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This paper deals with local and global existence for the solutions of the heat equation
in bounded domains with nonlinear boundary damping and source terms. The typical
problem studied is

ut − ∆u = 0 in (0, ∞) × Ω,

u = 0 on [0, ∞) × Γ0,

∂u

∂ν
= −|ut|m−2ut + |u|p−2u on [0, ∞) × Γ1,

u(0, x) = u0(x) on Ω,

where Ω ⊂ R
n (n � 1) is a regular and bounded domain, ∂Ω = Γ0 ∪ Γ1, m > 1,

2 � p < r, where r = 2(n − 1)/(n − 2) when n � 3, r = ∞ when n = 1, 2 and
u0 ∈ H1(Ω), u0 = 0 on Γ0. We prove local existence of the solutions in H1(Ω) when
m > r/(r + 1 − p) or n = 1, 2 and global existence when p � m or the initial datum is
inside the potential well associated to the stationary problem.

1. Introduction

We consider the problem

ut − ∆u = 0 in (0,∞) × Ω,

u = 0 on [0,∞) × Γ0,

∂u

∂ν
= −Q(t, x, ut) + f(x, u) on [0,∞) × Γ1,

u(0, x) = u0(x) in Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)

where u = u(t, x), t � 0, x ∈ Ω, ∆ denotes the Laplacian operator, with respect
to the x variable, Ω is a bounded open subset of R

n (n � 1) of class C1 (see [4]),
∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, Γ0 and Γ1 are measurable over ∂Ω, endowed with the
(n − 1)-dimensional surface measure σ. These properties of Ω, Γ0 and Γ1 will be
assumed, without further comments, throughout the paper.

The initial datum u0 belongs to H1(Ω) and u0 = 0 on Γ0. Moreover, Q repre-
sents a nonlinear boundary damping term, i.e. Q(t, x, v)v � 0, and f represents a
nonlinear source term, i.e. f(x, u)u � 0.

Local and global existence for solutions of problems like (1.1) has been widely
studied when Q ≡ 0 (parabolic problems with nonlinear boundary conditions) or
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Q ≡ ut (parabolic problems with dynamical boundary conditions). We respectively
refer to [2, 7, 16–18] and to [8–10, 13–15]. We also would like to emphasize that
problem (1.1), when Q = ut, naturally models various physical problems involving
diffusion (see [9, 10] and the references therein; see also Appendix C).

The quoted papers contain, roughly, three different kinds of results: local exis-
tence (with various regularity assumptions on u0 and f); global existence when f
is sublinear in u for |u| large or when σ(Γ0) > 0 and u0 is small in a suitable sense,
via the so-called potential well theory; and, finally, blow-up when u0 is large enough
and f is superlinear in u for |u| large.

In this paper we study the case Q(t, x, ut) � |ut|m−2ut when |ut| � 1, m > 1 and
f(x, u) � |u|p−2u, p > 2, when |u| � 1. The interest in considering nonlinear terms
in ut is mainly mathematical. However, a physical model involving Q(t, x, ut) =
ut + |ut|m−2ut is given in Appendix C. For the sake of simplicity, we shall consider
in the sequel the model problem

ut − ∆u = 0 in (0,∞) × Ω,

u = 0 on [0,∞) × Γ0,

∂u

∂ν
= −|ut|m−2ut + |u|p−2u on [0,∞) × Γ1,

u(0, x) = u0(x) in Ω.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.2)

When the term |ut|m−2ut is not present in (1.2) and σ(Γ0) > 0, this type of
problem was considered in [18]. In particular, global existence was proven when
the datum u0 belongs to a suitable stable set W (see (1.13)) using potential well
arguments.

