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SUMMARY

The kinematics, statics, and workspace of a 2(3-SPR) serial-
parallel manipulator (S-PM) are studied systematically
in this paper. First, a 2(3-SPR) S-PM including an upper
3-SPR parallel manipulator (PM) and a lower 3-SPR PM
is constructed, and the inverse/forward displacements,
velocity, acceleration, and statics of the lower and upper
3-SPR PMs are studied, respectively. Second, the kinematics
and statics of the lower and upper 3-SPR PMs are combined
and the displacement, velocity, acceleration, and statics
of a 2(3-SPR) S-PM are analyzed systematically. Third,
a workspace of the 2(3-SPR) S-PM is constructed and
analyzed. Finally, the analytic solved results are given and
verified by the simulation mechanism.

KEYWORDS: Parallel manipulators; Serial-parallel manip-
ulator; Kinematics; Statics; Workspace.

1. Introduction

Robot manipulators can be serial, parallel, or hybrid. The
serial manipulators (SMs) have some merits such as larger
workspace, more flexibility, and simple solution of forward
kinematics.1,2 The parallel manipulators (PMs) have some
merits such as higher stiffness, greater load-to-weight ratio,
good stability, and simple solution of inverse kinematics.3,4

In general, either SMs or PMs have been limited in
their applications, and the advantages of SMs and PMs
are mutual beneficial for designing robots.1−8 In order to
make up the shortcomings of SMs and PMs, some PMs
have been connected serially to form various serial-parallel
manipulators (S-PMs).5−17 The purpose is to bring some
advantages of PMs into play, and meanwhile to increase
workspace and flexibility of the end moving platform. Thanks
to these advantages, S-PMs are appropriate for multi-tasking
machining, such as milling, drilling, deburring, and grinding,
and provide more flexibility in NC machining18,19 and
robot arms and legs. In this aspect, Romdhane6 designed a
hybrid serial-parallel Stewart-like mechanism and analyzed
its displacement kinematics. Waldron et al.,7 Shahinpoor,8

and Tanev9 analyzed the inverse/forward displacement
kinematics of some hybrid serial-parallel robot manipulators.
Using dual vectors and matrices, Bandyopadhyay and
Ghosal10 studied analytical determination of principal twists
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in serial, parallel, and hybrid manipulators. Based on two
kinds of 3-UPU PMs, Zheng et al.11 analyzed displacement
kinematics of a hybrid S-PM. Lu and Leinonen12 studied
its displacement kinematics of a multi-3-PSR S-PM. Lu and
Hu13 proposed 2(3-SPR) S-PM, and solved its active forces
by CAD variation geometry. Cha et al.14 solved kinematic
redundancy resolution S-PM by local optimization including
joint constraints. Others designed or studied different
S-PMs.15−18 Kyung et al.19 analyzed the joint reaction force
and driving force of the actuator of a S-PM. Kindermann and
Cruse20 proposed a numerical approach to the kinematics of
serial, parallel, and hybrid chain manipulators. However, up
to now, there are no efforts made toward the study on velocity,
acceleration, and statics of S-PMs.

This paper focuses on analyses of kinematics, statics,
and workspace of a 2(3-SPR) S-PM. Based on analyses of
velocity, acceleration, statics, and workspace of a 3-SPR PM,
the velocity, acceleration, statics, and workspace of 2(3-SPR)
S-PM are analyzed and verified by a simulation mechanism
of 2(3-SPR) S-PM. Since the 2(3-SPR) S-PM possesses the
merits of both the SMs and the PMs, it has some potential
applications for the robot arms, the robot legs, the S-PM
machine tools, the sensor, the surgical manipulator, the tunnel
borer, the barbette of war ship, and the satellite surveillance
platform.

2. The 2(3-SPR) S-PM and Its DOF

A 2(3-SPR) S-PM is consisted of a lower 3-SPR PM and an
upper 3-SPR PM (see Fig. 1). Two 3-SPR PMs are connected
serially, so that the workspace and the flexibility are enlarged
obviously. The lower 3-SPR PM is composed of a middle
moving platform m, a fixed base B, and 3-SPR (spherical
joint–active prismatic joint–revolute joint) legs ri (i = 1, 2, 3)
with the linear actuator. The upper 3-SPR PM is composed
of an upper moving platform m1, a moving base c, and
3-SPR active legs ri1 with the linear actuator. Here, m is a
regular triangle with three vertices b1, b2, and b3, three sides
li = l, and a center point o; B is a regular triangle with three
vertices B1, B2, and B3, three sides Li =L, and a central point
O; m1 is a regular triangle with three vertices b11, b21, and
b31, three sides li1 = l1, and a central point o1; c is a regular
triangle with three vertices B11, B21, and B31, three sides
Li1 =L1, and a central point o. Each of the SPR legs ri (i = 1,
2, 3) of the lower 3-SPR PM connects m to B by a revolute
joint R on m at bi , a leg with an active prismatic joint P, and
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Fig. 1. The 2(3-SPR) S-PM and its composite platform.

