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Efficient solution-adaptive simulations are conducted by a Cartesian cut-cell method
to analyse the flow field of prolate ellipsoids in uniform flow. The parameter space
defined by Reynolds numbers 1 ≤ Re ≤ 100, aspect ratios 1 ≤ β ≤ 8 and inclination
angles 0◦ ≤ φ ≤ 90◦ is covered by approximately 4400 simulations. Flow visualizations
and skin friction distributions are presented for selected configurations. Aspect ratios
1 ≤ β � 3 are identified as transitional geometries to fibres. For β � 3, the flow topology
is qualitatively unaffected by higher aspect ratios. If the major axis is aligned with the free
stream, i.e. φ = 0◦, the ellipsoids are slender bodies, whereas for φ = 90◦ a bluff body
flow is observed. Conditions for the onset of flow separation are reported. The data base is
used to determine correlations for drag, lift and torque. The correlations are incorporated
into dynamic equations for ellipsoidal Lagrangian models and limitations are discussed.

Key words: multiphase flow, particle/fluid flow

1. Introduction

Due to a wide variety of applications in natural and technical environments, flow
suspensions laden with rigid particles are frequently studied. The most popular numerical
method to analyse particle-laden flows is the point-particle method, in which the motion
of the particles is approximated via empirical expressions. For heavy rigid particles,
these expressions are mostly reduced to the drag force. In the case of spherical particles,
a huge data base and an established ‘standard drag curve’ are available (Clift, Grace
& Weber 2005). To the best of the authors’ knowledge, such a data base is missing
for non-spherical particles. Even if an anisotropic shape is approximated by ellipsoidal
geometries, existing ellipsoidal Lagrangian point-particle methods are largely restricted
to particle Reynolds numbers Re → 0 since fluid inertia effects are not taken into
account (Voth & Soldati 2017). Under creeping flow conditions, i.e. Re → 0, the forces
and torques acting on an ellipsoid in uniform flows and in shear flows are derived by
Oberbeck (1876) and Jeffery (1922). They have been frequently applied for turbulent flow
suspensions by e.g. Marchioli, Fantoni & Soldati (2010), Marchioli & Soldati (2013) and
Zhao et al. (2015). For Re > 0, however, the dynamic equations have to be corrected
by empirical correlations. A recent comparison between fully resolved simulations of
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isotropic turbulence laden with Kolmogorov length-scale size ellipsoidal particles and
ellipsoidal Lagrangian models showed significant deviations (Fröhlich et al. 2018). The
development of empirical correlations for the extension of ellipsoidal Lagrangian models
for Re > 0 is the motivation of this study.

The simple case of a uniform flow past a fixed ellipsoid is analysed, which is governed
by the Reynolds number Re, the orientation of the ellipsoid defined by the inclination angle
φ and the aspect ratio β. To obtain a large data base for the correlations, more than 4400
simulations are systematically performed. They cover the range 1 ≤ Re ≤ 100 for aspect
ratios 1 ≤ β ≤ 8 and inclination angles 0◦ ≤ φ ≤ 90◦. Such aspect ratios are reported, e.g.
for pulverized biomass combustion (Panahi et al. 2017). In contrast to uniform flows past
a sphere, where a quite complete picture of the flow field exists (Johnson & Patel 1999),
very little is known for the studied parameter space. Therefore, the statistical analysis of
the drag and torque acting on the ellipsoids is further supported by flow visualizations,
which provide a first intuition for the development of correlations.

The literature on uniform flows past ellipsoids is reviewed next. Furthermore, the most
recent developments of correlations are analysed.

1.1. Prolate ellipsoids in uniform flows
For the studied Reynolds number range, it can be expected that finite fluid inertia effects
can be observed even for the lowest Reynolds numbers. For increasing Re and φ, separation
will dominate the flow topology. Therefore, uniform flow past a fixed prolate ellipsoid
has served for decades as a generic set-up to study bluff body separation. A general
concept for three-dimensional flow separation has been described by Maskell (1955).
Characteristic curves are identified to describe limiting streamlines, i.e. streamlines which
pass infinitely close to the geometry. An analysis of the limiting streamlines yields two
types of separation. A bubble separation can be observed, if a portion of the fluid is isolated
and the representing streamlines are closed. A prominent example for a bubble separation
is the wake of a sphere at moderate Re which is visualized in figure 1(a). At Re = 100,
an attached separated flow region is formed. Stream tracers injected in this region do not
depart into the free stream and form a closed curve, whereas stream tracers injected in the
free stream pass the sphere and do not enter the separated flow region. On the other hand,
if the flow separates from the body and the defining streamlines start and end at infinity
upstream and downstream, the separation is identified as a free-vortex layer. A free-vortex
layer is visualized in figures 1(b) and 1(c) for an inclined spheroid with β = 6, Re = 100
and φ = 45◦. Figure 1(b) shows the limiting streamlines on the lee side of the spheroid
which are approximated via stream tracers injected close to the spheroid. Upon departure
from the body the stream tracers are made transparent. The side view in figure 1(c) shows
the full streamlines which start and end in the free stream. This classification is adopted
and extended by Wang (1972, 1974) for bodies of revolution and the bubble-type separation
is termed closed-type separation and the free-vortex layer open-type separation. Although
the identification of flow separation in uniform flows past a spheroid still remains intricate,
some systematic experimental parameter studies are available, e.g. Han & Patel (1979)
and Wang et al. (1990), in which flow visualizations and surface flow patterns support
the classification. Later, the analysis of uniform flow past inclined spheroids has been
extended by three-dimensional measurements and computations, e.g. in Fu et al. (1994),
Chesnakas, Taylor & Simpson (1997) and Jiang et al. (2016). Due to a different motivation,
e.g. aircraft and underwater vehicles, these studies considered Reynolds numbers which
are several orders of magnitude higher than in this study. However, since the definitions of
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(b)(a) (c)

FIGURE 1. Bubble, i.e. closed-type, separation observed for uniform flow past a sphere at
Re = 100 (a); lee side of an inclined ellipsoid in a free-stream uniform flow (b). Limiting
streamlines are visualized by injecting stream tracers in the separated flow region, which are
made transparent when they depart from the body. The flank of the ellipsoid is presented in
(c) with a free-vortex layer, i.e. an open-type separation, which is formed by the same stream
tracers as in (b).

closed-type and open-type separation are quite general, they will be used to describe the
topology of separation even at much lower Reynolds number.

Reynolds numbers within the range 50 ≤ Re ≤ 300 have been considered for β = 6
and φ = 90◦ by El Khoury, Andersson & Pettersen (2012) to study the transition of
steady mirror-symmetric flow to unstable separation with vortex shedding. The findings
are extended by the φ = 45◦ case in Jiang, Gallardo & Andersson (2014) for Re = 50,
200, and 1000. However, a complete and systematic description of the flow field for
1 ≤ Re ≤ 100 does not exist in the literature. For instance, no information is available
on the onset of separation for spheroids, while a vast literature base can be found for
spheres in, e.g. Johnson & Patel (1999) and Clift et al. (2005). Although fully resolved
simulations for turbulent flows laden with ellipsoidal particles are conducted in Ardekani
& Brandt (2019), Fröhlich et al. (2019) and Schneiders et al. (2019), where particle
Reynolds numbers in the range 1 ≤ Re ≤ 100 occurred, no reference solutions exist for
the much simpler case of free-stream steady uniform flow. Therefore, flow visualizations
are presented in this contribution to evidence the onset of separation for the analysed
configurations.

1.2. Forces and torques acting on fixed spheroids
For the entire parameter space, the flow is steady and mirror symmetric such that
two orientation-dependent coefficients are sufficient to capture the forces acting on the
ellipsoid, i.e.

CD,φ = FD

1
2
ρu2∞

πd2
eq

4

, CL,φ = FL

1
2
ρu2∞

πd2
eq

4

, (1.1a,b)

with the drag and lift forces FD and FL, the free-stream velocity u∞ and the fluid
density ρ. Although other definitions are possible, the coefficients as well as the
Reynolds number, i.e. Re = ρu∞deq/μ with the dynamic viscosity μ, are defined using
the volume-equivalent diameter deq. This definition is consistent with the most recent
efforts to model the forces and torques via empirical correlation functions by Zastawny
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FIGURE 2. Comparison of the drag correction function fd,φ for φ = 0◦ and φ = 90◦ (a) and the
torque coefficient at an inclination angle φ = 45◦ (b). The data of the present simulations are
shown as points and compared to correlations of Zastawny et al. (2012), Ouchene et al. (2016)
and Sanjeevi et al. (2018) for β = 2.5. Additional data points are included in (b) for β = 2.0 and
3.0.

et al. (2012), Ouchene et al. (2016) and Sanjeevi, Kuipers & Padding (2018). Lately, the
functions by Ouchene et al. (2016) have been reformulated by Arcen et al. (2017). In
Ouchene et al. (2016), drag and lift force correlations are derived for 1 ≤ β ≤ 32 and
1 ≤ Re ≤ 240 using a commercial solver to generate the data. It was ensured that
the correlations converge to the analytical solutions for creeping flow conditions. An
immersed boundary method has been applied in Zastawny et al. (2012) to study four
non-spherical shapes including a disc, a fibre and ellipsoids with aspect ratios β = 1.25
and 2.5. For each geometry, empirical parameters have been individually generated
for 0.1 ≤ Re ≤ 300. Lattice Boltzmann computations have been conducted in Sanjeevi
et al. (2018) for oblate ellipsoids with β = 0.4, prolate ellipsoids with β = 2.5 and a
spherocylinder with β = 4. As in Zastawny et al. (2012), empirical parameters have
been individually generated for each geometry whereas a larger Reynolds number range
0.1 ≤ Re ≤ 2000 has been analysed. The full correlations of Ouchene et al. (2016) as well
as the correlations of Zastawny et al. (2012) and Sanjeevi et al. (2018) for the case β = 2.5
are summarized in appendix A.

