, pressure p, and polymer stress τ , respectively. In these
equations R1 and R2 correspond to the inner and outer cylinder radii, respectively,
Ω denotes the inner cylinder angular velocity, ρ represents the solution density,
and the total solution viscosity ηT is the sum of the solvent (ηS) and polymeric
(ηP) contributions. Further, we scale the conformation tensor C, which represents the
ensemble average of the second moment of the end-to-end vector of the polymer chain,
with respect to kT/H, where k, T , and H denote the Boltzmann constant, absolute
temperature, and Hookean spring constant of the elastic dumbbell model, respectively.
The resulting dimensionless equations governing the motion of an incompressible
FENE-P fluid are as follows:

∂u
∂t
+ u ·∇u=−∇p+ β

Re
∇2u+ 1− β

Re
∇ · τ (2.1)

and

∂C

∂t
=−u ·∇C + C ·∇u+ (∇u)T ·∇C − τ (2.2)

where τ = {(L2 − 3)/[L2 − trace(C)]C − I}/We and β = ηS/ηT , and L is the maximum
chain extensibility; Re = ρR1Ωd/ηT and We = λR1Ω/d where λ is the polymer
relaxation time. These equations are also supplemented by no-slip boundary conditions
at the walls, as well as periodic boundary conditions in the z direction. In addition, a
diffusive term κ∇2C is added to (2.2) in the bulk flow region to numerically stabilize
the integration of the conformation tensor evolution equation. In order to retain the
essential dynamics resulting from flow–microstructure coupling while maintaining
numerical stability, the value of scalar stress diffusivity κ must be chosen as low as
possible (Sureshkumar & Beris 1995; Thomas et al. 2006a, 2009). Moreover, we have
employed a time-adaptive scheme for selecting the value of κ , which corresponds to a
numerical Schmidt number Sc−1

κ [=(κRe)] with maximum of O(101) in all simulations.
It should also be noted that the original constitutive equation without the diffusive
term is applied at the walls, thus no boundary conditions are imposed at the walls
for C. We use a large value for L, L2 = 10 000, and β = 0.8 for which the polymeric
solution has a nearly shear-independent viscosity, and η = R1/R2 is set at 0.8, the same
value used in our previous simulations for higher-order viscoelastic TC flow transitions
(Thomas et al. 2006b, 2009).

Similar to the experimental findings of Dutcher & Muller (2009, 2013) where
η = 0.912, our DNS at Re = 250 and We = 50 (E = 0.2) gives rise to a turbulent-like
flow state that is labelled inertio-elastic turbulence (Latrache et al. 2012). These
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FIGURE 1. Space–time plots of radial velocity ur at the middle of the gap along an axial (z)
line passing through θ = π: (a) inertio-elastic turbulence, (b) flame-like turbulent OSs, and (c) a
‘solitary’ turbulent OS. The blue and red regions correspond to radial inflows (ur < 0) and
outflows (ur > 0), respectively.

results have been generated by using an initial condition composed of the steady
base flow plus a divergence-free velocity fluctuation in addition to perturbation of the
eigenvalues of C. The critical value of Re for the onset of Taylor vortex flow (TVF) in
the flow geometry under consideration, i.e. ReNewtonian

c TVF , is approximately 80 (Groisman
& Steinberg 1998; Dutcher & Muller 2009, 2013). At Re= 250, the Newtonian flow is
that of a modulated wavy vortex flow, while elastic turbulence for a dilute polymeric
solution at E = 0.2 has been observed (Dutcher & Muller 2009, 2013). To examine the
nonlinear flow transitions at Re< 250 for which Newtonian TVF and purely azimuthal
flows are expected, we have gradually decreased Re from 250 to 10, in discrete steps
while maintaining We fixed at 50. Correspondingly, E increases from 0.2 to 5. For
each Re, the simulation is performed for a sufficiently long time (typically of O(100λ))
and the final solution is used as an initial condition for the simulation at the next Re.
In each case, after a ‘statistically steady’ flow state is realized, the flow statistics are
calculated by ensemble averaging over ∼40λ.

