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In the last few decades several computing models using powerful tools from Nature have

been developed (because of this, they are known as bio-inspired models). Commonly, the

space-time trade-off method is used to develop efficient solutions to computationally

hard problems. According to this, implementation of such models (in biological,

electronic, or any other substrate) would provide a significant advance in the practical

resolution of hard problems. Membrane Computing is a young branch of Natural

Computing initiated by Gh. Păun at the end of 1998. It is inspired by the structure and

functioning of living cells, as well as from the organization of cells in tissues, organs,

and other higher order structures. The devices of this paradigm, called P systems or

membrane systems, constitute models for distributed, parallel and non-deterministic

computing. In this paper, a computational complexity theory within the framework of

Membrane Computing is introduced. Polynomial complexity classes associated with

different models of cell-like and tissue-like membrane systems are defined and the most

relevant results obtained so far are presented. Different borderlines between efficiency

and non-efficiency are shown, and many attractive characterizations of the P 6¼NP

conjecture within the framework of this bio-inspired and non-conventional computing

model are studied.

1. Introduction

The main objective of Computability Theory is to define the informal idea of mechanical/

algorithmic problems resolution in a rigorous way. Each formal definition of the said

concept provides a computing model. A basic question is to determine the class of all
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problems that can be solved by a computing model when using the algorithms defined

in it. In any computing model that captures the informal idea of an algorithm, there will

always be undecidable problems, that is, problems that cannot be solved by using the

algorithms of the model.

Analysing an algorithm that solves a problem consists of determining an upper bound

for the minimal resource requirements with which the problem can be solved. One of the

main goals of Complexity Theory is the study of the resources required for solving

problems, and to provide tools allowing one to classify the problems with respect to the

amount of resources needed for their resolution. These classes allow us to detect some of

the inherent difficulties to the computational resolution of some problems, and they

provide a classification of the abstract problems according to the resources they need to

be solved in a given model.

Membrane Computing is a branch of Natural Computing providing distributed,

parallel, synchronous and non-deterministic models of computation whose computa-

tional devices are called membrane systems. They are inspired by some basic biological

features of the living cells (their structure, organization and functioning), as well as from

the cooperation of cells in tissues, organs, and organisms. Membrane Computing was

selected by the Thomson Institute for Scientific Information as a fast Emerging Research

Front in computer science in 2003.

In this discipline there are basically two ways to consider computational devices:

cell-like membrane systems (P systems) and tissue-like membrane systems (tissue

P systems). The first one, using the biological membranes arranged hierarchically,

inspired from the structure of the cell, and the second one using the biological

membranes (called cells in this approach) placed in the nodes of a directed graph,

inspired from the cell inter–communication in tissues. The objective of this paper is

to introduce a Computational Complexity Theory in the framework of Membrane

Computing and to analyse the P versus NP problem from the new perspective provided

by this unconventional bio-inspired model of computing. We also present new frontiers

of the efficiency of Membrane Computing models, in the sense of determining their

capability to provide feasible solutions to hard problems. Each one of such borderlines

provides new tools to attack the aforementioned problem.

The paper is organized as follows. First, we introduce the basic concepts that will be

used throughout this paper. Next, we study the efficiency of different models of cell-like

membrane systems (Section 3) and tissue-like membrane systems (Section 4). Some

conclusions are presented in the final section.

2. Membrane Systems

A membrane system can be viewed as a finite set of basic units of processors (called

membranes in the case of cell-like approach and cells in the case of tissue-like) arranged

in an organised structure (a rooted tree in the case of cell-like and a directed graph in the

case of tissue-like) and delimiting regions able to contain multisets of objects (symbols

from a working alphabet G), which are abstractions of chemical substances. A finite

set R of rewriting rules, abstractions of chemical reactions, provides the dynamics of the
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system. There exists a double parallelism in the application of rules, once at the level of

each region (the rules are used in parallel) and once at the level of the system (all regions

evolve concomitantly). Different models of membrane systems can be considered

according to the syntax and the semantics of the rules used.

For cell-like systems the tree structure is explicitly included in their definition.

The root of the tree is called the skin membrane of the system, and the leaves of the tree

are called elementary membranes. However, in tissue-like systems the graph structure is

not explicitly given, it comes implicitly determined through some especial rules of

the system (communication rules). Every membrane system also has an associated

environment, which represents the region surrounding the system. In the case of

cell-like approach, it has a passive role, in the sense that it is initially empty and

only receives objects from the system through the root of the tree (the skin membrane).