a spherical joint S on B at Bi . Each of the SPR legs ri1 (i = 1,
2, 3) of the upper 3-SPR PM connects m1 to c by a revolute
joint R on m1 at point bi1, a leg with an active prismatic joint
P, and a spherical joint S on c at Bi1. Let ⊥ be a perpendicular
geometric constraint and ‖ be a parallel geometric constraint.
Let {m1} be a coordinate o1–x1y1z1 attached on m1 at o1,
{c} be a coordinate o–xcyczc attached on c at o, {m} be a
coordinate o–xyz attached on m at o, and {B} be a coordinate
O–XYZ attached on B at O. Let e1 be the distance from o1 to
bi1, e be the distance from o to bi , E1 be the distance from o to
Bi1, and E be the distance from O to Bi . In structure, c and m
are coplanar and form a hexagon plane with common central
point o (see Fig. 1b). In addition, the structure constraints
ri1 ⊥ li1 and ri ⊥ li (i = 1, 2, 3) are satisfied.

In the 2(3-SPR) S-PM, the number of links are g0 = 15 for
one platform m1, one composite platform c/m, one base B, six
cylinders, and six piston-rods; the number of joints is g = 18

for six prismatic joints, six revolute joint, and six spherical
joints; the local degree of freedom (DOF) is M0 = 0. Based
on a revised Kutzbach–Grübler equation,1,2 the DOF M of
2(3-SPR) S-PM is calculated as follows

M = 6(g0 − g − 1) +
∑g

i=1
mi − M0 = 6 × (15 − 18 − 1)

+ (12 × 1 + 6 × 3) = 6 (1)

3. Kinematics and Statics of the Lower 3-SPR PM

3.1. Inverse/forward displacement
A lower 3-SPR PM is shown in Fig. 2a. Its force situation is
shown in Fig. 2b.

The position vectors Bi of Bi on B in {B}, the position
vectors mbi of bi on m in {m}, the position vectors bi of bi

Fig. 2. The lower 3-SPR PM and it force situation.

https://doi.org/10.1017/S0263574708004918 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004918


Kinematics, statics, and workspace of a 2(3-SPR) serial-parallel manipulator 531

on m in {B}, and the position vector o of o on m in {B} can
be expressed as follows:

Bi =
⎡
⎣XBi

YBi

ZBi

⎤
⎦, mbi =

⎡
⎣xbi

ybi

zbi

⎤
⎦, bi =

⎡
⎣Xai

Yai

Zai

⎤
⎦,

(2)

o =
⎡
⎣Xo

Yo

Zo

⎤
⎦, B

mR =
⎡
⎣ xl yl zl

xm ym zm

xn yn zn

⎤
⎦, bi = B

mRmbi + o,

where (Xo Yo Zo) are the components of o in {B}; B
mR is a

rotational transformation matrix from {m} to {B}; (xl , xm,
xn, yl , ym, yn, zl , zm, zn) are nine orientation parameters of m,
their constrained equations can be obtained from refs. [1–3].

mbi , bi , and Bi (i = 1, 2, 3) can be derived from Eq. (2) as
follows:

mb1 = e

2

⎡
⎣ q

−1
0

⎤
⎦ , mb2 =

⎡
⎣0

e

0

⎤
⎦ , mb3 = e

2

⎡
⎣−q

−1
0

⎤
⎦ ,

B1 = E

2

⎡
⎣ q

−1
0

⎤
⎦ , B2 =

⎡
⎣ 0

E

0

⎤
⎦ , B3 = E

2

⎡
⎣−q

−1
0

⎤
⎦ ,

(3)

b1 = 1

2

⎡
⎣ qexl − eyl + 2Xo

qexm − eym + 2Yo

qexn − eyn + 2Zo

⎤
⎦ , b2 =

⎡
⎣ eyl + Xo

eym + Yo

eyn + Zo

⎤
⎦ ,

b3 = 1

2

⎡
⎣ −qexl − eyl + 2Xo

−qexm − eym + 2Yo

−qexn − eyn + 2Zo

⎤
⎦ , q =

√
3.

