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Characterizations of right rejective chains
Mayu Tsukamoto

Abstract. In this paper, we give characterizations of the category of finitely generated projective
modules having a right rejective chain. By focusing on the characterizations, we give sufficient
conditions for right rejective chains to be total right rejective chains. Moreover, we prove that
Nakayama algebras with heredity ideals, locally hereditary algebras and algebras of global dimension
at most two satisfy the sufficient conditions. As an application, we show that these algebras are right-
strongly quasi-hereditary algebras.

1 Introduction

The notion of right rejective subcategories was introduced by Iyama and plays a crucial
role in the proof of the finiteness theorem for representation dimensions of artin alge-
bras [13]. Right rejective subcategories are a special class of coreflective subcategories
which appear in the classical theory of localizations of abelian categories. It is known
that right rejective subcategories provide effective tools to study representation-finite
orders [12, 14, 19]. A subcategory C′ of an additive category C is called a right rejective
subcategory if for each X ∈ C, there exists a monic right C′-approximation of X. We
call a chain of cosemisimple right rejective (respectively, coreflective) subcategories a
right rejective (respectively, coreflective) chain.

Quasi-hereditary algebras were introduced by Cline, Parshall, and Scott to explore
highest weight categories arising from the study of semisimple complex Lie algebras
and algebraic groups [5, 20]. As a distinguished class of quasi-hereditary alge-
bras, Ringel [18] introduced right-strongly quasi-hereditary algebras which frequently
appear in the representation theory of algebras [7, 8, 10, 16, 21]. It is known that
special right rejective chains called total right rejective chains, are characterized by
right-strongly quasi-hereditary algebras.

Proposition 1.1 ([22, Theorem 3.22]) Let A be an artin algebra and (e1 , e2 , . . . , en)
a complete set of primitive orthogonal idempotents of A. Let ε i ∶= e i +⋯+ en . Then the
following statements are equivalent.
(1) The following chain is a total right rejective chain.

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.
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(2) A > Aε2A > ⋯ > Aεn A > 0 is a heredity chain (namely A is a quasi-hereditary
algebra), and the following chain is a coreflective chain.

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.

(3) A > Aε2A > ⋯ > Aεn A > 0 is a right-strongly heredity chain (namely A is a right-
strongly quasi-hereditary algebra).

Ágoston et al. [1] introduced neat algebras as a generalization of quasi-hereditary
algebras. As an analog of Proposition 1.1, we give characterizations for projA to admit
a right rejective chain using neat algebras. For an idempotent e of A, let S(e) ∶= eA/eJ,
where J is the Jacobson radical of A.

Theorem 1.2 (Theorem 3.5) Let A be an artin algebra and (e1 , e2 , . . . , en) a complete
set of primitive orthogonal idempotents of A. Let ε i ∶= e i +⋯+ en . Then the following
statements are equivalent.
(1) The following chain is a right rejective chain.

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.(1.1)

(2) A > Aε2A > ⋯ > Aεn A > 0 is a neat chain (namely A is a neat algebra), and the
following chain is a coreflective chain.

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.

(3) For each i ∈ [1, n], pdε i Aε i
S(e i)ε i ≤ 1 holds.

By focusing on the condition (3) in Theorem 1.2, we give sufficient conditions
(see Theorem 3.9) for the right rejective chain (1.1) to be a total right rejective
chain. Moreover, we prove that the following classes of algebras satisfy the sufficient
conditions.
• Nakayama algebras with heredity ideals (Proposition 3.13).
• Locally hereditary algebras (Proposition 3.16).
• Algebras of global dimension at most two (Proposition 3.17).
Therefore, we have the following result.

Theorem 1.3 (Theorem 3.12) Nakayama algebras with heredity ideals, locally
hereditary algebras and algebras of global dimension at most two are right-strongly
quasi-hereditary.

1.1 Notation

Throughout this paper, A is a basic artin algebra. Let J = J(A) be the Jacobson radical
of A. By a module, we mean a finitely generated right A-module. Let pdA M denote the
projective dimension of an A-module M. We write modA for the category of finitely
generated right A-modules and projA for the full subcategory of modA consisting
of projective A-modules. For M ∈ modA, let addM denote the full subcategory of
modA whose objects are direct summands of finite direct sums of M.
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2 Right rejective chains

In this section, we recall the definition of right rejective chains and collect related
results (see [13, 15 ] for details). By a subcategory, we always mean a full subcategory
which is closed under isomorphisms. For a subcategory C′ of an additive category
C, we call a morphism f ∶ Y → X in C a right C′-approximation of X if Y ∈ C′
and C(−, f ) ∶ C(−, Y) → C(−, X) is an epimorphism on C′. Dually, we define a left
C′-approximation.