On the other hand, in tissue-like systems, the environment is considered to have

initially an arbitrarily large number of copies of objects from a distinguished alphabet E,

contained within the working alphabet. Besides, the environment can interact with

any cell of the system, not only receiving objects but also sending objects inside the

cells. For this reason, the environment is considered as an additional region in tissue-

like approach.

A configuration at any instant of a membrane system is described by all multisets of

objects over the working alphabet, associated with all the processors (membranes or

cells) present in the system. In cell-like systems the current tree structure must be

considered, and in tissue P systems we also consider the multiset of objects from G\E

present in the environment at that moment. A configuration is a halting configuration if

no rule of the system is applicable to it. We can pass from the current configuration to

another one in one transition step by applying the rules from R. The objects to evolve in a

transition step and the rules by which they evolve are chosen in a non-deterministic and

maximally parallel manner: we assign objects to rules but in such a way that after this

assignation no further rule can be applied to the remaining objects.

A computation of the system is a (finite or infinite) sequence of configurations such

that: (a) the first term of the sequence is the initial configuration of the system; (b) each

remaining term is obtained from the previous configuration by applying rules of the

system; and (c) if the sequence is finite (called halting computation) then the last term of

the sequence must be a halting configuration.

Throughout this paper any membrane system has a distinguished alphabet, the input

alphabet S, contained in the working alphabet, G, which allows us to encode instances of

a problem. The idea is to impose that the initial multisets appearing in the definition

of the system can only contain objects from G\S, and an additional multiset over S,

encoding the instance to be solved, will be introduced into a distinguished (input) region/

processor before starting the computation. For each multiset m over the input alphabet

we have an initial configuration associated with it, obtained by adding m to the initial

multiset associated with the input region. It is worth pointing out that the answer

of a halting computation of a membrane system will be encoded by the contents of

the environment associated with the corresponding halting configuration, as it will be

explained below.
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2.1. Recognizer Membrane Systems

In order to study the computational efficiency of membrane systems, the notions from

classical Computational Complexity Theory are adapted for Membrane Computing, and

a special class of cell-like P systems was introduced in Ref. 1: recognizer P systems

(called accepting P systems in a previous paper2). The same idea was adapted for the

tissue-like case in Ref. 3, introducing recognizer tissue P systems.

A membrane system is a recognizer system if: (a) the working alphabet has two

distinguished objects yes and no, but in the case of tissue P systems, at least, one copy of

them is present in some initial multisets but none of them are present initially in the

environment; (b) all computations halt; and (c) for each computation of the system, either

object yes or object no (but not both) must have been released into the environment, and

only at the last step of the computation.

We say that a computation C of a recognizer membrane system is an accepting

computation (respectively, rejecting computation) if object yes (respectively, object no)

appears in the environment associated with the corresponding halting configuration of C,

and neither object yes nor object no appears in the environment associated with any

non–halting configuration of C.

2.2. Polynomial Complexity Classes of Membrane Systems

Let us recall that a decision problem is a pair (IX,QX) where IX is a language over a finite

alphabet (whose elements are called instances) and QX is a total Boolean function over

IX. Next, we define what solving a decision problem efficiently means in the framework

of membrane systems.

Definition 1. We say that a decision problem X5 (IX,QX) is solvable in polynomial

time by a family
Q

5 {P(n) | nAN} of recognizer membrane systems if the

following holds.

(1) The family
Q

is polynomially uniform by Turing machines, that is, there

exists a deterministic Turing machine working in polynomial time such that

on input 1n, constructs the system P(n).
(2) There exists a pair (cod; s) of polynomial-time computable functions over

IX such that:

(a) for each instance uAIX, s(u) is a natural number and cod(u) is an input

multiset of the system P(s(u));

(b) for each nAN, s21(n) is a finite set;

(c) the family
Q

is polynomially bounded with regard to (X; cod; s), that

is, there exists a polynomial function p, such that for each instance uAIX
every computation of P(s(u)) with input cod(u) is halting and it

performs at most p(|u|) steps;
(d) the family

Q
is sound with regard to (X; cod; s), that is, for each

instance uAIX, if there exists an accepting computation of P(s(u)) with

input cod(u), then QX(u)5 1;
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(e) the family
Q

is complete with regard to (X; cod; s), that is, for each

instance uAIX, if QX(u)5 1, then every computation of P(s(u)) with
input cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that every system

P(n) from the family is confluent, in the following sense: every computation of a system

P(s(u))1cod(u) processing an instance u of the problem must always give the same

answer.

