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SUMMARY

The kinematics, statics, and workspace of a 2(3-SPR) serial-
parallel manipulator (S-PM) are studied systematically
in this paper. First, a 2(3-SPR) S-PM including an upper
3-SPR parallel manipulator (PM) and a lower 3-SPR PM
is constructed, and the inverse/forward displacements,
velocity, acceleration, and statics of the lower and upper
3-SPR PMs are studied, respectively. Second, the kinematics
and statics of the lower and upper 3-SPR PMs are combined
and the displacement, velocity, acceleration, and statics
of a 2(3-SPR) S-PM are analyzed systematically. Third,
a workspace of the 2(3-SPR) S-PM is constructed and
analyzed. Finally, the analytic solved results are given and
verified by the simulation mechanism.

KEYWORDS: Parallel manipulators; Serial-parallel manip-
ulator; Kinematics; Statics; Workspace.

1. Introduction

Robot manipulators can be serial, parallel, or hybrid. The
serial manipulators (SMs) have some merits such as larger
workspace, more flexibility, and simple solution of forward
kinematics.!'? The parallel manipulators (PMs) have some
merits such as higher stiffness, greater load-to-weight ratio,
good stability, and simple solution of inverse kinematics.>*
In general, either SMs or PMs have been limited in
their applications, and the advantages of SMs and PMs
are mutual beneficial for designing robots.!~® In order to
make up the shortcomings of SMs and PMs, some PMs
have been connected serially to form various serial-parallel
manipulators (S-PMs).>~!7 The purpose is to bring some
advantages of PMs into play, and meanwhile to increase
workspace and flexibility of the end moving platform. Thanks
to these advantages, S-PMs are appropriate for multi-tasking
machining, such as milling, drilling, deburring, and grinding,
and provide more flexibility in NC machining'®!® and
robot arms and legs. In this aspect, Romdhane® designed a
hybrid serial-parallel Stewart-like mechanism and analyzed
its displacement kinematics. Waldron et al.,” Shahinpoor,
and Tanev’ analyzed the inverse/forward displacement
kinematics of some hybrid serial-parallel robot manipulators.
Using dual vectors and matrices, Bandyopadhyay and
Ghosal'? studied analytical determination of principal twists
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in serial, parallel, and hybrid manipulators. Based on two
kinds of 3-UPU PMs, Zheng et al.'! analyzed displacement
kinematics of a hybrid S-PM. Lu and Leinonen'? studied
its displacement kinematics of a multi-3-PSR S-PM. Lu and
Hu'3 proposed 2(3-SPR) S-PM, and solved its active forces
by CAD variation geometry. Cha et al.'* solved kinematic
redundancy resolution S-PM by local optimization including
joint constraints. Others designed or studied different
S-PMs. 5718 Kyung et al.' analyzed the joint reaction force
and driving force of the actuator of a S-PM. Kindermann and
Cruse®® proposed a numerical approach to the kinematics of
serial, parallel, and hybrid chain manipulators. However, up
to now, there are no efforts made toward the study on velocity,
acceleration, and statics of S-PMs.

This paper focuses on analyses of kinematics, statics,
and workspace of a 2(3-SPR) S-PM. Based on analyses of
velocity, acceleration, statics, and workspace of a 3-SPR PM,
the velocity, acceleration, statics, and workspace of 2(3-SPR)
S-PM are analyzed and verified by a simulation mechanism
of 2(3-SPR) S-PM. Since the 2(3-SPR) S-PM possesses the
merits of both the SMs and the PMs, it has some potential
applications for the robot arms, the robot legs, the S-PM
machine tools, the sensor, the surgical manipulator, the tunnel
borer, the barbette of war ship, and the satellite surveillance
platform.