Definition 2.1 Let C be an additive category and C′ a subcategory of C.
(1) We call C′ a coreflective subcategory of C if for any X ∈ C, there exists a right C′-

approximation f ∈ C (Y , X) of X such that C(−, f ) ∶ C(−, Y) → C(−, X) is an
isomorphism on C′.

(2) We call C′ a right rejective subcategory of C if for any X ∈ C, there exists a right
C′-approximation of X such that it is a monomorphism in C.

Dually, reflective subcategories and left rejective subcategories are defined.

Right rejective subcategories are coreflective subcategories, but the converse does
not hold in general.

To define a right rejective chain, we need the notion of cosemisimple subcategories.
Let JC be the Jacobson radical of C. For a subcategory C′ of C, let [C′] denote the ideal
of C consisting of morphisms which factor through some object of C′, and let C/[C′]
denote the factor category.

Definition 2.2 Let C be an additve category. A subcategory C′ of C is called a
cosemisimple subcategory of C if JC/[C′] = 0 holds.

We recall characterizations of coreflective subcategories, right rejective subcate-
gories and cosemisimple right rejective subcategories of projA. We write gldim A for
the global dimension of A.

Proposition 2.3 ([15, Theorem 3.2]) Let A be an artin algebra and ε an idempotent
of A. Then the following statements hold.
(1) addεA is a coreflective subcategory of projA if and only if Aε ∈ proj εAε.
(2) addεA is a right rejective subcategory of projA if and only if AεA ∈ addεA as a

right A-module. In this case, gldim εAε ≤ gldim A holds.
(3) addεA is a cosemisimple right rejective subcategory of projA if and only if eJ ∈

addεA as a right A-module, where e ∶= 1 − ε. In this case, the inclusion eJ → eA is
a right add εA-approximation of eA.

Now, we introduce the notion of coreflective chains, right rejective chains and total
right rejective chains.

Definition 2.4 Let C be an additve category. Let
C = C1 ⊃ C2 ⊃ ⋯ ⊃ Cn ⊃ Cn+1 = 0(2.1)

be a chain of subcategories of C.
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(1) (2.1) is called a coreflective chain (of length n) if Ci+1 is a cosemisimple coreflec-
tive subcategory of Ci for each 1 ≤ i ≤ n.

(2) (2.1) is called a right rejective chain (of length n) if Ci+1 is a cosemisimple right
rejective subcategory of Ci for each 1 ≤ i ≤ n.

(3) (2.1) is called a total right rejective chain (of length n) if the following conditions
hold for each 1 ≤ i ≤ n:
(a) Ci+1 is a right rejective subcategory of C and
(b) Ci+1 is a cosemisimple subcategory of Ci .

One can easily check that total right rejective chains are right rejective chains,
and right rejective chains are coreflective chains. However, the converses do not
always hold. We refer to Example 3.6 which shows that right rejective chains are not
necessarily total right rejective chains.

If projA has a right rejective chain, then we give an upper bound of the global
dimension of A.

Proposition 2.5 ([15, Theorem 3.3]) Let A be an artin algebra. If projA admits a right
rejective chain of length n, then the global dimension of A is at most 2n − 2.

Remark 2.6 The length of a right rejective chain of projA is bounded by the
number of indecomposable direct summands of A, or equivalently the number of
isomorphism classes of simple A-modules. Hence, if A has m simple modules and
projA admits a right rejective chain, then the global dimension of A is at most 2m − 2
by Proposition 2.5.

Total right rejective chains are closely related to right-strongly quasi-hereditary
algebras which are a special class of quasi-hereditary algebras. We recall the defini-
tions of quasi-hereditary algebras and right-strongly quasi-hereditary algebras (see
[5, 9] and [18], for details). We call an idempotent ideal AεA a heredity ideal of A if
AεA ∈ projA and εAε is semisimple.

Definition 2.7 Let A be an artin algebra.
(1) ([5, 9]) We call A a quasi-hereditary algebra if there exists a chain of idempotent

ideals

A = Aε1A > Aε2A > ⋯ > Aεn A > Aεn+1A = 0(2.2)

such that Aε i A/Aε i+1A is a heredity ideal of A/Aε i+1A for each 1 ≤ i ≤ n. In this
case, (2.2) is called a heredity chain.

(2) ([18]) We call A a right-strongly quasi-hereditary algebra if there exists a chain of
idempotent ideals

A = Aε1A > Aε2A > ⋯ > Aεn A > Aεn+1A = 0

such that Aε i A ∈ projA and ε i Aε i/ε i Aε i+1Aε i is semisimple for each 1 ≤ i ≤ n.
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Since −⊗A A/Aε i+1A preserves projective modules, right-strongly quasi-
hereditary algebras are quasi-hereditary algebras. We give a characterization of right-
strongly quasi-hereditary algebras by total right rejective chains.

