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The capacity of lactic acid bacteria to produce exopolysaccharides (EPS) conferring microorganisms
a ropy phenotype could be an interesting feature from a technological point of view. Progressive
adaptation to bile salts might render some lactobacilli able to overcome physiological gut barriers but
could also modify functional properties of the strain, including the production of EPS. In this work
some technological properties and the survival ability in simulated gastrointestinal conditions of
Lactobacillus delbrueckii subsp. lactis 193, and Lb. delbrueckii subsp. lactis 193+, a strain with stable
bile-resistant phenotype derived thereof, were characterized in milk in order to know whether the
acquisition of resistance to bile could modify some characteristics of the microorganism. Both strains
were able to grow and acidify milk similarly; however the production of ethanol increased at the
expense of the aroma compound acetaldehyde in milk fermented by the strain 193+, with respect to
milk fermented by the strain 193. Both microorganisms produced a heteropolysaccharide composed
of glucose and galactose, and were able to increase the viscosity of fermented milks. In spite of the
higher production yield of EPS by the bile-resistant strain 193+ , it displayed a lower ability to increase
viscosity than Lb. delbrueckii subsp. lactis 193. Milk increased survival in simulated gastric juice; the
presence of bile improved adhesion to the intestinal cell line HT29-MTX in both strains. However, the
acquisition of a stable resistance phenotype did not improve survival in simulated gastric and
intestinal conditions or the adhesion to the intestinal cell line HT29-MTX. Thus, Lb. delbrueckii
subsp. lactis 193 presents suitable technological properties for the manufacture of fermented dairy
products; the acquisition of a stable bile-resistant phenotype modified some properties of the
microorganism. This suggests that the possible use of bile-resistant derivative strains should be
carefully evaluated in each specific application considering the influence that the acquisition of a
stable bile-resistant phenotype could have in survival ability in gastric and intestinal conditions and in
technological properties.
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Lactobacillus delbrueckii is an important species for food
fermentation. Lb. delbrueckii subsp. bulgaricus is essential
for the production of yoghurt whereas Lb. delbrueckii subsp.

lactis is mostly used in the manufacture of hard cheeses
(Giraffa et al. 1998). Some authors have reported that
Lb. delbrueckii is rarely found among the gut microbiota
after ingestion due to its reduced capability to survive
the restrictive conditions found during gastrointestinal
digestion (Tannock, 2003; Wall et al. 2007). However,
other researchers have provided evidence indicating that aFor correspondance; e-mail:greyes_gavilan@ipla.csic.es
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proportion of these microorganisms can survive the gastro-
intestinal transit (GIT) (Marteau et al. 1997; Lick et al. 2001;
Mater et al. 2005; Elli et al. 2006). In the same way, we have
recently found that a small fraction of Lb. delbrueckii subsp.
lactis can survive simulated GIT when administered with
milk (Burns et al. 2010).

Some strains of lactic acid bacteria (LAB) are able to
produce exopolysaccharides (EPS). When produced in milk
during fermentation by starter cultures, some of these
polymers contribute to improve the sensory and structural
properties of fermented products (Ruas-Madiedo et al.
2009b). EPS from LAB can generally be divided into
homopolysaccharides (HoPS), which are polymers com-
posed of one type of monosaccharide, and heteropolysac-
charides (HePS), which are polymers of repeating units that
are composed of two or more types of monosaccharides.
A great diversity of HePS seems to exist among LAB
regarding composition, structure and functionality (Mozzi
et al. 2006; Ruas-Madiedo et al. 2009c).