2. The 2(3-SPR) S-PM and Its DOF

A 2(3-SPR) S-PM is consisted of a lower 3-SPR PM and an
upper 3-SPR PM (see Fig. 1). Two 3-SPR PMs are connected
serially, so that the workspace and the flexibility are enlarged
obviously. The lower 3-SPR PM is composed of a middle
moving platform m, a fixed base B, and 3-SPR (spherical
joint—active prismatic joint-revolute joint) legsr; (i =1, 2, 3)
with the linear actuator. The upper 3-SPR PM is composed
of an upper moving platform m;, a moving base ¢, and
3-SPR active legs r;; with the linear actuator. Here, m is a
regular triangle with three vertices by, b,, and b3, three sides
[; =1, and a center point o; B is a regular triangle with three
vertices By, B;, and B3, three sides L; = L, and a central point
O; m is a regular triangle with three vertices by, by1, and
b3y, three sides /;; =1}, and a central point o;; ¢ is a regular
triangle with three vertices By, B»;, and Bsj, three sides
L;; = L, and acentral point 0. Each of the SPR legs r; (i =1,
2, 3) of the lower 3-SPR PM connects m to B by a revolute
joint R on m at b;, a leg with an active prismatic joint P, and
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Fig. 1. The 2(3-SPR) S-PM and its composite platform.

a spherical joint S on B at B;. Each of the SPR legs r;; (i =1,
2, 3) of the upper 3-SPR PM connects m; to ¢ by a revolute
joint R on m at point b;, a leg with an active prismatic joint
P, and a spherical joint S on c at B;;. Let L be a perpendicular
geometric constraint and || be a parallel geometric constraint.
Let {m;} be a coordinate 0,—x;y;z; attached on m; at oy,
{c} be a coordinate o—x.y.z. attached on ¢ at o, {m} be a
coordinate o—xyz attached on m at o, and {B} be a coordinate
O-XYZ attached on B at O. Let e; be the distance from o; to
b; 1, e be the distance from o to b;, E| be the distance from o to
B; 1, and E be the distance from O to B;. In structure, ¢ and m
are coplanar and form a hexagon plane with common central
point o (see Fig. 1b). In addition, the structure constraints
ripLlpandr; L1 (i =1, 2, 3) are satisfied.

In the 2(3-SPR) S-PM, the number of links are gy = 15 for
one platform m;, one composite platform c/m, one base B, six
cylinders, and six piston-rods; the number of joints is g = 18

Fig. 2. The lower 3-SPR PM and it force situation.
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for six prismatic joints, six revolute joint, and six spherical
joints; the local degree of freedom (DOF) is My = 0. Based
on a revised Kutzbach—Griibler equation,'? the DOF M of
2(3-SPR) S-PM is calculated as follows

M=6(g0—g—1)+Z:m,-—MO=6x(15—18—1)
+(12x14+6x3)=6 1)

3. Kinematics and Statics of the Lower 3-SPR PM

3.1. Inverse/forward displacement
A lower 3-SPR PM is shown in Fig. 2a. Its force situation is
shown in Fig. 2b.

The position vectors B; of B; on B in {B}, the position
vectors " b; of b; on m in {m}, the position vectors b; of b;
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on m in {B}, and the position vector 0 of o on m in {B} can
be expressed as follows:

Xpi Xpi Xai
Bi=|Ys |, "bi=|yi|, bi=|Yu |,
Zpi Zbi Zai
X, Xy 2)
o=\|Y, |, ,I::R =1 *mn Ym3im |, bi = f,Rmbl + o,
ZO 'xn yn Zn

where (X, Y, Z,) are the components of o in {B}; 5R is a
rotational transformation matrix from {m} to {B}; (x;, X,
Xns V> Ym» Yn» 2 Zm» Zn) ar€ Nine orientation parameters of m,
their constrained equations can be obtained from refs. [1-3].

"b;, b;,and B; (i =1, 2, 3) can be derived from Eq. (2) as

follows:
q K —q
mp =S| 1|, mhy=|el|, "bs=S]-1],
2 0 K 2 0
el [0 |1
Bi=—|-1|, By=|E|, By=—|-1]/,
2 0 | 0 2 0
(3)
| [ gex; — ey +2X, ey + X,
b, =§ qgex, — ey, +2Y, |, bh=|evu+Y, |,
| gex, — ey, + 227, eyn + Zo
| [ —aex — ey +2X,
b3=§ —qex, — ey, +2Y, |, qzﬁ.
__qexn_e)}n‘i‘zzo

Let o, B, and A be three Euler angles of m in {B}.
Corresponding to XYX rotational orders of («, 8, A), a
rotational transformation matrix 5R from {m} to {B} can
be expressed as follows>*:

[ x vz
zR = | Xm Ym  Zm
| Xn Yn Zn

(&} Sr88 CASB
CaCh — SaCBS)  —CoSy — 54C8Ch | . (4)
SaCh F CaCpS). —SaSy + CoCpCH,

= SaSp

[ —Casp

where ¢ isone of the 0, o, B, A, ‘a1, “B1, “Ai; 5, =sing, ¢, =
COSQ.

