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Weed composition may vary because of natural environment, management practices, and their interactions. In this study
we presented a systematic approach for analyzing the relative importance of environmental and management factors on
weed composition of the most conspicuous species in sugarcane. A data-mining approach represented by k-means cluster
and classification and regression trees (CART) were used for analyzing the 11 most frequent weeds recorded in sugarcane
cropping systems of northern Argentina. Data of weed abundance and explanatory factors contained records from 1976
sugarcane fields over 2 consecutive years. The k-means method selected five different weed clusters. One cluster contained
44% of the data and exhibited the lowest overall weed abundance. The other four clusters were dominated by three
perennial species, bermudagrass, johnsongrass, and purple nutsedge, and the annual itchgrass. The CART model was able
to explain 44% of the sugarcane’s weed composition variability. Four of the five clusters were represented in the terminal
nodes of the final CART model. Sugarcane burning before harvesting was the first factor selected in the CART, and all
nodes resulting from this split were characterized by low abundance of weeds. Regarding the predictive power of the
variables, rainfall and the genotype identity were the most important predictors. These results have management
implications as they indicate that the genotype identity would be a more important factor than crop age when designing
sugarcane weed management. Moreover, the abiotic control of crop–weed interaction would be more related to rainfall
than the environmental heterogeneity related to soil type, for example soil fertility. Although all these exploratory patterns
resulting from the CART data-mining procedure should be refined, it became clear that this information may be used to
develop an experimental framework to study the factors driving weed assembly.
Nomenclature: Bermudagrass, Cynodon dactylon Pers. (CYNDA); johnsongrass, Sorghum halepense (L.) Pers. (SORHA);
purple nutsedge, Cyperus rotundus L. (CYPRO); itchgrass, Rottboellia exaltata (L.) L.f.(ROOEX).
Key words: Sugarcane, weed composition, classification and regression trees, statistics.

Predicting changes in weed species composition in field
crops requires an understanding of the effect of management
and biophysical factors on cropping systems. Data about the
nature of these influences should help to design efficient
weed-management regimes in cropping systems (Martı́nez-
Ghersa et al. 2000). The link between explanatory factors
and weed species composition is usually explored through
multivariate direct gradient analyses for examining the
relationships between factor and response variables measured
on the same sampling units (Firehun and Tamado 2006;
Kuva et al. 2007). However, sometimes it is not possible to
get proper data for such methodologies. For example, weed
species identification for assessing the whole weed community
identity is usually difficult, time consuming, and often
requires a significant degree of expertise relating to weed
taxonomy (Gonzalez-Andujar et al. 2006). Regarding the
explanatory factors, the rise in the use of geographic
information systems linked to cropping management increases
the availability of direct field data; but data inconsistency is
likely to occur (i.e., missing data or unbalanced designs)
(Kenkel et al. 2002). However, a process of data mining (i.e.,
the nontrivial extraction of hidden and potentially useful
information and significant knowledge from large sets of data)
would be highly desirable to detect patterns that can be
further refined by using higher statistical power approaches.

In sugarcane cropping systems the analysis of direct field
information has delivered adequate information regarding