Let us recall that an instance of a decision problem is accepted by a non-deterministic

Turing machine processing it, if there exists, at least, an accepting computation. Then,

the classical notion of acceptance is not a true algorithmic concept. Nevertheless, an

instance will be accepted by a membrane system processing it, if and only if each

computation of the system is an accepting computation. Thus, the presented definition of

acceptance by a membrane system substantially differs from the acceptance by a non-

deterministic Turing machine.

Let R be a class of recognizer membrane systems. We denote by PMCR the set of all

decision problems that can be solved in polynomial time by means of families of systems

from R. The class PMCR is closed under complement and polynomial–time reductions.2

3. Efficiency of Cell-like Membrane Systems

This section studies the computational efficiency of several models of cell-like mem-

brane systems, that is, their capability to solve computationally hard problems in an

efficient way. These variants are considered by using specific kind of rules and, also, by

adding new ingredients as electrical charges.

3.1. Basic Transition P Systems

Basic transition P systems are a kind of cell-like membrane systems whose membrane

structure does not grow, that is, there are no rules that produce new membranes in the

system.

First of all, in order to formally define what it means that a family of membrane

systems simulates a Turing machine in an efficient way, we shall introduce for each

Turing machine a decision problem associated with it.

Definition 2. Let M be a deterministic Turing machine with input alphabet SM.

The decision problem associated with M is the problem XM 5 (IM; QM), where

IM 5 SM
*, and for every uASM

*, QM(u)5 1 if and only if M accepts u.

Obviously, the decision problem XM is solvable by the Turing machine M.

Definition 3. Let R be a class of recognizer membrane systems. We say that a

deterministic Turing machine M is simulated in polynomial time by a family of

systems from R if XMAPMCR.

A basic transition P system is a cell-like membrane system whose rules are of the

following form: [u-v]h, u[ ]h-[v]h, [u]h-[ ]h v, and [u]h-v, where h is the label of a
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membrane and u,v are multisets over the working alphabet. These rules do not increase

the size of the membrane structure, but the application of a rule of the last type decreases

the number of membranes. We denote by T the class of recognizer basic transition

P systems.

In Ref. 4 an efficient simulation of deterministic Turing machines by recognizer basic

transition P systems was given. Thus, we have the following result.

Proposition 1. (Sevilla theorem)

Every deterministic Turing machine working in polynomial time can be simulated

in polynomial time by a family of recognizer basic transition P systems.

It was also proved that each confluent basic transition P system can be (efficiently)

simulated by a deterministic Turing machine.4 As a consequence, these membrane

systems efficiently solve at most tractable problems. Therefore, we have the following.

Proposition 2. If a decision problem is solvable in polynomial time by a family of

recognizer basic transition P systems, then there exists a deterministic Turing

machine solving it in polynomial time.

From Proposition 1 and Proposition 2 we deduce the following result.

Theorem 1. P5PMCT.

Thus, the ability of a basic transition P system to create exponential workspace (in

terms of number of objects) in polynomial time (e.g. via rules of the type [a-a2]h) is not
enough to efficiently solve NP–complete problems (assuming that P 6¼NP).

Theorem 1 provides a tool to attack conjecture P 6¼NP in the framework of Mem-

brane Computing.

Corollary 1. P 6¼NP if and only if every, or at least one, NP-complete problem

cannot be solved in polynomial time by families of basic transition P systems.

3.2. P Systems with Active Membranes

Replication is one of the most important functions of a cell and, in ideal circumstances, a

cell produces two identical copies by division. Mitosis is an elegant process of cell

division that results in the production of two daughter cells from a single parent cell.

Daughter cells are identical to one another and to the original parent cell. Through a

sequence of steps, the replicated genetic material in a parent cell is equally distributed to

two daughter cells. While there are some subtle differences, mitosis is remarkably similar

across organisms. Bearing in mind that the reactions that take place in a cell are related to

membranes, rules for membrane division are considered.