Let α, β, and λ be three Euler angles of m in {B}.
Corresponding to XYX rotational orders of (α, β, λ), a
rotational transformation matrix B

mR from {m} to {B} can
be expressed as follows3,4:

B
mR =

⎡
⎣ xl yl zl

xm ym zm

xn yn zn

⎤
⎦

=
⎡
⎣ cβ sλsβ cλsβ

sαsβ cαcλ − sαcβsλ −cαsλ − sαcβcλ

−cαsβ sαcλ + cαcβsλ −sαsλ + cαcβcλ

⎤
⎦ . (4)

where ϕ is one of the θ , α, β, λ, cα1, cβ1, cλ1; sϕ = sinϕ, cϕ =
cosϕ.

Obviously, (xl , xm, xn, yl , ym, yn, zl , zm, zn) can be expressed
by (α, β, λ) from Eq. (4).

Based on the three structure constraints ri⊥li (i = 1, 2, 3)
and the orthogonal equations of (xl , xm, xn, yl , ym, yn, zl , zm,
zn), three constraint equations can be derived as

Xoxl + Yoxm + Zoxn = Exm, xm = yl,

(5a)
Xoyl + Yoym + Zoyn = E(xl − ym)/2

From Eqs. (4) and (5a), (xl , xm, xn, yl , ym, yn, zl , zm, zn) can
be expressed by (α, β) as follows:

xl = cβ, xm = yl = sαsβ, xn = −zl = −cαsβ,

ym = c2
α − s2

αcβ, yn = −zm = sαcα(1 + cβ), (5b)

zn = −s2
α + c2

αcβ.

Xo and Yo can be derived from Eqs. (4) and (5a) as follows:

α = λ, Xo = Exm(3ym − xl) + 2Zozl

2zn

= E
(
3c2

α − 3s2
αcβ − cβ

)
sαsβ + 2Zosβcα

2
(
c2
αcβ − s2

α

) ,

(5c)
Yo = Exl(xl − ym) − 2Eylxm + 2Zozm

2zn

= E
(
cβ − c2

α + s2
αcβ

)
cβ − 2Es2

αs2
β − 2Zo(1 + cβ)cαsα

2
(
c2
αcβ − s2

α

) .

Thus, Xo and Yo can be expressed by (α, β, Zo).
The length ri (i = 1, 2, 3) and the unit vectors δi of active

legs, and the vectors ei of lines ei , the unit vectors fi of
constrained forces Ffi, and arm vector di from point o to Ffi

have been derived in ref. [4] as follows:

r2
1 = E2 + e2 + X2

o + Y 2
o + Z2

o + EYo − qEXo

− 2eExl + 2qeEyl (6a)

r2
2 = E2 + e2 + X2

o + Y 2
o + Z2

o − 3eEym

+ eExl − 2EYo (6b)

r2
3 = E2 + e2 + X2

o + Y 2
o + Z2

o + EYo + qEXo

− 2eExl − 2qeEyl. (6c)

δ1 = 1

2r1

⎡
⎢⎣

qexl − eyl + 2Xo − qE

qexm − eym + 2Yo + E

qexn − eyn + 2Zo

⎤
⎥⎦ ,

δ2 = 1

r2

⎡
⎣ eyl + Xo

eym + Yo − E

eyn + Zo

⎤
⎦ ,

δ3 = 1

2r3

⎡
⎢⎣

−qexl − eyl + 2Xo + qE

−qexm − eym + 2Yo + E

−qexn − eyn + 2Zo

⎤
⎥⎦ , (7)

e1 = e

2

⎡
⎢⎣

qxl − yl

qxm − ym

qxn − yn

⎤
⎥⎦ , e2 = e

⎡
⎢⎣

yl

ym

yn

⎤
⎥⎦ ,

e3 = −e

2

⎡
⎢⎣

qxl + yl

qxm + ym

qxn + yn

⎤
⎥⎦ .
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f 1 = 1

2

⎡
⎢⎣

xl + qyl

xm + qym

xn + qyn

⎤
⎥⎦, f 2 = −

⎡
⎢⎣

xl

xm

xn

⎤
⎥⎦,

f 3 = 1

2

⎡
⎢⎣

xl − qyl

xm − qym

xn − qyn

⎤
⎥⎦, d1 = 1

2

⎡
⎢⎣

−2Xo + qE

−2Yo − E

−2Zo

⎤
⎥⎦ , (8)

d2 =

⎡
⎢⎣

−Xo

−Yo + E

−Zo

⎤
⎥⎦ , d3 = 1

2

⎡
⎢⎣

−2Xo − qE

−2Yo − E

−2Zo

⎤
⎥⎦ .

From Eqs. (3) to (8), (ri , δi , ei , fi , and di) can be expressed
by (α, β, Zo).