trends in productivity (Ellis et al. 2001; Ferraro et al. 2009) or
changes due to regional or climate variability (Lawes et al.
2004; Russell et al. 1991). In this study we proposed the use
of a data-mining technique called classification and regression
trees (CART) (Breiman et al. 1984) as an exploratory method
for assessing the effect of environmental and management
factors on the weed composition. This technique is
particularly suitable for analyzing large databases covering
large numbers of variables that usually involve nonlinear
relationships and complex interactions (Garzón et al. 2006;
Peltzer et al. 2008). Also, outputs from CART are
summarized in a tree that facilitates the outcome results.
Moreover, in vegetation analysis, a CART analysis could be
more powerful to detect trends and patterns than traditional
multivariate analysis (e.g., canonical correspondence or
multivariate redundancy analyses) because it is possible not
only to include continuous but also categorical variables
among the explanatory variable group without any assump-
tion of normality (Steinberg and Colla 1995). The CART
analytic approach has been previously used to study seed bank
dynamics (Wiles and Brodahl 2004), and to predict weed
population abundances and distribution (Debeljak et al.
2008). This study uses data-mining techniques to define the
main effects among the many potential interactions between
management practices, environmental conditions, and the
most conspicuous weed species in a large number of sugarcane
fields. We proposed an exploratory data analysis of weed
composition by using direct field information instead of a
manipulative or controlled experimental approach. The goal
of this exploratory analysis is to uncover the most important
factors for predicting different weed clusters. Particularly, we
studied sugarcane cropping systems of northern Argentina
where weeds are a major problem and the hierarchy of factors
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affecting weed composition is poorly understood. The
objectives of the study were to (1) characterize the clustering
of the most abundant and problematic weed species in
sugarcane, and (2) explore the effects of environmental and
management variables for predicting the characterized
clusters.

Materials and Methods

Study Area. The sugarcane fields sampled were located in
Jujuy province in northern Argentina (23uN, 65uW at 670 m
elevation), a relatively warm (20 to 22 C) tropical region with
an annual rainfall of 800 mm received during the summer
period between December and March. Sugarcane is grown
under irrigation in this region. The major soil types in the
study area were sandy loam (Udic Haplustalfs) in the low-
landscape areas, silty loam (Udic Argiustolls) in the mid-
slopes and ridge-top landscape areas, and clayey loam (Typic
Ustifluvents) on alluvial areas close to riverbanks or flood
plains. Until recently, sugarcane fields were burned before
harvesting, but this practice is being replaced by green-cane
harvesting. In the green-cane system, harvesters return crop
residues (leaves and tops) to the ground surface, which results
in both substantial improvements in profitability through
cost savings and in soil organic matter content, nutrient and
water retention, and soil biodiversity (Basanta et al. 2003;
Braunbeck et al. 1999; Garside et al. 1997; Vallis et al. 1996;
Wood 1991). This trash blanket (i.e., retention of the residues
as a surface mulch), along with the lack of disturbance of row
tops, often leads to the proliferation of perennial weeds in the
sugarcane crop (Richard 1995).

Sampling. As a joint effort by local producers to monitor the
level of weed infestation in their sugarcane crops, data on
abundance of the most important weed species, in terms of
difficulty of control, frequency, and potential crop yield loss
(Table 1), were recorded by local growers during 2004 and
2005. CART models require a large number of observations
to get a reliable assessment. Thus, we used the grower’s
records for building a large database of weed composition and
explanatory factors from 1976 sugarcane fields in the study
area. The database structure had no evident bias, as growers
randomly selected the sugarcane fields for weed sampling.
Weed surveys were performed by two or more trained people
who walked across each field recording the predefined list of
species. Sampling was restricted to areas in the field with
homogeneous crop cover by avoiding field margins. Abun-
dance of each species was estimated by considering the
percentage of ground cover using the following estimate
considering the percentage of ground cover, with the
following scale: 0 to 1 (rare 5 0), 2 to 10 (low 5 1), 11 to
30 (medium 5 2), 31 to 60 (high 5 3), 61 to 100% (very
high 5 4) (Mueller-Dombois and Ellenberg 1974). The
analyzed weed abundance database included two consecutive
harvest seasons (2004 and 2005) in ratoon-cane stands and
was collected from August to January. All weed surveys were
done during the tillering phase before the stalk growth period
when the leaf area index reached the maximum value.
Moreover, we included both harvest and sampling time as
explanatory variable (see below) to quantify the effect of
sampling time on the composition of the weed species
recorded.

