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We investigate both the rational explosive inflation paths studied by McCallum (2001),
and the classification of fiscal and monetary policies proposed by Leeper (1991), for
stability under least squares (LS) learning of the rational expectations equilibria (REE).
Our first result is that the explosive fiscalist REE is not locally stable under LS learning. In
contrast, in Leeper’s setting, there are policy regimes for which the fiscalist solution, in
which fiscal variables affect the price level, can be a locally stable outcome under LS
learning. However, for other policy regimes the monetarist solution is, instead, the locally
stable REE.
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1. INTRODUCTION

Interactions between fiscal and monetary policy in the determination of the price
level have been the object of a great deal of new research in recent years. One
relatively new strand of research, the fiscal theory of the price level (FTPL), asserts
that fiscal policy can have an important influence on the price level in models in
which one might expect prices to depend only on monetary variables. An extreme
specific case of FTPL asserts that, in certain specific circumstances, fiscal variables
can fully determine the price level independently of monetary variables.1

Clearly, this extreme result is the polar opposite of the monetarist contention
that the price level and the inflation rate depend primarily on monetary variables.
It is thus not surprising that the fiscal theory approach has aroused a great deal of
debate and controversy. These debates consider various aspects of the theory. One
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point of debate concerns the extreme specific case, in which the price level follows
an explosive path. McCallum (2001) has argued that this fiscalist equilibrium is
an implausible “bubble equilibrium.”

The influence of fiscal variables on the price level is, however, not limited to
extreme cases in which the system is nonstationary. In a local analysis around a
unique steady state (Leeper 1991) made an important distinction between “active”
and “passive” policies (the precise definitions will be given below). In a standard
model, he showed that two combinations, either (i) active monetary and passive
fiscal policy or (ii) active fiscal and passive monetary policy yield determinacy,
that is, a unique stationary rational expectations equilibrium (REE). In case (i), the
usual monetarist view that inflation depends only on monetary policy is confirmed.
However, case (ii) is fiscalist in the sense that fiscal policy, in addition to monetary
policy, has an effect on the inflation rate. Leeper (1991) also showed that the steady
state is indeterminate, with multiple stationary solutions, when both policies are
passive, whereas the economy is explosive when both policies are active.2

Another point of controversy concerns the nature of the intertemporal bud-
get constraint of the government. Buiter (2002) argues that FTPL, which does
not impose this constraint as an identity, can lead to inconsistencies or anoma-
lies, and therefore should be rejected as a “starting point for further research
in monetary economics.” Buiter recommends restricting attention to Ricardian
“fiscal-financial-monetary programmes” in which the government’s intertempo-
ral budget constraint “holds for all admissible sequences” of relevant variables.
Woodford [e.g., see Woodford (2001) and Woodford (2003b, pp. 315–316)] ar-
gues against this position and for the validity of non-Ricardian fiscal policies in
which the government need only satisfy its intertemporal budget constraint in
equilibrium. Particular examples are the extreme case described earlier and the
active fiscal/passive monetary regime of Leeper (1991), in which fiscal policy is
non-Ricardian because taxes respond only weakly to debt levels.

The significance of FTPL continues to be debated. Two recent papers by Bassetto
(2002) and Niepelt (2004) readdress the significance of FTPL by strengthening
the notion of rationality used in the earlier literature. Bassetto (2002) casts the
analysis in terms of a market game that generates REE as sequential equilibria of
the game. He finds that versions of FTPL can emerge as a sequential equilibrium,
which takes account of out-of-equilibrium behavior in a Bayesian fully rationalist
way. In contrast, Niepelt (2004) strengthens the notion of REE in the literature
on FTPL by requiring that the equilibrium also fully incorporates past optimal
choices. Niepelt shows that debt valuation according to FTPL is inconsistent with
his refined notion of REE.3

Strengthening the notion of rationality is not the only possible way to assess the
implications of FTPL. Such approaches require even more information and coor-
dination than the usual notion of REE on the part of the economic agents. In this
paper, we take a very different approach by modeling out-of-equilibrium behavior
as being boundedly rational in a specific sense. We employ the learning approach
to macroeconomics, which has been developed in recent years4 to provide, among
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other things, a criterion to select “reasonable” outcomes when multiple REE exist.
The approach is also useful in cases with unique REE as a way to assess the
plausibility of an equilibrium. We reexamine some central results of FTPL from a
learning viewpoint. Generally speaking, this view asserts that the REE of interest
are those that are locally stable outcomes of a natural real-time learning process in
which agents might temporarily deviate from rational expectations (RE), respond
to these mistakes, and eventually arrive at correct forecast functions.

The learning processes that we consider are to be interpreted as a description of
how private agents would plausibly update their forecast rules over time as new
data become available. Thus, we are describing how learning by private agents
might proceed, in a decentralized market economy, if the agents use statistical
methods for estimation and forecasting. In general, stability is a joint property
of the equilibrium under consideration and the learning rule followed by agents.
However, the learning rules we consider employ standard econometric procedures,
that is, least-squares (LS) regressions in stochastic models and sample means in
nonstochastic models.5 Indeed, these procedures are routinely used by economists
when making forecasts and when empirically modelling RE. Furthermore, we give
agents an appropriate functional form that corresponds to the REE of interest. We
therefore regard local stability under LS learning as a minimal requirement for the
economic plausibility of an equilibrium.

In many standard models, the REE of interest are indeed locally stable under
these learning rules. This holds, for example, for the usual solutions of the Cagan
model of inflation, the Samuelson overlapping generations model of money and
the real business cycle model, and it holds for the New Keynesian model when
appropriate interest-rate policies are followed. If an equilibrium is unstable under
LS learning, then we regard it as one that would not be attainable. In such circum-
stances, depending on the outcome, a policy maker would do well to change its
policy to ensure convergence to the equilibrium. Of course, in the unstable case,
faced with increasing forecast errors, private agents (and policy makers) may alter
their perceived functional form and updating rules, but there is no reason to expect
this to redirect them to the equilibrium being considered.6

The version of the model under learning that we consider specifies household
consumption and money demands as functions of the nominal interest rate and
expected inflation over the coming period. These are obtained from the Euler
equations that characterize the household optimal decisions under subjective ex-
pectations. In the deterministic cases, we employ the resulting nonlinear model for
our analysis. However, in stochastic cases, the analysis is based on the linearized
model around a nonstochastic steady state, which is standard practice.

Agents’ expectations of inflation are based on a forecast function that is revised
over time in accordance with adaptive LS learning. Given these expectations, the
short-run state of the economy at each time is given by the temporary equilibrium.
Our household behavior is boundedly rational in two respects. First, in contrast
to “rational expectations” the parameters of the forecast function are not known
a priori to be at their equilibrium values, although when learning is stable they will
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converge to these values asymptotically. Second, the decision rules of the agents
do not explicitly consider expectations of variables at more distant horizons.

Using this framework, we investigate both the rational explosive inflation paths
studied by McCallum (2001), and the classification of fiscal and monetary policies
proposed by Leeper (1991), for stability of the REE under LS learning.7 We find
that the fiscalist REE in the model of McCallum (2001) is not locally stable under
LS learning, whereas the monetarist equilibrium is stable under LS learning when
fiscal policy is instead “Ricardian.” In contrast, in the setting of Leeper (1991),
various cases arise. One plausible region of policy parameters arises when the
nominal interest rate set by the policy maker responds strongly to inflation and
when taxes are raised significantly in response to increases in real debt (active
monetary and passive fiscal policy). In this case, the monetarist REE is the unique
stationary REE and is stable under LS learning. In the monetarist REE, inflation is
purely a monetary phenomenon and real balances are unaffected by fiscal variables.
In this policy region, the orthodox view is confirmed.