3.2. Forward kinematics of the lower 3-SPR PM
From Eq. (5b) and the orthogonal equations of (xl , xm, xn, yl ,
ym, yn, zl , zm, zn), leads to

yn = yl zl/(1 − xl), ym = (
1 − y2

l − xl

)
/(1 − xl). (9a)

Two equations are derived from Eqs. (6a) and (6c) as follows:

r2
1 − r2

3 = 2qE(2eyl − Xo),
(9b)(

r2
1 + r2

3 − 2r2
2

)
/(6E) = Yoexl + eym,

r2
1 + r2

3 = 2
(
E2 + e2 + X2

o + Y 2
o + Z2

o − 2eExl + EYo

)
.

(9c)

Equations (9a) and (9b) lead to

Xo = 2eyl − r2
1 − r2

3

2qE
,

(9d)

Yo = r2
1 + r2

3 − 2r2
2

6E
+ e

(
y2

l

1 − xl

+ xl − 1

)
.

Equations (5a) and (5b) lead to

zlZo = Xoxl + Yoyl − Eyl ⇒ Z2
o = (Xoxl + Yoyl − Eyl)

2/(
1 − x2

l − y2
l

)
. (9e)

Equations (5a), (9a), and (9e) lead to

3Ey2
l − 2Xoyl = 2Yo(1 − xl) + E(xl − 1)2 (9f)

Equations (9d) and (9f) lead to

Yo = 1

2 − 2xl

[
3Ey2

l − 4ey2
l + yl

(
r2

1 − r2
3

)
qE

− E(xl − 1)2

]
.

(9g)

From Eqs. (9d) and (9g), an equation is derived as shown
below

1

2 − xl

[
3Ey2

l − 4ey2
l + yl

(
r2

1 − r2
3

)
qE

− E(xl − 1)2

]

− r2
1 + r2

3 − 2r2
2

6E
− ey2

l

1 − xl

+ e(1 − xl) = 0. (9h)

From Eqs. (9c) and (9e), a constraint equation is derived as
shown below

(
r2

1

2
+ r2

3

2
− E2 − e2 − X2

o − Y 2
o + 2eExl − EYo

)

× (
1 − x2

l − y2
l

) = (Xoxl + Yoyl − Eyl)
2. (9i)

From Eqs. (9g) and (9i), an equation for solving yl is derived
as shown below

E2(9y4
l + x4

l − 3
) − 2y2

l

(
3E2x2

l − 12eExl + 3E2 + 6e2

+ r2
3 + r2

1

) + 8yl

(
r2

1 − r2
3

)
(e/E − xl)/q + 2

(
E2 + 2e2

− r2
1 − r2

3

)
x2

l − 4e2 + 8eExl

(
1 − x2

l

) + 2r2
1 + 2r2

3

− (
r2

1 − r2
3

)2
/(3E2) = 0. (9j)

When given ri , the analytic results of (Xo, Yo, Zo), and (δi ,
ei , fi , and di) can be solved by using Matlab software as
follows: (1) Solve yl and xl from Eqs. (9h) and (9j); (2) Solve
(Xo, Yo, Zo) by substituting yl and xl into Eqs. (9d) and (9e);
(3) Determine the reasonable solutions of the multisolutions
of (Xo, Yo, Zo) by simulation mechanism of 3-SPR PM;
(4) Solve yn and ym from Eq. (9a); (5) Solve δi , ei , fi , and
di from Eqs. (7) and (8).

3.3. General inverse/forward velocities and accelerations
for lower 3-SPR PM
Let V be a general forward velocity of platform m at o in
{B}. Let v and ω be the linear velocity and the angular
velocity of m at o in {B}, respectively. Let A be a general
forward acceleration of the platform m at o in {B}. Let a and
ε be the linear acceleration and the angular acceleration of m
at o in {B}, respectively. They can be expressed as follows:

V =
[

v

ω

]
, v =

⎡
⎢⎣

vx

vy

vz

⎤
⎥⎦ , ω =

⎡
⎢⎣

ωx

ωy

ωz

⎤
⎥⎦ ,

(10)

A =
[

a

ε

]
, a =

⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ , ε =

⎡
⎢⎣

εx

εy

εz

⎤
⎥⎦ .

Suppose there are two vectors η and ς , and a skew-
symmetric matrix S(η). They must satisfy following
equations1,2

η =

⎡
⎢⎣

ηx

ηy

ηz

⎤
⎥⎦, ς =

⎡
⎢⎣

ςx

ςy

ςz

⎤
⎥⎦, S(η) =

⎡
⎢⎣

0 −ηz ηy

ηz 0 −ηx

−ηy ηx 0

⎤
⎥⎦,

η × ς = S(η)ς,
(11)

S(η)T = −S(η),

S(η)2 = S(η)S(η).