P systems with active membranes were first introduced by Gh. Păun.5 This kind of

cell-like membrane systems has electrical charges associated with membranes, which can

be modified by the application of some rules (although labels always remain unchanged).

They do not use cooperation, and they incorporate membrane division rules.
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The rules of a P system with active membranes are of the following forms:

(a) ½a! u�ah (object evolution rules).

(b) a½�a1h ! ½b�
a2
h (send-in communication rules).

(c) ½a�a1h ! ½�
a2
h b (send-out communication rules).

(d) ½a�ah! b (dissolution rules).

(e) ½a�a1h ! ½b�
a2
h ½c�

a3
h (division rules for elementary membranes).

(f) ½½�a1h1½�
a2
h2�

a
h ! ½½�

a3
h1�

b
h ½½�

a4
h2�

g
h (division rules for non–elementary membranes).

where a,b,c are objects, u is a multiset of objects, and a; b; g; a1; a2; a3; a4 are electrical

charges from the set {1,0,2}.

The rules of a P system with active membranes are applied according to the following

principles (see Ref. 5 for details).

> The rules associated with membranes labelled by h are used for all copies of

this membrane. At one step, a membrane can be the subject of only one rule

of types (b)–(f).
> All the rules are applied in parallel and in a maximal manner. In one step, one

object of a membrane can be used by only one rule (chosen in a non-

deterministic way), but any object that can evolve by one rule of any form,

must evolve, with the restriction just mentioned above.
> If a membrane is dissolved, its contents (multiset and internal membranes) are

left free in the surrounding region, or in the nearest non-dissolved ancestor.

The skin membrane cannot be dissolved.
> If at the same time a membrane labelled by h is divided by a rule of type (e)

and there are objects in this membrane that evolve by means of rules of

type (a), then we suppose that first the evolution rules of type (a) are used,

and then the division is produced. Of course, this process takes only one step.

Analogously for rules of type (f). The skin membrane cannot be divided.

Let us denote by AM the class of recognizer P systems with active membranes, and let

NAM be the class of recognizer P systems with active membranes that do not make use of

division rules.

In the framework of cell-like membrane systems, confluent recognizer P systems with

active membranes making use of no division rule, can be efficiently simulated by a

deterministic Turing machine. This can be shown by adapting the proof of the following

result, given in Ref. 6.

Proposition 3. (Milano theorem.) A deterministic P system with active membranes

but without membrane division can be simulated by a deterministic Turing machine

with a polynomial slowdown.

As a consequence of the previous result, the following holds.

Corollary 2. PMCNAM D P.

In Ref. 7, a simple proof of each tractable problem being solvable by a family of

recognizer P systems with active membranes (without polarizations) operating in exactly
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one step and using only send-out communication rules, has been provided. Thus, we

have the following.

Proposition 4. P D PMCNAM.

From Corollary 2 and Proposition 4 we deduce the following result.

Proposition 4. P5PMCNAM.

Let us notice that Theorem 2 can be considered as a version of Theorem 1 for the

class NAM.

Remark 1. In the framework of P systems with active membranes, the use or not of

the division rules provides a borderline for the tractability of decision problems,

assuming that P 6¼NP, that is, by using division rules we can solve NP-complete
problems in polynomial time, but without division rules only problems in P can be

solved in an efficient way.

We denote by AM(1n) (respectively, AM(–n)) the class of recognizer P systems with

active membranes using division rules for elementary and non–elementary membranes

(respectively, only for elementary membranes).

In the framework of AM(–n), efficient solutions to weakly NP–complete problems

(Knapsack,8 Subset Sum,9 Partition10), and strongly NP–complete problems (SAT,2

Clique,11 Bin Packing,12 Common Algorithmic Problem13) have been given. In parti-

cular, the following.

Proposition 5. SATAPMCAM(2n).

Since PMCR is closed under complement and polynomial-time reductions, for any

class R of recognizer membrane systems, the following result holds.

Proposition 6. NP [ co-NPDPMCAM(2n).

In the framework of AM(1n) it has been shown14 that the QBF-SAT problem can be

solved in a linear time by a family of recognizer P systems with active membranes

(without using dissolution rules) and using division rules for elementary and non-

elementary membranes. Thus, we have the following result.