Proposition 2.8 ([22, Theorem 3.22]) Let A be an artin algebra. Then A is a right-
strongly quasi-hereditary algebra if and only if projA admits a total right rejective chain.

3 Main results

In this section, we give characterizations of right rejective chains and constructions of
total right rejective chains. Moreover, using the constructions, we provide total right
rejective chains for several classes of algebras.

3.1 Characterizations of right rejective chains

In this subsection, using neat algebras, we give characterizations of projA admitting
a right rejective chain.

For an idempotent e of A, S(e) stands for a semisimple A-module eA/eJ. Let
P(e) denote a projective cover of S(e). In the following, we fix a complete set
(e1 , e2 , . . . , en) of primitive orthogonal idempotents of A. Then, we have a complete
set {S(e i) ∣ 1 ≤ i ≤ n} of representatives of isomorphism classes of simple A-modules.
Let ε i ∶= e i +⋯+ en for 1 ≤ i ≤ n and εn+1 ∶= 0. We recall the definition of neat
algebras (see [1] for details). A typical example of a neat algebra is a quasi-hereditary
algebra.

Definition 3.1 [1] Let A be an artin algebra.
(1) An idempotent e of A is called a neat idempotent if Exti

A(S(e), S(e)) = 0 holds
for each i ≥ 1. We call (e1 , e2 , . . . , en) a neat sequence if e i is a neat idempotent
of ε i Aε i for each 1 ≤ i ≤ n.

(2) An algebra A is called a neat algebra if there exists a neat sequence.

We give an upper bound of the global dimension of a neat algebra.

Proposition 3.2 ([1, Proposition 2]) If A is a neat algebra with a neat sequence
(e1 , e2 , . . . , en), then the global dimension of A is at most 2n − 2.

We reformulate neat algebras in terms of a chain of strong idempotent ideals. Recall
that an idempotent ideal AεA is called a strong idempotent ideal (or stratifying ideal)
of A if Ext j

A/AεA(X , Y) ≅ Ext j
A(X , Y) holds for each X , Y ∈ mod (A/AεA) and j ≥ 1

(see [3] and [6] for details).

Proposition 3.3 Let A be an artin algebra. Then A is a neat algebra with a neat
sequence (e1 , e2 , . . . , en) if and only if a chain of idempotent ideals

A > Aε2A > ⋯ > Aεn A > Aεn+1A = 0(3.1)
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satisfies that ε i Aε i+1Aε i is a strong idempotent ideal of ε i Aε i and ε i Aε i/ε i Aε i+1Aε i is
semisimple for each 1 ≤ i ≤ n. In this case, we call (3.1) a neat chain.

Proof Let e be an idempotent of A and ε ∶= 1 − e. It suffices to show that e is a
neat idempotent of A if and only if AεA is a strong idempotent ideal and A/AεA
is semisimple. Indeed, one can apply this claim to each subalgebra ε i Aε i . By [1,
Proposition 1.1], e is a neat idempotent of A if and only if it satisfies that (a) the
multiplication map: Aε ⊗εAε εA→ AεA is an isomorphism, (b) TorεAε

j (Aε, εA) = 0 for
each j ≥ 1 and (c) eAεAe = eJe. Moreover, by [6, Remark 2.1.2(a)], the conditions (a)
and (b) are equivalent to the condition that AεA is a strong idempotent ideal of A. Thus
we show that the condition (c) holds if and only if A/AεA is semisimple. The “only
if ” part holds since A/AεA ≅ eAe/eAεAe = eAe/J(eAe). We show the “if ” part. By
ε = 1 − e, we obtain that eAεAe ⊆ eJe. Since A/AεA is semisimple, so is eAe/eAεAe.
Thus 0 = J(eAe/eAεAe) = J(eAe)/eAεAe, and hence the assertion holds. ∎

By Proposition 3.3, we reprove the following result.

Corollary 3.4 ([1, Corollary in §0]) Any quasi-hereditary algebra is a neat algebra.

Proof We assume that A is a quasi-hereditary algebra. Then there exists a heredity
chain

A > Aε2A > ⋯ > Aεn A > Aεn+1A = 0.

We show that this chain is a neat chain. By definition, ε i Aε i/ε i Aε i+1Aε i is semisimple.
Thus it suffices from Proposition 3.3 to prove that ε i Aε i+1Aε i is a strong idempotent
ideal of ε i Aε i for each 1 ≤ i ≤ n. By Aε i A/Aε i+1A ∈ proj (A/Aε i+1A), it follows from
[3, Proposition 5.2] that Aε i A/Aε i+1A is a strong idempotent ideal of A/Aε i+1A. Since

A/Aε i+1A
Aε i A/Aε i+1A

≅ A/Aε i A,

we obtain that Ext j
A/Aε i A(X , Y) ≅ Ext j

A/Aε i+1 A(X , Y) for each X , Y ∈ mod (A/Aε i A)
and j ≥ 1. Thus, Aε i A is inductively a strong idempotent ideal of A for each 2 ≤ i ≤ n.
Since Aε i+1A is a strong idempotent ideal of A, it follows from [3, Theorem 2.1] that
ε i Aε i+1Aε i is also a strong idempotent ideal of ε i Aε i . Hence the assertion holds. ∎

We give characterizations for projA to admit a right rejective chain.