Some Gram-positive bacteria can develop an adaptive
response in the presence of moderate stress conditions. In
previous works we reported on the isolation, molecular and
functional characterization of Lb. delbrueckii subsp. lactis
bile-resistant derivatives (Burns et al. 2008, 2010). The
acquisition of stable resistance to bile could facilitate
the arrival of these microorganisms to the intestine
and the possibility to produce there, bacterial enzymes that
can improve the digestion of nutrients, such as the
β-galactosidase, or that can liberate bioactive peptides
from caseins (Gilliland, 1998; Hebert et al. 2008).
However, it has been shown that the acquisition of bile
tolerance can alsomodify other physiological and functional
properties of the bile-adapted strain (Noriega et al. 2004;
Guglielmotti et al. 2007; Sánchez et al. 2008), including the
production of EPS (Ruas-Madiedo et al. 2009a).

The strain Lb. delbrueckii subsp. lactis 193 and its bile
resistant derivative Lb. delbrueckii subsp. lactis 193+ were
described in a previous work (Burns et al. 2008). Whereas
the parental strain 193 showed no appreciable growth in the
presence of 0·3% bile salts, the derivative 193+ displayed
active growth in medium containing 0·5% bile salts (Burns
et al. 2008). The aim of the present study was to characterize
the technological properties and the ability to survive
simulated gastric and intestinal conditions of Lb. delbrueckii
subsp. lactis 193 in milk, and to know whether the
acquisition of a stable phenotype of resistance to bile
could modify these properties.

Material and Methods

Bacterial strains and growth conditions

The strain Lb. delbrueckii subsp. lactis 193 and its bile
resistant derivative 193+ (Burns et al. 2008) were used in this
study. Strains were grown in MRS (BioKar Diagnostics,
Beauvais, France) at 37 °C in a microaerophilic atmosphere

containing 5% (v/v) CO2; bacterial stocks were kept at�80 °
C in MRS containing 200 ml glycerol per litre. As standard
procedure, strains were cultured overnight from �80 °C
stocks and employed to inoculate (2% v/v) fresh MRS
medium that was incubated for 24 h for its use in
experiments performed in this work.
For specific purposes, strains were also grown in

commercial pasteurized milk (Central Lechera Asturiana,
Asturias, Spain) which was supplemented with 1% (w/v)
Difco™ skimmed milk (Becton Dickinson, MD, USA) and
pasteurized again at 90 °C for 5 min. MRS cultures of each
strain were washed twice with sterile PBS buffer pH 7·0 and
were used to inoculate (2% v/v) 500ml pasteurized milk
which was incubated overnight (17± 1 h) in a water bath at
37 °C. Following fermentation, a sample was collected in
sterile conditions for bacterial counting, fermented milks
were cooled-down afterwards to approximately 18 °C with
running tap water, and then they were stirred 20-times up
and down with a spoon. After sample collection for several
analyses, the stirred fermentedmilks were stored overnight at
4 °C. Three replicated batches of fermented milks were
performed for each strain.

Metabolic activity of strains in milk

For bacterial counts, serial dilutions of cultured milks were
made in Ringer’s solution (Merck, Darmstadt, Germany),
deep-plated on agar-MRS and incubated at 37 °C for
2 d. Counts were expressed as log cfu/g and the increase
of the log units during milk fermentation was calculated.
The pH of the fermented milks was directly measured with
a MicropH 2001 pHmeter (Crison Instruments S.A.,
Barcelona, Spain).
Lactose consumption and organic acids production was

determined by ion-exchange chromatography. A HPLC
chromatographic system composed of an Alliance 2690
module injector, a Photodiode Array PDA 996 detector, a
410 refractive index (RI) detector and the Empower software
(Waters, Milford, MA, USA) was used. The sample prep-
aration and chromatographic conditions described
by Salazar et al. (2009) were used. Results were expressed
in mM.
The volatile compounds in fermented milks were deter-

mined by means of a Head-Space (HS) GC-MS using a
6890N Agilent GC coupled with a HS automatic injector
G1888 series and with a 5975B inert MS detector (Agilent
Technologies Inc., Palo Alto, CA, USA). Data was collected
and analyzed with the Enhanced ChemStation G1701
software (Agilent). Sample preparation and chromatographic
conditions were those previously described by Salazar et al.
(2009). Results were expressed as μg/ml.
The apparent viscosity of stirred-fermented milks was

measured using a Posthumus funnel (Hellinga et al. 1989).
The funnel was filled with approximately 450 g stirred-
fermented milk and the time (in seconds) taken to pass the
mark inside the funnel was recorded. The measurements
were carried out in a chamber refrigerated at 4 °C.
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Production of exopolysaccharides (EPS) in milk