3. Results and discussion

Decreasing Re from 250 to 10 results in a flow transition pathway from an inertio-
elastic turbulence state to flows characterized by a coexistence of spatially localized
coherent structures and temporally fluctuating (random) fluid motion (see figure 1).
Specifically, we observe three turbulent flow states, i.e. inertio-elastic turbulence at
Re > ReNewtonian

c TVF (see figure 1a), flame-like patterns made up of merging and splitting
OSs at Re ≈ ReNewtonian

c TVF (see figure 1b), and a ‘solitary’ OS at Re < ReNewtonian
c TVF

(see figure 1c). In figure 1, the blue and red regions correspond to radial inflows
(ur < 0) and outflows (ur > 0), respectively. In the inertio-elastic turbulence state (see
figure 1a), strong radial inflows (blue) and outflows (red) appear randomly in the
space–time plots, indicating existence of fluctuating fluid motions with a broad range
of temporal scales. Similar flow states dubbed ‘elastically dominated turbulence’ have
also been experimentally identified by Latrache et al. (2012) and by Dutcher & Muller
(2013). These random inflows/outflows occur on time scales that are much greater than
the fluid relaxation time. Hence, one does not observe a dominant characteristic time
scale in this flow regime. On the other hand, for the flame-like OSs (see figure 1b),
the time period for the merging and splitting of the oscillatory strips is ∼43λ. Each
merging/splitting cycle begins with a highly localized rotating standing wave followed
by formation of a new strip of strong radial inflow above or below the existing strip.
Consistent with experimental findings (Baumert & Muller 1997, 1999), these two
strips are in turn convected axially upwards/downwards and eventually coalesce into
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Frequency

0

0.001

0.002

10–3 10–2 10–1 100

Middle of gap

Near inner wall

Near outer wall

FIGURE 2. PSDs of radial velocity ur for the ‘solitary’ turbulent OS state at the middle of the
gap, as well as near the inner and outer walls. The PSDs have been shifted appropriately in the
ordinate direction for clarity.
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FIGURE 3. PSDs of radial velocity ur: (a) at the middle of the gap, (b) near the inner wall, and
(c) near the outer wall. For clarity, the PSDs for Re= 80 and 10 have been shifted downward by
2 and 4 logarithmic scales, respectively.

a single strip. In the ‘solitary’ OS flow state (see figure 1c), high-frequency random
ur-fluctuations are superimposed on low-frequency oscillations of the axially localized
inflow strip. The low-frequency oscillation of the inflow strip is evident from a peak
in the power spectral densities (PSD) of ur at fOS ≈ 1/(2.94λ) (see figure 2). It should
also be noted that this flow pattern is different from the periodically oscillating flow
patterns, i.e. non-axisymmetric OS (flames), axisymmetric OS, and DW, observed in
our earlier studies (Thomas et al. 2006b, 2009). Specifically, this flow state contains
high-frequency fluctuating fluid motions that coexist with spatially highly ordered
coherent structures.

The influence of nonlinear flow–microstructure coupling on the fluctuating fluid
motion can be quantified by examining the power spectra of the radial velocity
ur. Overall, ur-PSDs exhibit broad continuous power-law-decay regions spanning
more than two orders of magnitude in frequency, indicating substantial excitation
of random-like fluid motion at the smallest temporal and spatial scales (see figure 3),
a key feature of elastic turbulence (Groisman & Steinberg 2004; Dutcher & Muller
2009, 2013). Specifically, at the middle of the gap (see figure 3a), the experimentally
measured ur-PSDs (Groisman & Steinberg 2004) are reproduced accurately, i.e. two
continuous regions with power-law-decay exponents of −1.1 and −2.2 at low and
high frequencies are observed. The self-similar nature of ur-PSDs at the middle of
the gap (see figure 3a), indicates a weak dependence of the fluctuating fluid motion
on E. This trend is also in qualitative agreement with experimental findings (Groisman
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FIGURE 4. Ensemble-averaged first normal stress difference (N1) (a) and radial driving force
(fr) (b) across the gap. Here, fr is the sum of the elastic body force fe = −(1 − β)/Re × N1/r
(where N1 = τθθ − τrr and τθθ is the ‘hoop’ stress) and the centrifugal force fc = u2

θ/r. The
over-bar denotes ensemble averaging in time and in the (θ, z) plane.