Theorem 3.5 Let A be an artin algebra. Then the following statements are equivalent.
(1) The following chain is a right rejective chain.

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.

(2) A is a neat algebra with a neat sequence (e1 , e2 , . . . , en) and the following chain
is a coreflective chain.

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.(3.2)

(3) For each 1 ≤ i ≤ n, pdε i Aε i
S(e i)ε i ≤ 1 holds.
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Proof By an equivalence HomA(ε i A,−) ∶ add ε i A
∼
�→ proj ε i Aε i , we obtain that

add ε i+1A is a cosemisimple right rejective (respectively, coreflective) subcategory
of add ε i A if and only if add ε i+1Aε i is a cosemisimple right rejective (respectively,
coreflective) subcategory of proj ε i Aε i .

(1)⇔(3): We consider an exact sequence in mod ε i Aε i

0→ e i Jε i → e i Aε i → S(e i)ε i → 0.

If add ε i+1A is a cosemisimple right rejective subcategory of add ε i A, then e i Jε i ∈
add ε i+1Aε i by Proposition 2.3(3). Thus pdε i Aε i

S(e i)ε i ≤ 1. Conversely, we assume
that pdε i Aε i

S(e i)ε i ≤ 1. Then e i Jε i ∈ proj ε i Aε i . Since e i Aε i is not a direct summand
of e i Jε i , we have e i Jε i ∈ add ε i+1Aε i . Hence add ε i+1A is a cosemisimple right rejective
subcategory of add ε i A by Proposition 2.3(3). Thus the assertion holds.

(1)⇒ (2): Since right rejective chains are coreflective chains, it suffices to
show that the chain A > Aε2A > ⋯ > Aεn A > 0 is a neat chain by Proposition 3.3.
Due to our assumption, add ε i+1A is a right rejective subcategory of add ε i A.
By Proposition 2.3(2), we obtain that ε i Aε i+1Aε i ∈ proj ε i Aε i for each 1 ≤ i ≤ n.
Thus ε i Aε i+1Aε i is a strong idempotent ideal of ε i Aε i by [3, Proposition 5.2].
Let C ∶= add ε i A/[add ε i+1A]. Then JC = 0 holds by cosemisimplicity. Since
J(ε i Aε i/ε i Aε i+1Aε i) = J(EndC(ε i A)) = JC(ε i A, ε i A) = 0, we have the assertion.

(2)⇒ (1): Since (3.2) is a coreflective chain, add ε i+1A is a cosemisimple subcat-
egory of add ε i A. Hence, it is enough to show that add ε i+1A is a right rejective
subcategory of add ε i A for each 1 ≤ i ≤ n − 1. By Proposition 2.3(2), we prove that
ε i Aε i+1Aε i ∈ proj ε i Aε i . Since A is a neat algebra with a neat sequence (e1 , e2 , . . . , en),
it follows from Proposition 3.3 that ε i Aε i+1Aε i is a strong idempotent ideal of ε i Aε i .
Due to our assumption, add ε i+1A is a coreflective subcategory of add ε i A. Thus,
ε i Aε i+1 ∈ proj ε i+1Aε i+1 by Proposition 2.3(1). Since ε i Aε i+1Aε i is a strong idempo-
tent ideal of ε i Aε i and ε i Aε i+1 ∈ proj ε i+1Aε i+1, it follows from [3, Corollary 3.8(b),
Proposition 5.2] that ε i Aε i+1Aε i ∈ proj ε i Aε i . Thus the proof is complete. ∎

We give an example of a right rejective chain using Theorem 3.5.

Example 3.6 Let A be the algebra defined by the quiver

1
β

���
��

��

2

α
�������

3
γ��

with relations αβγα and γαβ. Then we can check that pdA S(e1) = 1, pdε2 Aε2
S(e2)ε2 =

1 and pdε3 Aε3
S(e3)ε3 = 0. Thus projA ⊃ add (e2 + e3)A ⊃ add e3A ⊃ 0 is a right rejec-

tive chain by Theorem 3.5. However, this is not a total right rejective chain since
Ae3A ≅ P(e3)

⊕2 ⊕ P(e3)/P(e3)J2 /∈ projA.