If, instead, fiscal policy is active and monetary policy is passive, the fiscalist
solution, in which fiscal variables affect the price level, is stable under LS learning,
in line with FTPL. This is one of our most striking results because real balances are
affected by the rule for setting lump-sum taxes. Hence, Ricardian equivalence fails
in a setting where the traditional view would expect it to be satisfied. In this regime,
taxes respond only weakly to debt and the interest rate responds only weakly to
inflation. Nevertheless, the REE in question is both stochastically stationary and
attainable by boundedly rational agents who follow LS learning rules.

In both of the cases just described, the stable REE is the unique stationary
solution. For other combinations of monetary and fiscal policy, the results are
intriguing: for some parameter values, all REE are unstable under LS learning,
whereas for other parameter values there is incipient convergence to an explosive
path. Taken together, our results clearly indicate that policy formulation should
incorporate the implications of the stability properties, under LS learning, of the
different REE.

2. THE MODEL

We consider a stochastic optimizing model that is close to Leeper (1991) and
McCallum (2001). For the basic model, notation and specification of monetary
and fiscal policy rules we follow Leeper, but we use McCallum’s more general
class of utility functions and also his timing in which utility depends on beginning
of period money balances.8

Households are assumed to maximize

max Et

{ ∞∑
s=t

βs−t
[
(1 − σ1)

−1c1−σ1
s + A(1 − σ2)

−1
(
ms−1π

−1
s

)1−σ2
]}

.
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Here cs denotes consumption in period s and ms = Ms/Ps , where Ms is the
money supply and Ps is the price level at s. Note that real money balances
enter utility as ms−1π

−1
s = (Ms−1/Ps−1)(Ps−1/Ps) = Ms−1/Ps . The household’s

budget constraint is

cs + ms + bs + τs = y + ms−1π
−1
s + Rs−1π

−1
s bs−1, (1)

where bs = Bs/Ps , πs = Ps/Ps−1 is the gross inflation rate and τs is real lump-sum
taxes. Note that Bs is the end of period s nominal stock of bonds. Rs−1 is the
gross nominal interest rate on bonds, set at time s − 1 but paid in the beginning of
period s. The household has a constant endowment y of consumer goods each
period. Throughout the paper, we assume 0 < σ2 < 1.

We assume that there is a constant flow of government purchases g ≥ 0. As
shown in Appendix A.1, household optimality and market clearing conditions
imply the Fisher equation

R−1
t = βEtπ

−1
t+1, (2)

and the equation for money market equilibrium, in period t ,

Aβm−σ2
t Etπ

σ2−1
t+1 = (y − g)−σ1

(
1 − βEtπ

−1
t+1

)
. (3)

Assuming a lower bound on real bonds, the transversality condition implies

lim
t→∞ βtmt+1 = 0 and lim

t→∞ βtbt+1 = 0. (4)

Equations (2) and (3) are usually derived under RE but, as argued in
Appendix A.1, they also can be assumed to hold in a temporary equilibrium
with given subjective expectations. As noted in the Introduction, these equations
as decision rules of the agents do not explicitly consider expectations of variables
at more distant horizons. However, we verify that the household transversality
condition and the intertemporal budget constraint of the government are satisfied
along the learnable temporary equilibrium paths that converge to an REE.

The specification of the model is completed by giving the government budget
constraint and policy rules. The government budget constraint is Bt + Mt +
τtPt = gPt + Mt−1 + Rt−1Bt−1, which in real terms can be written

bt + mt + τt = g + mt−1π
−1
t + Rt−1π

−1
t bt−1. (5)

For fiscal policy, we use Leeper’s tax rule

τt = γ0 + γ bt−1 + ψt . (6)

Monetary policy is given either by Leeper’s interest rate rule

Rt = α0 + απt + θt , (7)

https://doi.org/10.1017/S1365100507060312 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060312


670 GEORGE W. EVANS AND SEPPO HONKAPOHJA

or by a simple fixed money supply rule

Mt = M + θt , (8)

as in Sims (1999) or McCallum (2001). Here ψt and θt are exogenous random
shocks, which for simplicity are iid with mean zero. We remark that the government
nominal bond supply is jointly determined with the equilibrium price level by the
government budget constraint once the tax and monetary policy rules have been
specified.

In the terminology of Leeper (1991), fiscal policy is “active” if |β−1−γ | > 1 and
“passive” if |β−1 −γ | < 1, whereas under (7) monetary policy is active if |αβ| > 1
and passive if |αβ| < 1. For the empirically realistic case 0 ≤ γ ≤ β−1 active
(passive, respectively) fiscal policy means that additional tax revenue from a small
increase in the steady state level of debt is insufficient (sufficient, respectively) to
cover the increased interest payments. Under the interest rate rule (7), with α > 0,
active monetary policy means that a small increase in the steady-state inflation
rate leads to an increase in the real interest rate. As noted by Sims (1999), it is
also natural to refer to monetary policy as active if the policy rule (8) is followed
in place of (7).

We want to consider the RE solutions under different policy regimes and then to
analyze their stability under LS learning. Leeper emphasized the cases of AM/PF
(active monetary/passive fiscal policy) and AF/PM (active fiscal/passive monetary
policy) in which, as discussed later, there is a unique stationary solution. We will be
particularly interested in these cases but also will consider explosive regimes of the
model and regimes with indeterminacy, that is, with multiple stationary solutions.

3. BUBBLES AND THE FISCAL THEORY OF PRICES

We begin our analysis with consideration of a prominent case of the fiscal theory of
prices in which, under a constant money supply, the price level path is determined
by fiscal policy. For example, see Sims (1999) or McCallum (2001). In this section,
we use a nonstochastic version of the model in which ψt ≡ 0 and θt ≡ 0. Monetary
policy is given by (8) and fiscal policy is given by (6) with γ = 0. Thus, policy
reduces to

τt = τ and Mt = M ,

which is a special case in which both monetary and fiscal policy are active.
With a nonstochastic model it is natural to assume point expectations, so that

(3) becomes

mt = (Aβ)1/σ2(y − g)σ1/σ2
[(

1 − β/πe
t+1

)(
πe

t+1

)1−σ2
]−1/σ2

.

With constant nominal money stock, we can write

Pt = D̂
(
πe

t+1

)(1−σ2)/σ2
[
1 − β

(
πe

t+1

)−1]1/σ2
, (9)

where D̂ ≡ M(Aβ)−1/σ2(y − g)−σ1/σ2 .
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Consider first the perfect foresight solutions. We take as given the initial money
stock and the initial value of bonds redeemed R0B0. With a constant money supply
and taxes, we have B1 + τP1 = gP1 + R0B0 in period 1. Under perfect foresight,
we have R−1

t = βπ−1
t+1 for t ≥ 1 and so (5) reduces to

bt = g − τ + β−1bt−1

for t ≥ 2. This equation is explosive and will violate the transversality conditions
unless b1 = B1/P1 = (τ − g)/(β−1 − 1). With R0B0 given as an initial condition
this equation uniquely determines, under perfect foresight, the price level P1

through (τ − g)/(1 − β)= R0B0/P1. Under perfect foresight, the price equation
(9) becomes

Pt = F(Pt+1/Pt ) ≡ D̂(Pt+1/Pt )
(1−σ2)/σ2 [1 − β(Pt+1/Pt )

−1]1/σ2 (10)

for t ≥ 1. We remark that the right-hand side of (10) is strictly increasing in
Pt+1/Pt and therefore the equation can be solved uniquely for Pt given Pt+1 (and
vice versa). However, there is no explicit closed-form solution.

The equation (10) has a steady state at P̂ = D̂(1 − β)1/σ2, but is explosive and
will diverge unless initial conditions happen to be such that P1 = P̂ . However,
for 0 < σ2 < 1 and initial P1 > P̂ we obtain an explosive price path Pt → ∞ that
is consistent with the transversality conditions and the equilibrium equations. In
this “fiscalist” equilibrium, the price level P1 =R0B0(1 − β)/(τ − g) is entirely
determined by fiscal variables and Pt follows an explosive “bubble” price path
despite a constant money stock.