Cluster Analysis. Variability in weed composition was
assessed using Bray–Curtis distance measure (McCune and
Mefford 1995). The abundance matrix was used for
calculating a dissimilarity matrix (Shaw 2003) for each of
the 1976 samples. The dissimilarity data were clustered
through a k-means cluster algorithm (Jain and Dubes 1988)
to detect different weed groups and the membership of each
sugarcane field to one of them. The clustering algorithm is
based on a least sum-of-squares estimation, and attempts to
group the sugarcane fields by reducing the intragroup
variability, in terms of floristic composition, as well as
maximize the intragroup variability. A standard cross-
validation procedure was applied for determining the final
number of weed clusters (n). In cross-validation, the total
number of samples is divided into v ‘‘folds’’ samples of
approximately equal size. Then, cluster analyses for each v 2 1
samples (i.e., leaving out one sample) are repeated, and the
samples that were not used to compute the respective cluster
solution are treated as test samples, for which the average
distance of observations from their respective (assigned)
cluster centers will be recorded. This measure is the
misclassification error (r) (i.e., the proportion of data points
assigned to an incorrect cluster) and the procedure is repeated
by increasing the number of tested clusters. Finally, for
selecting the optimal number of weed clusters we inspected
the set of solutions for detecting: (1) a cutoff value of 5% in
the percentage decrease in the misclassification error when
adding one more cluster and (2) the lowest number of clusters
that meets the above condition. Both conditions determine a
proper balance between accuracy and complexity for the final
number of clusters (Jain 2010; Koziol 1990). After selecting
the final cluster configuration, the Shannon’s diversity index
(H) (Magurran 1988) was calculated for each cluster:

Shannon’s diversity index H ’ð Þ~{
X

pi ln pi ½1�

where pi is the proportion of the weed abundance of i species
in the total sample of species in each cluster.

Classification and Regression Tree Analysis. CART was used for
partitioning the clustered weed groups into subsets (or nodes)
with the highest attainable homogeneity defined by several
explanatory factors (Tables 2 and 3). Basically, a classification
tree partitions the space of all possible attributes (both

Table 1. Weed species recorded for data analyses in sugarcane fields.

Species Abbreviationa

Annuals

Setaria viridis (L.) Beauv. SETVI
Rottboellia exaltata L. ROOEX
Digitaria sanguinalis (L.) Scop DIGSA
Polygonum convolvulus L. POLCO
Leptochloa filiformis (Lam.) P. Beauv LEFFI
Tithonia tubaeformis (Jacq.) Cass. TITTU
Trianthema portulacastrum L. TRTPO
Other broadleaf species BBBAN

Perennials

Cynodon dactylon (L) Pers. CYNDA
Cyperus rotundus L. CYPRO
Sorghum halepense (L.) Pers SORHA

a Letter code for weed names in Weed Science Society of America-approved
computer code from the Composite List of Weeds. Available at http://wssa.net/
Weeds/ID/WeedNames/namesearch.php
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categorical and continuous), starting with all attributes (at the
root of the tree) and successively splitting that space in nodes
in which each node is more likely to be assigned to one of the
k-means clusters than the node from which it is split (Breiman
et al. 1984). Ideally, the process of splitting continues until
each node is pure (i.e., contains only one class of elements) or
the gain in purity of the final nodes (i.e., terminal nodes)
reaches a certain threshold. CART models are also extremely
robust on the effects of outliers as well as being able to deal
with missing values by minimizing or eliminating the effect of
such values on model performance. In this study, CART
algorithm was used to generate a threshold to differentiate
nodes and to find a tree structure that discriminates the
k-means clusters (i.e., which terminal nodes have a high
proportion of sugarcane fields of some cluster). A standard
cross-validation (CV) procedure was applied for measuring
the predictive power of the trees obtained (Waheed et al.
2006). The main idea of cross-validation is that each
observation is included in both the test sample and the
training sample. We used the standard cross-validation, where
a data set is randomly divided into 10 parts. Iteratively, 10
different models are generated, each iteration involving a
different combination of nine parts for model development
(training or learning) and one part for testing (cross-
validation). The tree-growing process is repeated 10 times,
and when completed the error counts from each of the 10 test
samples are summed to obtain the CV error estimate (i.e., the
proportion of cases incorrectly classified in the tree). In CART