Following successful drag models for spheres with Re < 1000 (Clift et al. 2005), an
orientation-dependent drag correction function fd,φ is introduced in this study to compare
the correlations with

fd,φ(Re, β) = CD,φ/CD,Stokes,φ, (1.2)

where CD,Stokes,φ denotes the analytical drag coefficient for creeping flow conditions. The
drag correction function is compared with the correlations of Zastawny et al. (2012),
Ouchene et al. (2016) and Sanjeevi et al. (2018) in figure 2(a) for β = 2.5, φ = 0◦ and
β = 2.5, φ = 90◦ for 1 ≤ Re ≤ 100. The data points represent the current results of
the simulations. A good agreement between the correlation of Sanjeevi et al. (2018) and
the simulation data can be observed, whereas significant deviations can be observed for
the correlations of Zastawny et al. (2012) and Ouchene et al. (2016). That is, available drag
correlations are not as converged as for a sphere. This observation is in agreement with a
more complete assessment of existing drag correlations presented by Andersson & Jiang
(2019), where correlations of Hölzer & Sommerfeld (2008) and Ouchene et al. (2016) are
compared against their results of a direct-forcing immersed boundary method.
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Correlations for inclined ellipsoids 901 A5-5

For Re → 0, analytical solutions of the flow field are available. The forces and torques
acting on spheroids are summarized in Happel & Brenner (2012). For finite but low
Reynolds numbers, i.e. 0 < Re � 1, fluid inertia corrections are proposed by Dabade,
Marath & Subramanian (2015) which include an additional torque component. If the major
axis of the ellipsoid and the free-stream velocity are neither aligned nor perpendicular, i.e.
for 0◦ < φ < 90◦, the ellipsoid is subject to a pitching torque TP which rotates the ellipsoid
towards the most stable orientation φ = 90◦. Even for such low Reynolds numbers, it is
estimated that the pitching contributions can dominate the torque due to fluid velocity
gradients (Sheikh et al. 2020). Although comparable analytical results are not reliable for
higher Reynolds numbers (Clift et al. 2005), the pitching torque should be included in
correlations for ellipsoidal dynamics. The corresponding orientation-dependent pitching
torque coefficient is defined as

CT,φ = TP

1
2
ρu2∞

πd3
eq

8

. (1.3)

Additionally to drag and lift correlations, pitching torque correlations are proposed by
Zastawny et al. (2012), Ouchene et al. (2016) and Sanjeevi et al. (2018). Figure 2(b)
shows a comparison of the torque correlations for β = 2.5 and φ = 45◦, where points
represent the results of the simulations for β = 2, β = 2.5 and β = 3. As for the
drag correction function, significant deviations can be observed between the correlation
functions proposed in the literature, whereas the correlation function of Sanjeevi et al.
(2018) shows minor deviations compared to the current results.

The deviations between the recently proposed correlations are expected to be due to the
challenging resolution requirements and the large parameter space of the relatively simple
set-up. That is, the sharp edges of the elongated ellipsoidal shape have to be accurately
resolved in a large numerical domain to reduce the impact of the outer boundaries
especially for low Reynolds numbers. The simulation data indicate a high sensitivity with
respect to the aspect ratio. Therefore, a single aspect ratio is not sufficient for an accurate
and general ellipsoidal Lagrangian model. Furthermore, a dense coverage of the parameter
space is required for accurate correlations.

This compact state-of-the-art discussion does motivate the current study, which has
the following structure. Next, the numerical method is described and briefly validated.
The results are divided into two parts and presented thereafter. First, the topology of
the flow field is described for distinctive configurations. Second, the correlations are
derived using the generated data base. The subsequent discussion introduces implications
on ellipsoidal Lagrangian models and describes its limitations. Finally, the essential results
are summarized.

2. Numerical method

In this section, the numerical method is discussed. The mathematical models governing
the fluid motion and the hydrodynamic forces and torques acting at the material interface
are introduced. Then, the numerical schemes for the solution of the equation systems are
shortly described. A grid refinement study is provided and the results for a steady laminar
flow around a sphere are compared against reference results.
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2.1. Mathematical model
The conservation of mass, momentum and energy in a fixed control volume V is given by

d
dt

∫
V
ρ dV +

∮
∂V

[ρu] · n d A = 0, (2.1a)

d
dt

∫
V
ρu dV +

∮
∂V

[
ρuu + σ

] · n d A = 0, (2.1b)

d
dt

∫
V
ρE dV +

∮
∂V

[
ρEu + σ · u + q

] · n d A = 0, (2.1c)

with the density ρ, the velocity vector u, the total energy E, the stress tensor σ and the
outward-facing normal vector n of the control volume surface ∂V . For a Newtonian fluid
with vanishing bulk viscosity, the stress tensor is given by (Aris 2012)

σ = −2μS + 2
3
μ(∇ · u)I + pI, (2.2)

with the rate-of-strain tensor S = [∇u + (∇u)T]/2, the pressure p and the unit tensor I .
The dynamic viscosity μ and the thermal conductivity k are computed as a function of the
temperature T by Sutherland’s law (White 1991). The equations are closed by the ideal gas
equation and Fourier’s law for the heat conduction q.

The hydrodynamic force F and torque T exerted on a body immersed in the fluid are
given by the surface integrals

F =
∮
Γ

−σ · n d A, (2.3)

T =
∮
Γ

(x − r)× (−σ · n) d A, (2.4)

where x − r is the distance to the centre of mass, and Γ denotes the surface of the
ellipsoid.

2.2. Numerical set-up
Hierarchically refined Cartesian meshes are used to discretize the system of equations (2.1)
and a second-order-accurate finite-volume solver is applied, which has been described
and validated in a series of papers for compressible and nearly incompressible flows
(Hartmann, Meinke & Schröder 2008, 2011; Schneiders et al. 2013, 2016). The inviscid
fluxes are computed by an upwind-biased scheme and the numerical dissipation is reduced
by the reconstruction method of Thornber et al. (2008). A central scheme is used for
the viscous fluxes. The numerical integration is performed by a second-order-accurate
five-step Runge–Kutta scheme. The Mach number is Ma = 0.1 to achieve a larger
computational time step at negligible compressibility effects.

A sample configuration is depicted in figure 3, i.e. a prolate spheroid fixed in a uniform
flow field with the Reynolds number Re = 100, the aspect ratio β = 8 and the inclination
angle φ = 45◦. As in Hartmann et al. (2008), the computational effort is substantially
reduced by adaptive mesh refinement. A characteristic flow phenomenon or a combination
of flow phenomena, e.g. local total pressure or vorticity variation, define a sensor for
mesh refinement on the hierarchical grid. Mesh refinement and coarsening is controlled
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by minimum and maximum threshold values based on the statistical distribution of the
sensor in the flow field. Figure 3(a) shows the non-dimensional double contraction of the
strain rate S : S which is chosen as a sensor for mesh refinement. The strain rate is several
orders of magnitude higher in the boundary layers and the wake of the spheroid such that
it ideally suits as a sensor. The corresponding Cartesian mesh is shown in figure 3(c). Five
refinement steps are introduced to provide a fine resolution in regions with a high strain
rate and close to the spheroid geometry. Additionally to the strain-rate-based refinement,
a distance-based refinement is performed in the vicinity of the spheroid to provide smooth
refinement steps especially on the windward side of the spheroid. The geometry of the
spheroid is shown in figure 3(b). In this sample configuration, the spheroid is inclined by
φ = 45◦, where the inclination angle is measured between the major axis of the spheroid
and the inflow denoted by the free-stream velocity u∞. The coordinate system (x, y, z) of
the global frame is fixed at the spheroid centre of mass and a spheroid-fixed frame(x̂, ŷ, ẑ)
is introduced which is aligned with the principal axes of the spheroid. In the set-up
of this study, the y-axis is always aligned with the ŷ-axis. For the analysed cases, the
x-component of the force F acting on the spheroid represents the drag force FD whereas
the z-component is the lift force FL. The y-component of the torque T is the pitching
torque TP.

The geometry of the spheroids is sharply described by a signed-distance, i.e. a level-set,
function and discretized using a cut-cell method, which is ideally suited to simulate
flows over arbitrary geometries due to its high flexibility. A close-up view of the tip of
the spheroid in figure 3(d) reveals the sharp polygonal representation of the geometry.
Arbitrary small cut cells are stabilized by a flux-redistribution technique (Schneiders et al.
2016), and the force and the torque acting on the spheroid, i.e. (2.3) and (2.4), can directly
be evaluated via summation over all cut-cell surface segments. The deviations between the
surface area of the polygonal cut-cell representation and the analytical spheroid geometry
is approximately 0.1 % for this configuration.