The EPS fraction of fermented milks was isolated by mixing
40 g cultured milk with 10 ml of a 60% TCA solution and
strongly stirred for 45 min at room temperature. Precipitated
bacteria and proteins were removed by centrifugation
(10000 g, 4 °C, 30min) and the pH of supernatant was
raised to 4·5±0·5. Finally, supernatants were intensively
dialyzed for 3 d, with daily changes of ultrapure water,
using dialysis tubes (Sigma Chemical Co., St. Luis, MO, USA)
of molecular weight cut off 12–14 kDa and they were finally
freeze-dried. To increase the purity level of the EPS fraction
an additional procedure was applied. The initial EPS
fraction was dissolved at 5 mg/ml in a buffer (50 mM-Tris-
HCl, 100mM-MgSO4·7H2O, pH 7·5) containing 2·5 μg/ml
of DNAse type I (Sigma) and incubated at 37 °C for 6 h.
Afterwards, pronase E from Streptomyces griseus (Sigma)
dissolved in 50mM-Tris-HCl, 2% EDTA, pH 7·5 was added
(50 μg/ml) and incubated at 37 °C for 18 h. Following the
enzymatic treatments, a 60% TCA solution was added to a
final concentration of 120 g/l and themixturewas kept under
mild stirring for 30 min at room temperature. Proteins and
breakdown products were precipitated by centrifugation
(10000 g, 4 °C, 30 min) and the supernatant was neutralised,
dialysed and lyophilised as formerly described.

The protein content of the purified EPS fraction was
measured using the commercial BCA protein assay kit
(Pierce, IL. USA) following the manufacturer’s instructions.

The EPS yield, molar mass distribution and radius of the
molecule were determined by means of size exclusion
chromatography (SEC). Samples were dissolved at 5 mg/ml
in 100mM-NaNO3 and separated in two columns placed
in series: TSK-Gel G3000 PWXL + TSK-Gel G5000 PWXL

protected with a TSK-Gel guard column (Supelco-Sigma).
The mobile phase was 100mM-NaNO3 and the separations
took place at 40 °C at a flow rate of 0·45ml/min. The afore-
mentioned HPLC apparatus was employed coupled with
a third detector, the multi-angle laser light scattering
(MALLS) Dawn Heleos II (Wyatt Europe GmbH, Dembach,
Germany). The EPS yield was calculated from the data
obtained with the RI detector by using the corresponding
regression equations obtained from dextran standards and
the PDA detector set at 280 nm was used to check the
absence of protein in the EPS peak (Salazar et al. 2009).
Theweight averagemolar mass (Mw) and theweight average
radius (Rw) of the EPS were directly measured with the
MALLS detector.

The monosaccharide composition of the two EPS fractions
was determined after hydrolysis with 3 M-trifluoroacetic
acid (TFA), conversion in their corresponding alditol acetates
and separation by gas-liquid chromatography (GLC) as
described by Salazar et al. (2009). The linkage types present
in the EPS molecule were determined after methylation
of the EPS according to the procedure described by Ciucanu
& Kerek (1984). The permethylated polysaccharide
was hydrolyzed with 3 M-TFA, and the monosaccharides
released were reduced with NaBD4 and then acetylated to

give corresponding partially methylated alditol acetates,
which were analysed by GLC-MS under conditions pre-
viously described (Leal et al. 2008). Analyses were carried
out at “Centro de Investigaciones Biológicas” (CIB-CSIC,
Madrid).