Obviously, (X7, X, X5 Yis Yims Yu» 2> Zm» Zn ) €an be expressed
by (o, B, A) from Eq. (4).

Based on the three structure constraints r; L; (i =1, 2, 3)
and the orthogonal equations of (X7, X, X5 Vs Yims> Yus> s o
z,), three constraint equations can be derived as

Xoxi +Yoxm + Zoxy = Exp, Xy = yi,
(5a)

Xoyl + Yoym + Zoyn = E(xl - ym)/2
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From Eqs. (4) and (5a), (x;, X, Xns Y15 Yms Yn» 2s Zms Zn) €aN
be expressed by (o, 8) as follows:

XI=Cps  Xm = Y1 = SaSB,

Yn = —Im = Saca(l + Cﬂ)a (Sb)

Xn = —2 = —CaSp,
) 2
Ym = €y — SuCBs

n = —s§ + cﬁcﬁ.
X, and Y,, can be derived from Egs. (4) and (5a) as follows:

_ ExuQBym —x1) +2Z,z

B 22y

E(3c2 —3s2cp — cp)sasp + 2ZoSpCa
2(caep — s3) ’

a:)"s o

(5¢)
_ Ex;(x; — ym) - 2Eyl-xm +2Zo2m

22
E(c,g — cg + SiCﬂ)Cﬂ — 2Es§sé —2Z,(1 + c)caSa
2(c2cp — s2) '

o

Thus, X, and Y, can be expressed by («, 8, Z,).

The length r; (i =1, 2, 3) and the unit vectors §; of active
legs, and the vectors e; of lines ¢;, the unit vectors f; of
constrained forces Fj, and arm vector d; from point o to Fj
have been derived in ref. [4] as follows:

rP=E*+ e+ X2+ Y2+ 722+ EY, —qEX,

—2eEx; + 2geEy, (6a)
r;=E*+e*+ X, + Y.+ Z2—3eEy,
+eEx; — 2EY, (6b)
2 _ g2, 2 2 2 2
r2=E>4++X2+Y>+ 72+ EY, +qEX,
—2eEx; — 2qeEy;. (6¢)

qgex; — ey +2X, —qE

61 :; qexm_eyn1+2Y0+E ,
! qgex, —ey, +27,
ey + Xo
52=r— ey, +Y,—E |
: eyn+ Z,
—qgex; — ey, +2X, + qE]
03=—| —qgexy —eym +2Y, + E |, (7
2}’3
—qex, —ey, + 2Z0
qx; =y v ]
e
8125 4Xm — Ym s e =¢€| Ym )
q4Xn — Yn Yn |
qx; + yi
e
€3 = _E qXm + Ym
qXn + Yu
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| [ x gy ] X
flzi Xm +qYm |, f2=_ Xm |,
L Xn +Q)’n_ Xn
X EryE | —2X, +qE
f3=§ Xm—qYm |, di==| —-2Y,—E |, (8)
_-xn - CIYn_ _2Z()
_X, 20X, — qE
d=|-Y,+E|, di=-| —2v,— E
~7, 27,

From Egs. (3) to (8), (r;, 8;, e;, fi, and d;) can be expressed
by (e, B, Z,).

3.2. Forward kinematics of the lower 3-SPR PM
From Eq. (5b) and the orthogonal equations of (x;, X, X, Y1,
ym7 ym Zl’ Zm’ Zn)’ leads to

ym = (1=} —x)/(1 —x). (9a)

Two equations are derived from Eqgs. (6a) and (6¢) as follows:

Yo =y 21/(1 = xp),

ri —ri =2qEQey — X,),
2 2 2 (9b)
(r} +r} —2r3) /(6E) = Yoex; + eym,

ri+r; =2(E*+e + X2+ Y.+ Z. —2¢Ex; + EY,).