The spheroid with β = 8 depicted in figure 3 represents the most challenging resolution
requirements of this study. The resolution is the final result of a grid refinement study,
which is presented in figure 4. The temporally converged results of the drag coefficient
CD, lift coefficient CL and torque coefficient CT are compared against a fine reference
computation with Δmin/deq = 1/128, with Δmin the width of the finest cells. The Reynolds
number Re = 2 defines a case where the viscous forces have a relatively high impact on
the coefficients, whereas the pressure forces possess a high contribution for Re = 100.
The absolute relative deviations ΔCD, ΔCL and ΔCT indicate a nearly second-order
convergence for both cases. The case Δmin/deq = 1/16 partially diverges from the
second-order behaviour which can be explained by the imperfect resolution of the ellipsoid
on such a coarse mesh. It goes without saying that the deviation between the surface area
of the polygonal representation of the ellipsoid and the corresponding analytical value
ΔAsurf converges with a perfect second-order behaviour. The resolution Δmin/deq = 1/48
is chosen for this study as a compromise between accuracy and computational effort. The
deviations of this case are listed in table 1 and the results are converged within approx.
2 %. Note that the resolution requirements are significantly enhanced by the complex
geometry of the spheroid and for the lift and torque coefficients. The spheroid centre
of mass is placed in a cuboid domain with the dimensions Lx ,Ly,Lz at the position
(0.25Lx , 0.5Ly, 0.5Lz), where the dimensions are scaled by deq. Free-stream values are
prescribed at the inflow and the lateral boundaries. A von Neumann boundary condition
is used in the outflow and a no-slip condition is imposed on the solid surface as
described in Schneiders et al. (2016). Especially for low Reynolds numbers, relatively large
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2 2
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(c) (d )

φ

FIGURE 3. Numerical set-up of the flow configuration; (a) shows the double contraction of
the strain rate S : S scaled by u2∞/d2

eq in the vicinity of an inclined prolate spheroid with β = 8,
Re = 100 and φ = 45◦; (b) introduces the coordinates (x, y, z) of the global reference frame with
the origin at the centre of mass of the fixed spheroid. The orientation of the spheroid is defined
by the inclination angle φ, and a spheroid fixed frame (x̂, ŷ, ẑ) is introduced. The spheroid is
represented by cut cells. The corresponding locally refined Cartesian grid is presented in (c).
A close-up view at the tip of the spheroid in (d) reveals a sharp polygonal approximation with
relatively few cells.
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FIGURE 4. Grid refinement study for the flow over a prolate spheroid with aspect ratio β = 8
inclined by φ = 45◦ at Re = 2 (a) and Re = 100 (b). A fine simulation with Δmin/deq = 1/128
serves as a reference for the absolute relative deviations of the drag, lift and torque coefficients
ΔCD, ΔCL and ΔCT . The surface area of an ellipsoid is chosen for the absolute relative deviation
of the polygonal surface area ΔAsurf . The second-order slope is defined by the solid line.
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Re = 2 Re = 100

ΔCD[%] ΔCL[%] ΔCT [%] ΔCD[%] ΔCL[%] ΔCT [%]

Δmin/deq = 1/48 0.43 1.51 1.01 0.21 0.88 1.82
Lx × Ly × Lz = 64 × 32 × 32 0.57 0.85 0.38 0.09 0.12 0.08
Lx × Ly × Lz = 96 × 48 × 48 0.17 0.25 0.14 0.02 0.03 0.03

TABLE 1. Grid refinement study for the flow over a prolate spheroid with aspect ratio β = 8
inclined by φ = 45◦ at Re = 2 and Re = 100. The upper row of the table shows the absolute
relative deviation of the drag, lift and torque coefficients for the chosen resolution compared
to reference results with Δmin/deq = 1/128. The two lower rows of the table show the results
for different domain sizes compared to a reference domain size Lx × Ly × Lz = 144 × 72 × 72,
where the domain size is scaled by the volume-equivalent diameter deq.
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FIGURE 5. Comparison of the drag correction function fd for a sphere (a); the classical
correlation of Schiller & Naumann (1933) (SN), the standard drag curve of Clift et al. (2005)
and the data of the simulations (points) are shown; (b) shows a comparison of the separation
angle θ between the model function of Clift et al. (2005) and the results of the simulations.

computational domains are required due to the dominating viscous stresses in the flow
field (Andersson & Jiang 2019). Different sizes of computational domains are compared
in table 1. The domain size Lx × Ly × Lz = 96 × 48 × 48 is used to ensure converged
coefficients. The deviations of the coefficients are less than 0.3 % if a symmetry boundary
condition is used on the lateral boundaries. Note that a uniform mesh with the smallest
cell width in the entire domain would yield about 24 billion cells, whereas the largest
adaptively refined mesh in this study contains less than 4 million cells.

As a further validation, the numerical set-up is used to simulate the laminar flow past a
sphere and the solutions are compared against reference results. Figure 5(a) shows the drag
correction function fd. An excellent agreement can be observed between the simulation
results and the piecewise defined standard drag curve of Clift et al. (2005), which was
obtained via regression of reviewed numerical and experimental results. A widely used
correlation proposed by Schiller & Naumann (1933) for a considerably larger Reynolds
number range, i.e. Re < 800, is included in the figure and shows only minor deviations.
For Re � 20, flow separation can be observed and an attached toroidal separation ring
is formed which grows with increasing Re. The corresponding separation angle θ , i.e.
the angle from the windward stagnation point to the separation is reported in Clift et al.
(2005) and compared in figure 5(b) with the current computational results. A remarkable
agreement can be observed.
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β 1.5, 2, 3, 4, 5, 6, 7, 8

Re 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100

φ
0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85, 90

TABLE 2. Parameter space with the aspect ratio β, the Reynolds number Re based on the
volume-equivalent diameter deq, and the inclination angle φ.

3. Results

In the following, the results of the parameter study are discussed. The parameters of
the cases considered in this study for the development of the correlations are reported
in table 2. Simulations for all combinations of the parameter space have been conducted
systematically such that more than 4400 data points are available for the regression of the
correlations. Next, selected configurations are visualized to identify main features of the
flow field. Thereafter, a map is introduced which quantitatively summarizes the findings
and illustrates the onset of flow separation. Finally, the correlation functions for the drag,
lift and torque are presented. The error of the correlations is assessed for the complete
parameter space using error maps.

3.1. Flow field visualizations
The identification and characterization of main flow features provide valuable information
for correlations. Such a characterization is, however, not straightforward even if the
complete flow field is available. Therefore, the flow field is visualized first, to obtain an
impression. The discussion of the visualized flow field of all performed simulations is,
however, not necessary. Only selected configurations which show the main characteristic
features of the flow fields of the parameter space are presented. In § 3.1.1, the
configurations with a fixed inclination angle of the spheroids φ = 45◦ and aspect ratios
β = 1.5, 3 and 6 are discussed for increasing Reynolds numbers. Then, the Reynolds
number Re = 100 is fixed in § 3.1.2 and the inclination angle is varied for the aspect
ratios β = 2 and 4. The discussion is based on the flow field visualizations presented in
figures 6 to 9. Figures 6 to 8(a,c,e), and 9 show the contour of the velocity component in
the x-direction u non-dimensionalized by the free-stream velocity u∞ in the symmetry
plane in grey scale. Additionally, stream tracers are injected close to the symmetry
plane to visualize the flow field in the vicinity of the spheroids and in the wakes. For
every simulated case, the flow is steady such that the pathline of the tracers is identical
to the streamlines. The pathlines are coloured by their local y-coordinate to indicate
three-dimensional features of the flow field. The surface of the spheroids is coloured by
the absolute value of the skin friction

τ surf = μ
∂u‖
∂nsurf

, (3.1)

with the wall-parallel component of the velocity u‖ = u − (u · n)n and the wall-normal
coordinate nsurf . Note that the viscous stress component of σ · n in (2.3) reduces to (3.1)
for fully incompressible flows. The skin friction is non-dimensionalized by the absolute
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value of the force acting on the spheroid Fabs = ||F || and the spheroid surface area Asurf .
Figures 6 to 8(b,d, f ) show the skin friction distribution by surface glyphs on the leeward
side, i.e. the downwind side of the ŷ − ẑ plane (cf. figure 3b). The surface glyphs are
enlarged in selected regions.

3.1.1. Impact of Re on spheroids inclined by 45◦

For Re = 5 in figure 6, the fore–aft symmetry of the flow field, i.e. the symmetry with
respect to the horizontal centre plane, which holds for creeping flow conditions, cannot
be observed. Although the inflow streamlines have a constant spacing, their distribution
is not uniform near the outflow boundary. That is, the streamlines are stretched at the top
and compressed at the bottom side of the wake which is more pronounced for larger aspect
ratios. For the cases β = 3 and 6, the streamlines are inclined at the flank of the body with
respect to the major axis, which is qualitatively similar to the potential flow streamlines
on the spheroid surface presented by Han & Patel (1979). A smooth distribution of the
skin friction can be observed for β = 1.5 at the flank of the spheroid. For β = 3 and
6, the skin friction is significantly higher near the windward tips of the spheroid where
the geometry has a high curvature. The skin friction distribution shows that there is no
separation for any spheroid geometry at this Reynolds number. A qualitatively different
topology can be identified for β = 1.5 compared to β = 3 and 6. Like for a sphere, all
skin friction lines converge into one nodal point in the leeward side for β = 1.5. However,
a single nodal point cannot be identified for higher aspect ratios. The skin friction glyphs
for β = 3 tend towards a single point in the lower part of the leeward side without forming
a clear stagnation point. Only a certain convergence towards the symmetry plane can be
observed. For β = 6, the skin friction glyphs are oriented towards a line, where the limiting
streamlines depart from the body.