In the rest of this subsection, we give constructions of total right rejective chains
using Theorem 3.5. We need the following two lemmas.
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Lemma 3.7 Let e and ε be idempotents of A such that add eA ⊂ add εA. If φ ∶ Y →
X is a right add eAε-approximation of X ∈ proj εAε, then φ ⊗εAε εA ∶ Y ⊗εAε εA→
X ⊗εAε εA is a right add eA-approximation of X ⊗εAε εA.

Proof Let f ∈ HomA(eA, X ⊗εAε εA). Then f ⊗A Aε ∶ eA⊗A Aε → X ⊗εAε εA⊗A
Aε. Since φ is a right add eAε-approximation, there exists φ′ ∶ eA⊗A Aε → Y such
that α( f ⊗A Aε) = φφ′, where α ∶ X ⊗εAε εA⊗A Aε → X is an isomorphism. Let β ∶
eA⊗A Aε ⊗εAε εA→ eA be an isomorphism via ea ⊗ bε ⊗ εc ↦ eabεc. Then (α ⊗εAε
εA)( f ⊗A Aε ⊗εAε εA) = f β holds. Since (φ ⊗εAε εA)(φ′ ⊗εAε εA)β−1 = (φφ′ ⊗εAε
εA)β−1 = (α ⊗εAε εA)( f ⊗A Aε ⊗εAε εA)β−1 = f , we have the assertion. ∎

Lemma 3.8 Let ε be an idempotent of A such that add εA is a cosemisimple subcate-
gory of projA. If φ ∶ P → Q is a monomorphism in add εA, then Ker φ ∈ mod (A/AεA).

Proof Let φ ∶ P → Q be a monomorphism in add εA. We show that HomA(εA,
Ker φ) = 0. Let ψ ∈ HomA(εA, Ker φ). Then, we have a composition map

εA
ψ
�→ Ker φ i

�→ P
φ
�→ Q

such that φiψ = 0 holds. Since φ ∶ P → Q is a monomorphism in add εA, we have
iψ = 0. Hence ψ = 0 holds. ∎

Now, we give constructions of total right rejective chains.

Theorem 3.9 Let A be an artin algebra and

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0(3.3)

a chain of subcategories. Then the chain (3.3) is a total right rejective chain if one of the
following two conditions is satisfied.
(1) For each 1 ≤ i ≤ n, e i Jε i ∈ add εn Aε i and Aεn A ∈ projA hold.
(2) Assume that there exists 1 ≤ j ≤ n − 1 such that

pdε i Aε i
S(e i)ε i =

⎧⎪⎪
⎨
⎪⎪⎩

1 1 ≤ i ≤ j
0 j + 1 ≤ i ≤ n.

If φ ∶ P → Q is a monomorphism in add ε i+1Aε i , then Ker φ ∈ proj ε i Aε i for all
1 ≤ i ≤ n − 1.

Proof First, we assume (1). Then e i Jε i ∈ add εn Aε i implies that pdε i Aε i
S(e i)ε i ≤ 1

holds. Thus, by Theorem 3.5, (3.3) is a right rejective chain. Since φ j ∶ e j Jε j → e j Aε j is
a right add ε j+1Aε j-approximation by Proposition 2.3(3), it follows from Lemma 3.7
that a composition map of φ j ⊗ε j Aε j ε j A ∶ e j Jε j ⊗ε j Aε j ε j A→ e j Aε j ⊗ε j Aε j ε j A and an
isomorphism e j Aε j ⊗ε j Aε j ε j A→ e j A is a right add ε j+1A-approximation of e j A. By
e j Jε j ∈ add εn Aε j , we obtain that e j Jε j ⊗ε j Aε j ε j A ∈ add εn A. Take a minimal right
add ε j+1A-approximation φ′j ∶ P′ → e j A of e j A. Then P′ ∈ add εn A. On the other
hand, we have that εn Jεn = 0 since εn Jεn ∈ add εn Aεn and εn Aεn is an indecom-
posable εn Aεn-module. Thus, we obtain that Aεn A is a heredity ideal of A since
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Aεn A ∈ projA. By [4, Lemma 1.7], φ′j is a monomorphism, and hence the assertion
holds.

Next, we assume (2). We show that (3.3) is a total right rejective chain by induction
on n. If n = 1, then this is clear. Let n ≥ 2. If j = 1, then ε2Aε2 satisfies (1). Thus, we
obtain a total right rejective chain of proj ε2Aε2. If j > 1, then we also have a total right
rejective chain of proj ε2Aε2 by induction hypothesis. Since pd S(e1) = 1, it follows
from Proposition 2.3(3) that add ε2A is a cosemisimple right rejective subcategory of
projA. Since an equivalence add ε i Aε2 ≃ add ε i A holds for each 2 ≤ i ≤ n, the chain
of subcategories

projA ⊃ add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0.

satisfies that add ε2A is a cosemisimple right rejective subcategory of projA and
add ε2A ⊃ ⋯ ⊃ add εn A ⊃ 0 is a total right rejective chain. Thus, each minimal right
add ε i A-approximation φ ∶ P → Q of Q ∈ add ε2A is a monomorphism in proj ε2Aε2.
Since add ε2A is a cosemisimple subcategory of projA, there exists l ≥ 0 such that
Ker φ ≅ S(e1)

⊕l by Lemma 3.8. Suppose to the contrary that l > 0. Due to our
assumption, we have that Ker φ ∈ projA. Thus S(e1) ∈ projA, a contradiction. Hence,
the proof is complete. ∎

We give a naive sufficient condition for projA to satisfy the condition (1) in
Theorem 3.9.