the equivalent to the R2 of linear regression is (1 2 CV error)
(Breiman et al. 1984). This estimates the ‘‘portion of variance
explained by the model’’ (Roel et al. 2007). Finally, the
CART procedure considers the importance of the indepen-
dent variables, which are ranked in descending order of their
contribution to tree construction. This contribution is not
necessarily associated to the relative position of the variable in
the tree structure, because the procedure looks at the
improvement measure attributable to each variable in its role
as a surrogate to the primary split in each node splitting. The
values of these improvements are summed over each node of
the tree and scaled relative to the best-performing variable.
The variable with the highest sum of improvements is scored
1 and all other variables have lower scores ranging downward
toward zero (Steinberg and Colla 1995).

Explanatory Factors. Agronomic and environmental data
used as explanatory factors for weed composition are listed in
Tables 2 and 3: field area (AREA); crop class (AGE); number
of herbicides applied during the growth cycle (HERB);
sugarcane biomass harvested yield (YIELD); time interval
between sampling and harvest (SHI); time (month) of sample
(SAMPLE); amount of rain during the 12 mo before weed
survey (PP); sugarcane genotype (GEN); soil quality (SOIL);
and crop field with burning or not burning of crop stubble
(BURN). Field area (an indirect indicator of the relative
importance of field borders) was used to detect landscape or

Table 2. Description of continuous sugarcane management variables used for the study.

Variable Abbreviation Unit Cases Mean Max Min 25th–75th percentile

Field area AREA ha 1,976 40.02 157.88 0.75 24–72
Crop class AGE yr 1,976 2.40 19 1 1–3
Herbicide applications HERB number of applications 1,976 5.42 20 1 3–7
Sugarcane biomass yield YIELD t ha21 777 99.2 294 1.8 85–114
Interval between sampling

and harvest SHI d 1,906 80.5 207 2 50–107
Annual precipitation PP mm 1,976 703 1,020 420 632–777

Table 3. Description of categorical sugarcane management variables used for this study.

Variable Abbreviation Code Cases Area (ha) Factor’s levels

Sugarcane cultivar GEN 1 33 1,239 CP 65–350
2 34 1,897 CP 68–350
3 158 7,993 CP 70–1133
4 248 8,928 CP 72–2086
5 113 4,715 NA 84–3920
6 525 20,033 NA 85–1602
7 137 5,289 TUC 67–24
8 134 5,853 TUC 72–16
9 572 22,328 TUC 77–42
0 22 808 Other

Soil quality SOIL 1 50 2,923 A1
2 215 8,132 A2
3 703 25,697 A3
4 469 18,429 A4
5 180 8,029 A5
0 359 15,876 No data

Burned harvest BURN 0 1376 53,526 Green harvest
1 600 25,559 Burned harvest

Month of sample SAMPLE 8 36 1,234 August
9 269 10,697 September

10 557 21,790 October
11 760 31,089 November
12 343 13,720 December
13 11 551 January
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geographical effects on weed composition (i.e., weed
dispersal). Crop class indicated both the number of ratoon
crops and the years after the plant-cane crop, because the
sugarcane crops have one harvest per year. Month of sampling
(SAMPLE) was restricted to the tillering phase before the stalk
growth period (August to January), but most of the cases fell
between September and the end of December. Annual
precipitation was estimated using data of the previous 365 d
after the weed survey from the closest weather station to each
field. Nine sugarcane cultivars were included in the study,
covering a wide range of biomass yield potentials and sucrose
accumulation dynamics (Table 3). Soil quality was character-
ized with the widely used land capability class index that
ranges from 1 (highest quality) to 8 (lowest quality), which is
based on a ranking of 12 different soil characteristics that are
critical for crop production (USDA 1989). Class 1 has no
significant limitations for raising crops. Classes 2 and 3 are
suited for cultivated crops but have limitations such as poor
drainage, limited root zones, climatic restrictions, or erosion
potential. Class 4 is suitable for crops but only under selected
cropping practices and class 5 is best suited for pasture and
range.