McCallum (2001) argues that this solution is less plausible than an alternative
“bubble-free” monetarist solution Pt = P̂ and bt = 0 for all t = 1, 2, 3, . . . , in
which (with our timing) the level of real taxes τt adjusts to satisfy τ1 = g +
R0B0/P1 and τt = g for t = 2, 3, . . . . One way to interpret McCallum’s view, as he
acknowledges, is as an argument that fiscal policy must be Ricardian, that is, must
satisfy the government intertemporal budget constraint for all feasible sequences,
not just for equilibrium sequences. [For a related argument see Buiter (2002).]
However, the status of the fiscalist solution in this model remains controversial.

3.1. Fiscalist Case Under Learning

We now take a different tack, which nonetheless comes to the same conclusion
as McCallum (2001), that is, that the fiscalist solution is not plausible in the case
under scrutiny. We suppose that the government can indeed commit to τt = τ for
all t = 1, 2, 3, . . . , so that the only equilibrium perfect foresight price path is the
explosive fiscalist solution given earlier. However, we drop the perfect foresight
assumption and ask if the price path is learnable under a natural adaptive learning
rule that is closely related to LS.

In a temporary equilibrium (9), agents make a forecast of the relevant variable
πt+1, for which they are assumed to employ a suitable parametric model. In each
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period, agents estimate the key parameter, using the available data, and employ
the estimated model to make their forecast πe

t+1. The temporary equilibrium then
generates a new data point, and in the following period agents update their pa-
rameter estimate and make forecasts using the reestimated model. The issue of
interest is whether the estimated parameter converges asymptotically so that the
economy converges to the perfect foresight path over time.

We first note that, using (10), Pt → ∞ implies that πt+1 → ∞ along the perfect
foresight path.9 Because there is no closed-form solution of (10) for Pt+1 in terms
of Pt we look for a suitable approximation for large Pt that could be used for
forecasting within the setting of temporary equilibrium dynamics in the nonlinear
model. Letting

G(Pt+1/Pt ) = D̂(Pt+1/Pt )
(1−σ2)/σ2 ,

it can be seen that

lim
π→∞

F(π)

G(π)
= 1.

Thus, for Pt+1/Pt large, G(Pt+1/Pt ) provides a good approximation to
F(Pt+1/Pt ). Solving Pt =G(Pt+1/Pt ) gives

Pt+1 = D̄P
1/(1−σ2)
t , (11)

where D̄ = D̂−σ2/(1−σ2). For all large Pt , along a fiscalist path, forecasts based on
(11) would be close to the perfect foresight value of Pt+1.

We therefore endow private agents with the Perceived Law of Motion (PLM)

Pt+1 = DP
φ̄
t , where φ̄ = 1/(1 − σ2).

We assume that agents know the growth rate parameter φ̄ > 1, but do not know D

(equal to D̄ under RE) and must estimate D from the data. Under this PLM the
ratio Qt = Pt/P

φ̄

t−1 provides the relevant data for estimating the unknown constant
D. Allowing the estimation of both D and φ would require a stochastic framework
because otherwise there is insufficient information to identify two parameters.10

If the fiscalist solution is locally unstable under learning under the assumption
that φ̄ is known, then this clearly would cast doubt on the plausibility of the fiscal
theory in this policy setting.

Our learning rule specifies that the estimate Dt is updated as follows:

Dt = Dt−1 + κ(Qt − Dt−1) for 0 < κ < 1. (12)

This rule adjusts the estimate in the direction of the most recent value of the
ratio Qt . The rule (12) is a standard constant gain learning rule for estimating an
unknown constant. The “gain” κ is usually taken to be a small positive value.11

Under this learning rule, forecasts of prices are given by P e
t = Dt−1P

φ̄

t−1

and P e
t+1 = Dt−1(P

e
t )φ̄ , so that expected inflation is given by12 πe

t+1
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= P e
t+1/P

e
t =D

φ̄

t−1P
φ̄(φ̄−1)

t−1 . Substituting this forecast into (9) and solving for Qt

yields

Qt = D̂D
φ̄/(φ̄−1)

t−1

(
1 − βD

−φ̄

t−1P
φ̄(1−φ̄)

t−1

)1/σ2
. (13)

Thus, the system under learning consists of (12), (13), and the definitional equation

Pt = QtP
φ̄

t−1, (14)

and the fiscalist solution is stable under the learning rule (12) if Dt,Qt → D̄ =
D̂−σ2/(1−σ2) as t → ∞.

PROPOSITION 1. Under constant taxes and fixed money supply, the explosive
fiscalist price path is locally unstable under the learning rule (12) for all 0 < κ < 1.

Proof. Suppose to the contrary that Dt,Qt → D̄ as t → ∞. Then Pt → ∞
under the system (12), (13), and (14), so that (1 − βD

−φ̄

t−1P
φ̄(1−φ̄)

t−1 )1/σ2 → 1. For
large Pt , Dt approximately follows

Dt = Dt−1 + κ
(
D̂D

φ̄/(φ̄−1)

t−1 − Dt−1
)
. (15)

This equation has the fixed point D̄, but it is easily seen that D̄ is unstable under
(15) since T ′(D̄)> 1, where T (D)= D̂Dφ̄/(φ̄−1).

This instability result indicates a lack of robustness of the perfect foresight price
path, to small deviations, under a simple LS learning rule of a type that is known to
yield stability in other contexts, and contrasts with cases here in which analogous
learning rules converge.

We close this section with two remarks.
First, the contribution of Proposition 1 is not that it shows the possibility of an

REE being unstable under LS learning. This possibility is well known. In some
cases, instability under learning is due to a PLM specified in terms of a variable that
explodes. For example, Bullard (1994) and Schönhofer (1996) give an example of
instability in an overlapping generations model with constant money growth. Their
instability result depends on a specification of LS updating in which the regressor
follows an explosive path, and the solution becomes stable when the updating
rule is instead specified in terms of the inflation rate.13 In the current context, we
are careful to avoid this problem by formulating learning in terms of the variable
Qt , which is asymptotically stationary along the explosive perfect foresight path.
However, examples of instability under LS learning also arise when the variables of
interest are nonexplosive in the REE. These include the high-inflation steady state
in the hyperinflation model and the New Keynesian model with an inappropriate
interest-rate rule. In the spirit of the instability results in these other settings, the
contribution of Proposition 1 is to raise concerns about the plausibility of FTPL
for the specification of policy under study.

Second, the instability result relies on using natural but simple rules for decision
making and learning. These decision rules are discussed in Appendix A.1. In
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particular, the household demand for real balances depends only on the interest
rate and the expected rate of inflation over the coming period. More elaborate
decision (and learning) rules can be imagined in which households choose their
money demands based on a forecast of the whole future price path.14 However,
our decision rule is natural because it ensures that the household attempts each
period to meet the first-order condition for maximizing utility given by the usual
Euler equation.

3.2. Monetarist Solution Under Learning

We now consider LS learning stability of the monetarist solution. We set this case
up by assuming that the government pays off the debt immediately, never resorting
to bond finance thereafter. (We continue to assume that money supply is constant.)
Clearly, this is an extreme form of Ricardian policies.15 In consequence, there are
no bonds in the economy and the only equation of interest is (9). Under the perfect
foresight monetarist solution, there is no seigniorage because πt = 1 and τt = g for
all t > 1. Under learning, lump-sum taxes adjust each period to offset seigniorage.

The solution of interest is the steady state

Pt = P̄ ≡ D̂(1 − β)1/σ2 with πt = 1.