Let η be one of the vectors ei , δi , fi , di , co1, cδi1, cei1, c f i1,
cdi1, ω, and ε.
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The general inverse/forward velocities and the active
forces Fai (i = 1, 2, 3), the constrained forces Ff i , the general
inverse acceleration ar , and the general forward acceleration
A of the lower 3-SPR PM have been derived from ref. [4] as
follows:

vr = JV, V = J−1vr , vr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vr1

vr2

vr3

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

f T
1 (d1 × f 1)T

f T
2 (d2 × f 2)T

f T
3 (d3 × f 3)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6×6

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fa1

Fa2

Fa3

Ff 1

Ff 2

Ff 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(JT )−1

[
F

T

]
.

ar = JA + V THV , A = J−1(ar − V THV ),

ar = [ar1 ar2 ar3 0 0 0]T ,

wH = [h1 h2 h3 hf 1 hf 2 hf 3]T, (13)

hi = 1

ri

[ −S(δi)2 S(δi)2S(ei)

−S(ei)S(δi)2 riS(ei)S(δi) + S(ei)S(δi)2S(ei)

]
6×6

,

hf i =
[

03×3 −S(fi)

S(fi) −S(fi)S(di)

]
6×6

,

where, J is a 6 × 6 Jacobian matrix; H is 6 × 6 × 6 Hessian
matrix of the upper 3-SPR PM. Each of items in J and the
sub-matrices of H can be solved from Eqs. (5) to (8). (F, T )
is a workload wrench applied on m at o in {B}. F is a
concentrated force, and T is a concentrated torque.

4. Kinematics and Statics of the Upper 3-SPR PM

4.1. Inverse/forward displacement
Let c Bi1 be the position vector of point Bi1 on the composite
platform m/c in {c}. Let m1bi1 and cbi1 be the position
vectors of point bi1 on the end platform m1 in {m1} and
{c}, respectively. Let co1 and (cα1, cλ1, cXo1, cYo1, cZo1) be
the position vector of m1 at point o1 and its pose components
in {c}. Let (cxl1, cxm1, cxn1, cyl1, cym1, cyn1, czl1, czm1, czn1)
be orientation parameters of m1 in {c}.

Similarly, c Bi1, m1bi1 and cbi1, and co1 can be solved from
Eq. (3) by replacing mbi , bi , Bi , o, Xo, Yo, Zo, xl , xm, xn, yl ,
ym, yn, zl , zm, zn with m1bi1, cbi1, c Bi1,co1, cXo1, cYo1, cZo1,
cxl1, cxm1, cxn1, cyl1, cym1, cyn1, czl1, czm1, czn1, respectively.

Similarly, a rotational transformation matrix c
m1R from

{m1} to {c} can be derived from Eq. (4) by replacing (α, β, λ)
with (cα1, cβ1, cλ1), respectively.

Similarly, cXo1 and cYo1 can be derived from Eqs. (4) to
(5c) by replacing (α, β, Zo) with (cα1, cβ1

cZo1), respectively.

Similarly, in the inverse displacement analysis, the
extensions ri1 of active legs can be solved from Eq. (6) by
replacing e, E, and (ri , α, β, Zo) with e1, E1, and (ri1, cα1,
cβ1

cZo1), respectively.
Similarly, the unit vector cδi1 of active leg cri1, the vector

cei1 of line cei1 from point o1 to bi1 in {c}, the unit vectors
c f i1 of three constrained forces c Ff i1, and the vector cdi1 of
the arm from point o1 to c Ffi1 in {c} can be solved from Eqs.
(7) and (8) by replacing (e, E, xl , xm, xn, yl , ym, yn, zl , zm, zn,
Xo, Yo, Zo) with (e1, E1, cxl1, cxm1, cxn1, cyl1, cym1, cyn1, czl1,
czm1, czn1, cXo1, cYo1, cZo1), respectively. Thus, ri1, co1, cδi1,
cei1, c f i1, and cdi1 can be expressed by (cα1, cβ1, cZo1).

Similarly, in the forward displacement analysis, (cXo1,
cYo1, cZo1) in {c} can be solved from Eqs. (9a) to (9i) by
replacing (ri , e, E, xl , xm, xn, yl , ym, yn, zl , zm, zn, Xo, Yo, Zo)
with (ri1, e1, E1,cxl1, cxm1, cxn1, cyl1, cym1, cyn1, czl1, czm1,
czn1, cXo1, cYo1, cZo1), respectively.

In forward kinematics analysis, when given ri1 (i = 1,
2, 3), (cα1, cβ1, cZo1) can be solved by relevant implicit
equations and Matlab.4 Then, co1, cδi1, cei1, c f i1, and cdi1

can be solved.