Corollary 3.10 Keep the notation in (3.3). If pdε i Aε i
S(e i)ε i = 0 holds for each 1 ≤ i ≤

n, then A satisfies the condition (1) in Theorem 3.9. In particular, the chain (3.3) is a
total right rejective chain.

Proof Since e i Jε i = 0 ∈ add εn Aε i , it is enough to prove Aεn A ∈ projA. By
radA(ε i A, e i A) = e i Jε i = 0, we obtain that HomA(P(en), e i J) = 0 holds for each
1 ≤ i ≤ n. Hence Aεn A = (e1 +⋯+ en)Aεn A = εn A ∈ add εn A. ∎

The following examples show that the conditions (1) and (2) in Theorem 3.9 are
independent.

Example 3.11 (1) Let A be the algebra defined by the quiver

1
β

���
��

��

2

α
�������

3
γ��

with relations αβ and γα. Then we can easily check that the complete set
(e1 , e2 , e3) of primitive orthogonal idempotents satisfies the condition (1).
However, it dose not satisfy the condition (2). Indeed, φ ∶ P(e2) → P(e3) is
a monomorphism in add (e2 + e3)A and Ker φ /∈ projA.

(2) Let A be the algebra defined by the quiver

2
α �� 1
γ

��
β �� 3
δ

��
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with relations αβ, αγ, δβ, and δγ. Then we can check that the complete set
(e1 , e2 , e3) of primitive orthogonal idempotents satisfies the condition (2). How-
ever, it dose not satisfy the condition (1) since e1 J ≅ P(e2) ⊕ P(e3) /∈ add ε3A.

3.2 Application

In this subsection, we construct total right rejective chains for three classes of algebras:
Nakayama algebras with heredity ideals, locally hereditary algebras and algebras
of global dimension at most two. Hence, these algebras are right-strongly quasi-
hereditary algebras by Proposition 2.8.

The following theorem is a main result of this subsection.

Theorem 3.12 The following classes of algebras are right-strongly quasi-hereditary
algebras.
(1) Nakayama algebras with heredity ideals.
(2) Locally hereditary algebras.
(3) Algebras of global dimension at most two.

It is known that algebras in Theorem 3.12 are quasi-hereditary by [4, Proposition
2.3], [4, Proposition 1.6] and [9, Theorem 2]. Hence, Theorem 3.12 is a refinement of
their results. Moreover, Theorem 3.12(3) is proven in [22, Theorem 4.1].

In the rest of this subsection, we give a proof of Theorem 3.12. First, we construct
right rejective chains and total right rejective chains for Nakayama algebras. We say
that an algebra A is a Nakayama algebra if every indecomposable projective module
and every indecomposable injective module are uniserial.

Proposition 3.13 Let A be a Nakayama algebra. Then the following statements hold.
(1) If A has a simple projective module or a heredity ideal, then projA admits a total

right rejective chain.
(2) If gldim A < ∞, then projA admits a right rejective chain.

Proof Let A be a Nakayama algebra and ε an idempotent of A. Note that εAε is
also a Nakayama algebra since HomA(εA,−) is an exact and dense functor. We may
assume that A is connected and fix a complete set (e1 , e2 , . . . , en) of primitive orthog-
onal idempotents. By [2, Theorem 32.4], we can order the primitive idempotents such
that there are projective covers

e i A→ e i+1 J → 0(3.4)

for each 1 ≤ i ≤ n − 1 and

en A→ e1 J → 0(3.5)

if e1 J ≠ 0.
(1) If A has a simple projective module S(e), then (1 − e)A(1 − e) is also a

