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Abstract

The χ-stability index esχ(G) of a graph G is the minimum number of its edges whose removal results in a
graph with chromatic number smaller than that of G. We consider three open problems from Akbari et al.
[‘Nordhaus–Gaddum and other bounds for the chromatic edge-stability number’, European J. Combin.
84 (2020), Article no. 103042]. We show by examples that a known characterisation of k-regular (k ≤ 5)
graphs G with esχ(G) = 1 does not extend to k ≥ 6, and we characterise graphs G with χ(G) = 3 for which
esχ(G) + esχ(G) = 2. We derive necessary conditions on graphs G which attain a known upper bound on
esχ(G) in terms of the order and the chromatic number of G and show that the conditions are sufficient
when n ≡ 2 (mod 3) and χ(G) = 3.

2020 Mathematics subject classification: primary 05C15; secondary 05C35.
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1. Introduction

If I is a graph invariant and G a graph, then it is natural to consider the minimum
number of vertices of G whose removal results in an induced subgraph G′ withI(G′) �
I(G) or with E(G′) = ∅ (see [2]). Let us call this number the I-stability number of G
and denote it by vsI(G). Similarly, one may be interested in the minimum number
of edges that have to be removed in order to obtain a spanning subgraph G′ with
I(G′) � I(G) or with E(G′) = ∅. In this case let us call the minimum number of edges
the I-stability index of G and denote it by esI(G).

Here we consider the χ-stability index esχ, spelled out as chromatic stability
index. The χ-stability index esχ(G) of a graph G with at least one edge is thus the
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minimum number of edges of G whose removal results in a graph with chromatic
number smaller than that of G. If E(G) = ∅, then esχ(G) = 0. In some papers the term
‘chromatic edge-stability number’ is used, but in our general framework and since the
investigation of the χ′-stability number was initiated in [2], this earlier terminology
would be confusing.

The χ-stability index was first studied by Staton [10], who provided upper bounds
esχ for regular graphs in terms of the size of the graph. The invariant was subsequently
investigated in [3, 4, 8]. We continue this line of the research, focusing on the following
three open problems on the chromatic stability index.

PROBLEM 1.1 [1, 3]. Characterise graphs G with esχ(G) = 1.

PROBLEM 1.2 [1]. Characterise graphs G with esχ(G) + esχ(G) = 2.

In [1] it was proved that if G is a graph of order n with r = χ(G), then

esχ(G) ≤
⎧
⎪⎪⎨
⎪⎪⎩

�n/r��n/r + 1� if n ≡ r − 1 (mod r),
�n/r�2 otherwise.

(1.1)

PROBLEM 1.3 [1]. Characterise graphs that attain the upper bound in (1.1).

In the rest of this section we recall definitions needed in this paper. In Section 2
we consider graphs G with esχ(G) = 1 and construct examples which demonstrate that
a known characterisation of k-regular graphs G with esχ(G) = 1 does not extend to
k ≥ 6. Then, in Section 3, we characterise graphs G with χ(G) = 3 for which esχ(G) +
esχ(G) = 2. In the concluding section we obtain necessary structural conditions on
graphs G which attain the upper bound in (1.1). The conditions are proved to be
sufficient when n ≡ 2 (mod 3) and χ(G) = 3.

The chromatic number χ(G) of a graph G is the smallest integer k such that G
admits a proper colouring of its vertices using k colours. Unless stated otherwise, we
will assume that the colours are from the set [k] = {1, . . . , k}. A χ(G)-colouring (or
simply χ-colouring) of G is a proper colouring using χ(G) colours. In a colouring
of G, a set of vertices having the same colour form a colour class. If c is a k-colouring
of G with colour classes C1, . . . , Ck, then we will identify c with (C1, . . . , Ck), that is,
we will say that c is a colouring (C1, . . . , Ck). When we wish to emphasise that these
colour classes correspond to c, we will denote them by (Cc

1, . . . , Cc
k). If c is a colouring

of G and A ⊆ V(G), then let c(A) =
⋃

a∈A c(a). Let c∗(G) denote the cardinality of a
smallest colour class among all χ-colourings of G. If c∗(G) = 1, then we say that G
has a singleton colour class. The chromatic bondage number ρ(G) of G denotes the
minimum number of edges between two colour classes among all χ-colourings of a
graph G. Clearly esχ(G) ≤ ρ(G).