It is easily seen that this is the unique steady state solution for πt . We refer to this
as the monetarist solution and we now investigate its stability under (constant-
gain) LS learning. A natural learning rule treats the equilibrium inflation rate as an
unknown constant ζ to be estimated.16 As in Section 3.1, we assume that agents
use a constant-gain learning rule for estimating an unknown constant

ζt = ζt−1 + κ(πt−1 − ζt−1), (16)

with expected inflation given by πe
t+1 = ζt . Again, κ is a small positive constant.

Writing the nonlinear model (9) as Pt =F(πe
t+1), we have πt =F(ζt )/F(ζt−1)

so that our system becomes

ζt = ζt−1 + κ

[F(ζt−1)

F(ζt−2)
− ζt−1

]
. (17)

The monetarist solution is locally stable under (17) if ζt → 1 from nearby starting
points as t → ∞. The relevant stability condition is easily obtained by looking at
the linearized second-order difference equation. This yields

ζ̃t = (1 − κ + κL)ζ̃t−1 − κLζ̃t−2,

where ζ̃t = ζt − 1 and L= σ−1
2 [β(1 − β)−1 + 1 − σ2] > 0. Using standard results,

the linearized system is stable if |κL| < 1 and |1 − κ + κL| < 1 + κL. Since L> 0
these inequalities hold for κ > 0 sufficiently small. We conclude as follows:
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PROPOSITION 2. Under constant money supply and Ricardian fiscal policy,
the monetarist solution is locally stable under the learning rule (16) for all κ > 0
sufficiently small.

We conjecture that the monetarist solution is in fact globally stable under our
simple learning rule. We have not investigated this because it is not central to the
message of this paper. There are a number of examples of global stability results in
the learning literature. In particular, for the standard overlapping generations model
of money, Wenzelburger (2002) has recently developed a relatively complicated
learning rule under which the monetary steady state is globally stable.

3.3. Discussion

Propositions 1 and 2 cast doubt on the plausibility of FTPL for the special case of
constant money and taxes. If the government follows non-Ricardian policies and
the money supply is held fixed, the only REE is the explosive price bubble path,
but this equilibrium is not stable under (constant-gain) LS learning. The economy
under the specified learning rule may follow some explosive path for a period of
time, but this path will not converge to the fiscalist solution.

However, there are other policy regimes in which FTPL has been proposed as
the relevant solution. In particular, Leeper (1991) studied situations in which the
inflation rate is affected by government tax and bond variables but with finite
steady state inflation. We now turn to an analysis of LS learning under policy
rules (6) and (7) based on a linearization around the steady state of the model with
random shocks. We will be particularly interested in the policy regimes in which
the interaction of monetary and fiscal policy rules leads to a unique stationary
solution under RE, but we also will consider other policy regimes.

4. LINEARIZED MODEL WITH STOCHASTIC SHOCKS

We thus return to monetary policy following an interest rate rule, with the system
specified by (2), (3), (5), and the policy rules given by (6) and (7). This is a
stochastic, nonlinear system with exogenous shocks, lagged endogenous variables
and expectations of future quantities that are themselves nonlinear functions of
the endogenous economic variables.17 Equilibria of such nonlinear stochastic
systems do not in general have an explicit functional representation in terms of
a finite number of parameters, which would provide a natural PLM that agents
could estimate. However, in a neighborhood of the nonstochastic steady state,
one can analyze the linearization of the model, provided that the random shocks
are sufficiently small. This procedure is standard in stochastic RE macroeco-
nomic models and is valid (that is, yields a close approximation) provided the
stochastic disturbances have a sufficiently small support. For a justification see
Appendix A.3 of Woodford (2003b). Analysis of the linearized model is also
standard in the study of local convergence of LS learning. Although a formal
justification for the linearization technique in general nonlinear settings has not
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been developed, the RE-based arguments would appear to carry over and the
technique has been verified numerically for many specific models in the literature.
In addition, linearization techniques to obtain local stability results under LS learn-
ing have formally been shown to apply in forward-looking stochastic nonlinear
models with small iid shocks when an REE is described using a finite number of
parameters, see Chapters 11–12 of Evans and Honkapohja (2001).

In Appendix A.2, we show that the linearized system takes the form

πt = (αβ)−1E∗
t πt+1 − α−1θt (18)

0 = bt + ϕ1πt + ϕ2πt−1 − (β−1 − γ )bt−1 + ψt + ϕ3θt + ϕ4θt−1, (19)

where E∗
t πt+1 denotes inflation expectations formed at t . The notation E∗

t πt+1

is used to emphasize that the reduced form (18)–(19) applies whether or not
expectations are rational. The coefficients ϕ1, . . . , ϕ4 are given in Appendix A.2.18

From now on, we make the assumptions α �= 0, αβ �= 1, γβ �= 1 and β−1−γ �= 1.
Linear stochastic expectations models such as (18)–(19) may or may not have

a unique stationary REE, depending on the parameters. When there is a unique
stationary RE solution, the steady state of the model is said to be (locally) “determi-
nate” (the terminology “regular” is also used). When there are multiple stationary
RE solutions, the steady state (or model) is called “indeterminate” (or “irregular”),
and when there are no stationary RE solutions the steady state of the model is
called “explosive.”19

In univariate one-step ahead forward-looking models with positive feedback,
there is a simple connection between determinacy of a steady state and the stability
of the unique stationary solution under LS learning.20 However, this correspon-
dence does not generalize, even for linear models, to multivariate setups and
models with lagged endogenous variables. There are many examples in the liter-
ature of determinate models that are unstable under LS learning, indeterminate
models in which some of the solutions are stable under LS learning and explosive
solutions that are stable under LS learning. Determinacy of a model and stability
of the various solutions under LS learning are, therefore, distinct properties that
must be assessed separately.

Sections 4.1 and 4.2 consider, respectively, determinacy and LS learnability of
the different REE. Section 4.3 combines these analyses into an overall assessment
of the plausibility of the FTPL.

4.1. Determinacy of the Different Equilibria

For models such as (18)–(19) the REE can be represented as vector autoregressions
(VARs) depending also on exogenous variables, and by stationarity we mean that
the VAR is asymptotically covariance stationary in the usual time-series sense. In
the current context, stationarity is equivalent to the solution being nonexplosive in
conditional mean. We begin by considering the determinate cases, which motivates
the monetarist and fiscalist solutions, and present the fully general treatment a bit
later.
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FIGURE 1. Determinate, indeterminate and explosive regions.

In Appendix A.3, it is shown that the determinate case arises when either
|αβ| > 1 and |β−1 − γ | < 1, that is, active monetary policy and passive fiscal
policy (AM/PF), or |αβ| < 1 and |β−1 − γ | > 1, that is, active fiscal policy and
passive monetary policy (AF/PM). As shown in Appendix A.3, either condition
|αβ| > 1 or |β−1 − γ | > 1 leads to a linear restriction of the form

πt = K1bt + K2θt (20)

when nonexplosiveness of the solution is imposed. This equation together with
(19) defines the unique stationary solution in the determinate case.

In the AM/PF regime, we obtain K1 = 0 and K2 = −α−1, so that

πt = −α−1θt .

We will refer to this solution as the “monetarist solution,” as πt is independent of
both bt−1 and ψt . In the AF/PM regime, we obtain

πt = αβϕ1 + ϕ2

β−1 − γ − αβ
bt + K2θt . (21)

From (21) and (19), it is apparent that inflation now depends on bt−1 and ψt as well
as on monetary policy. We therefore refer to this REE as the “fiscalist solution.”