Gastrointestinal survival of strains

Resistance to the chemically simulated gastric and intestinal
conditions. The survival of the strains in the GIT situation
was studied by an in vitro model that chemically simulates
the physiological conditions (Sánchez et al. 2010). The
following solutions were used: (i) simulated gastric juice
containing 125 mM-NaCl, 7 mM-KCl, 45mM-NaHCO3, and
0·3% (w/v) pepsin (Sigma) pH 2·0 adjusted with HCl,
(ii) simulated duodenal juice containing 1% (w/v) bovine
bile (Sigma) pH 8·0 adjusted with 10mM-NaOH, and
(iii) simulated ileal juice containing 0·3% (w/v) bovine
bile, and 0·1% (w/v) pancreatin (Sigma) pH 8·0 adjustedwith
10mM-NaOH. To simulate the GIT conditions, cells from
24 h MRS-grown cultures of the parental and bile-resistant
derivative strains were harvested by centrifugation (10000 g,
15 min, 5 °C), washed twice with a solution of 8·5 g NaC/l l
and concentrated 10-fold. For each strain, 100 μl of the
concentrated suspensions were centrifuged and resus-
pended either in 1 ml of simulated gastric juice or in 1 ml
of simulated gastric juice containing 200 g skimmed milk/l,
which increased the pH of the bacterial suspension to about
4·5. Bacterial suspensions were then incubated for 90 min at
37 °C with a mild stirring (200 rpm). Afterwards, cells were
harvested (10000 g, 15 min), resuspended in the simulated
duodenal juice and incubated for 10min at 37 °C in an
anaerobic chamber (Mac 500, Down Whitley Scientific,
West Yorkshire, UK) under 10% H2, 10% CO2, and 80% N2

atmosphere. After this step, cells were centrifuged again,
resuspended in the simulated ileal juice and incubated
for 90 min at 37 °C in anaerobic conditions. Viable cell
counts were obtained from the initial cultures and after the
simulation of each condition tested and results were
expressed as log cfu/ml.

Adhesion to the epithelial intestinal cell line HT-29-MTX.
The adhesion capability of the strains was assessed with the
epithelial intestinal cell line HT29-MTX that is able to
constitutively produce mucin (Lesuffleur et al. 1990). The
cell line was maintained in supplemented DMEM (Sigma)
using standard procedures (Sanchez et al. 2010). For
experiments, 1×105 cells/ml were seeded in 24-well plates
and incubated to confluence for 13± 1 day (about 1×107

cells/ml). The cell line was used between passes 26 and 28.
Bacterial suspensions were obtained from 24 h cultures of

parental and bile-resistant derivative grown in MRS with
different concentrations of bovine bile salts: the parental
strain 193 was cultured in the presence of 0%, 0·1% and
0·3% of bile and the derivative 193+ with 0%, 0·3% and
0·5% of bile. Bacteria were harvested from cultures by
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centrifugation (10000 g, 15 min, 5 °C), washed twice with
PBS buffer and resuspended in DMEM without antibiotics at
a concentration of about 1×108 cfu/ml. Bacterial counts in
MRS-agar were performed in order to determine the number
of bacteria added. HT29-MTX monolayers were washed
twice with Dulbecco’s PBS buffer (Sigma-Aldrich) to remove
the antibiotics and then bacterial suspensions were added
in a ratio of epithelial cells: bacteria of 1:10. Plates were
incubated for 1 h at 37 °C, 5% CO2 in a Heracell® 240
incubator (Thermo Electron LDD GmbH, Langenselbold,
Germany). After the incubation period, supernatant was
removed and wells were softly washed three times with
Dulbecco’s PBS buffer to remove the non-attached bacteria.
Finally, the monolayers were trypsinised and bacterial
counts were carried out to determine the number of adhered
bacteria. Results were expressed as the percentage of
adhered bacteria with respect to the amount of bacteria
added.

Statistical analyses

Data were statistically analyzed by means of one-way
ANOVA tests using the SPSS 11.0 software for Windows
(SPSS Inc., Chicago, IL). Tests were performed employing the
strain as factor, with two categories: parental and derivative.
For simulated gastric and intestinal transit, an additional
ANOVA test was carried out using the presence and absence
of milk as categories within each strain and gastric or
intestinal condition tested.