Flow separation can be observed for Re = 30 for all spheroids in figure 7. Even the flow
field for β = 1.5 is already significantly different compared to the uniform flow around a
sphere. Compared to the Re = 5 flow in figure 6(a), additional stream tracers are injected
to visualize the strong convergence in the wake of the spheroid. Figure 7(b) shows by
the corresponding skin friction distribution an open-type separation, i.e. the skin friction
lines do not form a closed curve. In contrast to the spherical case, it is possible to release
stream tracers in the inflow, which enter and pass the separated flow regions. A similar
topology of the separation can be observed for β = 3 and 6. The streamlines show a more
pronounced convergence in the wake of the spheroid, i.e. the streamlines on the leeward
side of the spheroid are partially aligned with the major axis. However, the convergence
of the streamlines does not result in an enhanced velocity u which is not shown in the
visualizations. That is, to fulfil the continuity equation, a large fraction of the tracers
released close to the symmetry plane are displaced towards the observer in the spheroid
wake, i.e. perpendicular to the vertical plane illustrated.

It goes without saying that the complexity of the laminar separation increases for
higher Reynolds numbers. Figure 8 shows the flow field and the skin friction distribution
for Re = 100, where pronounced separation can be observed for all spheroid shapes. In
contrast to Re = 5 and Re = 30, most of the stream tracers are injected to primarily
visualize the wakes of the spheroids. For β = 1.5, the separation type cannot uniquely
be assigned. A vertical vortex is formed at the top of the lee side, which is not accessible
for stream tracers released in the inflow. Significant backflow, however, can be observed
for this rather low aspect ratio such that a major portion of the lee side vortex is accessible
for the tracers. Such a backflow does not occur for the higher aspect ratios β = 3 and
6. As in Jiang et al. (2014), large vortices aligned with the major axis of the spheroid
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(e)

(b)(a)

(c) (d )

( f )

0.10

0.20

0.50

1.000

1.2

y/deq

u/u∞

–0.2 –0.1

–0.1 –0.55 2.00

||τsurf ||/(Fabs/Asurf )

FIGURE 6. Flow visualizations for spheroids with β = 1.5 (a,b), β = 3 (c,d) and β = 6 (e, f )
with φ = 45◦ and Re = 5. The non-dimensional velocity in the x-direction u/u∞ in the
symmetry plane (y = 0) is shown in panels (a,c,e). Stream tracers are injected close to the
symmetry plane and the colour indicates their y-position. Additionally, the spheroid is coloured
by the absolute value of the skin friction. The skin friction distribution is visualized in panels
(b,d, f ) on the leeward side via surface glyphs which are enlarged in selected regions.

can be identified, which are deflected by the free-stream flow at the lee side tip of
the spheroid. The separation can be assigned to an open-type separation. Note that the
vortices which separate from the spheroid at the lee side tip are clearly visible in the
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(e)
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4.00
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FIGURE 7. Flow visualizations for spheroids with β = 1.5 (a,b), β = 3 (c,d) and β = 6 (e, f )
with φ = 45◦ and Re = 30. Compared to figure 6, additional stream tracers are injected in (a) to
improve the illustration of the wake. Open-type separations are revealed for all aspect ratios in
panels (b,d, f ).

strain-rate distribution in figure 3(a). The corresponding skin friction distributions are
presented in figure 8(b,d, f ). For β = 6, the skin friction on the lee side is aligned with the
major axis and has a negative ẑ-component, whereas for β = 3 the skin friction is almost
perpendicular to the major axis in larger parts of the lee side. Similar to the β = 6 case,
the ẑ-component of the skin friction is negative nearly everywhere. Significant differences
can be observed for β = 1.5 in the skin friction distribution, which reflects the different
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(e)

(b)(a)

(c) (d )

( f )

0.10

0.20

0.05
0.03

1.00
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0

1.2
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–0.2 –0.1

–0.1 0.55 3.00

||τsurf ||/(Fabs/Asurf )
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FIGURE 8. Flow visualizations for spheroids with β = 1.5 (a,b), β = 3 (c,d) and β = 6 (e, f )
with φ = 45◦ and Re = 100. Compared to figure 6, additional stream tracers are injected in
panels (a,c,e) to evidence the separated flow field in the wakes.

topology of the separation. Large regions with positive ẑ-component of the skin friction
are observed and a closed separation line is formed by the skin friction distribution. This
configuration is an example, where the skin friction distribution is not sufficient to identify
the type of separation. Note that without going into a detailed analysis since this is beyond
the scope of the current analysis, the complete three-dimensional flow field reveals a mixed
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(e)

(a)

(c)

(b)

(d )

( f )

(g) (h)

3.000.03 1.000.50.20.1

01.2
u/u∞

–0.2 –0.1–0.1 0.55

||τsurf ||/(Fabs/Asurf )

y/deq

FIGURE 9. Flow visualizations for spheroids with β = 2 (a,c,e,g) and β = 4 (b,d, f,h) at
Re = 100 for φ = 0◦ (a,b), φ = 15◦ (c,d), φ = 75◦ (e, f ) and φ = 90◦ (g,h). Additional stream
tracers are introduced either in the inflow distribution ( f ) or directly in the separated flow field
(a,c,e,g,h).

open- and closed-type separation which cannot be identified by purely analysing the skin
friction distribution.

The overall observations of figures 6 to 8 can be summarized as follows. The flow
topology for β = 1.5 differs significantly from the β = 3 and 6 flow fields. The separation
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region is more complicated for β = 1.5 due to the pronounced backflow, whereas the cases
β = 3 and 6 are quite similar. The inflow streamlines converge near the lee side tip of
the spheroid. For increased Re, a standing pair of vortices is formed which is aligned
with the major axis and deflected in the free-stream direction as it departs from the lee
side tip of the spheroid. The separation for the cases β = 3 and β = 6 belongs to the
open-type category, which is in agreement with Wang et al. (1990), who have analysed
similar configurations for much higher Re.

3.1.2. Uniform flow past inclined spheroids at Re = 100
Figure 9 shows visualizations of the flow field for the aspect ratios β = 2 (left) and

β = 4 (right) at Re = 100. The inclination angles φ = 15◦ and φ = 75◦ are chosen to
present the impact of varying φ compared to the extreme cases φ = 0◦ and φ = 90◦.
The case φ = 0◦ is shown in figure 9(a,b). Elongated spheroids which are aligned with
the free-stream flow have a streamlined geometry. Despite the relatively high Reynolds
numbers, no separation occurs for β = 6, whereas a small attached toroidal vortex is
visible for β = 2 in figure 9(a). Like for the spherical shape, this separation is of
closed type. In agreement with the results of Wang et al. (1990), the topology of the
separation changes at higher inclination angles and an open-type separation can be
observed for φ = 15◦ in figure 9(c). Figure 9(d) shows the corresponding case for β = 4.
The streamlines near the lee side tip of the spheroid converge. Although not shown in
the current illustration, the flow separates close to the symmetry plane. This separation
massively grows for larger inclination angles. At increasing φ, the spheroids act as bluff
bodies with pronounced separation regions at φ = 75◦ and 90◦. The case φ = 90◦ is
presented in figure 9(g,h). The wake topology is in good agreement with the results of
El Khoury et al. (2012). A closed-type separation is evident, where tracers released in the
inflow cannot enter the separation vortex. The flow field is symmetric with respect to the
horizontal x − y plane and, as in El Khoury et al. (2012), there is no exchange of the fluid
between the upper and the lower half of the flow field. These properties do not hold for
φ = 75◦. That is, unlike the flow pattern for φ = 0◦ and φ = 90◦ an open-type separation
is observed for intermediate inclination angles.

3.2. Separation map
From the previous flow analysis, it can be concluded that the Reynolds number, where the
onset of separation can be identified, depends on the spheroid shape and the inclination
angle. Separation occurs far more likely for bluff bodies than for streamline shaped
geometries. Consequently, there exists an inclination angle φsep for a sufficiently high
Reynolds number, where separation can be observed for all φ > φsep. To quantify φsep
for given Re and β, it has to be checked for all conducted simulations summarized in
table 2 whether or not separation can be observed. Therefore a criterion is required, which
systematically identifies separation. Since the flow field is symmetric with respect to the
x − z plane, it is sufficient to determine if the skin friction converges into a line (cf.
figures 6d and 6f ) or a focus point (cf. figure 6b) in the symmetry plane on the leeward
side of the spheroid, which indicates a fully attached flow field. On the other hand, a
convergence in the symmetry plane on the leeward side is not given, if the skin friction
points outward to the symmetry plane as in figures 7 and 8. Therefore, separation can be
detected by

nyτsurf ,y > 0 for nx > nt, (3.2)
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FIGURE 10. Colour map of the separation onset angle φsep. Each coloured cell represents values
of Re and β defined in its lower left corner. Black cells mean that separation was not observed
for any φ and light yellow cells represent separation at any simulated inclination angle including
φ = 0◦. The dark grey points represent the lowest β, where separation can be identified at a given
Re for φ = 0◦. The green data points show the lowest Re at which separation is identified for a
given β with φ = 90◦. The blue data points show the corresponding results, where the Re-axis
has been replaced with ReD = Re/β1/3.

with the x and y components of the spheroid surface normal n, the skin friction τ surf
and a threshold value nt � 1 to avoid surface regions where the skin friction is nearly
parallel to the symmetry plane. The criterion (3.2) is examined for every configuration
listed in table 2 and a colour map is generated to visualize φsep as a function of β and Re in
figure 10. Each colour cell represents φsep at β and Re defined in its lower left corner. For
a spherical shape β = 1, separation is observed for Re � 20. For β > 1, the spheroids act
as bluff bodies and separation can be identified for significantly lower Re, if the inclination
angle is large enough. On the other hand, spheroids with inclination angle φ = 0◦ have a
streamlined shape and for β > 3 separation does not occur at Re ≤ 100. Motivated by the
results visualized in the colour map, two questions arise:

• What is the minimum Reynolds number at a given β for separation to occur with
φ = 90◦?