9¢)
Equations (9a) and (9b) lead to
2.2
X, =2ey; — n—7 ,
2qFE
24 292 2 (Od)
ry +ry —2r y
y, =1 3 2 1 —1).
6F + (3( 1— X + Xx;

Equations (5a) and (5b) lead to
2Zo = Xoxi + Yoy — Eyi = Z] = (Xox; + Y,y — Ey))*/
(1—x7 —y}). (%)
Equations (5a), (9a), and (9e) lead to
3Ey; —2X,y =2Y,(1 —x)+ E( — 1) (9D

Equations (9d) and (9f) lead to
2_ 2
n(ri —r3) — E(x — 1)2]'
qE

%2

Y, = 2 |:3Ey12 — dey? +

From Egs. (9d) and (9g), an equation is derived as shown
below
2 2

n(ri —r3) — E(x — 1)2:|

3Ey? — dey? +
2—x,|: Vi Vi

_rlz+r32—2r22 B ey?
6E 1—x

+e(l—x)=0. (9h)
!
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From Egs. (9¢c) and (9e), a constraint equation is derived as
shown below

2 2
X (1 - x12 - ylz) = (X()xl + Y()yl - Eyl)z- (91)

2 2
r
(r—1+—3—Ez—e2—X§—Y3+2eEx,—EY(,>

From Egs. (9g) and (9i), an equation for solving y; is derived
as shown below

E*(9y] + x;' —3) — 2y7 (3E>x] — 12¢Ex; + 3E* + 6¢”
+r32 + rlz) + 8yl(rl2 — r32)(e/E —x1)/q + 2(E2 + 2%
S r32)x,2 —4e? + SeExl(l - x,z) + 2r% 422
—(rF =2’ /BE) =0. )

When given r;, the analytic results of (X,, Y,, Z,), and (§;,
e;, fi, and d;) can be solved by using Matlab software as
follows: (1) Solve y; and x; from Eqgs. (9h) and (9j); (2) Solve
(X,, Y,, Z,) by substituting y; and x; into Egs. (9d) and (9e);
(3) Determine the reasonable solutions of the multisolutions
of (X,, Y,, Z,) by simulation mechanism of 3-SPR PM;
(4) Solve y, and y,, from Eq. (9a); (5) Solve §;, e;, f;, and
d; from Egs. (7) and (8).

3.3. General inverse/forward velocities and accelerations
for lower 3-SPR PM

Let V be a general forward velocity of platform m at o in
{B}. Let v and ® be the linear velocity and the angular
velocity of m at o in {B}, respectively. Let A be a general
forward acceleration of the platform m at o in {B}. Let @ and
€ be the linear acceleration and the angular acceleration of m
at o in {B}, respectively. They can be expressed as follows:

- Ux Wy
v v
= cov=|v |, w=|o |,
0]
B Uy Wy
(10)
- a.X 8)(
a
A= , a=\|a, |, e=|g¢g
e )
- a; &;

Suppose there are two vectors § and ¢, and a skew-

symmetric matrix S(). They must satisfy following
1,2

equations
Nx Sx 0 —n. ny
n=\ny | S=| Sy | S(n) = n, 0 —ne|,
N Sz —Ny Nx 0
nxg¢=S8Mms,
; (1)
S’ =—S(),

Sm)* = S)S().

Let 5 be one of the vectors e;, §8;, fi, d;, ‘01, 8,1, €1, fi1,
‘d;1, w, and &.
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The general inverse/forward velocities and the active
forces F;; (i=1,2,3), the constrained forces F'f;, the general
inverse acceleration a,, and the general forward acceleration
A of the lower 3-SPR PM have been derived from ref. [4] as
follows:

Ur1
U2
v, = va V= J_lvr’ v = o3 P
0
0
L 0
(12)
8] (e1 x 8" ] m Fui ]
8 (e2x &) F.»
3; (83 X 53)T Fu3 F
J=1| , —JH! .
Sidox f)f Fri T
f1 < o) Fr
—f:{ (d3Xf3)T_6X6 _Ff3_

a, =JA+V'HV, A =J"(a, — VTHYV),

a=[a1 ao a3z 0 0 0],
wH=[h; hy hy hg hp hgl',  (13)

1| —S6:)? S(8;)*S(e:)
T |:_S(ei)5(8i)2 ViS(ei)S(si)+S(ei)5(5i)25(€i)]6x6’

hﬁ:[ogx3 ~5(f) } |

TSy =sUs@n |

where, J is a 6 x 6 Jacobian matrix; H is 6 x 6 x 6 Hessian
matrix of the upper 3-SPR PM. Each of items in J and the
sub-matrices of H can be solved from Egs. (5) to (8). (F, T)
is a workload wrench applied on m at o in {B}. F is a
concentrated force, and T is a concentrated torque.