Results and Discussion

Growth and metabolic activity of strains in milk

Main growth and metabolic activity parameters of
Lb. delbrueckii subsp. lactis 193 and its bile resistant
derivative Lb. delbrueckii subsp. lactis 193+ in milk are
shown in Table 1. Lb. delbrueckii subsp. lactis 193 was
able to grow and acidify milk efficiently at the expenses of
lactose consumption, with accumulation of galactose. The
apparent imbalance obtained between lactose consumed
and galactose released and lactic acid formed, inferred from
data presented in Table 1, may be attributed to limitations
of the chromatographic separation of the different com-
pounds and to the different sensitivity of detectors used for
quantification (RI for sugars and PDA in the case of lactic
acid). Production of acetaldehyde by the strain 193 was
considerably higher than ethanol formation. Acetaldehyde
is one of the main contributors to flavour in fermented milks
and certain cheeses (Cogan, 1995; Qian & Reineccius,
2003; Pinto et al.2009). In spite of the wide variation
reported in literature on the profile of flavour compounds of
different strains within the same species of LAB, values
obtained by us were in the range of those previously reported
for Lb. delbrueckii in milk which commonly produces more

acetaldehyde than ethanol (Cogan, 1995; Beshkova et al.
1998; Shene & Bravo, 2007; Pinto et al. 2009).
Adaptation to bile of sensitive strains has been proposed as

a suitable way of overcoming the deleterious action of these
compounds on beneficial strains intended to be used in
human foods (Sarkar, 2010). Although the species Lb.
delbrueckii is not considered a probiotic, some health
beneficial properties could derive from products containing
LAB starters (Cenci et al. 2002; Cogan et al. 2007). Therefore,
we compared growth and metabolic properties in milk of the
bile-adapted strain Lb. delbrueckii subsp. lactis 193+ with
respect to the bile-sensitive parental strain 193. No
significant differences were found for pH values, lactose
consumed, galactose released and lactic acid formed.
However, formation of volatile compounds was markedly
different between both strains. Notably, the production of
ethanol by the bile-resistant derivative 193+ surpassed the
production of acetaldehyde, levels of this last compound
being considerably lower than those of the parental strain
(P<0·001). Ethanol production by LAB occurs at the expense
of enzymatic reduction of acetaldehyde (Axelsson, 2004);
this reaction is usually unsuitable for yoghurt and dairy
product production since flavour development may be
negatively affected (Pinto et al. 2009). In a similar way,
Sánchez et al. (2010) found higher concentrations of ethanol
and lower concentrations of acetaldehyde at the end of
the cold storage period of fermented milks made with
starter cultures and a bile-resistant derivative strain of
Bifidobacterium animalis compared with products obtained

Table 1. Growth and metabolic activity parameters of Lactobacillus
delbrueckii subsp. lactis 193 and its bile-resistant derivative strain
193+ in pasteurised milk incubated at 37 °C for 18 h. ANOVA: ***
P<0·001