• What is the maximum aspect ratio at a given Re, for separation to occur with
φ = 0◦?

Note that approximately 2000 additional simulations were conducted to ensure a better
resolution in the Re − β parameter space for φ = 0◦ and φ = 90◦. The separation criterion
(3.2) is applied for every case and the results are included in the colour map of figure 10.
The dark grey data points represent the simulations for φ = 0◦ at higher Re to answer
the second question. That is, for a given Re the data points show the maximum aspect
ratio β, where separation can be observed at φ = 0◦. For 20 ≤ Re ≤ 100, a nearly linear
relationship with a logarithmic axis is evident. No upper limit is indicated. The green data
points show the results for the onset of separation at φ = 90◦. The Reynolds number for
the onset of separation quickly decreases below Re = 12 at increasing β. Compared to a
spherical geometry, strongly inclined spheroids act as bluff bodies such that separation
may occur at lower Reynolds numbers. If β is further increased, the separation onset
Reynolds number increases again and reaches values to the range 12 < Re < 15. This
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can be explained by the increasingly cylindric shape of the spheroids such that elongated
spheroids at φ = 90◦ share many features with the flow over a circular cylinder (El Khoury
et al. 2012). For infinitely long cylinders, separation occurs if the Reynolds number based
on the cylinder diameter is ReD > 4 (Zdravkovich 1997). To compare the current findings
with the cylinder data, the results for the separation onset at φ = 90◦ are visualized as
blue points against the Reynolds number based on the minor axis of the spheroids, i.e.
ReD = Re/β1/3. The separation onset Reynolds number ReD continuously decreases and
converges for increasing β. However, data points with much higher aspect ratios would be
required to identify the limit for β → ∞.

The presented flow visualizations and the separation map provide a first intuition for
the complete (Re, β, φ)-parameter space within the limits of this study. Properties of the
flow field around a sphere are no longer valid whereas the separation onset and the flow
topology of spheroids with β � 3 are very similar. Consequently, the configurations with
1 < β � 3 can be classified as transitional geometries between spheres and elongated
fibres. Some observations can be made which are consistently summarized by Wang
et al. (1990) for much higher Reynolds numbers. That is, for sufficiently high Reynolds
numbers, a closed–open–closed separation cycle can be observed if the inclination angle
φ is increased from 0◦ to 90◦. For β = 1.5, an identification of separation type solely by
analysing the skin friction is not possible and the complete flow field is required, where
complex combinations of closed- and open-type separation can appear. Compared to Wang
et al. (1990), the skin friction patterns are, however, much simpler for Re ≤ 100. Finally,
the impact of a higher Re is much more pronounced for higher incidence angle. The
spheroids increasingly act as bluff bodies for higher φ, whereas for low φ, the spheroids
have a streamlined geometry.

3.3. Correlation functions
Having established a general picture of the flow field around spheroids in a uniform flow,
the data are used to derive model functions to compute forces and torques acting on
spheroids. Such correlation functions are in particular useful for Lagrangian point-particle
models with ellipsoidal particle shapes. Additionally to the studies of Zastawny et al.
(2012), Ouchene et al. (2016) and Sanjeevi et al. (2018), several other studies exist in
which correlation functions for arbitrary shaped particles were derived, e.g. Loth (2008).
However, they do not account for the orientation of the particles. For the case of ellipsoidal
particles, such correlations can have significant deviations especially if the orientation of
the particles is not statistically random. Examples are preferential orientation in turbulent
flows (Voth & Soldati 2017) or simply because φ = 90◦ is the most stable orientation
for the settling of prolate spheroids at moderate Re (Ardekani et al. 2016). To further
motivate the study of orientation-dependent correlation functions, the drag coefficient
ratio (CD,90 − CD,45)/CD,45 is visualized in figure 11(a) using a colour map similar to
that in figure 10 for the parameter space 1.5 ≤ β ≤ 8 and 1 ≤ Re ≤ 100. Note that the
reference CD,45 represents the mean value between the extreme cases CD,0 and CD,90.
However, the results for the inclination angle φ = 45◦ do not yield a statistical mean value
for the orientation of the ellipsoids. To be more precise, higher inclination angles are more
likely for perfectly random oriented particles (Siewert et al. 2014a). Severe deviations
occur, if CD,45 is used as a mean value for ellipsoidal particles. These deviations increase
for higher β and Re to up to 60 %. Moreover, correlation functions which do not consider
the orientation can not take into account the lift forces. The lift-over-drag ratio CL,45/CD,45
is shown in figure 11(b) for the complete parameter range. This ratio increases up to 50 %.
Thus, it cannot be neglected for higher Re and β. It appears to be plausible that these
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FIGURE 11. Colour map of the relative deviation (CD,90 − CD,45)/CD,45 (a) and
CL,45/CD,45 (b). Even for low β and Re, the deviations of the drag and lift coefficient for
varying orientation are significant.

observations are not limited to prolate ellipsoids but are valid for elongated geometries in
general.

In the following, orientation-dependent correlation functions are derived for the drag,
lift and the pitching torque using a Levenberg–Marquardt optimization (Press et al. 1988).
Especially for data points which are distributed over a large range, weights are introduced
to improve the quality of the fit. For every correlation function, the accuracy of the
functions is assessed via error maps for the complete parameter space. Finally, local drag
force and torque fractions are visualized to identify highly local contributions.

3.3.1. Drag correlation
First, the correlation function for the drag is presented and its accuracy is assessed.

Wherever possible, the formulation of the correlation function is based on the
characteristics of the flow fields discussed above. The drag correlation is developed via
corrections for the Stokes flow solution (cf. (1.2)). This leads to significantly different
model functions compared to Zastawny et al. (2012), Ouchene et al. (2016) and Sanjeevi
et al. (2018). These differences are summarized in appendices A and B. Following Sanjeevi
& Padding (2017), the parameter space of (1.2) is reduced via the relationship

CD,φ = CD,0 + (CD,90 − CD,0) sin2φ. (3.3)

Thus, the orientation-dependent drag model is defined by

CD,0(Re, β) = CD,Stokes,0(Re, β) fd,0(Re, β), (3.4a)

CD,90(Re, β) = CD,Stokes,90(Re, β) fd,90(Re, β). (3.4b)

The correlation is closed if the drag correction functions fd,0(Re, β) and fd,90(Re, β) are
given. The base functions

fd,0(Re, β) = 1 + 0.15Re0.687 + cd,1(logβ)cd,2 Recd,3+cd,4 logβ, (3.5a)

fd,90(Re, β) = 1 + 0.15Re0.687 + cd,5(logβ)cd,6 Recd,7+cd,8 logβ (3.5b)

are chosen for the fit of the correction functions based on the following considerations. For
Re → 0, the overall drag correlation (3.3) to (3.5) converge to the analytical solution of
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FIGURE 12. Drag correction function fd,φ for β = 1, 2, 4 and 8 (a). Points represent the
simulation data and the lines are the drag correlations. The corresponding drag coefficient CD,φ
with φ = 0◦ and φ = 90◦ for aspect ratios β = 2 and 8 are shown in panel (b). The dotted line
is the drag coefficient for spheres at creeping flow conditions 24/Re.

Stokes flow. The value of the drag correction function fd,φ determines the deviations of the
drag coefficients compared to the Stokes solution. The popular drag correction function
proposed by Schiller & Naumann (1933) serves as a base for β = 1 and an additional
term to account for shape-dependent effects is introduced. Figure 12(a) shows the drag
correction functions fd,0(Re, β) and fd,90(Re, β) for β = 1, 2, 4, and 8. The lines represent
the fitting functions and the points the simulation values. The drag correction function
closely resembles the observations made in § 3.1. If the major axis is aligned with the
free-stream direction, a slender body flow can be observed which is reflected by a lower
correction value. The streamlined shape is more pronounced for higher aspect ratios such
that the correction value decreases for higher aspect ratios. The shape impact is therefore
included with cd,1 < 0 for fd,0(Re, β). Based on the trend of the separation onset angle
φsep shown in figure 10, logarithmic functions are chosen to model the impact of the
shape on the drag correction. This choice is consistent with the observation made in
§ 3.1, i.e. a transition of the flow topology with a high sensitivity of the flow field with
respect to the aspect ratio for low β and a relatively low sensitivity for higher aspect ratios.
For φ = 90◦, a bluff body flow has been identified where the separation onset Reynolds
number decreases compared to the spherical case. This is reflected by a significantly higher
drag correction for β > 1 which is incorporated in the drag correction function with
cd,5 > 0. As for φ = 0◦, the impact of the shape is included via logarithmic functions.
The complete formulation including the analytical drag coefficient CD,Stokes,φ and the
fitting constants cd,i are given in appendix B. Figure 12(b) shows the corresponding drag
correlations CD,0(Re, β) and CD,90(Re, β). The drag coefficient for spheres at creeping flow
conditions 24/Re is included as a reference. The correlation functions converge to ∼1/Re
for Re → 0 and depart from ∼1/Re for higher Re. Especially for φ = 0◦, the dependence
on β can not easily be identified in figure 12(b), whereas the drag correction function in
figure 12(a) has a clear trend and qualitatively resembles the observed flow physics.