& Steinberg 2004). The fluctuating fluid motion in the wall regions, however, exhibits
variation with E (see figure 3b,c). In fact, ur-PSDs of the inertio-elastic turbulence
(Re = 250) are reminiscent of those of the flame-like turbulent OSs (Re = 80) in
the wall regions, i.e. a single decay region with power-law-decay exponent of −1.1
and −1.5 exists near the inner and outer walls, respectively (see figures 3b and
3c). This close correspondence of the power-law-decay exponents of ur-PSDs points
to qualitatively similar fluctuating fluid motion in the inertio-elastic turbulence and
flame-like turbulent OSs flow states in the wall regions. Interestingly, a power-law-
decay exponent of −1.5 has also been observed by Bonn et al. (2011) in their
experiments on viscoelastic jet flows into a cylindrical tube, indicating a direct cascade
of energy to small scales with practically no intermittency. By contrast, in the ‘solitary’
turbulent OS (Re = 10) flow state, ur-PSDs near the inner and outer walls exhibit two
continuous power-law-decay regions at low and high frequencies that are distinctly
different from those observed in the middle of the gap. These characteristics of the
ur-PSDs clearly demonstrate that strong flow–microstructure coupling gives rise to
fluctuating fluid motions with self-similar dynamics in the middle of the gap that
are distinct from the near-wall fluctuating flow dynamics. This striking difference
can be rationalized in terms of the significant variation in polymer extension and
the corresponding polymer body force across the gap, i.e. polymer stress boundary
layer formation in the wall regions (see figure 4a). Specifically, consistent with earlier
experimental findings on elastic turbulent flows (Burghelea, Segre & Steinberg 2007;
Jun & Steinberg 2011), a very rapid increase of elastic stress within the boundary
layer is observed (see figure 4a). However, the saturation of elastic stresses in the bulk
observed in curvilinear channel and swirling elastic turbulent flows is not seen in our
inertio-elastic TC flow, i.e. a notable stratification of hoop stresses is indicated near the
centre of the gap.

Although ur-PSDs in the wall regions suggest a similarity of the fluctuating fluid
motion in the inertio-elastic turbulent and flame-like turbulent OSs flow states, a
closer examination of the flow dynamics via ur-PDFs shown in figure 5 underscores
fundamental difference in ur-statistics between these two flow states. These differences
mainly arise due to the axial localization of coherent structures in the latter flow.
Thus, ur-PDFs for the flame-like turbulent OSs (Re = 80) and a ‘solitary’ turbulent
OS (Re = 10) have similar characteristics, i.e. ur-PDFs with a long tail at negative
ur and a maximum at ur > 0 are observed at the middle of the gap and in the wall
regions (see figure 5a–c). This characteristic signature of ur-PDFs originates from the
striking asymmetry between the strong inflows occurring in the narrow cores of OSs
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FIGURE 5. Probability density functions (PDFs) of radial velocity ur: (a) at the middle of the
gap, (b) near the inner wall, and (c) near the outer wall.

wherein significant polymer extension is realized, and the much weaker outflows that
spread axially over a wide region surrounding the OS-occupied zones (Groisman &
Steinberg 1998). The inflow-skewed (or negative-ur-skewed) asymmetry is one of the
key characteristics of the elasticity driven flow states (DW, OS and DO) (Groisman &
Steinberg 1998; Kumar & Graham 2000). Hence, the dynamics of the fluctuating fluid
motion in these flow states, i.e. flame-like and ‘solitary’ OS, are essentially driven by
polymeric elastic forces (inflow-dominated). However, at lower E where inertio-elastic
turbulence is realized (Re= 250) a very different ur-PDF profile is observed, namely, a
long tail at positive ur indicating an outflow-dominated regime at the middle of the gap
(see figure 5a) and near the inner wall (see figure 5b), and a long tail at negative ur

indicating an inflow-dominated regime near the outer wall (see figure 5c).
The underlying physics of the above-mentioned r-dependence of ur-PDFs for inertio-

elastic turbulence can be scrutinized by a direct examination of the relative importance
of the elastic body force fe and the centrifugal force fc (see figure 4b). Specifically,
in this flow state (Re = 250), near the inner wall fe ≈ −0.08 and fc ≈ 0.25. Hence,
in this region, the resultant radial driving force fr is radially outward, indicating
a centrifugally (or inertially) dominated regime. As a result, coherent structures
composed of centrifugally driven strong outflows (ur > 0) localized in axially narrow
regions that are surrounded by much weaker inflows are generated (see figure 6aii).
This in turn results in the outflow-skewed asymmetric ur-PDFs shown in figure 5(b).
On the other hand, near the outer wall the elastic body force is ∼−0.04 while the
centrifugal force approaches zero (see figure 4b). Hence, the radially inward force
in this elastically dominated flow region drives an elastic instability which gives rise
to localized strong inflows and commensurate fluctuating motions. The corresponding
velocity disturbances are in turn convected inwards as evinced by the localized strong
inflows depicted in figure 6(aiii) and by the resulting inflow-skewed asymmetric
ur-PDF depicted in figure 5(c). Therefore, the occurrence of inertio-elastic turbulence
can be mechanistically ascribed to the onset of near-outer-wall elastic instability and
the resulting fluctuating velocities, which ultimately lead to a substantial excitation of
turbulent-like fluid motion in the entire gap (see figure 3). Moreover, in the gap centre,
the weakly asymmetric ur-PDF at Re = 250 (see figure 5a) and the small negative fr

of ∼−0.01 (see figure 4b) clearly underscore the balance between elastic and inertial
forces that leads to the appearance of localized outflows and inflows originating from
the inner- and outer-wall regions, respectively.