Parameter Strain Mean±SD

pH 193
193+

4·91±0·05
4·73±0·17

Increment log cfu/ml 193
193+

1·28±0·38
1·71±0·22

Lactose consumption (mM) 193
193+

25·05±9·95
21·90±2·35

Galactose released (mM) 193
193+

27·45±2·85
28·30±2·05

Lactic acid formed (mM) 193
193+

68·40±7·85
69·75±5·35

Acetaldehyde (μg/ml) 193
193+

16·15±2·37
3·46±0·29

***
Ethanol (μg/ml) 193

193+
3·63±0·15

20·15±1·43
***

EPS yield (mg/l) 193
193+

24·06±0·06
37·19±0·97

***
Apparent viscosity (s) 193

193+
101·67±1·70
73·75±1·50

***
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with the parental strain. Relating to this, we have recently
shown that adaptation to bile of the strain Lb. delbrueckii
subsp. lactis 200 promoted a shift in the final products of
glucose catabolism in MRS culture leading to an increase
in the lactic/acetic acids ratio (Burns et al. 2010). Shifts in
the catabolism of carbohydrates found in the present
work, although not suitable for the development of sensory
properties of dairy products, could however play an
important physiological role in the bacterium. Thus, the
reduction of pyruvate to lactic acid allows bacterial cells the
regeneration of 2 mol NAD+ per mol of glucose consumed,
whereas the conversion to ethanol provides 2 additional
mol of regenerated NAD+. Therefore, it can be speculated
that an increase of ethanol production may represent a
mechanism of Lb. delbrueckii subsp. lactis 193+ to cope
with oxidative stress imposed by bile salts, as has been
previously suggested in other lactobacilli and bifidobacteria
(Bron et al. 2004; Sánchez et al. 2006; Lee et al. 2008;
Sánchez et al. 2008).

Lb. delbrueckii subsp. lactis 193 and 193+ provided
fermented milk with a smooth and creamy consistency, a
desirable property for application in low-fat cheese making
and manufacture of fermented milks (Ruas-Madiedo et al.
2009c). The high apparent viscosity in milk fermented by the
strains under study strongly suggested that they were able
to synthesize EPS. The viscosity-intensifying capability in
milk of the strains 193 and 193+ was higher than that of
traditional viscosifying yoghurt starter cultures containing
Lb. delbrueckii subsp. bulgaricus and Streptococcus thermo-
philus strains (van Marle & Zoon, 1995) and both viscosify-
ing capability and EPS yield were comparable to that of
HePS from other lactobacilli and lactococci from different
origins (Ruas-Madiedo et al. 2002. 2005; Mozzi et al. 2006;
Salazar et al. 2009). Remarkably, the apparent viscosity
of fermented milk made with the strain 193 was significantly
higher, and EPS yield significantly lower (P<0·001), than
that of fermentedmilksmadewith the bile resistant strain 193
+; this suggests that the acquisition of bile resistance may
have introduced some modifications in the composition/
structure of the polymer that could have impaired its
technological properties.

Physico-chemical characterisation of the EPS produced
in milk

The synthesis in milk of viscosifying EPS is a property of great
interest for improving the consistency of fermentedmilks and
cheeses in a natural way. Firstly we characterized the EPS
produced in milk by the strains under study (Table 2). The
EPS fraction produced by Lb. delbrueckii subsp. lactis 193
presented a unique peak of high Mw (about 106 Da). This
polymer was aHePS composed of glucose and galactose in a
ratio 1:1. Mozzi et al. (2006) reported that most HePS
produced by mesophilic and thermophilic lactobacilli from
food origin displayed a unique EPS peak of Mw lower than
106 Da, mostly composed of galactose and glucose.
In contrast, Salazar et al. (2009) found that the presence of

two peaks of high and low Mw is a common feature in EPS
from bifidobacteria and lactobacilli of intestinal origin. No
noticeable differences in Mw, Rw and monosaccharide
composition were found between the EPS produced by the
parental strain 193 and its bile resistant derivative 193+ .
Percentage of most linkage types found were similar in both
strains, however notably the percentage of 1,2 Galf was
higher in the bile resistant derivative 193+ than in the
parental strain 193 (Table 3). Since this is the sole difference
found by us between polymers of both strains, this suggests
that the repeating unit of EPS 193+ may differ from that of
EPS 193. Relating to this, we have recently reported
variations in Mw of EPS fractions as well as in monosac-
charide ratios between polymers synthesized by a bile-
resistant Bifido. animalis strain and its parental sensitive
strain (Ruas-Madiedo et al. 2010). Whether these are
changes linked to the acquisition of bile tolerance or they
are just pleiotropic phenomena, is at present unknown.
The physiological and ecological significance of these
variations in the characteristics of EPS produced by bile
resistant derivatives deserves further investigation.
It has been indicated that linkage type into the backbone

of repeating unit building HePS, as well as the presence of
side chains or the branching degree, among others, are
parameters contributing to the viscosity intensifying ability of
these polymers in fermented milks (Ruas-Madiedo et al.
2002). Differences in percentage of linkage types could
partly contribute to differences found in technological
properties between the polymers produced by the sensitive
and bile resistant derivative strains 193 and 193+. Other
factors such as Mw, interactions between the EPS and the