For v ∈ V(G), let dG(v) and NG(v) denote the degree and the open neighbourhood of
v in G, respectively. If A ⊆ V(G), then let NG(A) = (

⋃
v∈A NG(v))\A. For A, B ⊆ V(G),

let E[A, B] be the set of edges which have one endpoint in A and the other in B, and
let e(A, B) = |E[A, B]|. The subgraph of G induced by A ⊆ V(G) will be denoted by
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G[A]. The girth g(G) of a graph G is the length of a shortest cycle in G. The order of
a largest complete subgraph in G is the clique number ω(G) of G. The complement of
G is denoted by G.

2. On Problem 1.1

Problem 1.1, which asks for a characterisation of graphs G with esχ(G) = 1,
has been independently posed in [3, Problem 2.18] and [1, Problem 5.3]. The two
equivalent reformulations of the condition esχ(G) = 1 from the next proposition are
from [8, Proposition 2.2] and [3, Remark 2.15], respectively. To be self-contained, we
include a simple proof of the result.

PROPOSITION 2.1. If G is a graph with χ(G) ≥ 2, then the following claims are
equivalent:

(i) esχ(G) = 1;
(ii) ρ(G) = 1;
(iii) G admits a χ(G)-colouring (C1, . . . , Cχ(G)), where |C1| = 1 and e(C1, C2) = 1.

PROOF. Let esχ(G) = 1 and let e = uv ∈ E(G) be an edge such that χ(G − e) =
χ(G) − 1. If c is a (χ(G) − 1)-colouring of G − e, then c(u) = c(v), for otherwise c
would be a proper colouring of G (using only χ(G) − 1 colours). Recolouring u with
a new colour yields a colouring of G as required by (iii). Hence (i) implies (iii). The
implication (iii)⇒ (ii) is obvious and (ii)⇒ (i) follows from the fact already noted that
esχ(G) ≤ ρ(G). �

Although Proposition 2.1 formally gives two characterisations of graphs G with
esχ(G) = 1, it should be understood that Problem 1.1 asks for a structural character-
isation of such graphs. The next result gives a partial solution of the problem.

THEOREM 2.2 [1, Theorem 4.4]. Let G be a connected, k-regular graph with k ≤ 5.
Then esχ(G) = 1 if and only if G is K2, G is an odd cycle, or χ(G) > 3 and c�(G) = 1.

The second part of [1, Problem 5.3] says: ‘In particular, for the regular case
extend the classification of Theorem 2.2 to k > 5.’ We do not solve the problem, but
demonstrate in the rest of the section that (i) the problem appears difficult and (ii)
k = 5 is the threshold for regular graphs. Let X be the graph drawn in Figure 1.

PROPOSITION 2.3. The graph X is a 6-regular graph with χ(X) = 4, c�(X) = 1 and
esχ(X) = 2.

PROOF. Since ω(X) = 4, we have χ(X) ≥ 4. We give a 4-colouring c of X as
follows: c(w) = 4, c(v1) = c(u3) = c(u6) = 1, c(v3) = c(u2) = c(u5) = 2, c(v2) =
c(u1) = c(u4) = 3. Since colour 4 is used exactly once, χ(X) = 4 and c∗(X) = 1. It
remains to prove that esχ(X) = 2.
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FIGURE 1. The graph X.

Let X′ be the graph obtained from X by deleting the edges wv1, wu6. Then we
can get a 3-colouring c′ of X′ as follows: c′(w) = c′(v1) = c′(u3) = c′(u6) = 1, c′(v3) =
c′(u2) = c′(u5) = 2, c′(v2) = c′(u1) = c′(u4) = 3. Hence esχ(X) ≤ 2.

Suppose now by contrast that esχ(X) = 1. Then by Proposition 2.1(iii), there
exists a colouring c = (C1, C2, C3, C4), such that |C1| = 1 and e(C1, C2) = 1. Since
X[{v1, v2, v3, w}] � K4, we have c(w) = 1 or c(vi) = 1 for some i ∈ [3]. If c(w) = 1,
then χ(X[N(w)]) = 3 and colour 2 appears only once in N(w). But this is impossible
because X[v1, v2, v3] � K3 and X[u2, u4, u6] � K3. If c(w) � 1, then by symmetry we
may without loss of generality assume that c(v1) = 1. Then we consider the colour-
ing of N(v1). If c(u5) � c(v3), say c(u5) = a ∈ {2, 3, 4} and c(v3) = b ∈ {2, 3, 4}\{a},
then c(v2) = c(u1) = c = {2, 3, 4}\{a, b}, c(w) = a and c(u2) = b, contradicting the
fact that e(C1, C2) = 1. If c(u5) = c(v3), say c(u5) = c(v3) = a ∈ {2, 3, 4}, then c(v2) =
b ∈ {2, 3, 4}\{a} and c(w) = c = {2, 3, 4}\{a, b}. Since {w, v2, u5} ⊆ N(u6), we have
c(u6) = 1, contradicting the fact that |C1| = 1. So esχ(G) ≥ 2 and we are done. �

Proposition 2.3 shows that Theorem 2.2 does not extend to 6-regular graphs.
On the other hand, consider the following example to see that there exist
4-chromatic, 6-regular (and higher regularity) graphs with esχ(G) = 1. A graph
G = C(n; a0, a1, . . . , ak) is called a circulant if

V(G) = [n] and E(G) = {(i, j) : |i − j| ∈ {a0, a1, . . . , ak} (mod n)},
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where 1 ≤ a0 < a1 < · · · < ak ≤ n/2. If ak < n/2, then G is a (2k + 2)-regular graph;
otherwise, G is (2k + 1)-regular. In [5, Theorem 2.1], Dobrynin et al. constructed
4-critical r-regular circulants for r ∈ {6, 8, 10}. (Recall that a graph G with χ(G) = k
is called edge-critical (or simply k-critical) if its chromatic number is strictly less than
k after removing any edge.) Hence these regular graphs satisfy esχ(G) = 1.

3. On Problem 1.2

Let G be a graph with esχ(G) = 1 and χ(G) = r. We say that a χ-colouring of G is a
good colouring if it satisfies the conditions of Proposition 2.1(iii). Let C(G) be the set
of good colourings of G. If c = (Cc

1, . . . , Cc
r ) ∈ C(G), then we may always without loss

of generality assume that |Cc
1| = 1 and e(Cc

1, Cc
2) = 1.

Clearly, esχ(G) + esχ(G) = 2 holds if and only if esχ(G) = esχ(G) = 1. We first
characterise disconnected graphs G for which esχ(G) + esχ(G) = 2.

PROPOSITION 3.1. Let G be a graph with components G1, . . . , Gs, s ≥ 2, and let
G = {Gi : χ(Gi) = χ(G), i ∈ [s]}. Then esχ(G) + esχ(G) = 2 if and only if

(i) |G| = 1 and esχ(Gi) = 1 for Gi ∈ G, and
(ii) there exists a Gj such that esχ(Gj) = 1, or there exist components Gj and Gk, j � k,

such that c∗(Gj) = 1 and c∗(Gk) = 1.

PROOF. The following fact is essential for the rest of the argument: if c is a proper
colouring of G, then c(V(Gi)) ∩ c(V(Gj)) = ∅ for every i, j ∈ [s], i � j. If G satisfies
(i) and (ii), then (i) yields esχ(G) = 1, while (ii) gives esχ(G) = 1. Conversely, suppose
that esχ(G) + esχ(G) = 2. Then esχ(G) = 1 and esχ(G) = 1. If |G| ≥ 2 or esχ(Gi) ≥ 2 for
any Gi ∈ G, then χ(G − e) = χ(G) for any e ∈ E(G), a contradiction. This means that
(i) holds. Since esχ(G) = 1, there exists an a edge e ∈ E(G) such that χ(G − e) < χ(G).
We consider two cases for the edge e. If e ∈ E(Gj) for some j ∈ [s], then esχ(Gj) = 1.
In the other case the two endpoints of e lie in different components, say in Gj and in
Gk, j � k. But then c∗(Gj) = 1 and c∗(Gk) = 1. Thus (ii) holds as well. �

In the main result of this section we now characterise connected graphs G with
χ(G) = 3 for which esχ(G) + esχ(G) = 2.

THEOREM 3.2. Let G be a connected graph of order n, with χ(G) = 3. Then esχ(G) +
esχ(G) = 2 if and only if

(i) all odd cycles in G share one edge,
(ii) c∗(G) = 1,
(iii) χ(G) ≥ �n/2�,
(iv) if n is even, χ(G) = n/2 and ||Cc

2| − |C
c
3|| = 1 for each c = (Cc

1, Cc
2, Cc

3) ∈ C(G),
then g(G) = 3 and for any proper colouring of G, if {x1, x2, x3} is a colour class,
then dG(v) ≥ 2 for each v ∈ NG({x1, x2, x3}).
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PROOF. Necessity. Since esχ(G) = 1 and χ(G) = 3, there is an edge e ∈ E(G) such
that G − e has no odd cycles. So (i) holds. It was observed in [1, Lemma 4.3] that
esχ(G) = 1 implies c∗(G) = 1, hence (ii) holds. Let c = (Cc

1, Cc
2, Cc

3) ∈ C(G). We have
ω(G) ≥ �n/2� since |Cc

1| = 1. So, χ(G) ≥ ω(G) ≥ �n/2� when n is even. When n is odd
andω(G) = (n − 1)/2, we have |Cc

2| = |C
c
3| = (n − 1)/2 and G[Cc

2] � KCc
2
, G[Cc

3] � KCc
3
.