Results and Discussion

Cluster Analysis. The field misclassification rate (i.e., the
proportion of errors made on the classification procedure)
decreased until the databases were divided into n 5 16
individual clusters (Figure 1). However, the 5% cutoff value
of rate reduction was reached at the n 5 5 and n 5 14 levels
of cluster splitting. Therefore, the n 5 5 cluster number was
selected for further analyses. This final cluster configuration
showed one main cluster (CL1) that contained 44% of the
sugarcane cases analyzed and also exhibited the lowest mean
abundance value (Figure 2). The other four clusters were
dominated by the perennial species bermudagrass, johnson-
grass, and purple nutsedge and the annual itchgrass
(Figure 2). Both the overall abundance and the species
diversity contributed to the dissimilarity among clusters
(Figure 2). CL2 and CL4 were dominated by johnsongrass
and bermudagrass, and exhibited low values of both overall
weed abundance and diversity. In contrast, the cluster

dominated by the annual itchgrass (CL5) was the most
diverse weed cluster showing mean abundance values higher
or equal to 1.0 for four weed species (johnsongrass,
bermudagrass, other broad-leaf [BBBAN], and itchgrass).
Weed composition described in this study was similar to other
sugarcane regions where annual weeds are the most common
(in the absence of any control measure), but perennial weeds
are among the most difficult to control (Kuva et al. 1999;
McMahon 1989; Smith 1998). Perennials have propagules
such as rhizomes, bulbs, or tubers that are difficult to
eliminate and contribute to weed persistence and dispersal and
increase their aggressiveness (Ali et al. 1986; Bariuan et al.
1999; Holm et al. 1977). In sugarcane, perennial infestation
may be especially enhanced because the row top is not
disturbed over the 3- to 5-yr crop cycle and for this reason
weed management practices are focused on reducing perennial
infestation during plant-cane stage (Peng 1984).

Classification and Regression Tree Analysis. Final CART
model was able to explain 44% of the sugarcane’s weed
composition, a relatively high value for vegetation analysis
(Ter Braak and Prentice 1988). Four of the five clusters were
represented in the terminal nodes of the final CART model
(Figure 3). The exception was CL5, the most diverse of the
five clusters. CART started the splitting process by dividing
the root node (Figure 3, ID 5 1) into two subgroups.
Sugarcane fields where the sugarcane trash was burned or not
burned were split on the left or right main branches of the
classification tree, respectively. The left branch of the tree
showed two more divisions, resulting in three terminal nodes
that were classified as CL1 cluster (the more frequent cluster
with the lowest abundance value). Although the detrimental
effects of burning cane residue on nutrient availability due to
the loss of organic matter can be thought of as short term,
results of this study indicated that the effects would extend
beyond 70 d after harvest (Figure 3, ID 5 5). Moreover,
under these conditions, when annual amount of rain was
higher than 607 mm, CART was able to split low-abundance
sugarcane fields with high accuracy (76% of the sugarcane
fields were in agreement with the selected terminal node
classification) (Figure 3; ID 5 7). Research on the effect of
burning on weed community composition is scarce, but
(Galdos et al. 2010) noted more growth of weeds in burned
plots, probably due to higher competition with the sugarcane

Figure 1. Misclassification rate (r) of sugarcane fields used as test set during the
cross-validation procedure for optimizing the final number of clusters (n). The
error function (r) is calculated as the average distance of sugarcane fields used as
test samples to the cluster centroids to which they were assigned. The left and
right arrows indicate the first and last cluster number where the percentage of r
decrease is less than 5%, respectively.