In addition to the determinate cases, two other regimes are possible, depending
on policy parameters. If |αβ| < 1 and |β−1 − γ | < 1, so that both policies are
passive, the model is indeterminate and there are multiple stationary solutions,
which include the monetarist, the fiscalist REE and, as shown here, a class of
nonfundamental solutions. If |αβ| > 1 and |β−1 − γ | > 1, so that both policies
are active, the model is explosive, and there are no stationary solutions.21 The
different regimes are shown in Figure 1, where IN and EX refer to indeterminate
and explosive regions, respectively.
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We now systematically examine the possible REE. Introducing vector notation
yt = (πt , bt )

′, the linearized model (18)–(19) can be written

yt = ME∗
t yt+1 + Nyt−1 + Pvt + Rvt−1, (22)

where

M =
(

(αβ)−1 0

−ϕ1(αβ)−1 0

)
, N =

(
0 0

−ϕ2 β−1 − γ

)
,

P =
( −α−1 0

ϕ1α
−1 − ϕ3 −1

)
, R =

(
0 0

−ϕ4 0

)
, vt =

(
θt

ψt

)
.

Using the method of undetermined coefficients, we consider equilibria of the
form

yt = A + Byt−1 + Cvt + Dvt−1. (23)

The form (23) excludes exogenous sunspot variables by assumption (we will
briefly consider such solutions later). Computing the expectation22

E∗
t yt+1 = A + B(A + Byt−1 + Cvt + Dvt−1) + Dvt

= (I + B)A + B2yt−1 + (BC + D)vt + BDvt−1 (24)

and inserting into (22) we obtain

yt = M(I + B)A + (MB2 + N)yt−1 (25)

+ [M(BC + D) + P ]vt + (MBD + R)vt−1.

The possible solutions to (A,B,C,D) can then be obtained by requiring that (23)
and (25) describe the same random process.

Equivalently, we can use the terminology from the study of LS learning and
E-stability, so that the guess (23) is the PLM and equation (25) is the Actual Law
of Motion (ALM). The mapping from the PLM to the ALM is

A −→ TA(A,B) = M(I + B)A (26)

B −→ TB(B) = MB2 + N

C −→ TC(B,C,D) = MBC + MD + P

D −→ TD(B,D) = MBD + R

and the fixed points of this mapping correspond to REE of the form (23).
The second component of the mapping gives a quadratic matrix equation in

B, which can have more than one solution. Given any solution for B, the first
component gives the unique solution A= 0, provided that I − M(I + B) is
nonsingular. Similarly, for given B the third and fourth components of the mapping
are linear equations for C and D. Imposing the zero elements of M and N in the
matrix quadratic for B, three types of equilibria can easily be shown to emerge:23
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PROPOSITION 3. There are three types of REE, I. the monetarist solution, II.
the fiscalist solution and III. nonfundamental solutions, taking the form (23), as
listed below.

I. B = N , C = P and D = R with A= 0. This is the monetarist solution identified earlier
in the determinate case.

II. B = χ−1

(
−(βγ + αβ2 − 1)ϕ2 −β−1(βγ − 1)(βγ + αβ2 − 1)

βϕ2(αβϕ1 + ϕ2) (βγ − 1)(αβϕ1 + ϕ2)

)
, where

χ = (βγ − 1)ϕ1 − βϕ2, A= 0 and C and D are also uniquely determined
by the fixed point.24 This is a way of representing the fiscalist solution identified
above in the determinate case. Although this may appear to be a complicated
representation, it can be verified that the eigenvalues of B are 0 and αβ. The zero
eigenvalue corresponds to the static linear relationship (21) between πt and bt ,
which can be used to obtain alternative representations of the REE irrespective of
stationarity (see Appendix A.3).

III. B =
(

αβ 0
−(ϕ1αβ + ϕ2) β−1 − γ

)
, A = 0. For C and D the solution is not unique. For

D there is a two-dimensional continuum and, given a value for D, the equation for
C also yields a two-dimensional continuum. We call this class of solutions the non-
fundamental solutions, because of the indeterminacy in the C and D coefficients.25

We remark that this solution set can be expanded to allow for dependence on an
exogenous sunspot variable.

The next proposition summarizes the determinacy properties of the different
solutions shown in the preceding proposition.

PROPOSITION 4. (i) Under AM/PF policy, the monetarist solution is
stationary while the fiscalist solution and nonfundamental solutions are explosive.
(ii) Under AF/PM policy, the fiscalist solution is stationary while the monetarist
solution and nonfundamental solutions are explosive. (iii) Under PM/PF policy,
all the REE are stationary. (iv) Under AM/AF policy, all solutions are explosive.26

We now turn to an examination of whether these solutions are stable under
learning.

4.2. Stability Under LS Learning

In stochastic setups of type (22), in a temporary equilibrium with possibly
nonrational expectations, agents need to make forecasts of endogenous variables
in the next period. Agents are assumed to employ a parametric class of stochastic
processes for the endogenous variables, the PLM (23), to estimate its parameters
using past data and to make their forecasts using the estimated model. More
specifically, agents use recursive least squares (RLS) to estimate the parameters
ξ = (A,B,C,D) of the PLM (23) from past data. Thus, at time t , agents have
estimates ξt = (At , Bt , Ct ,Dt ) and these are used to make forecasts E∗

t yt+1 in (24)
with ξ replaced by ξt . These forecasts together with yt−1, vt and vt−1 determine
yt according to (22). In the following period t + 1 the estimates ξt are updated
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using RLS to ξt+1 and the additional data point. An REE is said to be locally stable
under LS learning if ξt locally converges to an REE as t → ∞.27

The phrase “locally stable under LS learning” can be made precise in several
different senses. First, for initial parameter estimates in an appropriate compact set
strictly containing the fixed point of interest, there is convergence with probability
that can be made arbitrarily close to one if the adaption speed is sufficiently slow.
Second, by adding a projection facility to the algorithm that constrains parameter
estimates to a suitable compact set, one can obtain probability one convergence.28

For further details, see Evans and Honkapohja (1998) and Chapters 6 and 10 of
Evans and Honkapohja (2001).

In this context, E-stability is known to give the conditions for local convergence
under LS learning for stationary (and in many cases for nonstationary) REE.
In contrast, if E-stability of the REE does not hold, with some additional mild
assumptions one can show that LS learning converges with probability zero even
for initial estimates arbitrarily close to the RE values. To define E-stability, given
PLM parameters ξ let T (ξ) denote the corresponding values of the ALM given
by the mapping (26). The three types of RE solutions, given in Proposition 3,
correspond to fixed points of this map. The RE solution (or solution set) of interest
is E-stable if it is a locally asymptotically stable fixed point of the differential
equation

dξ/du = T (ξ) − ξ (27)

operating under the notional time u.
We now present the results giving stability under LS learning of the different

solutions. Appendix A.4 establishes the result by examining E-stability for the
different RE solutions.

PROPOSITION 5. Assume that the REE of interest is stationary. (I) The
monetarist solution is locally stable under LS learning if

(αβ)−1 < 1 and
β−1 − γ

αβ
< 1.

(II) The fiscalist solution is locally stable under LS learning if

β−1 − γ

αβ
> 1 and

γ + 1 − β−1

αβ
< 0.

and
(III) The nonfundamental solutions are not locally stable under LS learning.

We next examine how the conditions for stability under LS learning related to
the earlier determinacy results and then turn to the implications for FTPL.
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FIGURE 2. Regions of E-stable REE.

4.3. Economic Implications

Looking at the economic model, it is evident that the most natural policy rules
entail the parameter restrictions α > 0 and γ ≥ 0. α > 0 means that the nominal
interest rate responds positively to current inflation and γ > 0 means that the
lump-sum tax responds positively to beginning-of-period debt bt−1. In the case
γ = 0, taxes are set independently of the debt level. Realistic values of γ would
also appear to be below β−1, since γ > β−1 implies that, at the non-stochastic
steady state, any shock to debt levels would lead to a tax increase that would more
than pay off the debt, including interest, within one period. We therefore focus on
the region α > 0 and β−1 > γ ≥ 0 of the policy parameter space.