Proposition 7. PSPACEDPMCAM(1n).

In Ref. 15, a (deterministic and efficient) algorithm simulating a single computation of

any confluent recognizer P system with active membranes, has been described. Such

P systems can be simulated by a deterministic Turing machine working with exponential

space, and spending a time of the order O(2p(n)), for some polynomial p(n). Thus, we

have PMCAM(1n)DEXP, and hence we have the following.

Proposition 8. PSPACE D PMCAM(1n) D EXP.

Previous results show that the usual framework of P systems with active membranes

for solving decision problems is too powerful from the computational complexity point
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of view. Therefore, it would be interesting to investigate weaker models of P systems

with active membranes able to characterize classical complexity classes below NP and

providing borderlines between efficiency and non–efficiency.

3.3. Polarizationless P Systems with Active Membranes

In this kind of P system with active membranes, the membranes of the system have no

electrical charges. We denote AM0(a,b) as the class of all recognizer polarizationless

P systems with active membranes such that: (a) if a 5 1d (respectively, a 5 –d)

then dissolution rules are permitted (respectively, forbidden); and (b) if b 5 1n
(respectively, –n) then division rules for elementary and non–elementary membranes

(respectively, only for elementary membranes) are permitted.

At the beginning of 2005, Gh. Păun (problem F from Ref. 16) wrote:

My favorite question (related to complexity aspects in P systems with active membranes
and with electrical charges) is that about the number of polarizations. Can the polar-
izations be completely avoided? The feeling is that this is not possible – and such a result
would be rather sound: passing from no polarization to two polarizations amounts to
passing from non–efficiency to efficiency.

This so-called Păun’s conjecture can be formally formulated in terms of membrane

computing complexity classes as follows: P5PMCAM0(1d,2n).

Let P be a recognizer polarizationless P system with active membranes that do not

make use of dissolution rules. A directed graph (called a dependency graph) can be

associated with P verifying the following property: every accepting computation of P is

characterized by the existence of a path in the graph between two distinguished nodes.

Based on this concept and by using the tractability of the reachability problem, the
following result has been proved.17

Theorem 3. P5PMCAM0(2d,2n) 5PMCAM0(2d,1n)

Thus, polarizationless P systems with active membranes that do not make use of dis-

solution rules cannot solve NP-complete problems in polynomial time (unless P5NP).
This result can be considered as a partial affirmative answer to the Păun’s conjecture.

Let us now consider polarizationless P systems with active membranes making use of

dissolution rules. Will it be possible to solve NP-complete problems in that framework?

Several authors17,18 gave a positive answer when division for non-elementary mem-

branes are allowed. The mentioned papers provide solutions in a linear time to SAT and

Subset Sum problems, respectively. Thus, we have the following result.

Theorem 4. NP [ co-NPDPMCAM0(1d,1n).

As a consequence of Theorem 4, a partial negative answer to Păun’s conjecture is

given: assuming that P 6¼NP and making use of dissolution rules and division rules

for elementary and non-elementary membranes, computationally hard problems can be

efficiently solved avoiding polarizations. The answer is partial because efficient resolv-

ability of NP–complete problems by polarizationless P systems with active membranes

making use of dissolution rules and division only for elementary membranes is unknown.
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Remark 2. In the framework of polarizationless P systems with active membranes,

the use or not of the dissolution rules provides a borderline for the tractability of

decision problems, assuming that P 6¼NP, that is, in the framework AM0(1n) by

using dissolution rules we can solve NP–complete problems in polynomial time,

but without dissolution rules only problems in P can be solved in an efficient way.

4. Efficiency of Tissue–like Membrane Systems

In this section, we study the efficiency of different models of tissue-like membrane

systems. These variants are considered by using specific kind of rules. The basic one

only considers communication rules but we also analyse tissue P systems where division

or separation rules are also permitted.

4.1. Basic Tissue P Systems

Basic tissue P systems are characterized by the fact that they use only communication

rules, that is, rules of the symport/antiport type: (i,u/v,j), where i,j are different regions of
the system (one of which might be the environment) and u,v are multisets of objects not

simultaneously empty. These rules provide one or two arcs according to the following:

one arc from region i to region j (if u is nonempty), and another arc from region j to

region i (if v is nonempty). When applying a rule (i,u/v,j), the objects of the multiset

represented by u are transferred from region i to region j and, simultaneously, the objects

of multiset v are sent from region j to region i in exchange. The length of the communi-

cation rule (i,u/v,j) is the total sum of objects that appear in multisets u and v.