Figure 2. Mean of weed species abundance in each of the five clusters (CL)
selected. Numbers between brackets indicate the number of cases, the overall
mean abundance, and the Shannon’s diversity index (H9) for each cluster,
respectively. The abbreviations of weed species are listed in Table 1.
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for water and nutrients, and the lower efficiency of herbicide
application in the mulch retention system (Christoffoleti et al.
2007). In contrast, results from this study showed that CART
associated burned sugarcane fields with relatively low values of
weed abundance (CL1). The emerging relationship between
preharvest burning and low abundance of weeds would
indicate a rapid growth fueled by intensive resource uptake
(light) that allows the domination of sugarcane in the process
of crop–weed competition. This means that this variable
would affect the weed presence/absence more than the identity
of the species assemblage. However, the use of a more accurate
multivariate method (canonical correlation analysis) in a more

controlled condition (using the full species list) could find
some composition effect between green and burned harvest.

The right split from the root node isolated the unburned
sugarcane fields (Figure 3, ID 5 3), and progressively split the
data set into smaller subsets until six terminal nodes were
obtained (Figure 3). Three of these terminal nodes classified
as CL1, and came from an intermediate split that selected the
use of herbicides as the partition variable (Figure 3, ID 5 3).
Values of herbicide use lower than 7.5 herbicide/cropping
cycle resulted in the final terminal nodes for CL1, on the basis
of an interaction with annual precipitation level (Figure 3,
ID 5 11). This pattern was similar to that observed in the
unburned sugarcane fields of the left side of the tree, where
higher precipitation was more associated with sugarcane fields
with low values of weed abundance (Figure 3, ID 5 7).
However, there was a significant difference in the cutoff value
for precipitation in each split node (607 mm yr21 for burned
fields and 948 mm yr21 for unburned fields). Both values are
slightly below and above 800 mm of annual average
precipitation. Differences in effective precipitation due to
the mulch presence associated with the green harvest system
could explain the higher cutoff values of precipitation in green
harvest conditions than in preharvest burning for this splitting
step. Also, CL1 was selected in this part of the tree with
annual precipitation values lower than 948 mm, but with the
additional condition of crop yields lower than 93.94 t ha21

(Figure 3, ID 5 12) or under higher crop values but for only
some select genotypes (Figure 3, ID 5 15). These results
showed that the CART algorithm was able to select several
paths for assessing the condition of lowest weed abundance
(CL1).

Figure 3. Classification tree (CART) model of sugarcane crops, using the k-means cluster identified in Figure 2. N indicates the number of sugarcane fields in that node of
the classification tree. Right and left branches indicate that the group satisfies, or does not satisfy, respectively, the split condition at a decision node. For variable abbreviations
see Tables 2 and 3. Dotted boxes indicate terminal nodes. Columns inside each node are the cluster distribution histogram, and the number in the center, the most frequent
cluster (with its frequency between brackets). Misclassification error (r) for the learning set (1,318 cases) 5 0.56. Misclassification error (r) for test set (658 cases) 5 0.52 (no
significant difference, P , 0.05). Variance explained by the model: 1. Misclassification error (r) 5 0.44.

Figure 4. Variable importance ranking computed by the CART model of
Figure 3. The abbreviations of weed species are listed in Table 1.
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CART structure showed the number of herbicides as a
selected predictor for splitting the green-harvested sugarcane
fields into two groups. Surprisingly, the most intensive
herbicide use (values higher than 7.5 herbicides used in one
cropping cycle) was not associated with weed cluster with low
abundance values (i.e., CL1). Moreover, the cropping system
with the more intensive herbicide use was associated with CL3
and CL4, two clusters dominated by the perennials purple
nutsedge and bermudagrass (Figures 2 and 3). Although
perennials are difficult to control with herbicides, it is not
possible to determine whether the use of herbicides is a
cause or a consequence of the observed group of weeds.
Consequently, these results highlight the importance of
assessing the relationship between the processes of weed
growth and the frequency of herbicide use in the systems
studied.