Note that for any proper colouring of G, there is at most one colour class with
three vertices and there must be fewer than three vertices in other colour classes. By
Proposition 2.1(iii), there exists a χ-colouring of G such that some colour class has
exactly one vertex. Then χ(G) ≥ (n + 1)/2 = �n/2�.

Suppose now that n is even, χ(G) = n/2 and ||Cc
2| − |C

c
3|| = 1 for any c =

(Cc
1, Cc

2, Cc
3) ∈ C(G). Let Cc

1 = {x1} and let x2 be the vertex of Cc
2 such that x1x2 ∈ E(G).

Let c̄ ∈ C(G) and let the colour set used by c̄ be [n/2]. We claim that c̄(x1) = c̄(x2)
and c̄(x1) ∈ c̄(Cc

3). Notice that x1 is in G adjacent to all vertices of Cc
2 except x2. If

|Cc
2| − |C

c
3| = 1, then |Cc

2| = n/2. Then the claim holds because χ(G) = n/2 = |c̄(Cc
2)|.

Suppose next that |Cc
3| − |C

c
2| = 1. Then |Cc

3| = n/2 and |Cc
2| = (n − 2)/2. We have

|c̄(Cc
3)| = n/2. If c̄(x1) � c̄(x2), then c̄(x1 ∪ Cc

2) = [n/2], contradicting the fact that c̄ ∈
C(G) because there is no singleton colour class. Hence c̄(x1) = c̄(x2) and c̄(x1) ∈ c̄(Cc

3)
since c̄(Cc

3) = [n/2]. Thus g(G) = 3. We can set x3 ∈ Cc
3 and c̄(x1) = c̄(x2) = c̄(x3) = 1

in the following. Suppose there is a vertex v ∈ NG({x1, x2, x3}) such that dG(v) = 1.
If |Cc

2| − |C
c
3| = 1, then Cc

2 ⊆ NG(v) when v ∈ NG(x1), (Cc
2\{x2}) ∪ x3 ⊆ NG(v) when

v ∈ NG(x2) and V(G)\{x3} = NG(v) when v ∈ NG(x3). Thus χ(G) > n/2 when v ∈
NG(x1) ∪ NG(x2), a contradiction. When v ∈ NG(x3), we may assume without loss
of generality that c̄(Cc

3) = [(n − 2)/2]. Then c̄(v) = n/2 since x2 ∈ NG(v). But every
colour in [(n − 2)/2] appears exactly twice in NG(v), contradicting the fact that
c̄ ∈ C(G). If |Cc

3| − |C
c
2| = 1, then χ(G) > n/2 when v ∈ NG(x3) and c̄ � C(G) when

v ∈ NG(x1) ∪ NG(x2) by the same analysis as above, a contradiction.

Sufficiency. Suppose an edge e is shared by all odd cycles of G. Then χ(G − e) ≤ 2.
Hence esχ(G) = 1 by definition. Suppose χ(G) ≥ �n/2�. In [1, Lemma 4.2] it was
proved that if χ(G) ≥ (n + 2)/2, then esχ(G) = 1. So we may assume χ(G) = �n/2�
in the following.

Suppose first that n is odd. Let c̄ be a proper colouring of G. Since χ(G) = �n/2� =
(n + 1)/2, the complement G has a singleton colour class under c̄. If G has two
singleton colour classes under c̄, then ρ(G) = 1. Otherwise, other colour classes have
exactly two vertices. Since G is connected, Δ(G) < n − 1, thus ρ(G) = 1. Suppose
next that n is even. We have ||Cc

2| − |C
c
3|| = 1 for any ci ∈ C(G) since χ(G) = n/2.

Since c∗(G) = 1, there is a proper colouring such that some colour class contains
three vertices. Let c̄ be the proper colouring and c̄(x1) = c̄(x2) = c̄(x3), where xs ∈ Cc

s
for s ∈ [3]. Let {α, β} = {2, 3}. If |Cc

α| − |Cc
β| = 1, then |Cc

α| = n/2 and |Cc
β| = (n − 2)/2.