4.2. General inverse/forward velocities and accelerations
and statics
Let cV 1 be a general forward velocity of m1 at o1 in {c};
cv1 and cω1 be the linear velocity and the angular velocity of
m1 at o1 in {c}, respectively. Let c A1 be a general forward
acceleration of platform m1 in {c}; ca1 and cε1 be the linear
acceleration and the angular acceleration of m1 at o1 in {c},
respectively. They can be expressed as follows:

cV 1 =
[

cv1
cω1

]
, cv1 =

⎡
⎣ cvx1

cvy1
cvz1

⎤
⎦ , cω1 =

⎡
⎣ cωx1

cωy1
cωz1

⎤
⎦ ,

(14)

c A1 =
[

ca1
cε1

]
, ca1 =

⎡
⎣ cax1

cay1
caz1

⎤
⎦ , cε1 =

⎡
⎣ cεx1

cεy1
cεz1

⎤
⎦.

The general inverse velocity vr1, general forward velocity
cV 1, and the active forces c Fai1 (i = 1, 2, 3), and the
constrained c Ff i1 in {c} of the upper manipulator can be
derived from Eq. (12) as follows:

vr1 = J1
cV 1,

cV 1 = J−1
1 vr1,

vr1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vr11

vr21

vr31

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cδT
11 (ce11 × cδ11)T

cδT
21 (ce21 × cδ21)T

cδT
31 (ce13 × cδ31)T

c f T
11 (cd11 × c f 11)T

c f T
21 (cd21 × c f 21)T

c f T
31 (cd31 × c f 31)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6×6

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fa11

Fa21

Fa31

Ff 11

Ff 21

Ff 31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(JT
1 )−1

[
c F1

cT 1

]
, (15)
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where, J1 is a 6 × 6 Jacobian matrix for the upper 3-SPR
PM; (c F1, cT 1) is a workload wrench applied on m1 at o1 in
{c}, c F1 is a concentrated force, and cT 1 is a concentrated
torque.

The inverse acceleration ar 1 along active legs ri1 (i =
1, 2, 3) and forward acceleration of platform m1 at o1 in {c}
can be derived from Eqs. (11) and (13) as follows:

ar1 = J1
c A1 + cV T

1 H1
cV 1,

c A1 = J−1
1 (ar1 − cV T

1 H1
cV 1),

ar1 = [
ar11 ar21 ar31 0 0 0

]T
,

H1 = [
h11 h21 h31 hf 11 hf 21 hf 31

]T
,

hi1 = 1

ri1

[
−S(cδi1)2 S(cδi1)2S(cei1)

−S(cei1)S(cδi1)2 h

]
6×6

,

hf i1 =
[

03×3 −S(cfi1)
S(cfi1) −S(cfi1)S(cdi1)

]
6×6

,

h = ri1S(cei1)S(cδi1) + S(cei1)S(cδi1)2S(cei1), (16)

where, H1 is a 6 × 6 × 6 Hessian matrix of the upper 3-SPR
PM. Each of items in the sub-matrices of H1 can be solved
from Eqs. (11) and (16).

5. Kinematics and Statics of the 2(3-SPR) S-PM

Let o1 be a position vector of point o1 on platform m1 in {B};
V 1 be a general forward velocity of m1 at o1 in {B}; v1 and
ω1 be a linear velocity and an angular velocity of m1 at o1

in {B}. Let A1 be a general forward acceleration of m1 at
o1 in {B}; a1 and ε1 be a linear acceleration and an angular
acceleration of m1 at o1 in {B}. They can be expressed as
follows:

o1 =
⎡
⎣Xo1

Yo1

Zo1

⎤
⎦ , V 1 =

[
v1

ω1

]
, v1 =

⎡
⎣vx1

vy1

vz1

⎤
⎦ ,

ω1 =
⎡
⎣ωx1

ωy1

ωz1

⎤
⎦ , A1 =

[
a1

ε1

]
, a1 =

⎡
⎣ax1

ay1

az1

⎤
⎦ , (17)

ε1 =
⎡
⎣ εx1

εy1

εz1

⎤
⎦ .

A composite rotational matrix B
mR from {m} to {B} can be

derived as follows1:

B
c R = B

mRm
c R =

⎡
⎢⎣

cβ sαsβ cαsβ

sαsβ c2
α − s2

αcβ −cαsα − sαcαcβ

−cαsβ sαcα + sαcαcβ −s2
α + c2

αcβ

⎤
⎥⎦

×

⎡
⎢⎣

cθ −sθ 0

sθ cθ 0

0 0 1

⎤
⎥⎦ , (18)

c
BR = B

c R−1 = B
c RT ,

where θ is an angle between x and xc (see Fig. 1b).