We denote by TC the class of all recognizer basic tissue P systems. In Ref. 19 it was

shown that every family of recognizer basic tissue P systems, which solves a decision

problem, can be efficiently simulated by a family of recognizer basic transition P systems

solving the same problem. Then, we have the following result.

Theorem 5. P5PMCTC

That is, basic tissue P system models are non-efficient in the sense that only problems

in P can be solved by this kind of membrane systems in polynomial time, assuming that

P 6¼NP.

4.2. Tissue P Systems with Cell Division

In tissue P systems with cell division, the rules of the system are communication rules

and cell division rules, which are of the form [a]i-[b]i[c]i. When applying this rule,

under the influence of object a, the cell with label i is divided into two cells with the same

label; in the first copy, object a is replaced by object b, in the second one, object a is

replaced by object c; all the other objects are replicated and copies of them are placed in

the two new cells.

The rules of a tissue P system with cell division are applied in a non-deterministic

maximally parallel manner as it is customary in Membrane Computing, with the

following important remark: if a cell divides, only the division rule is applied to that cell

at that step; the objects inside that cell do not evolve by means of communication rules.
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In other words, we can think that before division a cell interrupts all its communication

channels with the other cells and with the environment. The new cells resulting

from division will only interact with other cells or with the environment at the next

step – providing they do not divide once again. The label of a cell identifies the rules that

can be applied to it precisely.

For each natural number kZ 1, we denote by TDC(k) the class of recognizer tissue

P systems with cell division such that each communication rule of the system has a

length at most k.
By using the concept of a dependency graph associated with tissue P systems with

cell division and communication rules with length at most 1, it has been proved that this

kind of membrane system can only efficiently solve tractable problems (see Ref. 20

for details). Thus, the following holds.

Theorem 6. P5PMCTDC(1).

In Ref. 21, a polynomial–time solution of the HAM-CYCLE problem was given by

using a family of recognizer tissue P systems with cell division and communication rules

of length at most 2. Therefore, we have the following.

Proposition 9. NP[ co-NPDPMCTDC(2).

Remark 3.From Theorem 6 and Proposition 9, we deduce that in the framework of

recognizer tissue P systems with cell division, the length of the communication

rules provides a borderline of the tractability of decision problems. Specifically,

passing from length 1 to length 2 amounts to passing from non–efficiency to

efficiency, assuming that P 6¼NP. Moreover, another frontier is obtained when we

add cell division rules in basic tissue P systems.

4.3. Tissue P Systems with Cell Separation

The biological inspiration of tissue P systems with cell separation is the following: alive

tissues are not static network of cells, since new cells are generated by membrane fission

in a natural way. In this kind of tissue P system, the rules of the system are commu-

nication rules and separation rules. A separation rule is of the form [a]i-[G1]i[G2]i,
being {G1,G2} a fixed partition of the working alphabet associated with the system. This

rule is applicable to cell i if object a is contained in that cell. When applying such a

separation rule, in reaction with an object a, the cell i is separated into two cells with

the same label; at the same time, object a is consumed; while the rest of the contents of

the cell are distributed as follows: objects from G1 are placed in the first cell, and those

from G2 are placed in the second cell; the output cell iout cannot be separated.

The rules are used in a non-deterministic maximally parallel manner, with a restriction:

when a cell is separated, the separation rule is the only one that is applied for that cell at that

step; thus, the objects inside that cell do not evolve by means of communication rules.

For each natural number kZ 1, we denote by TSC(k) the class of recognizer tissue

P systems with cell separation such that each communication rule of the system has a

length at most k.

28 Mario J. Pérez-Jiménez
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By using the concept of dependency graph associated with tissue P systems with cell

separation and communication rules with length at most 1, it has been proved that this

kind of membrane systems can only efficiently solve tractable problems (see Ref. 22 for

details). This result has been extended to tissue P systems with cell separation and

communication rules with length at most two23 through an algorithmic method. Then, we

have the following result.

Theorem 7. P5PMCTSC(2).