4. Kinematics and Statics of the Upper 3-SPR PM

4.1. Inverse/forward displacement

Let € B;; be the position vector of point B;; on the composite
platform m/c in {c}. Let ™'b;; and °b;; be the position
vectors of point b;; on the end platform m; in {m;} and
{c}, respectively. Let “0; and ‘a1, A1, “Xo1, “Yo1, “Z,1) be
the position vector of m, at point 0 and its pose components
in {c}. Let (X115 X1y Xuts Vits Ymts Ynts 2t “Zmts 2n1)
be orientation parameters of m; in {c}.

Similarly, °B;;, " b;; and °b;;, and 0, can be solved from
Eq. (3) by replacing "' b;, b;, B;, 0, X,, Y,, Zy, X1, Xin» Xu» Vi,
Yms Yn»> 25 Zms Zn with mlbil, Cbil’ CBilacol, CX()I, CY()l, cZola
X1 Xm1s Xnls Vits Ym1s Yuls 21> “Zm1s “Zn1, rESPECtively.

Similarly, a rotational transformation matrix €, ;R from
{m; } to {c} can be derived from Eq. (4) by replacing («, 8, 1)
with (‘atq, B1, A1), respectively.

Similarly, “X,; and °Y,; can be derived from Egs. (4) to
(5¢) by replacing («, B8, Z,) with ‘a1, “B1 °Z,1), respectively.
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Similarly, in the inverse displacement analysis, the
extensions r;; of active legs can be solved from Eq. (6) by
replacing e, E, and (r;, «, B, Z,) with e, E1, and (r;1, ‘o,
“B1°Z,1), respectively.

Similarly, the unit vector “§;; of active leg “r;, the vector
‘e;, of line “e;; from point 0, to b;; in {c}, the unit vectors
¢ f;, of three constrained forces °F y;{, and the vector “d;; of
the arm from point o, to “ Fy; in {c} can be solved from Eqgs.
(7) and (8) by replacing (e, E, X1, X, Xn, Yis Yms Yns 2> Zms ns
X0, Yo, Z,) with (e1, E1, “X11, X1, “Xn 1> Vit Ym1s Ynt1s “21s
“Zmts Zn1s “Xo1, Vo1, Zy1), respectively. Thus, 7,1, ‘01, “8; 1,
“e;1,“ f;1,and °d; can be expressed by (‘ay, ‘B1, “Z1).

Similarly, in the forward displacement analysis, (‘X,1,
“Yo1, “Z,1) in {c} can be solved from Egs. (9a) to (9i) by
replacing (r;, e, E, Xi, Xims Xns Yis Yms Yns 2s Zms> Zns Xos Yoo Zo)
with (r;1, e1, E1,°X11, Xty “Xnts Vits Ymts Yats 21y i,
“Znt> ‘Xo1, Yo1, “Zy1), respectively.

In forward kinematics analysis, when given r;; (i = 1,
2, 3), a1, °B1, °Z,1) can be solved by relevant implicit
equations and Matlab.* Then, oy, °8;1, “e;1, “fi1,and “d;;
can be solved.