Some formulae for solving o1, v1, ω1, a1, and ε1 can be
derived from Eqs. (10), (11), and (18) as follows1,2:

o1 = o + B
c Rco1,

v1 = v + B
c Rcv1 + S(ω)Bc Rco1 = v − S(Bc Rco1)ω + B

c Rcv1,

a1 = a + B
c Rca1 + 2S(ω)Bc Rcv1 + S(ε)Bc Rco1

+ S(ω)S(ω)Bc Rco1

= a − S(Bc Rco1)ε + B
c Rca1 + 2S(ω)Bc Rcv1

+ S(ω)S(ω)Bc Rco1,

ω1 = ω + B
c Rcω1, ε1 = ε + B

c Rcε1 + S(ω)Bc Rcω1. (19)

A general forward velocity V 1 of o1 in {B} is derived from
Eqs. (11), (12), and (14)–(19) as follows:

V 1 = JvV + JR
cV 1 = JvJ−1vr + JR(J−1

1 )vr1,

Jv =
[

E3×3 −S(Bc Rco1)

03×3 E3×3

]
6×6

, JR =
[

B
c R 03×3

03×3
B
c R

]
6×6

.

(20)

When given (ri , ri1, vri , vri1, i = 1, 2, 3), V 1 can be solved
from Eqs. (11), (12), (15), and (20).

A general forward acceleration A1 of o1 in {B} is derived
from Eqs. (11)–(13), and (14)–(19) as follows:

A1 = Jv A + JR
c A1 +

[
2S(ω)Bc R 03×3

03×3 S(ω)Bc R

]
cV 1

+
[

S(ω)S(ω)Bc Rco1

03×1

]
,

A = J−1(ar − V THV ), V = J−1vr ,

c A1 = J−1
1

(
ar1 − cV T

1 H1
cV 1

)
, cV 1 = J−1

1 vr1. (21)

When given (ri , ri1, vri , vri1, ari , ari1, i = 1, 2, 3), co1 and ω

can be solved from relevant equations presented in Section
4.1 and Eq. (12). Then, A1 can be solved from Eqs. (11)–(16)
and (21).

When given a workload wrench (F1, T 1) applied on m1 at
o1 in {B}, a workload wrench (c F1, cT 1) applied on m1 at o1

in {c} and a workload wrench (F, T ) applied on m at o in
{B} can be derived as follows:

[
c F1

cT 1

]
=

[
c
BR 03×3

03×3
c
BR

]
6×6

[
F1

T1

]
= JT

R

[
F1

T 1

]
,

[
F

T

]
=

[
F1

S(Bc Rco1)F1 + T 1

]
= G

[
F1

T 1

]
, (22)

G =
[

E3×3 03×3

S(Bc Rco1) E3×3

]
6×6

.
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Fig. 3. A reachable workspace of the lower 3-SPR PM. (a) The isometric view and (b) the top view.

Thus, the active/constrained forces (Fa11, Fa21, Fa31,
Ff 11, Ff 21, Ff 31) of the upper 3-SPR PM and the
active/constrained forces (Fa1, Fa2, Fa3, Ff 1, Ff 2, Ff 3) of
the lower 3-SPR PM can be solved from Eqs. (12), (15), and
(22) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fa11

Fa21

Fa31

Ff 11

Ff 21

Ff 31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(
JT

1

)−1
JT

R

[
F1

T 1

]
,

(23)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fa1

Fa2

Fa3

Ff 1

Ff 2

Ff 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −(JT)−1G

[
F1

T 1

]
.

6. Reachable Workspace of the 2(3-SPR) S-PM

A reachable workspace W1 of 2(3-SPR) S-PM in {B} is
defined as all positions that can be reached by the central
point o1 of the platform m1.

When given the maximum extension rmax and the
minimum extension rmin of the active legs ri , a reachable
workspace W of the lower 3-SPR PM in {B} has been
constructed by means of its simulation mechanism or some
relative analytic formulae.21 W is a volume formed by three
symmetric upper surfaces about axis Z and three symmetric
lower surfaces about axis Z (see Fig. 3). Each of upper surface
Su and lower surface Sl is formed by a family of spatial curves
uj (j = 0, 1, . . ., k) by means of the lofting technique in CAD.