Significant polymer extension is a pre-requisite for elastic instabilities and the
resulting highly localized strong inflows in the outer-wall region. To this end, the
polymer extension and the resulting flow structure modifications have been examined
via visualization of the instantaneous inflow/outflow streaks. For the inertio-elastic
turbulence (see figure 6a i–iii), disordered inflow/outflow streaks indicate an irregular
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FIGURE 6. Instantaneous contour plots of radial velocity ur: columns (i), (ii) and (iii) depict
contours at the middle of the gap, near the inner and outer walls, respectively; and rows (a), (b)
and (c) depict Re= 250, Re= 80, and Re= 10, respectively.

spatial arrangement of regions with significant polymer extension. On the other hand,
for the flame-like turbulent OSs (see figure 6b i–iii) and ‘solitary’ turbulent OS (see
figure 6c i–iii) flow states, highly ordered coherent structures appearing as localized
inflow streaks clearly show that significant polymer extension only occurs in the
narrow axial zones occupied by OSs. As expected the localized strong inflows are
more significant in the outer-wall region as compared to those in the inner-wall region,
indicating larger instantaneous polymer extension in that region. Interestingly, for all
the flow states the inflow/outflow streak patterns are similar in shape throughout
the gap. The physics behind this similarity can be understood by considering the
following scenario: (i) generation of significant ‘hoop’ stresses and a commensurate
elastic body force in the outer-wall region that give rise to localized radial inflows;
(ii) the radially inward velocity in turn accelerates in the outer half of the gap and
achieves its maximum near the gap centre; and (iii) finally, the radial inward velocity
decelerates due to the adverse radial pressure gradient and the centrifugal force in
the inner half of the gap. For all three flow states, i.e. inertio-elastic turbulence,
flame-like turbulent OSs and ‘solitary’ turbulent OS flow states, our simulation results
support this scenario. Specifically, the maximum radial velocity is realized near the
gap centre, i.e. 0.05, 0.04 and 0.03 for the inertio-elastic turbulence, the flame-like
turbulent OSs and ‘solitary’ turbulent OS flow states, respectively. Therefore, the
time scale for a fluid element travelling radially through the gap is ∼0.8λ, λ and
1.3λ for these three flow states. This time scale is much smaller than the typical
time scale of the space–time flow patterns shown in figure 1. Thus, the localized
coherent structures arising near the outer wall can be advected across the gap without
significant modification as such modifications occur at much longer time scales.

A close examination of the inflow/outflow streaks (see figure 6a i–iii) also clearly
points to the radial delineation of the flow domain into three regions with distinct
flow characteristics: a fluid-inertia (or outflow-) dominated regime near the inner
wall, a polymer-elasticity (or inflow-) dominated regime near the outer wall, and an
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inflow/outflow regime in the core region. Consequently in the inertio-elastic turbulence
state (Re= 250), fluid elements travelling from inner- to outer-wall regions experience
a transition from an outflow- to an inflow-dominated regime. Close to the inner
wall, the change in ur-PDF asymmetry (see figure 5) and the resulting inflow/outflow
patterns (see figure 6) suggest a similar flow transition as Re is reduced from 250 to
10. Specifically, at the middle of the gap and near the inner wall, the flow dynamics
is fluid inertia dominated at high Re[=250], and polymeric elasticity dominated at low
Re[=10], i.e. the ‘solitary’ turbulent OS state.

4. Conclusions

The first DNS of elastically induced turbulence in the Taylor–Couette flow has
been reported. Specifically, a key feature of elastically induced turbulent flows,
namely, the broad continuous power-law-decay regions spanning more than two
orders of magnitude in frequency, has been accurately captured by our simulations.
Moreover, for the inertio-elastic turbulence state, three distinct flow domains in the gap
have been identified for the first time, i.e. a fluid-inertia (or outflow-) dominated
inner-wall region, a fluid-elasticity (or inflow-) dominated outer-wall region, and
an inflow/outflow core region. Finally, a simple mechanism for elastically induced
transition to a turbulent flow state in TC flow based on the variation of elastic body
and inertial forces across the gap has been postulated. In turn, the applicability of this
simple mechanism to other elastically modified TC flow states such as the flame-like
turbulent OS and ‘solitary’ turbulent OS has been indicated.
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