Another factor that was important when selecting a weed
cluster for each sugarcane field was the sugarcane genotype
(Figure 4). The final CART was able to show a genotype-
related effect for splitting CL3 and CL4 weed groups
(Figure 3, IDs 5 16 and 17). Although it did not identify
any genotype trait, CART would show a possible existence of
direct effects (e.g., competition) or indirect (e.g., chemical
rhizosphere composition) on the filtering of weed clusters.
There is evidence in the literature about the genotypic effects
in the variability of thermal attributes (Liu et al. 1998),
growth and development of root system (Smith et al. 2005),
allelopathy (Sampietro et al. 2006), and the final biomass and
sugar yield (Kang et al. 1987). Clearly, this variability could
affect the ability for faster canopy closing and hence reduce
weed competition in the initial 90- to 120-d period of crop
growth that is considered the most critical period of weed
competition in sugarcane (Kuva et al. 1999).

CART and variable importance ranking highlighted data
patterns not only through tree selection variables but also by
the unselected variables in the final tree. For example, soil type
and crop age are two important variables for defining final
sugarcane yield (Evenson et al. 1987; Muchow et al. 1996),
but they were not selected in final CART configuration, and
exhibited intermediate variable importance ranking. Usually,
crop age is related to yield decline in sugarcane because of
monoculture, excessive tillage, and the decline of soil health
(Magarey et al. 1997; Pankhurst et al. 2003; Pankhurst et al.
2005). However, results of this study would indicate that both
plant and soil changes related to sugarcane ratooning did not
have a clear and detectable effect on weed heterogeneity
among the large database of sugarcane fields analyzed.
Probably the more evident change in weed composition
would be observed between plant and ratoon cane, so the crop
age effect would be qualitative rather than quantitative.
Although the soil type was not able to explain differences in
weed composition, weed dynamics process could be spatially
autocorrelated because of altitudinal changes or physical
dispersal constraints (Booth and Swanton 2002). The studied
fields were distributed among very different landscapes that
included valleys, piedmonts, river terraces, flood plains, and
alluvial plains. Some of these soils are prone to water erosion
and irrigation management difficulties. For example, pied-
monts and alluvial plains are moderately to marginally
suitable for sugarcane production, especially because of poor
soil water retention, topography, or the presence of a high
water table. However, because of this large soil gradient the
abiotic conditions reflected by soil did not appear to be strong

enough to be selected in the CART structure. It is also
possible that the weed community characterization using the
predefined list of the most conspicuous species would hinder
the detection of weaker effects (as might be the soil type),
since these species would most likely have to be in the range of
sites surveyed. The rest of the predictors showed importance
values in the range of 0.48 to 0.62 that correspond to the
proportion of the variance explained by the most powerful
splitting variable (PP) (Figure 4).

Results from this study identified homogeneous groups in
the composition of the most important weeds in a sugarcane
agroecosystem through the characterization of hierarchical
models that explained weed composition and the overall
importance of each predictor. The analytical framework (data
mining) is presented as a possible protocol for studying weed
composition in crops using incomplete data. Through robust
analyses, data mining was able to obtain exploratory patterns
in the crop–weed system to be further refined under more
controlled conditions (manipulative experiments or census of
all species in the community). Although its application in this
study was done on sugarcane, it is clear that it could extend to
any other system where there can be available management
and environmental databases, for example to eliminate low
importance values and help the next analysis to fine-tune its
approach and reduce the data set examined. For the systems
analyzed, the results showed that burned harvest was the most
important factor related to low weed abundance, and that the
effect was maintained over time. Regarding the predictive
power of the variables, rainfall and genotype identity were the
most important predictors. These results have management
implications as they indicate that the genotype identity would
be a more important factor than crop age when designing
sugarcane weed management. Moreover, the abiotic control of
crop–weed interaction would be more related to rainfall than
the environmental heterogeneity related to soil type, for
example soil fertility. Although all these exploratory patterns
resulting from the CART data-mining procedure should be
refined, it became clear that this information may be used to
develop an experimental framework to study the factors
driving weed assembly.
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