Remark 4. From Proposition 9 and Theorem 7 we deduce that the use of cell

division rules instead of cell separation rules in tissue P systems with commu-

nication rules with length at most 2, provides efficient computing models.

In Ref. 24, a polynomial–time solution of the SAT problem was given by using a

family of recognizer tissue P systems with cell separation and communication rules of

length at most 3. Thus, we have the following result.

Proposition 10. NP[ co-NPDPMCTSC(3).

Remark 5. From Theorem 7 and Proposition 10, we deduce that in the framework

of recognizer tissue P systems with cell separation the length of the communication

rules provides a borderline of the tractability of decision problems. Specifically,

passing from length 2 to length 3 amounts to passing from non-efficiency to

efficiency, assuming that P 6¼NP. Moreover, another frontier is obtained by adding

separation rules to basic tissue P systems.

4.4. Tissue P Systems without Environment

Classical tissue P systems with cell division have a special alphabet whose elements

initially appear in an arbitrary large number of copies. These objects are shared in a

distinguished place of the system, called the environment. This property is not so nice

from the complexity point of view. In this section we deal with tissue-like membrane

systems where there is not an environment having the property mentioned above. Spe-

cifically, we analyse the role played by the environment in tissue-like membrane systems

where division or separation rules are considered.

A tissue P system without environment is a tissue P system such that the alphabet of

the environment is an empty set. For each natural number kZ 1, we denote by TDCðkÞ
(respectively, TSCðkÞ) the class of recognizer tissue P systems with cell division

(respectively, with cell separation), with communication rules of length at most k, and
without environment.

In Ref. 25, it is shown that every family P of tissue P systems with cell

division solving a decision problem can be simulated by a family P0 of tissue P systems

with cell division and without environment, in an efficient way. Moreover, the upper

bound of the length of communication rules of the systems from P is equal to the

maximum length of communication rules of the system from P0. That is, we have the

following result.
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Theorem 8. For each kZ 1 we have PMCTDCðkÞ ¼ PMC TDCðkÞ:

From this theorem we deduce that the environment is not relevant for the efficiency of

tissue P systems with cell division. That is, for each polynomial–time solution of a

decision problem X in TDC(k) we can construct a family of systems from TDCðkÞ

solving X in polynomial time. Moreover, the proof of the previous theorem provides a

method to construct such a family.

Concerning the role of the environment in tissue P systems with cell separation, in

Ref. 26 it is shown that only tractable problems can be solved efficiently by using tissue

P systems with communication rules, separation rules and without environment. That is,

the following holds.

Theorem 9. For each kZ 1 we have PMC TSCðkÞ ¼ P.

From this theorem we deduce that the environment is relevant for the efficiency of tissue

P systems with cell separation.

Remark 6. From Theorem 9 and Proposition 10, we deduce that in the framework

of recognizer tissue P systems with cell separation and communication rules with length

at most 3, passing from having an environment to not having it amounts to passing from

efficiency to non-efficiency, assuming that P 6¼NP.

Remark 7. Bearing in mind that NP-complete problems can be efficiently solved

by using tissue P systems with cell division and without environment, we deduce

that in the framework of tissue P systems without environment, the kind of rules

(separation versus division) provides a new frontier of the tractability of decision

problems, assuming that P 6¼NP.

5. Conclusions

In this paper, a computational complexity in the membrane computing field has been

presented. Assuming that P 6¼NP, different boundaries of the efficiency have been

described in terms of syntactical ingredients of membrane systems. Each of them provide

new tools to attack the P 6¼NP conjecture. Specifically, in the framework of membrane

systems, the following ingredients provide new borderlines of the efficiency of com-

puting models.

> The use of division rules in P systems with active membranes.
> The use of dissolution rules in polarizationless P systems with active

membranes.
> The length of communication rules (passing from 1 to 2) in tissue P systems

with cell division.
> The length of communication rules (passing from 2 to 3) in tissue P systems

with cell separation.
> The use of cell division (or cell separation) rules in basic tissue P systems.
> The use of the environment in tissue P systems with cell separation.
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It is worth highlighting that each one of the frontiers just mentioned can be seen as a

new tool to attack the P versus NP conjecture, in the sense indicated in Corollary 1.
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Characterizing tractability by tissue-like P systems. Lecture Notes in Computer
Science, 5957, pp. 289–300.
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