When m = 2, problem (1.2) can be considered as a particular case in the general
theory developed in [9] and [10], where semigroup theory arguments were applied.
In particular, local existence and uniqueness of a maximal solution

u ∈ C([0, Tmax); H1(Ω)) ∩ C0,δ
loc ([0, Tmax); H1,s(Ω))

(where δ = 1
2 (1 − s), s ∈ [0, 1) and C0,δ

loc denotes locally δ-Hölder continuous func-
tions) were proven when u0 ∈ H1(Ω), Γ0 = ∅ and 2 � p < 2(n − 1)/(n − 2) or
n = 1, 2. Moreover, a blow-up result was given when 2 < p < 2(n − 1)/(n − 2) or
n = 1, 2 and u0 is large enough.

Some related problems concerning wave equations with nonlinear damping and
source terms have been considered in [12, 24, 27]. In particular, [12] deals with the
Cauchy–Dirichlet problem

utt − ∆u + |ut|m−2ut = |u|p−2u in (0,∞) × Ω,

u = 0 on [0,∞) × ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

⎫⎪⎬
⎪⎭ (1.3)

when m � 2 and 2 < p � 1 + 1
22∗ (here, 2∗ denotes the critical exponent of the

embedding H1(Ω) ↪→ Lp(Ω)), while [24] deals with the Cauchy problem associated
to (1.3) when Ω is replaced by the entire space R

n. In [24], the more general case
m > 1, 2 � p < 2∗, m > 2∗/(2∗ + 1 − p) was considered for the first time. In [27]
the author studied a modified version of (1.1), where the heat operator ∂/∂t−∆ is
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replaced by the d’Alambertian operator � = ∂2/∂t2−∆ and 2 � p < 2(n−1)/(n−2)
or n = 1, 2.

The first aim of the present paper is to show that, when 2 � p � m and p <
2(n − 1)/(n − 2) or n = 1, 2, the solutions of (1.2) are global in time, for arbitrary
(even large) initial datum, so that the blow-up phenomenon shown when Q ≡ 0
(see [7, 16]), and when Q ≡ ut (see [10, 15], dealing with a small perturbation
of (1.2)) cannot occur.

This type of result was proved by the author in [27] in connection with wave-type
equations. In general, methods employed to study hyperbolic problems cannot be
employed to study parabolic problems, and vice versa. Nevertheless, the arguments
of [27] can be conveniently adapted to problem (1.2). However, there are several
important differences in the proofs, which make the adaptation non-trivial and that
will be outlined at the end of this section. Moreover, the extension of these results
to (1.2) highlights the fact that the superlinear boundary damping term is the main
factor that determines the lifespan of the solutions, regardless of the parabolic or
hyperbolic structure of the differential operator acting on Ω. A natural conjecture
arising from this result is that the wave operator can be replaced by the Laplacian
operator too.

In order to state our results, we set

r =

⎧⎨
⎩

2(n − 1)
n − 2

if n � 3,

∞ if n = 1, 2,
(1.4)

as the critical value of the trace-Sobolev theorem (see [1, theorem 7.58]), H1(Ω) →
Lp(∂Ω). Moreover, we introduce the notations

‖ · ‖q = ‖ · ‖Lq(Ω), ‖ · ‖q,Γ1 = ‖ · ‖Lq(Γ1), 1 � q � ∞,

and

H1
Γ0

(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}, ‖u‖2
H1

Γ0
(Ω) = ‖u‖2

2 + ‖∇u‖2
2.

For the sake of simplicity, we state our main results only in the case n � 3.
The first step in our study is the following local existence result.

Theorem 1.1. Let m > 1,

2 � p < r and m >
r

r + 1 − p
. (1.5)

Then, given u0 ∈ H1
Γ0

(Ω), there is T > 0 and a weak solution u1 of problem (1.2)
on (0, T ) × Ω such that

u ∈ C([0, T ];H1
Γ0

(Ω)), (1.6)

ut ∈ L2((0, T ) × Ω) ∩ Lm((0, T ) × Γ1) (1.7)

and the energy identity

1
2‖∇u‖2

2|ts +
∫ t

s

(‖ut‖2
2 + ‖ut‖m

m,Γ1
) =

∫ t

s

∫
Γ1

|u|p−2uut (1.8)

1The precise definition of weak solution will be given in § 3.
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Figure 1. This picture describes the three regions in the (p, m)-plane related to the result
we obtained for problem (1.2). In region I, global existence for arbitrary initial data is
proved (theorem 1.2). In region II, local existence for arbitrary initial data (theorem 1.1)
and global existence for initial data in the potential well (theorem 1.3) when σ(Γ0) > 0 is
obtained. On segment III, blow-up for a large datum was proven in [10].

holds for 0 � s � t � T . Moreover,

T = T (‖u0‖2
H1

Γ0
(Ω), m, p, Ω, Γ1)

is decreasing in the first variable.