4.2. General inverse/forward velocities and accelerations
and statics

Let “V; be a general forward velocity of m; at oy in {c};
‘v, and ‘w, be the linear velocity and the angular velocity of
my at o; in {c}, respectively. Let “A; be a general forward
acceleration of platform m, in {c}; “a; and “e; be the linear
acceleration and the angular acceleration of m; at oy in {c},
respectively. They can be expressed as follows:

c —Cvl c ZUXI c Zwﬂ
Vi= Cw1:|’ vi=| vy |, ‘@1=] Wy |,
- ‘v ‘w1
- (14)
. _cal . zax] . zgxl
A = e, :|» ay = | ‘ay |, ‘e1=| ey
- _Cazl ] cé‘zl

The general inverse velocity v,, general forward velocity
V4, and the active forces “F,;; (i =1, 2, 3), and the
constrained “F ¢;; in {c} of the upper manipulator can be
derived from Eq. (12) as follows:

v =8V, Vi=Jv,
V11 ] (8, (Cen x61)" ]
V21 83, (‘e x &7
oy — V31 = 85, (Cer3 x 83T ’
0 ‘fli Cduxf)T
0 “fi Cday x fy)"
L 0 -CfsTl (“d3 x“f3)" ] 6x6
IR
Fai
¢
;3111 = - [;ﬂ (15)
Fpa
L Fr31
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where, J; is a 6 x 6 Jacobian matrix for the upper 3-SPR
PM; (“°F1, “T) is a workload wrench applied on m; at 0} in
{c}, °F is a concentrated force, and °T'| is a concentrated
torque.

The inverse acceleration a,; along active legs r;; (I =
1, 2, 3) and forward acceleration of platform m; at oy in {c}
can be derived from Egs. (11) and (13) as follows:

an =JiA +VIHV,, ‘A =]"(a, —VIHV)),

a=[an an ay 0 0 O]T,
Hi=[h; hy hy hy hyy hf31]T,
. [ —5(°81) S(Ca,»oZS(Ce“)} |
it | —S(Cei)S(“8i1)? h 66
e[ ]
SEfin —=SCfiNSEdin) [,

h = r; SCein)SE8i1) + SCe)SE8i1)*S(Cein), (16)
where, H; isa 6 x 6 x 6 Hessian matrix of the upper 3-SPR
PM. Each of items in the sub-matrices of H; can be solved
from Egs. (11) and (16).

5. Kinematics and Statics of the 2(3-SPR) S-PM

Let 0 be a position vector of point 0, on platform m, in {B};
V| be a general forward velocity of m; at oy in {B}; v, and
®; be a linear velocity and an angular velocity of m; at o;
in {B}. Let A| be a general forward acceleration of m; at
01 in {B}; a; and &, be a linear acceleration and an angular
acceleration of m; at oy in {B}. They can be expressed as
follows:

X()l v, Ux1
o= | Y [, V1=|:w1i|’ Vi =1 Uy |
L Zol i Uz1
Wy 1 a Ax1
(l)] = a)yl ’ Al = [61 } ’ al = ayl ’ (17)
| @zl | azi
Exl
& = 8)‘1
_821

A composite rotational matrix 5R from {m} to {B} can be
derived as follows!:

cg SaSp CaSp
BR =BR"R = sus5 €2 —s2cg  —CuSq — SuCaCp
—CaSp  SaCa + SaCuCp —sozt + ciclg
Cop —Sp 0
X So Co 0 s (18)

0 0 1
R=/R"=/R",

where 6 is an angle between x and x. (see Fig. 1b).
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Some formulae for solving 01, v, @i, a;, and &; can be
derived from Egs. (10), (11), and (18) as follows':?:

0, =0+ fRCol,
v; = v+ R + S(@)2R0; =v — S®R))w + ERCvy,
a=a+ fR”al + 2S(w)fR”v1 + S(e)fR"ol
+ S(@)S()?R°0,
=a— S’R))e + PRa; + 2S(@)’R°v,
+ S(@)S(@)5R¢o0y,

@ :w—l—cha)], & =8+fR68] +S(a))chw1. (19)

A general forward velocity V of o in {B} is derived from
Egs. (11), (12), and (14)—(19) as follows:

Vi=LV+J:V =L o, + T Do,

Ess —S(°Ro)) cR 03,3
T = 03,3 E;3.3 Jr = 0:3 PR '
6x6 6x6
(20)

When given (r;, 11, vi, Vi1, i = 1,2, 3), V| can be solved
from Eqgs. (11), (12), (15), and (20).