An excellent agreement between the data points and the model functions is evident
in figures 12(a) and 12(b). The overall quality of the fit depends, however, on (3.3). To
demonstrate the accuracy of (3.3), figure 13(a) shows the deviation

Δφ(Re, β) = max
∀φ∈φsim

∣∣∣∣C∗
D,φ − CD,sim

CD,sim

∣∣∣∣ , (3.6)
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FIGURE 13. Colour map of the relative deviations defined by (3.6) to assess the accuracy of
(3.3) (a). The total deviation defined by (3.7) for the drag correlation (3.3) to (3.5) is presented
in panel (b).

where C∗
D,φ denotes the results of (3.3) using the simulated values of CD,0 and CD,90. That

is, the maximum relative deviation is evaluated between the simulated values CD,sim and
the expression (3.3) for a given Re and β for all simulated inclination angles φsim. As in
Sanjeevi & Padding (2017), an excellent agreement between the simulated values and the
expression (3.3) can be observed, and the error is less than 2 % for the complete parameter
space. Note that the errors reported in this section are solely based on the fitting of the
data. The deviations due to an imperfect numerical resolution reported in table 1 represent
an intrinsic limit of the quality of the curve fits. Consequently, deviations proportional to
2 % of the fits cannot be massively improved.

The total deviation

Δtot(Re, β) = max
∀φ∈φsim

∣∣∣∣CD,φ(Re, β)− CD,sim

CD,sim

∣∣∣∣ (3.7)

is visualized in figure 13(b) to assess the accuracy of the complete drag correlation defined
by (3.3) to (3.5). The drag correlation compares well with the simulation data for the
complete parameter space and the error is less than 5 %. The highest error is found at
relatively low Re. However, it can be conjectured that the relative deviations decrease for
Re < 1 since the drag correlation converges to the analytical solutions for creeping flow
conditions.

3.3.2. Lift correlation
Motivated by the good performance of the drag correlation (3.4), a similar approach is

chosen for the lift coefficient CL. First, the parameter space is reduced by

CL,φ = 2 sinφ cosφCL,max(Re, β) (3.8)

with the maximum lift coefficient CL,max over all φ for a fixed Re and β. Although, (3.8) is
reliable for low Re, it is not as accurate as (3.3) for increasing Re. Figure 14 shows the lift
coefficient CL scaled by the maximum lift coefficient CL,max for β = 8 and Re = 1, 25 and
100. It can be observed that, for higher Re, the inclination angle with the maximum lift
coefficient is increased by up to 6◦. Therefore, the lift correlation is corrected. The base
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FIGURE 14. Lift coefficient CL for β = 8; Re = 1, 25 and 100 normalized by the maximum
lift coefficient CL,max . The simulated results are shown as points and the correlation function
(3.9)–(3.11) as lines.

function

CL,φ(Re, β) = 2 sin(ψφ(Re, β)) cos(ψφ(Re, β))CL,max(Re, β) (3.9)

is chosen, where

ψφ(Re, β) = π

2

(
φ

π/2

)fl,shift(Re,β)

(3.10)

represents a coordinate transformation to model the shift of the maximum lift coefficient
towards higher inclination angles. The exponent is obtained via a curve fit with

fl,shift(Re, β) =
{

1 + cl,1(logβ)cl,2(log Re)cl,3, Re > 1

1, otherwise.
(3.11)

As for the drag correlation, a complete formulation of the correlation including the
parameters cl,i is given in appendix B. Equation (3.9) is included in figure 14 and captures
the trend of the data points well. To assess the quality of the model function, the error
definition (3.6) is revised

Δφ(Re, β) = max
∀φ∈φsim

∣∣∣∣ C∗
L,φ − CL,sim

max(CL,sim, 2/π CL,sim,max)

∣∣∣∣ (3.12)

since the reference value CL,sim decreases to 0 for inclination angles φ = 0◦ and 90◦. The
minimum reference value is fixed to the average value 2/πCL,sim,max , where the prefactor
is motivated by

1
π/2

∫ π/2

0
2 sinφ cosφ dφ = 2/π. (3.13)

The quantity C∗
L,φ is computed via (3.9), where CL,max is evaluated using the simulation

data. Figure 15 visualizes the error defined by (3.12) as a colour map. For most of the
parameter space, the error is quite low, i.e. below 3 %. The largest deviations are less than
7 %. They occur for β = 8 and Re = 100.
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FIGURE 15. Colour map of the relative deviations defined by (3.12) to assess the accuracy of
(3.9)–(3.11).
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FIGURE 16. Maximum lift coefficient CL,max for aspect ratios β = 2, 4 and 8. Points represent
the simulation data and the lines are the lift correlations.

Next, the correction function fl,max is introduced by

CL,max(Re, β) = fl,max(Re, β)
CD,Stokes,90 − CD,Stokes,0

2
, (3.14a)

fl,max(Re, β) = 1 + cl,4Recl,5+cl,6 logβ. (3.14b)

As for the drag correlation, the complete expression of the lift correlation converges
towards the analytical creeping flow solutions for Re → 0. Figure 16 shows a comparison
between the correlation (3.14) and the simulated data points for selected aspect ratios. For
all aspect ratios, the lift coefficient decreases for higher Re and it grows significantly for
increasing aspect ratios. The total deviation (3.7) is redefined to avoid vanishing reference
values

Δtot(Re, β) = max
∀φ∈φsim

∣∣∣∣ CL,φ(Re, β)− CL,sim

max(CL,sim, 2/πCL,sim,max)

∣∣∣∣ . (3.15)

The error of the complete lift correlation Δtot defined by (3.9)–(3.11), and (3.14) is
presented in figure 17. The highest deviations can be observed for β = 8 and Re = 100
with less than 7 %, whereas the deviations are in general less than 5 % for the majority of
the data points.
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FIGURE 17. Colour map of the total deviations of the simulation data compared to the
correlation (3.9)–(3.11) and (3.14).

3.3.3. Pitching torque correlation
For the analysed Reynolds number range, an ellipsoid suspended in a uniform velocity

field undergoes a pitching torque. The most stable orientation is attained if the major
axis is perpendicular to the relative velocity, i.e. φ = 90◦. This behaviour can, however,
not be observed for Re → 0, where the pitching torque vanishes. Consequently, the
creeping flow solutions cannot be used for correlation functions, and the torque coefficient
CT,φ has to be modelled directly. The dominating terms of the correlation proposed by
Sanjeevi et al. (2018) are identified for Re < 100 and generalized for 1 ≤ β ≤ 8 with

CT,φ(Re, β) = 2 sinφ cosφCT,max(Re, β), (3.16a)

CT,max(Re, β) = ct,1(logβ)ct,2

Rect,3
+ ct,4(logβ)ct,5

Rect,6+ct,7 logβ
(3.16b)

to model an orientation-dependent pitching torque coefficient. The fitting parameters
ct,i are listed in appendix B. Selected maximum torque coefficients CT,max are shown
in figure 18(a) and the fitting function is compared against the simulation values.
A qualitatively good agreement can be observed. Especially for higher β, two exponential
functions are required for an accurate model, since the slope of the curves depends on Re.
As for CL,max , the torque is significantly higher for increasing aspect ratios.

Figure 18(b) shows CT,ϕ normalized by CT,max for β = 8 and various Reynolds numbers.
The base function (3.16a) is included as a reference. Larger deviations can be observed for
Re = 25 and Re = 100. It is not possible to model the deviations from the base function
with a simple coordinate transformation as in the case of the lift correlation.

Figure 19(a) shows the error map using the error definition (3.12) for the torque base
function (3.16a), where CT,max is not modelled, yet. That is, the quality of the base
function (3.16a) is assessed, where the maximum torque coefficient CT,max is defined by the
simulated values. The largest deviations can be observed for Re > 20 and higher β with up
to 14 %, whereas the fit is better for low Re and low β. At this point, a more complex base
function could be developed to obtain a fit with less deviations. For example, a coordinate
transformation as was used for the lift correlation leads to a lower error. However, it
does not resemble the behaviour depicted in figure 18(b), where the deviations are not
systematic. Therefore, the base function is not further extended to retain the simplicity of
the correlations. Nevertheless, systematic deviations of the torque correlation are unlikely
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FIGURE 18. Maximum torque coefficient CT,max for β = 2, 4 and 8. The simulated results are
shown as points and the correlation function (3.16b) as lines (a); torque coefficient CT for β = 8;
Re = 1, 25 and 100 normalized by the maximum torque coefficient CT,max (b). The simulated
results are shown as points. Equation (3.16a) is included as a dashed line in panel (b).
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FIGURE 19. Colour map of the relative deviations of the simulation data compared to (3.16a)
(a); colour map of the relative deviations of the simulation data compared to (3.16b) (b). The
relative deviations are defined in analogy to (3.12) and (3.15).

if applied in Lagrangian models since the chosen base function models the general trend
of the data quite well.

Figure 19(b) shows the total deviations using the error definition (3.15), where the full
correlation is defined by (3.16). The error is mainly dominated by deviations shown in
figure 18(b), and the error of the overall fit is less than 15 %.