Figure 2 shows the results on learning and E-stability for the monetarist and
fiscalist solutions in this part of the parameter space. In the figure, M indicates
that the monetarist solution is locally stable under LS learning. F indicates that the
fiscalist solution is locally stable and U indicates that neither solution is locally
stable under LS learning. In the region marked F̃, stability of the fiscalist solution
is fragile, as discussed later. In none of the areas are both solutions simultaneously
locally stable under LS learning. In the shaded region, defined by α > β−1 and
0 ≤ γ < β−1 − 1, the solutions are not stationary.

Within the parameter region described by Figure 2, the AM/PF regime lies
within region M. In this regime, the monetarist equilibrium is the unique stationary
solution and it is also locally stable under LS learning. In the AF/PM regime, which
coincides with region F, the fiscalist REE is the unique stationary solution and
is locally stable under LS learning.29 In the indeterminacy region with policy
combination PM/PF both solutions are stationary, but they fail to be locally stable
under LS learning.30

The shaded explosive region with policy combination AM/AF is divided into
two cases with either the fiscalist or the monetarist solution being stable under LS
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learning. We emphasize that our results are local: they are valid in a neighborhood
of the steady state and here suggest an incipient tendency for the economy under
LS learning to follow the indicated explosive equilibrium. We now briefly discuss
the nonlinear dynamics in the explosive region.

Consider the monetarist solution in the nonlinear model. In this solution, the
inflation rate is stationary, while bonds bt explode at rate β−1 − γ (in the mean).
Because the temporary equilibrium equation for πt is independent of bonds, the
monetarist solution is E-stable for univariate PLMs throughout the (shaded) ex-
plosive region in Figure 2. Moreover, the transversality condition for bt is satisfied
because β(β−1 − γ )< 1. However, this is only a weak form of E-stability. Our
linearization suggests that with VAR-type PLMs (23), stability of the monetarist
solution holds only in the shaded region M. We remark that there are two technical
complications with this last argument. First, as bt is explosive, the linearization
coefficients change over time. This is unlikely to matter because the coefficients
that change, ϕ1 and ϕ2, do not affect the E-stability conditions. Second, LS learning
would include one explosive regressor. However, in related setups, this has not
been found to be a difficulty, see Section 9.6 of Evans and Honkapohja (2001) and
the references therein.

In the fiscalist solution, both bt and πt are explosive. πt grows away from
the steady state at rate αβ. Initially bt also grows at this rate, as can be seen
from the relation (21). However, asymptotically the growth rate of bt becomes
β−1 − γ , which can be seen from the nonlinear bond equation (5) by making use
of approximations of money demand and Rt−1π

−1
t for large πt . The transversality

condition for bt is satisfied throughout the shaded explosive region, provided
γ > 0.31 Using again approximations based on large πt we obtain

πt = −α−1α0 + (αβ)−1πe
t+1 − α−1θt ,

bt + (γ − β−1)bt−1 ≈ g − γ0 − ψt + κθt .

This is a linear system in which the bt equation has become effectively decoupled
from πt . The coefficients of the endogenous variables are the same as in (18)–(19)
with ϕ1 = ϕ2 = ϕ4 = 0. Applying the analysis of Section 4.2, it can be seen that
DTA has an eigenvalue larger than one, indicating a failure of E-stability of the
fiscalist solution. These results suggest that in the shaded explosive region F̃, the
fiscalist solution is E-stable in a region near the steady state but at some point
loses stability along an explosive path.

In summary, we have found that when there is a unique stationary REE (the
determinate case), this REE is stable under LS learning. Depending on the values
of policy parameters α and γ the solution is either monetarist or fiscalist. When
there are multiple stationary REE, there is no learnable REE. These results provide
support for FTPL in the specific case of active fiscal and passive monetary policy
(AF/PM). In commenting on the results of our paper, Woodford (2003a) considers
the AF/PM regime the “primary case with which the literature on FTPL has been
concerned.” In the AM/PF case the REE chosen by LS learning is the monetarist
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solution. This is one of the points noted by McCallum (2003a), (2003b) in his
discussion of our results. Woodford (2003a) contends that the monetarist solution
in this region is consistent with the predictions of FTPL. Intriguingly, in the
explosive region F̃, there is some support for FTPL in the sense that the incipient
E-stability property of the fiscalist solution corresponds to the fact that the fiscalist
solution has a less explosive bond growth rate than does the monetarist solution.32

Even more intriguingly, in this region the fiscalist solution asymptotically loses
E-stability and the asymptotic rate of growth of bt becomes identical to that in the
monetarist solution.

We close this section with a brief discussion of the connection of the results
of this section and those of Section 3. In Section 3, monetary policy is given by
a fixed money rule, whereas in the framework of this section an interest rate rule
is used instead. Strictly speaking, these rules are non-nested. However, they can
be compared (under perfect foresight) as follows. Assuming high values of πt

and using (10), we obtain Pt = D̂P
1−σ2
t+1 and hence πt = (πt+1)

1−σ2 . Also using the
Fisher equation πt+1 = βRt yields Rt = β−1π

1/(1−σ2)
t . This can be compared to

the interest rate rule (7) and it is immediate that dRt/dπt → ∞ as πt → ∞. Thus,
the fixed money supply is like a very active (large α) interest rate policy. Because
in Section 3 we also have γ = 0, this in effect places us at the lower boundary of
the shaded M region, where the fiscalist solution is unstable and the monetarist
solution is stable under LS learning. Note that although the transversality condition
is not satisfied at the boundary γ = 0, it holds for arbitrarily small γ > 0.

5. CONCLUSIONS

We have considered local stability under LS learning of the RE solutions in a
simple stochastic optimizing monetary model in which the interaction between
monetary and fiscal policy is central. Our first finding was that in the case of
constant money supply and constant taxes, the equilibrium explosive price paths
dictated by FTPL are not locally stable under LS learning. In contrast, if fiscal
policy is Ricardian, then the monetarist equilibrium is locally stable under LS
learning. These results appear to cast doubt on the plausibility of FTPL in this
policy setting.

We then examined an alternative setting in which interest rates are set as a
linear function of inflation and taxes are set as a linear function of real debt.
The usual monetarist solution is locally stable under LS learning in the active
monetary/passive fiscal policy regime in which it is the unique stationary solu-
tion. However, the fiscalist solution, in which inflation depends on debt and on
tax shocks, is stable under LS learning for a plausible subregion of the active fis-
cal/passive monetary regime, in which the fiscalist solution is the unique stationary
solution. This provides some support for FTPL.

There also are regions of plausible policy parameter values in which the econ-
omy is indeterminate, with multiple stationary solutions. However, in this param-
eter domain none of the REE are locally stable under LS learning.
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Overall, our results provide significant, although limited, support for the fiscalist
solution. Whether the fiscalist solution emerges under learning depends on the
joint fiscal and monetary policy regime. Careful consideration of the interaction
of these policies is therefore required to understand the qualitative characteristics
of inflation and debt dynamics. Naturally, local stability under natural learning
rules is only a minimal criterion in policy design. Examination of sizes of the
domains of attraction would be important in practical applications.

NOTES

1. For a long list of references on the fiscal theory of prices, see Woodford (2001), Cochrane (1999),
Cochrane (2005), and Buiter (2002).

2. It should be pointed out that the FTPL does not predict that the “fiscalist” solution will always
be followed, regardless of fiscal and monetary policies. For example, in the active monetary/passive
fiscal policy regime, there is general agreement that the appropriate solution is the monetarist solution.