A general forward acceleration A; of 0, in {B} is derived
from Egs. (11)—(13), and (14)—(19) as follows:

28(w)ER

A1=JUA+JRCA1+[ 0
3x3

055 |,
S(w)ER Vi
|:S(w)S(w)choli|
+ 0 9
3x1

A=J"Ya, —VIHV), V =] v,

‘A ZJfl(arl _CVTHICVI)’CVI =J v, 21
When giVCl’l (l‘,’, Fils Viris Vril, Qris Aril, i= 1, 2, 3), CO] and
can be solved from relevant equations presented in Section
4.1 and Eq. (12). Then, A; can be solved from Eqgs. (11)—(16)
and (21).

When given a workload wrench (F, T {) applied on m; at
o1 in {B}, a workload wrench (“Fy, “T ) applied on m, at 0,
in {c} and a workload wrench (F, T) applied on m at o in
{B} can be derived as follows:

°F, _—CBR 0553 F _q F,
‘T | 053 3R o L1 ey |

F I F, F,
e e
T _S(CRLol)Fl—f—T] T1

G:_ }‘333%3 03,3 .
| SCR01) E3,3 6
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Fig. 3. A reachable workspace of the lower 3-SPR PM. (a) The isometric view and (b) the top view.

Thus, the active/constrained forces (F,11, Fa21, Fasi,
Fyi1, Fyoy, Fp3) of the upper 3-SPR PM and the
active/constrained forces (Fy1, Fa2, Fa3, Fr1, Fra, Fy3) of
the lower 3-SPR PM can be solved from Eqgs. (12), (15), and
(22) as follows:

Fa31 _ F,
=-(J)) 5 :
Fri T,

(23)

F,
=-JH'G .
Ff] ( ) |:le|

Fpa
Fp3 |

6. Reachable Workspace of the 2(3-SPR) S-PM

A reachable workspace W; of 2(3-SPR) S-PM in {B} is
defined as all positions that can be reached by the central
point o; of the platform m;.

When given the maximum extension rp,x and the
minimum extension ry,;, of the active legs r;, a reachable
workspace W of the lower 3-SPR PM in {B} has been
constructed by means of its simulation mechanism or some
relative analytic formulae.?! W is a volume formed by three
symmetric upper surfaces about axis Z and three symmetric
lower surfaces about axis Z (see Fig. 3). Each of upper surface
S, and lower surface S; is formed by a family of spatial curves
u; j=0,1,..., k) by means of the lofting technique in CAD.

Similarly, when given the maximum extension 7y, and
the minimum extension ry,,; of the active legs r;1, areachable
workspace “W; of upper 3-SPR PM in {c} can be constructed

https://doi.org/10.1017/50263574708004918 Published online by Cambridge University Press

by means of its simulation mechanism.?! W, is a volume
formed by three symmetric upper surfaces S, ; about z and
three symmetric lower surfacesS;; about z (see Fig. 3). Each
of “S,1 and “§;; is formed by a family of spatial curves u;;
(j =1, ..., n) by means of the lofting technique in CAD.?!

In fact, W, is a sub-workspace of the reachable workspace
W, of the 2(3-SPR) S-PM. W; can be constructed from W
and a family of W;. Its construction processes are explained
as follows:

Step 1: Construct W and ‘W, (see Fig. 3) by means of the
simulation mechanism of the lower 3-SPR PM and
the upper 3-SPR PM.?!

Step 2: Move and copy ‘W, of the upper 3-SPR PM along
a curve u; on one of the three upper surfaces S, of
W, and construct a family of the same ‘W;; = ‘W,

(k=1,2,...,n;) by the move and copy command.
Step 3: Repeat Step 2, except that curve u; is replaced by u;
(G =2,...,n). Thus, nj x n same sub-workspaces

“Wi1 = W) can be constructed and arranged above
surface S, by the copy command (see Fig. 4).

Step 4: Construct one of the three upper surfaces S,; of W,
from the upper surfaces “S,; of ‘Wi (k=1,2, ...,
ny X n) by the surface loft command.

Step 5: Repeat Steps 2, 3, and 4, except that the three upper
surfaces S, are replaced by three lower surfaces S;
of W, and three upper surfaces “S,; are replaced by
three lower surfaces S;; of “Wy;. Thus, one of the
three lower surfaces S;; of W can be constructed.

Step 6: Construct W; from S,; and S;; by circumference
pattern command about Z (see Fig. 5).