Nakayama algebra with a simple projective module by [2, Theorem 32.4]. It follows
from Corollary 3.10 that projA admits a total right rejective chain.
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We assume that there exists a heredity ideal of A. We prove that A satisfies the
condition (1) in Theorem 3.9 by induction on n. If n = 1, then this is clear. Let n ≥ 2.
We assume that A has no simple projective modules. Then e i J ≠ 0 holds for each
1 ≤ i ≤ n. By (3.4) and (3.5), we obtain an exact sequence e i A→ e i+1 J → 0 for each
1 ≤ i ≤ n, where en+1 ∶= e1. Since A has a heredity ideal, we may assume that Aen A is a
heredity ideal of A. Then we have a composition map en A→ e1 J → e1A. Since Aen A
is a heredity ideal of A, this composition map is a monomorphism by [4, Lemma
1.7]. Thus, we obtain that en A ≅ e1 J ≠ 0, and hence pd S(e1) = 1. Let ε2 ∶= 1 − e1.
Then ε2Aen Aε2 ∈ proj ε2Aε2 and en J(ε2Aε2)en = en J(A)en = 0 hold. Thus, ε2Aε2 is
a Nakayama algebra with a heredity ideal ε2Aen Aε2. By induction hypothesis, ε2Aε2
satisfies the condition (1) in Theorem 3.9. Since Aen A ∈ projA and e1 J ∈ add en A, we
have the assertion.

(2) Let A be an algebra of finite global dimension. By (1), we assume that A has
no simple projective modules. Take an indecomposable projective module e i A such
that its Loewy length LL(e i A) is maximal. By (3.4) and (3.5), we have LL(e i−1A) ≥
LL(e i A) − 1. If LL(e i−1A) = LL(e i A) − 1, then pd S(e i) = 1. Thus, we assume that
LL(e i−1A) > LL(e i A) − 1. Then LL(e i−1A) = LL(e i A) by maximality of LL(e i A). By
gldim A < ∞, A is non-self-injective. Therefore, we obtain a simple module with
projective dimension exactly one by replacing e i A with e i−1A and repeating this
argument. Let S(e) be the simple module with projective dimension one. Since it
follows from Proposition 2.3(2) that gldim(1 − e)A(1 − e) ≤ gldim A < ∞, we induc-
tively obtain that A satisfies the condition (3) in Theorem 3.5. Hence, projA admits a
right rejective chain. ∎

We give applications of Proposition 3.13. In [11, Theorem], it is shown that if A is
a Nakayama algebra with n simple modules and gldim A < ∞, then gldim A ≤ 2n −
2. We give another proof by Proposition 3.13. Moreover, we give a refinement of [4,
Proposition 2.3].

Corollary 3.14 Let A be a Nakayama algebra. Then the following statements hold.
(1) The following statements are equivalent.

(a) gldim A < ∞.
(b) A is a neat algebra.
(c) projA admits a right rejective chain.
In this case, if A has n simple modules, then gldim A ≤ 2n − 2.

(2) The following statements are equivalent.
(a) A has a heredity ideal.
(b) A is a quasi-hereditary algebra.
(c) A is a right-strongly quasi-hereditary algebra.

Proof (1) (c)⇒ (b) and (b)⇒ (a) follow from Theorem 3.5 and Proposition 3.2,
respectively. (a)⇒ (c) follows from Proposition 3.13(2). Moreover, if A has n simple
modules, then gldim A ≤ 2n − 2 by Remark 2.6.

(2) (c)⇒ (b) and (b)⇒ (a) are clear. By Proposition 3.13(1), if A has a hered-
ity ideal, then projA has a total right rejective chain. Thus, (a)⇒ (c) holds by
Proposition 2.8. ∎

https://doi.org/10.4153/S0008439521000540 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000540


568 M. Tsukamoto

In Corollary 3.14, (2)⇒ (1) clearly holds. However, the converse does not hold in
general. Indeed, Example 3.6 satisfies the equivalent conditions in Corollary 3.14(1),
but it does not satisfy the equivalence conditions in Corollary 3.14(2).

Next, we prove that locally hereditary algebras satisfy the conditions (1) and (2)
in Theorem 3.9. An algebra A is called a locally hereditary algebra if each nonzero
morphism between indecomposable projective A-modules is a monomorphism (see
[17] for details). We need the following lemma.

Lemma 3.15 Let A be a nonsemisimple locally hereditary algebra. Then the following
statements hold.
(1) Let e be a primitive idempotent of A and ε ∶= 1 − e. Assume that add εA is a

cosemisimple subcategory of projA. If φ ∶ P → Q is a monomorphism in add εA,
then Ker φ ∈ projA.

(2) soc A ∈ projA holds. In particular, there exists a simple projective module.
(3) There exists a simple module such that its projective dimension is exactly one.

Proof (1) Let φ ∶ P → Q be a monomorphism in add εA. Since add εA is a
cosemisimple subcategory of projA, there exists l ≥ 0 such that Ker φ ≅ S(e)⊕l

by Lemma 3.8. Thus ρ⊕l ∶ P(e)⊕l → Ker φ is a projective cover of Ker φ, where
ρ ∶ P(e) → S(e) is a projective cover of S(e). On the other hand, there exists an
indecomposable direct summand P′ of P such that S(e) is a direct summand of
soc P′. Let ι ∶ S(e) → P′ be the inclusion. Then a composition map ιρ ∶ P(e) → P′
is a nonzero morphism between indecomposable projective modules. Since ιρ is a
monomorphism, ρ is an isomorphism. Thus Ker φ ∈ projA.