Similarly, when given the maximum extension rmax1 and
the minimum extension rmin1 of the active legs ri1, a reachable
workspace cW1 of upper 3-SPR PM in {c} can be constructed

by means of its simulation mechanism.21 cW1 is a volume
formed by three symmetric upper surfaces cSu1 about z and
three symmetric lower surfacescSl1 about z (see Fig. 3). Each
of cSu1 and cSl1 is formed by a family of spatial curves uj 1

(j = 1, . . ., n) by means of the lofting technique in CAD.21

In fact, cW1 is a sub-workspace of the reachable workspace
W1 of the 2(3-SPR) S-PM. W1 can be constructed from W
and a family of cW1. Its construction processes are explained
as follows:

Step 1: Construct W and cW1 (see Fig. 3) by means of the
simulation mechanism of the lower 3-SPR PM and
the upper 3-SPR PM.21

Step 2: Move and copy cW1 of the upper 3-SPR PM along
a curve u1 on one of the three upper surfaces Su of
W, and construct a family of the same cWk1 = cW1

(k = 1, 2, . . . , n1) by the move and copy command.
Step 3: Repeat Step 2, except that curve u1 is replaced by uj

(j = 2, . . . , n). Thus, n1 × n same sub-workspaces
cWk1 = cW1 can be constructed and arranged above
surface Su by the copy command (see Fig. 4).

Step 4: Construct one of the three upper surfaces Su1 of W1

from the upper surfaces cSu1 of cWk1 (k = 1, 2, . . . ,
n1 × n) by the surface loft command.

Step 5: Repeat Steps 2, 3, and 4, except that the three upper
surfaces Su are replaced by three lower surfaces Sl

of W, and three upper surfaces cSu1 are replaced by
three lower surfaces cSl1 of cWk1. Thus, one of the
three lower surfaces Sl1 of W1 can be constructed.

Step 6: Construct W1 from Su1 and Sl1 by circumference
pattern command about Z (see Fig. 5).

7. Analytic Solved Example

Set L = 120 cm, L1 = l = 80 cm, l1 = 60 cm; θ = 60◦;
F1 = −[20 30 60]T kN; T 1 = [−30 −30 100]T kN·cm. The
kinematics and statics of the upper and lower 3-SPR PMs
and the 2(3-SPR) S-PM are solved by using relevant analytic
formulae and Matlab (see Figs. 6 and 7).

In inverse kinematic analysis, when given the independent
pose parameters (Zo, α, β, cZo1, cα1, cβ1) and their velocities
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Fig. 4. Groups of reachable workspaces cWk1 of the upper 3-SPR PM vs. θ = 60◦. (a) The isometric view of groups of cW1 and (b) the top
view of a family of cW1.

(see Fig. 6b, c), the extension, velocity, and acceleration of
active legs ri and ri1 (i = 1, 2, 3) are solved (see Fig. 6a, i, j).

In forward kinematic analysis, when given the extension
and velocity of active legs ri and ri1 (i = 1, 2, 3) (see Fig. 6a,
i, j), the position, velocity, angular velocity, acceleration, and

angular acceleration of platforms m in {B} and m1 in {c} are
solved (see Fig. 6c–h).

In forward kinematics, the position, the velocity, the
angular velocity, the acceleration, and the angular accelera-
tion of tope platform m1 in {B} are solved (see Fig. 7a–f).

Fig. 5. A reachable workspace W1 of 2(3-SPR) S-PM vs. θ = 0◦. (a) The isometric view, (b) the front view, (c) the bottom view, and
(d) the top view.
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Fig. 6. Analytic solved results of the lower 3-SPR PM and the upper 3-SPR PM.

Fig. 7. Analytic solved results of 2(3-SPR) S-PM.
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The active forces along active legs ri and ri1 are solved
(see Fig. 7f). The constrained forces exerted onto active legs
ri and ri1 (i = 1, 2, 3) are solved (see Fig. 7g).

8. Conclusions

A 2(3-SPR) S-PM has 6-DOF and possesses merits of both
SM and PM. It is composed of a 3-DOF upper 3-SPR PM
and a 3-DOF lower 3-SPR PM. Each of 3-SPR PMs includes
three spherical joint–active prismatic joint–revolute joint legs
with linear actuator.

The workspace and the flexibility of the 2(3-SPR) S-PM
is much larger than that of the upper 3-SPR PM or the lower
3-SPR PM.

The analytic formulae for solving the forward displace-
ment, the inverse/forward velocity, the inverse/forward
acceleration, and the statics of the 2(3-SPR) S-PM can be
derived from the analytic formulae for solving the inverse
displacement, inverse/forward velocity, and inverse/forward
acceleration of the 3-SPR PM. The analytic results
are verified by the simulation mechanism of 2(3-SPR)
S-PM.

The 2(3-SPR) S-PM has some potential applications for
the 6-DOF robot arms, the 6-DOF robot legs, the 6-DOF
S-PM machine tools, the 6-DOF sensor, the 6-DOF surgical
manipulator, the tunnel borer, the barbette of war ship, and
the satellite surveillance platform.

This approach for solving the kinematics, statics, and
workspace of 2(3-SPR) S-PM can be used to solve the
kinematics, the statics, and the workspace of other kinds
of S-PMs.
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