Since χ(G) = n/2, we may assume c̄(Cc
α) = [n/2] and n/2 � Cc

β, say c̄(u) = n/2. Since
G is connected and dG(v) ≥ 2 for any v ∈ NG({x1, x2, x3}), we have NCc

β
(u)\{xβ} � ∅
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or {x1, xβ} ⊆ NG(u). Thus ρ(G) = 1, and by Proposition 2.1 we conclude that
esχ(G) = 1. �

4. On Problem 1.3

Obviously, when r = 2, the upper bound in (1.1) is attained if and only if the graph
in question is a complete bipartite graph in which the orders of its bipartition sets differ
by at most one. For an arbitrary r we have the following result.

THEOREM 4.1. Let G be a graph of order n and with r = χ(G).

(i) Suppose that n ≡ r − 1 (mod r) and esχ(G) = �n/r��n/r + 1�. Then for any
r-colouring (C1, . . . , Cr) of G, where |C1| ≤ · · · ≤ |Cr |,

(1) |C1| = �n/r� and |C2| = · · · = |Cr | = �n/r + 1�;
(2) if 2 ≤ i ≤ r, then G[C1 ∪ Ci] is a complete bipartite graph with bipartition

(C1, Ci);
(3) if v ∈ Ci and j ∈ [r]\{i}, then e(v, Cj) ≥ �n/r�.

(ii) Suppose that n � r − 1 (mod r) and esχ(G) = �n/r�2. Then for any r-colouring
(C1, . . . , Cr) of G, where |C1| ≤ · · · ≤ |Cr |,

(1) |C1| = |C2| = �n/r�;
(2) if |Ci| = �n/r�, v ∈ Ci and j ∈ [r]\{i}, then e(v, Cj) ≥ �n/r�;
(3) if |Ci| > �n/r�, then

∑
vs∈Ci
�s ≥ �n/r�2, where

�s = min{e(vs, Cj) : vs ∈ Ci, j ∈ [r]\{i}}.

PROOF. (i) Consider an r-colouring (C1, . . . , Cr) of G, where |C1| ≤ · · · ≤ |Cr |.
(1) Since n ≡ r − 1 (mod r), we have n = r�n/r� + r − 1. From here it was deduced

in the proof of [1, Theorem 2.1] that there exists at least one pair of colour classes, Ci
and Cj, i < j, such that |Ci| + |Cj| ≤ �n/r� + �n/r + 1�. Since esχ(G) = �n/r��n/r + 1�,
we have |Ci| = �n/r� and |Cj| = �n/r + 1�. Moreover, i = 1 and |Ck | ≥ �n/r + 1� for 2 ≤
k ≤ r, since otherwise esχ(G) ≤ |C1||C2| ≤ �n/r�2, a contradiction. Thus |C2| = · · · =
|Cr | = �n/r + 1� because n = r�n/r� + r − 1.

(2) and (3) Observe that G[C1 ∪ Ci] is a complete bipartite graph with bipartition
(C1, Ci) for any 2 ≤ i ≤ r, since otherwise esχ(G) ≤ |C1||Ci| ≤ �n/r��n/r + 1� − 1,
a contradiction. Therefore, e(v, Cj) ≥ �n/r� when v ∈ C1 or j = 1. If e(v, Cj) <
�n/r� for some v ∈ Ci and j ∈ [r]\{i} (i, j > 1), then by deleting the edge set
E(v, Cj) ∪ E(Ci\{v}, C1), we get an (r − 1)-colouring with the colour class set
{C1 ∪ (Ci\{v}), C2, . . . , Cj ∪ {v}, . . . , Cr}\{Ci}. Notice that |E(v, Cj) ∪ E(Ci\{v}, C1)| <
�n/r��n/r + 1�. Thus esχ(G) < �n/r��n/r + 1�, a contradiction.

(ii) Suppose n � r − 1 (mod r) and esχ(G) = �n/r�2. Consider an r-colouring
(C1, . . . , Cr) of G, where |C1| ≤ |C2| ≤ · · · ≤ |Cr |.

(1) By the proof of [1, Theorem 2.1], there exists at least one pair of colour
classes, Ci and Cj (i ≤ j), in which |Ci| + |Cj| ≤ 2�n/r�. Since esχ(G) = �n/r�2, we have
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|Ci| = |Cj| = �n/r�. Moveover, |Ck | ≥ �n/r� for 1 ≤ k ≤ r, since otherwise esχ(G) ≤
|C1||C2| < �n/r�2, a contradiction. Thus |C1| = |C2| = �n/r�.