Table 2. Physico-chemical characteristics of the EPS fractions
isolated from Lactobacillus delbureckii subsp. lactis 193 and its bile-
resistant derivative 193+

EPS 193 EPS 193+

Molar mass (Mw) (Da) 1·3×106 1·5×106

Radius of gyration (Rw) (nm) 56·8 63·1
Monosaccharide ratio Glucose 1 1

Galactose 1 1

Table 3. Main sugar linkage types present in the EPS fractions
isolated from Lactobacillus delbureckii subsp. lactis 193 and its bile-
resistant derivative 193+. Galp: galactose residue in pyranose
conformation, Galf : galactose residue in furanose conformation,
Glcp: glucose residue in pyranose conformation

Linkage type

Percentage

EPS 193 EPS 193+

1,3 Galp 42·5 38·0
1,3 Glcp 21·3 18·6
1,6 Glcp 19·3 17·3
1,2 Galf 3·3 10·5
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milk protein network (Hassan, 2008) or the acidification rate
of the strains in milk (Lucey & Singh, 1998), among others,
could also affect the viscosity of the fermented milk.

Survival of strains in simulated GIT conditions

Survival through the GIT may be a positive feature of
microorganisms included in foods in order to reach the
intestine alive. Therefore, the survival in simulated gastric,
duodenal, and ileal juices, and the influence of milk on this
process, was tested for both strains studied. Simulated gastric
juice caused a decrease in the population of Lb. delbrueckii
subsp. lactis 193 of ca. 5 log orders, although viable cells
(about 5 log orders) were still observed at the end of the
sequential passage through the different solutions (Fig. 1).
Viability losses were in accordance with those previously
reported for other strains of the same species (Vinderola &

Reinheimer, 2003; Burns et al. 2010). The presence of
skimmed milk counteracted the detrimental effect of
simulated gastric juice on cell viability and improved the
survival of the strain 193 in these conditions. However, no
survival improvement was observed with skimmed milk for
the subsequent steps (duodenal and ileal simulated juices,
statistical analysis not shown). An increase of viable cell
counts was found in ileal juice with respect to counts in
duodenal juice either with and without skimmedmilk which
may be attributed to the transition from viable non-cultivable
to viable cultivable state of cells (Lahtinen et al. 2006)
probably favoured by lower concentrations of bile in
simulated ileal juice compared with simulated duodenal
juice.With respect to the strain 193+, exposure to simulated
gastric and intestinal juices caused a viability loss of about
7 log units, and no improvement in survival was found with
respect to the parental strain 193, which was coincident
with results previously reported by us for other strains of
the same species (Burns et al. 2010). The presence of
skimmed milk improved the survival of the strain 193+ in
simulated duodenal and ileal juices (significant differences
at P<0·01; statistical analysis not shown) (Fig. 1). In spite of
all this, considering jointly the two conditions tested in
the present work (i.e. buffer and buffer + milk) the survival of
Lb. delbrueckii subsp. lactis 193 and 193+ in simulated
duodenal and ileal juices was similar, indicating that the
acquisition of bile resistance did not actually provide an
improvement of survival in simulated gastric and intestinal
conditions. In contrast, Sánchez et al. (2010) reported
an increase in the survival in simulated GIT conditions of
a Bifido. animalis bile-resistant derivative with respect to
its bile-sensitive parental strain. Additionally, Burns et al.
(2011) reported a higher survival of the bile-resistant
derivative Lb. delbrueckii subsp. lactis 200+ in the intestinal
fluid of mice compared with the parental bile-sensitive strain
Lb. delbrueckii subsp. lactis 200. Different behaviour of
bile-resistant derivatives could reflect physiological and
molecular differences derived from their adaptation to this
stress factor.