3.3.4. Local force and torque fractions
Three correlations have been developed for the drag and lift forces as well as the pitching

torque acting on a spheroid in a uniform flow. However, if applied in Lagrangian models,
the flow experienced by the ellipsoids is rarely uniform. Moreover, the prolate geometry
is often only an approximation of technical or natural needle-like objects. Consequently,
the deviations introduced by the correlations represent only a small subset of a series
of inaccuracies introduced by Lagrangian models. Local drag, lift and torque fractions
are presented next. Although discussed just for a single configuration, highly localized
distributions can be considered to indicate a qualitative sensitivity with respect to disturbed
inflow conditions or geometries.
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FIGURE 20. Local drag force fraction dFD(x) normalized by the mean drag force FD/Asurf
(a,d); local lift force fraction dFL(x) normalized by the mean lift force FL/Asurf (b,e); local
torque fraction dTP(x) normalized by the mean torque TP/Asurf (c, f ). The spheroid is inclined
by φ = 45◦ with Re = 100 and β = 8. The flank of the ellipsoid is shown in (a–c), (d–f ) show
the windward side (left) and the leeward side (right). Additionally, the non-dimensional pressure
distribution is included in (b).

Figures 20(a) and 20(d) show the flank, the windward side and the leeward side of
an ellipsoid coloured by the local drag force dFD(x) normalized by the mean drag force
FD/Asurf for the configuration β = 8, Re = 100 and φ = 45◦. The complete surface area
is exposed to a positive drag. The highest drag fraction can be observed on the windward
side, which is three times higher than the mean drag force. An explanation for the enhanced
drag forces can be observed in figure 20(b) where a contour plot of the non-dimensional
pressure shows an enhanced pressure on the windward side. The surface area with a
pronounced drag fraction correlates with high pressure on the windward side. The shear
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stress components, which are not shown, amount to approximately 60 % of the total drag
force and are most pronounced on the flank of the ellipsoid. The combination of pressure
and shear stresses leads to a relatively homogeneous distribution of drag forces on the
ellipsoid surface.

The surface of the ellipsoid in figures 20(b) and 20(e) is coloured by the local
lift force contribution dFL(x). In contrast to the drag, the lift is almost completely
governed by the pressure forces. Consequently, the surface area with a pronounced lift
contribution correlates with higher and lower pressures on the ellipsoid surface. Note that
an asymmetrical colour scheme is used since the lift force has a negative contribution
especially near the lee side tip. The extreme values of the local lift fraction can be found
near the tips of the ellipsoid and the maximum lift force is less than five times higher
than the average lift force. A major fraction of the total lift force is, however, smoothly
distributed over the surface on the leeward and the windward side of the ellipsoid.

Figures 20(c) and 20( f ) show the corresponding visualizations for the local torque
acting on the spheroid dTP(x). Since the torque linearly depends on the lever, a
significantly different distribution can be observed compared to the local drag and
lift fractions. Close to the centre of mass, the local torque fraction vanishes whereas
particularly high torque fractions can be observed on the tips of the ellipsoid where the
lever is highest. Specifically, the local torque on the windward side tip is up to 24 times
higher than the mean torque TP/Asurf . At this point, the pressure contributions as well as
the shear stress contributions are most pronounced. Therefore, the torque acting on an
ellipsoid is highly localized compared to the drag and the lift. Note that only a single
configuration is presented here and the observations are less pronounced for lower aspect
ratios where the lever is less dominating for the torque distribution. Nevertheless, such
highly localized torque fractions provide an explanation why a generally accurate torque
correlation may be difficult to develop. Minor deviations of the ellipsoid geometry or the
inflow conditions can significantly modify the torque distribution and the absolute value
of the torque acting on the ellipsoid. On the other hand, the drag and lift contributions are
relatively smoothly distributed over the ellipsoid geometry, which indicates a more stable
behaviour with respect to geometry deviations.

4. Implications for common ellipsoidal Lagrangian models

The dynamic equations for rigid body motion are available for creeping flow conditions.
The translation and the rotation of the ellipsoids are solved in the frame of reference of the
ellipsoid via quaternions. The corresponding ellipsoidal Lagrangian models are described
in, e.g. Mortensen et al. (2008), Marchioli et al. (2010) and Siewert, Kunnen & Schröder
(2014b). To include the developed correlations in such Lagrangian models, the dynamic
equations have to be reformulated and partially extended. For creeping flow conditions,
the drag and lift forces are defined by resistance tensors, whereas for Re > 0 drag and lift
correlations have to be used. Due to the symmetry of the flow field, the pitching torque
vanishes at creeping flow conditions and has to be added to the dynamic equations for
Re > 0. The reformulated dynamic equations of an ellipsoid subject to a strain rate ŝf and
a fluid angular velocity ω̂f contain the drag, lift and torque expressions

F̂ D = ρ
π

8
d2

eq|ûf − v̂p|2 CD,φ(Re, β) d̂D, (4.1)
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F̂ L = ρ
π

8
d2

eq|ûf − v̂p|2 CL,φ(Re, β) d̂L, (4.2)

T̂ = μK̂ ω · (ω̂f − ω̂p)+ μK̂ s · ŝf + ρ
π

16
d3

eq|ûf − v̂p|2CT,φ(Re, β) d̂T, (4.3)

with the velocity and the rotation rate of the ellipsoid v̂p and ω̂p, and the resistance tensors
K̂ ω and K̂ s. In the limit of Stokes flow, the directions for the force and the lift are defined
by an additional resistance tensor for linear motion. If drag and lift correlations are used,
the directions for the drag force d̂D and the lift force d̂L are given by

d̂D = ûf − v̂p

|ûf − v̂p| , (4.4)

d̂L = d̂D × d̂T, (4.5)

d̂T = d̂D × ê3 sgn(d̂D · ê3)

|d̂D × ê3 sgn(d̂D · ê3)|
, (4.6)

with the direction for the torque d̂T and with ê3 denoting the direction of the major axis of
the ellipsoid.

In contrast to the dynamic equations based on Jeffery (1922), the proposed dynamic
equations are limited to prolate spheroids β > 1. The limitation to creeping flow
conditions, i.e. Re → 0, is partially abolished due to the correlations. The extension of
the dynamic equations by correlations for the quasi-steady drag is only a first step towards
a more complete Lagrangian model. Such a dynamic equation is available for spherical
particles and additionally includes, e.g. pressure gradients, added mass forces and history
forces (Maxey & Riley 1983). To the best of the authors’ knowledge, similar expressions
do not exist for ellipsoidal particles. However, for particles with density ρp � ρ and size
smaller than the smallest scale of the flow field η, the particle dynamics is often modelled
solely by the quasi-steady drag which has been identified as the dominant contribution
(Kuerten 2016). Consequently, the proposed dynamic equations significantly enhance the
available parameter space for ellipsoidal Lagrangian point-particle models, although the
restrictions ρp � ρ and deq < η still limit their range of application to small solid particles
suspended in gas flow. Additionally, the equations assume that uniform flow conditions
and the strain and vorticity of the flow field can be superimposed. Note that the resistance
tensors K̂ ω and K̂ s are not corrected even though finite fluid inertia effects are observed
in pure shear flow by e.g. Mao & Alexeev (2014). As reported in Ravnik, Marchioli &
Soldati (2018), further deviations can be expected for ellipsoids with major axes dmax > η.
Due to the highly local force and torque contributions presented in § 3.3.4, differences in
the flow conditions between the centre of mass of the particles and the tips of the ellipsoid
will especially affect the pitching torque. However, a systematic study of nonlinear effects
in non-uniform flow fields with mutual interaction of fluid inertia effects for relative
velocity, strain rate and vorticity would vastly increase the parameter space. Although the
proposed correlations include necessary corrections for the Stokes flow solutions, a further
validation against fully resolved simulations in more complex environments is required,
which is, however, beyond the scope of this contribution.

5. Summary

Existing ellipsoidal Lagrangian models are based on Stokes flow solutions and
consequently, are restricted to particle Reynolds numbers Re → 0. Orientation-dependent
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correlations based on empirical data are required which take fluid inertia effects into
account. Since the most recent correlation functions are partially scattered, highly resolved
simulations for prolate spheroids are presented, which cover the range 1 ≤ Re ≤ 100
for aspect ratios 1 ≤ β ≤ 8, and inclination angles 0◦ ≤ φ ≤ 90◦. Efficient and robust
computations via solution-adaptive mesh refinement using a cut-cell discretization enable
a relatively dense coverage of the parameter space with more than 4400 simulations.

Flow visualizations and skin friction distributions are used to identify the main flow
structures for selected configurations. Finite fluid inertia effects can be observed at
relatively low Re. Depending on Re and β, open-type separations, closed-type separations
or both can be observed in the wake of the spheroids. As reported in Wang et al. (1990)
for a much higher Reynolds number, a closed–open–closed cycle can be observed for
moderate but sufficiently high aspect ratios, if φ is varied from 0◦ through 90◦. An analysis
of the skin friction distribution is, however, not sufficient and the complete flow field is
required for the classification of the separation type. For higher aspect ratios, the prolate
spheroids act as slender bodies for φ = 0◦ without separation and increasingly as bluff
bodies for higher φ. A systematic overview of the parameters for the onset of separation is
reported, which confirms these qualitative observations.