The assumption m > r/(r+1−p) in theorem 1.1 cuts a part of the full subcritical
range p < r and m > 1 (see figure 1). This type of condition also appears in [12,
24, 27], as recalled above, and depends on the presence of the nonlinear damping
term |ut|m−2ut together with the low regularity required for u0. When m = 2 and
Γ0 = ∅, this restriction is not necessary, as shown in [10]. On the other hand,
problem (1.2) possesses in this case a very particular structure, which allows us to
apply semigroup arguments, since it can be written as an abstract Cauchy problem
of the form

z′(t) + A(z(t))z(t) = F (z(t)), z(0) = z0

by setting z = (u, u|Γ1). An approach of this type seems very problematic when
m �= 2. Let us explain briefly where the assumption m > r/(r + 1 − p) comes from.
In order to handle with |ut|m−2ut, we use the classical monotonicity method (see [20,
21]), in which the energy identity (1.8) plays an essential role. Since u0 ∈ H1(Ω),
the best regularity of the solution u that one can expect (at lest when m �= 2)
is that given by (1.6). Furthermore, a priori boundary estimates on ut only give
ut ∈ Lm((0, T )×Γ1). Then, in view of the trace-Sobolev theorem H1(Ω) → Lp(∂Ω)
and of Hölder’s inequality, the integral in the right-hand side of (1.8) makes sense
only if m � r/(r + 1 − p).

To explain why the inequality m � r/(r + 1 − p) is assumed in its stronger
form, we have to give some detail from the proof. A standard contraction argument
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is not available and a compactness argument (Schauder fixed-point theorem) is
used instead. This immediately explains why the case p = r cannot be considered,
since, in this case, the trace mapping H1(Ω) → Lp(∂Ω) is not compact. Moreover,
since the estimate of the nonlinear damping term plays an essential role, we cannot
apply a compactness arguments when m = r/(r + 1 − p). A further consequence of
the method applied is that we cannot assert uniqueness of the solutions of (1.2),
as in [24] and [27]. We cannot use a contraction argument, even with some further
(non-trivial) restrictions on the parameters p and m, as in [12], since here we cannot
estimate the boundary damping term using the L2 norm.

Our global existence result is as follows.

Theorem 1.2. Let
2 � p � m and p < r. (1.9)

Then any weak solution given by theorem 1.1 can be extended to the whole of
(0,∞) × Ω.

Theorem 1.2 is the first result, to the author’s knowledge, which shows that a
superlinear boundary damping term forces global existence for the solutions of the
heat equations with source terms, with arbitrary initial data.

Since, in [12], the condition p � m was proved to be optimal to ensure the global
existence of the solutions of (1.3), we conjecture here that the same phenomenon
happens for (1.2), i.e. that when p > m solutions blow-up in finite time. The
arguments of [10] show that this conjecture is correct when m = 22.