***
***

**
** *

Log cfu/ml Buffer + 20% skim-milk

***
***

*****
***

**
** *** *

--Buffer

Fig. 1. Counts (log cfu/ml) of Lactobacillus delbrueckii subsp. lactis 193 (white bars) and its bile-resistant derivative strain Lb. delbrueckii
subsp. lactis 193+ (grey bars) after chemical simulation of gastrointestinal conditions. GJ: simulated gastric juice, DJ: simulated duodenal
juice, IJ: simulated ileal juice. ANOVA: * P<0·05, ** P<0·01, *** P<0·001.

**

**

*

**

**

*

% Adhesion

Bile salt concentration

Fig. 2. Adhesion (% counts of bacteria adhered with respect to
bacteria added) to the epithelial intestinal cellular line HT29-MTX
of Lactobacillus delbrueckii subsp. lactis 193 (white bars) and its
bile-resistant derivative strain Lb. delbrueckii subsp. lactis 193+
(grey bars) in the presence of different concentrations of bile salts.
ANOVA: * P<0·05, ** P<0·01.
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The ability to transiently colonize the gut surfaces is
related to the ability of microorganisms to adhere to mucus
or intestinal epithelial cells. Adhesion to the intestinal cell
line HT29-MTX at different bile salt concentrations was
assessed (Fig. 2). The strains 193 and 193+ displayed a
lower adhesion capacity (about 3·5 and 2·5%, respectively)
than other lactobacilli (Schillinger et al. 2005; Burns et al.
2010). Adhesion of both microorganisms clearly rose in the
presence of bile salts (statistical analysis not shown) although
the derivative 193+ was significantly less adhesive (P<0·01)
than its parental counterpart. Differences between parental
and derivative strains may be due to changes in surface
properties that have been shown to occur in other micro-
organisms such as some lactobacilli and bifidobacteria
as a consequence of the acquisition of bile salt resistance
(Gomez-Zavaglia et al. 2002; Gueimonde et al. 2005; Ruiz
et al. 2007). The behaviour of these two strains was different
from that found for the bile sensitive/bile resistant pair
Lb. delbrueckii subsp. lactis 200 and 200+ since, in that
case, adhesion values clearly diminished in the presence of
bile (Burns et al. 2010). These differences between both pairs
of microorganisms could account for different surface
molecules involved in cellular adhesion of 193/193+ and
200/200+ .

Although it has traditionally been considered that yoghurt
starters do not survive the GIT, some recent studies seem to
indicate that certain strains do at a reduced extent (Lick et al.
2001; Mater et al. 2005; Elli et al. 2006; Burns et al. 2010).
From our results, it could be assumed that both strains of
Lb. delbrueckii subsp. lactis tested in the present work
could survive simulated gastric and intestinal conditions
in certain numbers when they are ingested within a food
matrix. In contrast to that observed in some bifidobacteria
and lactobacilli in which the acquisition of bile resistance
improved some functional properties (Sánchez et al. 2008,
2010; Burns et al. 2011), in the case of Lb. delbrueckii subsp.
lactis 193, the acquisition of resistance to bile does not seem
to provide any improvement in the viability and adhesion in
simulated gastric and intestinal conditions.

In short, Lb. delbrueckii subsp. lactis 193 presents suitable
properties for the manufacture of fermented dairy products
and produces a HePS that confers viscosity intensifying
properties to milk. The acquisition of a stable bile-resistant
phenotype does not improve any of the properties tested.
Thus, the use of bile-resistant derivative strains should be
carefully evaluated in each specific application considering
the influence that the acquisition of a stable bile-resistant
phenotype could have in the viability and technological
properties of microorganisms.
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