Subsequently, the generated data base is used to develop correlations for drag, lift and
pitching torque. For drag and lift, correction functions are proposed, such that the final
correlations incorporate the Stokes flow solution for Re → 0. For β → 1, the lift vanishes
and the drag converges to the popular correlation for spheres of Schiller & Naumann
(1933). The error of the correlations is presented for the complete parameter space via
error maps. The deviations between the correlation and the simulation data are less than
5 % for the drag, and less than 7 % for the lift. In creeping flow conditions, the pitching
torque vanishes and the Stokes flow solution cannot serve as a basis for pitching torque
correlations. Therefore, the resulting correlation is purely empirical. Moreover, it is more
challenging to model the simulation data with simple correlation functions. Thus, the
deviations between the proposed correlation and the data amount up to 15 %. In contrast
to drag and lift, the torque acting on the ellipsoid is highly localized near the windward tip
of the ellipsoid. It can be expected that the torque acting on an ellipsoid will show a much
higher sensitivity, if the flow conditions or the ellipsoid geometry deviate from the studied
configuration.

Finally, the equations required to describe linear and rotational dynamics of ellipsoids
are proposed, which can be applied to common ellipsoidal Lagrangian models. The
validity of the equations is restricted to the analysed parameter space, i.e. 1 ≤ β ≤ 8, to
heavy particles with large density ratios ρp/ρ � 1, and particles smaller than the smallest
scale of the flow field deq < η.
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Appendix A. Correlation functions proposed by Zastawny et al. (2012), Ouchene
et al. (2016) and Sanjeevi et al. (2018)

Table 3 summarizes the orientation-dependent correlations proposed in Zastawny et al.
(2012), Ouchene et al. (2016) and Sanjeevi et al. (2018). The correlations of Ouchene
et al. (2016) are developed for Re ≤ 240 and 1 ≤ β ≤ 10 with further modifications
for 10 ≤ β ≤ 32. The correlations of Zastawny et al. (2012) and Sanjeevi et al. (2018)
are listed for the case β = 2.5. Similar base functions are used to model the results
of a spheroid with β = 1.25, a disc with β = 0.2 and a fibre for β = 5 in Zastawny
et al. (2012), and for oblate spheroids with β = 0.25 and spherocylinders with β = 4.0
in Sanjeevi et al. (2018). The correlations of Zastawny et al. (2012) are proposed for
0.1 ≤ Re ≤ 300, whereas the correlations of Sanjeevi et al. (2018) are developed for
0.1 ≤ Re ≤ 2000. Unlike in Ouchene et al. (2016), the analytical solutions for Re → 0
are not included in the model. Instead, the correlations rely on numerical data at low Re.

Appendix B. Novel correlation functions based on the current flow data

The dynamic equations (4.1) to (4.3) rely on orientation-dependent correlations for drag
CD,φ(Re, β), lift CL,φ(Re, β) and pitching torque CT,φ(Re, β) which have been developed
in § 3.3. The complete formulation of the correlation is given in the following. The
orientation-dependent drag correlation reads

CD,φ = CD,0 + (CD,90 − CD,0) sin2 φ, (B 1)

with the correlations at inclination angle φ = 0◦ and φ = 90◦

CD,0 = CD,Stokes,0(Re, β) fd,0(Re, β), (B 2)

CD,90 = CD,Stokes,90(Re, β) fd,90(Re, β). (B 3)

Following Jeffery (1922), the analytical drag coefficients are defined by

CD,Stokes,0(Re, β) = 64β2/3

Re
1

χ0/a2 + β2γ0
, (B 4)

CD,Stokes,90(Re, β) = 64β2/3

Re
1

χ0/a2 + α0
, (B 5)

where a = deq/(2β1/3) denotes the minor semi-axis, and the shape parameters χ0, γ0, and
α0 derived in Oberbeck (1876) are listed in table 4. Similar expressions are available in
Happel & Brenner (2012). The correction functions derived in § 3.3.1 are given by

fd,0(Re, β) = 1 + 0.15Re0.687 + cd,1(logβ)cd,2 Recd,3+cd,4 logβ, (B 6a)

fd,90(Re, β) = 1 + 0.15Re0.687 + cd,5(logβ)cd,6 Recd,7+cd,8 logβ. (B 6b)

The lift correlation presented in § 3.3.2 reads

CL,φ(Re, β) = 2 sin(ψφ(Re, β)) cos(ψφ(Re, β))CL,max(Re, β), (B 7)

where the maximum lift coefficient is given by

CL,max(Re, β) = fl,max(Re, β)
CD,Stokes,90 − CD,Stokes,0

2
, (B 8a)

fl,max(Re, β) = 1 + cl,4Recl,5+cl,6 logβ, (B 8b)
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Zastawny et al. (2012) CD,0 5.1/Re0.48 + 15.52/Re1.05

CD,90 24.68/Re0.98 + 3.19/Re0.21

CL,φ
(6.079/Re0.898 + 0.704/Re−0.028)

(sinφ)1.067+0.0025Re0.818
(cosφ)1.049

CT,φ
(2.078/Re0.279 + 0.372/Re0.018)

(sinφ)0.98 cosφ

Ouchene et al. (2016)
CD,0

CD,Stokes,0(Re, β)
+24/Re(0.15β−0.8Re0.687 + (β − 1)0.63Re0.41/24)

CD,90
CD,Stokes,90(Re, β)
+24/Re(0.15β−0.54Re0.687 + β1.043(β − 1)−0.17Re0.65/24)

CL,φ

(F(β)Re0.25 + G(β)Re−0.755) cosφ (sinφ)(1.002Re),

F(β) = 0.1944(β−0.93 − 1) logβ + 0.2127(β − 1)0.47,

G(β) = 1.9183(β − 1)0.46 logβ − 4.0573(β−1.61 − 1)

CT,φ

(F(β)Re−0.18 + G(β)Re−0.51)(cosφ)(0.9994Re) sinφ logβ,
F(β) = 6.46(β−0.2212 − 0.4855),
G(β) = 0.072(β − 1)1.85

Sanjeevi et al. (2018)
CD,0

(23.1/Re + 3.397/Re0.364) e−0.0008Re

+0.169(1 − e−0.0008Re)

CD,90
(27.93/Re + 4.286/Re0.234) e−0.0018Re

+0.815(1 − e−0.0018Re)

CL,φ
(4.484/Re + 1.326/Re0.122)

(sinφ)1+0.016Re0.286
(cosφ)1−0.01Re0.332

CT,φ
2.66/Re0.19

(sinφ)1−8.73×10−4Re0.798
(cosφ)1−3.7×10−5Re0.963

TABLE 3. Orientation-dependent correlations for drag, lift and torque from Zastawny et al.
(2012), Ouchene et al. (2016) and Sanjeevi et al. (2018).

χ0 α0 γ0 κ

−a2β√
β2 − 1

κ
β2

β2 − 1
+ β

2(β2 − 1)3/2
κ − 2

β2 − 1
− β

(β2 − 1)3/2
κ log

(
β −

√
β2 − 1

β +
√
β2 − 1

)

TABLE 4. Analytical shape coefficients for prolate ellipsoids with β > 1.
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i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

cd,i −0.007 1.0 1.17 −0.07 0.047 1.14 0.7 −0.008
cl,i 0.01 0.86 1.77 0.34 0.88 −0.05 — —
ct,i 0.931 0.675 0.162 0.657 2.77 0.178 0.177 —

TABLE 5. Empirical parameters for the drag, lift and torque correlations generated via a
Levenberg–Marquardt optimization.

and a coordinate transformation is applied to model the shift of the maximum lift
coefficient towards φ > 45◦ with

ψφ(Re, β) = π

2

(
φ

π/2

)fl,shift(Re,β)

, (B 9)

fl,shift(Re, β) =
{

1 + cl,1(logβ)cl,2(log Re)cl,3, Re > 1

1, otherwise.
(B 10)

The correlation function for the pitching torque is defined in § 3.3.3 by

CT,φ(Re, β) = 2 sinφ cosφCT,max(Re, β), (B 11a)

CT,max(Re, β) = ct,1(logβ)ct,2

Rect,3
+ ct,4(logβ)ct,5

Rect,6+ct,7 logβ
. (B 11b)

The fitting parameters for the drag correlation cd,i, the lift correlation cl,i and the torque
correlation ct,i are summarized in table 5. To close the torque expression in (4.3), the
diagonal resistance tensors for angular velocity and strain rate

ω̂f = 1
2

(
∂uẑ

∂ ŷ
− ∂uŷ

∂ ẑ
,
∂ux̂

∂ ẑ
− ∂uẑ

∂ x̂
,
∂uŷ

∂ x̂
− ∂ux̂

∂ ŷ

)T

, (B 12)

ŝf = 1
2

(
∂uẑ

∂ ŷ
+ ∂uŷ

∂ ẑ
,
∂ux̂

∂ ẑ
+ ∂uẑ

∂ x̂
,
∂uŷ

∂ x̂
+ ∂ux̂

∂ ŷ

)T

(B 13)

are given

K̂ ω = 16
3

πβa3I ·
(

a2 + c2

a2α0 + c2γ0
,

a2 + c2

a2α0 + c2γ0
,

1
α0

)T

, (B 14)

K̂ s = 16
3

πβa3I ·
(

a2 − c2

a2α0 + c2γ0
,

c2 − a2

a2α0 + c2γ0
, 0
)T

, (B 15)

which have been reduced for prolate spheroids, i.e. β ≥ 1, with the major semi-axis c =
βa.
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