3. Niepelt also suggests a different definition of FTPL in terms of valuation of flows.
4. See Evans and Honkapohja (2001) for a recent treatise. Surveys of the literature are provided,

for example, in Evans and Honkapohja (1999), Marimon (1997), and Sargent (1983).
5. The sample mean can, of course, be regarded as least squares regression on a constant.
6. If an alternative convergent learning rule exists, the policy maker could in principle try to induce

agents to coordinate on using a such rule. However, achieving this coordination is likely to be far more
difficult than changing fiscal or monetary policies.

7. In independent work, McCallum (2003a) considers stability under LS learning of the fiscalist
bubble solution using a simplified linear model. He does not analyze the case of interest rate rules.

8. The question of whether beginning- or end-of-period real balances is used leads to subtle
differences in the model and can in some cases have major implications; compare Carlstrom and
Fuerst (2001).

9. If instead we had Pt → ∞ and Pt+1/Pt → π̂ where 0 < π̂ <∞, the right-hand side of (10) would
tend to a finite value. This is a contradiction. (If π̂ = 0, there would be deflation, that is, Pt+1 <Pt for
sufficiently large t , which would violate the assumption Pt → ∞.)

10. It can be shown that when both D and φ are unknown the equilibrium fails to be E-stable,
which indicates that instability would arise in a stochastic setup of the model. Learning in terms of
some other parameters could also be considered without changing the results as E-stability is invariant
to smooth 1 − 1 transformations of the parameters.

11. In stochastic models, a decreasing gain such as κt = t−1 would normally be used. In this case
the rule would be a recursive form for estimating an unknown constant by least squares.

12. We are here treating the information set at the time expectations are formed as including Pt−1

but not Pt . (However, including current Pt in the information set would not make the price bubble
paths stable.)

13. See Section 14.5 of Evans and Honkapohja (2001) for details.
14. For example, Woodford (2001) considers an analysis along these lines, drawing on the calcu-

lation equilibrium approach of Evans and Ramey (1998). Long-horizon decision rules with learning
also have been considered by Preston (2005) in the context of a New Keynesian model of monetary
policy.

15. McCallum (2001) points out that the monetarist solution is an REE even if the government
attempts to implement a non-Ricardian fiscal policy because fully rational agents would not have a
positive demand for bonds in this REE.

16. Equivalently, in analogy with the previous section, agents have the PLM Pt = ζPt−1 and
forecast P e

t = ζPt−1, P e
t+1 = ζ 2Pt−1 so that πe

t+1 = ζ .
17. One might be tempted to initially examine a nonstochastic version of the model, but as will

become evident, for assessing the FTPL it is essential to look at the stochastic system. The fiscalist
equilibrium is a bivariate VAR with feedback from both endogenous variables. To capture these
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dynamics, LS learning must be conducted in a stochastic setting in order to avoid asymptotic perfect
multicollinearity. For a discussion of this point, see Section 3c of Evans and Honkapohja (1998).

18. These reduced form equations are identical to the reduced form given by Leeper, but with
coefficients that differ slightly because of differences in timing and the more general utility function
used here. See Leeper (1991), p. 136.

19. Conditions for determinacy and indeterminacy (equivalently regularity and irregularity) are
given, for example, in Blanchard and Kahn (1980), Chapter 3 of Farmer (1999) and Chapter 10,
Appendix 2, of Evans and Honkapohja (2001).

20. This is sometimes thought of as a reversal of dynamics in going from RE, or perfect foresight,
to learning.

21. In this case requiring nonexplosiveness would impose two linear restrictions of the form (20).
Because these are independent conditions, they can hold for all t only with probability 0.

22. We make the frequently employed assumption that when agents compute forecasts, using the
PLM, they observe current values of the exogenous variables, but only lagged values of the endoge-
nous variables. It can be shown that the key results do not change under the alternative information
assumption that agents also observe current endogenous variables.

23. A Mathematica program with the details is available on request.
24. Explicit formulas for C and D are available on request. This assumes χ �= 0.
25. Note that this value of B is equal to J−1 in Appendix A.3. If both eigenvalues of J have

absolute values greater than one, there is indeterminacy and this entire class of solutions is stationary.
26. The stationarity properties of the different REE are direct consequences of the earlier discussion

in the text and in Appendix A.3.
27. In the indeterminate case, “locally stable” means local convergence under RLS to the set of

fixed points.
28. Various positive probability of convergence results without a projection facility also can be

stated.
29. Note that active monetary policy requires α > β−1. This is a somewhat stronger condition than

given by the usual formulation of the “Taylor principle.”
30. Cases in which policy leads to unstable REE under learning have appeared in the literature,

see in particular the treatment of interest rate pegging by Howitt (1992) and Evans and Honkapohja
(2003).

31. Even if agents believe that bt will continue to grow forever at rate αβ, their perceived transver-
sality condition is satisfied provided α < β−2.

32. This accords with an interpretation of FTPL that predicts selection only of solutions with the
least explosive growth rate for real public debt. This interpretation also would pick the monetarist
solution in the shaded region M.

33. The transversality condition for the household is limt → ∞ βt (mt + bt ) = 0, as consumption
in this model is constant. As noted by McCallum (2001), provided bonds have a (possibly negative)
lower bound, this is equivalent to (4).
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APPENDIX

A.1. HOUSEHOLD OPTIMALITY CONDITIONS AND TEMPORARY EQUILIBRIUM

Define the variables Wt+1 = mt + bt and xt+1 = mt . Following Chow (1996), Section 2.3,
introduce the Lagrange multipliers λt for the budget constraint and µt for the equation
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xt+1 = mt and write the Lagrangian

L = E0

∞∑
t=0

{
βt

[
(1 − σ1)

−1c
1−σ1
t + A(1 − σ2)

−1(xtπ
−1
t )1−σ2

]
− βt+1λt+1

[
Wt+1 − y + ct + τt − xtπ

−1
t − Rt−1π

−1
t (Wt − xt )

]
−βt+1µt+1(xt+1 − mt)

}
.

Here Wt, xt are the state and ct , mt the control variables.
The first-order conditions are

c
−σ1
t − βEtλt+1 = 0, (A.1)

Etµt+1 = 0, (A.2)

λt = β
(
Rt−1π

−1
t

)
Etλt+1, (A.3)

µt = Aπ−1
t

(
xtπ

−1
t

)−σ2 + β
(
π−1

t − Rt−1π
−1
t

)
Etλt+1. (A.4)

In addition, the optimal choices satisfy the transversality conditions (4).33

These equations hold under RE, but they also hold for an optimizing agent who is
solving a dynamic optimization problem under his subjective expectations. We now derive
the consumption and money demand equations under subjective expectations. Substituting
(A.3) into (A.4), one eliminates Etλt+1. Advancing the resulting equation and using (A.1)
and (A.2) leads to

Am
−σ2
t E∗

t π
σ2−1
t+1 + (

R−1
t − 1

)
β−1c

−σ1
t = 0. (A.5)

We use E∗
t (.) to emphasize that (A.5) holds for subjective as well as RE.

To derive the Euler equation for consumption, combine (A.1) and (A.3) to obtain
λt = Rt−1π

−1
t c

−σ1
t and c

−σ1
t = βRtE

∗
t (π

−1
t+1c

−σ1
t+1 ). Assuming that all agents have identical

expectations, market clearing implies that ct = y − g for all agents. It is, therefore, natural
to assume that agents forecast their future consumption as ct+1 = y − g. We arrive at the
consumption schedule

c
−σ1
t = (y − g)−σ1βRtE

∗
t π

−1
t+1.