The second aim of the paper is to extend the potential well theory result of [18]
to (1.2). The stable set we consider is the same introduced in [18, 19]. To recall it,
we set

J(u) = 1
2‖∇u‖2

2 − 1
p
‖u‖p

p,Γ1
(1.10)

and

K(u) = ‖∇u‖2
2 − ‖u‖p

p,Γ1
(1.11)

defined on H1
Γ0

(Ω).
When σ(Γ0) > 0, the Poincaré inequality holds (see [28]), so that ‖∇u‖2 is an

equivalent norm on H1
Γ0

(Ω) and the number

d = inf
u∈H1

Γ0
(Ω), u|Γ1 �≡0

sup
λ>0

J(λu) (1.12)

is positive (see [19] or lemma 3.3 below, where a different characterization of d is
given). The stable set W of the initial data, for which global existence is proven
in [18], is defined by

W = {u0 ∈ H1
Γ0

(Ω) : K(u0) � 0 and J(u0) < d}. (1.13)

We can now state the following result.
2This blow-up result is stated in [10] for a vectorial version of (1.2) when Γ0 = ∅, but the

arguments there can be applied without essential changes to the scalar case and when Γ0 �= ∅.
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Theorem 1.3. Suppose that m > 1,

2 � p < r, m >
r

r + 1 − p

and σ(Γ0) > 0. If u0 ∈ W , then there is a global solution u of (1.2) on (0,∞) × Ω
such that u(t) ∈ W for all t � 0,

u ∈ C([0,∞); H1
Γ0

(Ω)), (1.14)

ut ∈ Lm((0,∞) × Γ1) ∩ L2((0,∞) × Ω) (1.15)

and the energy identity

1
2‖∇u‖2

2|ts +
∫ t

s

‖ut‖m
m,Γ1

+ ‖ut‖2
2 =

∫ t

s

∫
Γ1

|u|p−2uut (1.16)

holds for 0 � s � t < ∞.

Remark 1.4. It is easy to see that the set W is bounded in H1
Γ0

(Ω), so that the
solution u also belongs to L∞(0,∞; H1

Γ0
(Ω)).

As a byproduct of the proof of theorem 1.1, we also obtain the following global
existence–uniqueness result for the problem,

ut − ∆u = 0 in (0, T ) × Ω,

u = 0 on [0, T ) × Γ0,

∂u

∂ν
= −|ut|m−2ut + g(t, x) on [0, T ) × Γ1,

u(0, x) = u0(x) in Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.17)

where m > 1, T > 0 is arbitrary and g is a given forcing term acting on Γ1.

Theorem 1.5. Suppose that g ∈ Lm′
((0, T ) × Γ1), where 1/m + 1/m′ = 1. If

u0 ∈ H1
Γ0

(Ω), then there is a unique weak solution u3 of (1.17) on (0, T ) × Ω.
Moreover,

u ∈ C([0, T ];H1
Γ0

(Ω)), (1.18)

ut ∈ Lm((0, T ) × Γ1) ∩ L2((0, T ) × Ω) (1.19)

and the energy identity

1
2‖∇u‖2

2|ts +
∫ t

s

(‖ut‖2
2 + ‖ut‖m

m,Γ1
) =

∫ t

s

∫
Γ1

gut (1.20)

holds for 0 � s � t � T .

Theorems 1.1–1.3 are extended in § 4 to problem (1.1), under suitable assump-
tions on the nonlinearities f and Q. For the sake of simplicity, we first present the
proofs for the model problem (1.2) and then we give in § 4 the necessary general-
izations needed to handle with (1.1). This section is naturally addressed to a more

3The precise definition of weak solution will be given in § 2.
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specialized audience and then a higher lever of mathematical expertise of the reader
is supposed. In particular, the proofs are only sketched.