(2) and (3) Suppose |Ci| = �n/r� and there exists some v ∈ Ci and j ∈ [r]\{i}
such that e(v, Cj) < �n/r�. We take a colour class Ck with �n/r� vertices, which is
different from Ci. This is possible because |C1| = |C2| = �n/r�. Note that k and j are not
necessarily distinct. We delete the edge set E(v, Cj) ∪ E(Ci\{v}, Ck) and get an(r − 1)-
colouring with colour class set {C1, . . . , Ck ∪ (Ci\{v}), . . . , Cj ∪ {v}, . . . , Cr}\{Ci}.
Notice that |E(v, Cj) ∪ E(Ci\{v}, Ck)| < �n/r�2. Thus esχ(G) < �n/r�2, a contradiction.

Suppose |Ci| > �n/r� and
∑

vs∈Ci
�s < �n/r�2, where �s is defined as in the statement

of the theorem. Let Cs be one of the corresponding colour classes when �s is taken for
vs. Then for any vs ∈ Ci, we delete the edge set E(vs, Cs) and get an (r − 1)-colouring
by putting vs in Cs. Thus esχ(G) < �n/r�2, a contradiction. �

Recall that a graph colouring (C1, . . . , Ck) is equitable [6] if ||Ci| − |Cj|| ≤ 1 for all
i � j. Hence all the colourings from Theorem 4.1(i) are equitable, and consequently
the corresponding extremal graphs have the same chromatic number and the equitable
chromatic number. (See [7, 9] for a couple of recent investigations of the equitable
chromatic number.)

THEOREM 4.2. Let G be a graph of order n, where n ≡ 2 (mod 3) and with χ(G) = 3. If
any 3-colouring of G satisfies (1)–(3) of Theorem 4.1(i), then esχ(G) = �n/3��n/3 + 1�.

PROOF. Let c be a 3-colouring of G satisfying (1)–(3) of Theorem 4.1(i). Let
{i, j} = {2, 3}. For v ∈ Ci we may let e(v, Cj) = �n/3� (as adding edges to a graph
cannot decrease its χ-stability index). Since for any e ∈ E(G), e lies in exactly �n/3�
subgraphs K3, the graph G − e has at most �n/3� fewer subgraphs isomorphic to K3
than G. Let F ⊆ E(G) with |F| = �n/3��n/3 + 1� − 1. Then the graph G\F has at most
�n/3�(�n/3��n/3 + 1� − 1) fewer subgraphs K3 than G. But G has �n/3��n/3��n/3 + 1�
subgraphs K3, so that G\F has at least one subgraph K3 and consequently χ(G\F) = 3.
Hence, esχ(G) = �n/3��n/3 + 1�. �

Let G be a graph with n vertices and r = χ(G). Note that when r = 5 and n ≡
4 (mod 5), the conditions (1)–(3) in Theorem 4.1(i) are not sufficient. Let G12 be the
graph from Figure 2, and let G14 be obtained from G12 by adding two new vertices
u0 and v0 and connecting u0 and v0 to all vertices of G12. Then we have the following
result.

PROPOSITION 4.3. The graph G14 satisfies conditions (1)–(3) of Theorem 4.1(i), but
esχ(G14) < �n/r��n/r + 1� = 6.

PROOF. We first show that χ(G14) = 5. Let A = {a, b, c}, B = {u, v, w}, C = {1, 2, 3},
and D = {x, y, z}. We claim that χ(G14) = 5 and that G14 has a unique 5-colouring. By
means of a computer search (using SageMath), we found all independent sets of G14
with at least three vertices, A, B, C, D, {b, u, 1, z}, and each X ⊆ {b, u, 1, z} with |X| = 3.
So, if any three vertices of {b, u, 1, z} have the same colour under some proper colouring
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FIGURE 2. The graph G12. Colour available online.

c : V(G14)→ [k] of G14, then k ≥ 6. Thus χ(G14) = 5 and the unique 5-colouring has
colour classes {u0, v0}, A, B, C, D. Therefore, the graph G14 satisfies conditions (1)–(3)
of Theorem 4.1(i).

On the other hand, by deleting the edges cv, aw, 3y and 2x (coloured orange in
the figure), we can get a 4-colouring with colour classes {u0, v0}, {a, c, v, w}, {b, u, 1, z},
{2, 3, x, y}. Therefore, esχ(G14) ≤ 4. �
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