(2) Let soc A = S(e i1) ⊕⋯⊕ S(e i t), where S(e i j) is a simple module. For each 1 ≤
j ≤ t, there exists an indecomposable projective module Pj such that S(e i j) is a direct
summand of soc Pj . Since a composition map of a projective cover p ∶ P(e i j) → S(e i j)
and the inclusion S(e i j) → Pj is a monomorphism, p is an isomorphism. Thus soc A ∈
projA.

(3) We show that there exists an indecomposable projective module P such that
its Loewy length LL(P) is two. If LL(A) = 2, then this is clear. We assume that
LL(A) ≥ 3. Let Q be an indecomposable projective module with LL(Q) =∶ l ≥ 3.
Then QJ l−2/QJ l−1 ≅ S(e i1) ⊕⋯⊕ S(e is) ≠ 0. Note that there exists 1 ≤ j ≤ s such that
S(e i j) /∈ projA. Thus, LL(P(e i j)) ≥ 2. Since a composition map of P(e i j) → QJ l−2

and QJ l−2 → Q is a monomorphism, so is P(e i j) → QJ l−2. Since LL(P(e i j)) ≤ 2,
P(e i j) is a desired projective module. Thus, we obtain pd S(e i j) = 1 since it follows
from (2) that soc P(e i j) ∈ projA. ∎

Now, we state the following proposition.

Proposition 3.16 Any locally hereditary algebra satisfies the conditions (1) and (2) in
Theorem 3.9. Namely, if A is a locally hereditary algebra, then projA admits a total right
rejective chain.

Proof Let A be a locally hereditary algebra. If A is semisimple, then it clearly
satisfies the conditions (1) and (2) in Theorem 3.9. Thus, we assume that A is not
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semisimple. First, we show that A satisfies the condition (1). By Lemma 3.15(2), there
exists a simple module S(e) such that pd S(e) = 0. Let ε ∶= 1 − e. Then εAε is also a
locally hereditary algebra by an equivalence of categories add εA ≃ proj εAε. Due to
Corollary 3.10, A inductively satisfies the condition (1) in Theorem 3.9.

Next, we show that A satisfies the condition (2). By Lemma 3.15(3), there exists a
simple module S(e) with pd S(e) = 1. Let ε ∶= 1 − e. Then add εA is a cosemisimple
subcategory of projA by Proposition 2.3(3). For each monomorphism φ ∶ P → Q in
add εA, we obtain that Ker φ ∈ projA by Lemma 3.15(1). Since εAε is also a locally
hereditary algebra, A inductively satisfies the condition (2) in Theorem 3.9. ∎

Finally, we show the following proposition. This proposition is proven in
[15, Theorem 3.6] and [22, Theorem 4.1]. In this paper, we give a proof using
Theorem 3.9.

Proposition 3.17 If gldim A ≤ 2, then projA admits a total right rejective chain.

Proof If gldim A ≤ 1, then A is a locally hereditary algebra. Thus, the assertion
follows from Proposition 3.16. We assume that gldim A = 2. Let S be an A-module such
that its length �(S) is minimal among A-modules with the projective dimension one.
We show that S is a simple module. Suppose to the contrary that S is not simple. Then
there exists an exact sequence 0→ S′ → S → S/S′ → 0 such that S′ ≠ 0 and S/S′ ≠ 0.
Since pd S′ ≤max{pd S , pd S/S′ − 1} = 1, it follows from the assumption on S that
pd S′ = 0. Thus, we have pd S/S′ ≤max{pd S , pd S′ + 1} = 1. By the assumption on S,
we have pd S/S′ = 0, a contradiction. Thus S is a simple module. We put S(e) ∶= S
and ε ∶= 1 − e. Then add εA is a cosemisimple right rejective subcategory of projA by
Proposition 2.3(3). Let φ ∶ P → Q be a monomorphism in add εA. Then, we have an
exact sequence in modA.

Ker φ → P → Q → Cok φ → 0.

By gldim A = 2, we have that Ker φ ∈ projA. Since gldim εAε ≤ gldim A = 2 by Propo-
sition 2.3(2), we inductively obtain that A satisfies the condition (2) in Theorem 3.9.
Hence, we have the assertion. ∎

Now we are ready to prove Theorem 3.12.

Proof of Theorem 3.12 Let A be an algebra in Theorem 3.12. By Proposition 2.8,
it is enough to show that there exists a total right rejective chain of projA. Thus, the
assertion follows from Propositions 3.13, 3.16 and 3.17. ∎
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