The temporary equilibrium is obtained by imposing market clearing ct = y − g, which
immediately gives the Fisher equation

R−1
t = βE∗

t π
−1
t+1, (A.6)

which under RE is (2). The equation for money market equilibrium is

Aβm
−σ2
t E∗

t π
σ2−1
t+1 = (y − g)−σ1

(
1 − βE∗

t π
−1
t+1

)
, (A.7)

which, together with money supply rule (8), determines the current price level, for given
expectations, in a temporary equilibrium. Under RE, we arrive at (3). If instead monetary
policy is conducted using the interest rate rule (7), the money supply becomes endogenous
and, given expectations, is jointly determined with the interest rate and price level.
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A.2 LINEARIZATION OF THE MODEL

Rearranging (34), we can write money market clearing as

mt = (Aβ)1/σ2(y − g)σ1/σ2
[(

1 − βE∗
t π

−1
t+1

)(
E∗

t π
σ2−1
t+1

)−1]−1/σ2
. (A.8)

Its linearization at the nonstochastic steady state π is

m̃t =
[(−Ĉβ

σ2

)
(π − β)−(1+σ2)/σ2 +

(
σ2 − 1

σ2

)
Ĉ(π − β)−1/σ2

]
E∗

t π̃t+1,

where Ĉ = (Aβ)1/σ2(y − g)σ1/σ2 , or m̃t ≡ C̃E∗
t π̃t+1. Here m̃t and E∗

t π̃t+1 denote the
deviations from the steady state.

Linearizing the Fisher relation (A.6) at the steady state π , R, we get E∗
t π̃t+1 = βR̃t ,

where R̃t is the deviation from the nonstochastic steady state. This can be substituted into
money demand to yield m̃t = C̃βR̃t . Then linearize the budget constraint, taking note that
mt is a function of Rt :

0 = b̃t + C̃βR̃t + γ b̃t−1 + ψt − π−1C̃βR̃t−1 + m

π 2
π̃t

− Rπ−1b̃t−1 − π−1bR̃t−1 + Rbπ−2π̃t ,

where π, b, R are the steady state values. We also note that R̃t = απ̃t + θt as a result of
centering.

Collecting everything together, we have the two Leeper-type equations

E∗
t π̃t+1 = αβπ̃t + βθt ,

0 = b̃t + π̃t

(
C̃βα + m

π 2
+ Rbπ−2

)
+ π̃t−1(−π−1C̃βα − π−1bα) (A.9)

+ b̃t−1(γ − β−1) + C̃βθt + ψt + θt−1

(
− π−1C̃β − b

π

)
.

Equation (A.9) implicitly specifies the coefficients ϕ1, ϕ2, ϕ3, ϕ4 of equation (19). The
nonstochastic steady state values are given by equations

βR = π , R = α0 + απ,

b + m + γ0 + γ b = g + mπ−1 + Rπ−1b,

m = A1/σ2(y − g)σ1/σ2βR(R − 1)−1/σ2 .

A.3 DETERMINACY CONDITIONS

For either specification, the system under RE can be rewritten as(
1 0

−ϕ2 β−1 − γ

)(
πt

bt

)
=

(
(αβ)−1 0

ϕ1 1

)(
πt+1

bt+1

)
+

(
(αβ)−1

0

)
ηt+1

+
(

0

ϕ3

)
θt+1 +

(−α−1

ϕ4

)
θt +

(
0

1

)
ψt+1,
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or (
πt

bt

)
= J

(
πt+1

bt+1

)
+ F1ηt+1 + F2θt+1 + F3θt + F4ψt+1,

where ηt+1 = πt+1 − Etπt+1 and

J =
(

(αβ)−1 0

(β−1 − γ )−1(ϕ1 + ϕ2(αβ)−1) (β−1 − γ )−1

)
.

The eigenvalues of J are (αβ)−1 and (β−1 −γ )−1. The model has one predetermined and
one free variable and thus determinacy requires that exactly one of these eigenvalues has
absolute value less than one and the other greater than one. Imposing non-explosiveness
gives a linear restriction between πt , bt and θt corresponding to the root with absolute value
less than one. This restriction is obtained as follows. Diagonalize J as J = Q�Q−1, where
� = diag((αβ)−1, (β−1 − γ )−1). Explicit computation using Mathematica gives

Q−1 =
( 1 0

− αβϕ1+ϕ2
γ−β−1+αβ

1

)
.

Letting (xt , zt )
′ = Q−1(πt , bt )

′, we have

(
xt

zt

)
= �

(
xt+1

zt+1

)
+ Q−1(F1ηt+1 + F2θt+1 + F3θt + F4ψt+1).

Let (C1, C2)
′ = −Q−1F3. If |(αβ)−1| < 1 then nonexplosiveness of the solution requires

that Etxt+1 = αβ(xt + C1θt ) = 0, as otherwise |Etxt+s | → ∞ as s → ∞. This gives the
restriction xt + C1θt = 0. Using xt = πt we obtain the static linear relationship satisfied by
the monetarist solution. If |(β−1 − γ )−1| < 1, then analogously nonexplosiveness requires
that zt + C2θt = 0. Using zt as the linear function of πt and bt specified earlier gives the
static linear relationship satisfied by the fiscalist solution.

Finally, we remark that in Section 4.1 the fiscalist solution II can be shown to satisfy
the fiscalist static relationship whether or not the model is determinate. Because the matrix
B is singular, one row is proportional to the other row and it can be verified that the
proportionality factor is αβϕ1+ϕ2

β−1−γ−αβ
, which is the same as the coefficient in (21).

A.4 PROOF OF PROPOSITION 5

The proposition is established by considering the E-stability conditions. First we note that
the B component in this differential equation is nonlinear, with local stability determined
by its linearization at the fixed point of interest. The B, C and D components are matrix-
valued and need to be vectorized. Moreover, it is seen that the B component of (27) is an
independent subsystem, the A and D subsystems, respectively, depend on B, and the C

subsystem depends on both B and D. The stability conditions for (27) can be given in terms
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of the following matrices:

DATA(Ā, B̄) = M(I + B̄),

DBTB(B̄) = B̄ ′ ⊗ M + I ⊗ MB̄,

DCTC(B̄, C̄, D̄) = I ⊗ MB̄,

DDTD(B̄, D̄) = I ⊗ MB̄,

where ⊗ denotes the Kronecker product and Ā, B̄, and soon denote the values of A, B etc.
at the different REE in Proposition 3.

The E-stability condition for REE of type I and II is that the real parts of all eigenvalues of
all four matrices DiTi , i = A, B, C, D, are less than one. For the class of nonfundamental
solutions III, the matrices DCTC and DDTD will have some eigenvalues equal to one,
because of the continuum of solutions. A necessary condition for E-stability is that the
other eigenvalues of the four matrices have real parts less than one.

The explicit E-stability conditions for the three types of REE can be analytically com-
puted using Mathematica (routines available on request). We give details for the monetarist
solution and summarize the E-stability conditions in the other cases.

I. The monetarist solution: Inserting M and the value of B̄ in the monetarist solution,
we get

DATA =

⎛
⎜⎜⎝

1

αβ
0

−ϕ1

αβ
0

⎞
⎟⎟⎠ , DBTB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
−ϕ2

αβ
0

0 0
ϕ1ϕ2

αβ
0

0 0
1 − βγ

αβ2
0

0 0
−(1 − βγ )ϕ1

αβ2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and DCTC = DDTD = 0. The eigenvalues of DATA are 0 and (αβ)−1. The nonzero
eigenvalue of DBTB is (β−1 − γ )/αβ. This yields the E-stability conditions given.

II. The fiscalist solution: The nonzero eigenvalues of DiTi , i = A, B, C, D, are
1 + (γ + 1 − β−1)/αβ, 1 + (γ − β−1)/αβ, and 2 + (γ − β−1)/αβ. This yields
the E-stability conditions given. Although the matrix B̄ depends on ϕ1 and ϕ2, the
eigenvalues of DiTi , i = A, B, C, D, are in fact independent of ϕ1 and ϕ2, as can be
verified using Mathematica.

III. The nonfundamental solutions are not E-stable, as DBTB has an eigenvalue equal
to 2.
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