7. Analytic Solved Example
Set L=120cm, L;=I[=80cm, [;=60cm; 60 =60°
F{=—[203060]" kN; T =[-30 —30 100]” kN-cm. The
kinematics and statics of the upper and lower 3-SPR PMs
and the 2(3-SPR) S-PM are solved by using relevant analytic
formulae and Matlab (see Figs. 6 and 7).

In inverse kinematic analysis, when given the independent
pose parameters (Z,, «, 8, “Z,1, ‘a1, °B1) and their velocities
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Wit

Fig. 4. Groups of reachable workspaces “Wj; of the upper 3-SPR PM vs. 8 = 60°. (a) The isometric view of groups of W, and (b) the top

view of a family of ‘W,

(see Fig. 6b, c), the extension, velocity, and acceleration of
active legs r; and r;1 (i = 1, 2, 3) are solved (see Fig. 6a, i, j).

In forward kinematic analysis, when given the extension
and velocity of active legs r; and r;; (i = 1, 2, 3) (see Fig. 6a,
1, j), the position, velocity, angular velocity, acceleration, and

SHI\\
419.85
»
& 5
L1346
Si - ]
7
S[ 4 - 2
s Bk oy B
4 £y 2
'F"” - S
© 1

angular acceleration of platforms m in {B} and m; in {c} are
solved (see Fig. 6¢c-h).

In forward kinematics, the position, the velocity, the
angular velocity, the acceleration, and the angular accelera-
tion of tope platform m; in {B} are solved (see Fig. 7a—f).

Wi
= g \
K S 419.85 |
-
& 134.16‘
e (=)
& 5 2
- g a2
x® N
Q| (=9 -
: g "z 2
o) L. X

/ Y4
% "
2 [N 8
g g
%0 h
138.56
L}{ (d)

Fig. 5. A reachable workspace W; of 2(3-SPR) S-PM vs. 6 = 0°. (a) The isometric view, (b) the front view, (c) the bottom view, and

(d) the top view.
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https://doi.org/10.1017/50263574708004918 Published online by Cambridge University Press

_
IR ——

\ \\
\ c
' Zn i Za 1

ks o
ol )
\

c !
Y()"

/
ol

o 1 2 3
time 7 (s)

o 1 2 3
g time(s)

j/arz 431 RO

7

;
—— - —
@t Nap

T

0o 1 2 3
time ¢ (s)

0.02

001 Fayf

-0.01

-0.02

/

a:’

acceleration of m, (cm/s?)

-0.03

\, ayl

0 LU LT,

0 1

d time(s)

2

—Fp

0o 1 2
g timez(s)

3

537


https://doi.org/10.1017/S0263574708004918

538 Kinematics, statics, and workspace of a 2(3-SPR) serial-parallel manipulator

The active forces along active legs r; and r;| are solved
(see Fig. 7f). The constrained forces exerted onto active legs
r;and r;; (i = 1, 2, 3) are solved (see Fig. 7g).

8. Conclusions

A 2(3-SPR) S-PM has 6-DOF and possesses merits of both
SM and PM. It is composed of a 3-DOF upper 3-SPR PM
and a 3-DOF lower 3-SPR PM. Each of 3-SPR PMs includes
three spherical joint—active prismatic joint-revolute joint legs
with linear actuator.

The workspace and the flexibility of the 2(3-SPR) S-PM
is much larger than that of the upper 3-SPR PM or the lower
3-SPR PM.

The analytic formulae for solving the forward displace-
ment, the inverse/forward velocity, the inverse/forward
acceleration, and the statics of the 2(3-SPR) S-PM can be
derived from the analytic formulae for solving the inverse
displacement, inverse/forward velocity, and inverse/forward
acceleration of the 3-SPR PM. The analytic results
are verified by the simulation mechanism of 2(3-SPR)
S-PM.

The 2(3-SPR) S-PM has some potential applications for
the 6-DOF robot arms, the 6-DOF robot legs, the 6-DOF
S-PM machine tools, the 6-DOF sensor, the 6-DOF surgical
manipulator, the tunnel borer, the barbette of war ship, and
the satellite surveillance platform.

This approach for solving the kinematics, statics, and
workspace of 2(3-SPR) S-PM can be used to solve the
kinematics, the statics, and the workspace of other kinds
of S-PMs.
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