In order to explain the main difficulties that arise in the proofs of theorems 1.1–
1.5, we now make some comparison with the arguments used in [27]. Theorem 1.5,
which is the parabolic version of [27, theorem 4], is proved via the Faedo–Galerkin
procedure, so that finite-dimensional approximations of (1.17) are considered. The
first essential difference, with respect to [27], emerges here, since the boundary
damping appearing in (1.17) is now a time derivative of the same (highest) order of
ut acting on Ω. Moreover, different a priori estimates are used in the proof of the-
orem 1.5. Theorem 1.1 is proven by using theorem 1.5 together with a fixed-point
argument. The main estimates of [27] are here conveniently modified to handle (1.2).
It is worth mentioning that the energy identity (1.20) used in the proof of theo-
rem 1.1 differs from the usual energy identity used for the heat equation (see, for
example, [11]), since it is obtained by formally multiplying the equation by ut as
for wave-type equations while in parabolic equations one usually multiplies by u.
This explains why the transposition of techniques motivated by hyperbolic problems
gives original outcomes when it can be applied to parabolic problems. The proofs of
theorems 1.2 and 1.3 do not essentially differ from the analogous ones given in [27],
but they are explicitly given because of their simplicity and for the sake of com-
pleteness. Finally, we would like to mention that the techniques used in the paper
also allow us to consider modified versions of problem (1.1), where the Laplacian
operator ∆ is replaced by more general second-order uniformly elliptic operators
in divergence form, such as Au = div(A0(x)∇u), where A0(x) = (aij(x))i,j=1,...,n,
aij ∈ L∞(Ω), i, j = 1, . . . , n, where vtA(x)v � α0|v|2 for all v ∈ R

n and some
positive constant α0. Theorems 1.1–1.3 could also be extended to the vectorial case
of systems of the form (1.1), using the same arguments. These generalizations are
left to the interested reader.

1.1. Notation and preliminaries

We collect some notation and preliminaries that we will use during the paper,

q′ Hölder conjugate of q > 1, i.e. 1/q + 1/q′ = 1,

(·, ·) scalar product in L2(Ω),
C∞

c (O) space of compactly supported C∞ function on O,

C([a, b];X) space of all norm continuous functions from [a, b] to X,

Cc((a, b); X) space of compactly supported strongly continuous
functions from (a, b) to X,

Cw([a, b];X) space of weakly continuous functions from [a, b] to X,

X ′ the dual space of X,

〈·, ·〉X the duality product between X and X ′,

H−1(Ω) the dual space of H1
0 (Ω),

L(X, X ′) the space of linear bounded operators from X to X ′,

where X is a Banach space and O any open subset of R
k. Moreover, we call the

trace theorem the existence of the continuous trace mapping H1
Γ0

(Ω) → L2(Γ1). We
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also call the trace-Sobolev theorem the existence of the continuous mapping (see [1])

H1
Γ0

(Ω) → Lp(Γ1) for 2 � p < r.

2. Global existence and uniqueness for a boundary forced heat equation

This section is devoted to the proof of theorem 1.5. We first give the following
definition.

Definition 2.1. Let u0 ∈ H1
Γ0

(Ω). A weak solution of (1.17) is a function u such
that the following hold.

(a) u ∈ L∞(0, T ; H1
Γ0

(Ω)), ut ∈ L2((0, T ) × Ω).

(b) The spatial trace of u on (0, T )× ∂Ω (which exists by the trace theorem) has
a distributional time derivative on (0, T )×∂Ω belonging to Lm((0, T )×∂Ω).

(c) For all
φ ∈ X := {u ∈ H1

Γ0
(Ω) : u|Γ1 ∈ Lm(Γ1)}, (2.1)

and for almost all t ∈ [0, T ], we have∫
Ω

ut(t)φ + ∇u(t)∇φ +
∫

Γ1

|ut(t)|m−2ut(t)φ =
∫

Γ1

g(t)φ. (2.2)

(d) u(0) = u0.

Note that, in (d), u(0) makes sense since, by (a),

u ∈ W 1,2(0, T ; L2(Ω)) ↪→ C([0, T ];L2(Ω)).

In the proof of theorem 1.5, we shall use the following result.

Lemma 2.2. Let
ζ ∈ Lm′

((0, T ) × Γ1) (2.3)

and suppose that u is a weak solution of

ut − ∆u = 0 in (0, T ) × Ω,

u = 0 on [0, T ) × Γ0,

∂u

∂ν
= ζ on (0, T ) × Γ1,

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

i.e. a function
u ∈ L∞(0, T ; H1

Γ0
(Ω)) (2.5)

such that
ut ∈ L2((0, T ) × Ω) ∩ Lm((0, T ) × Γ1) (2.6)

and ∫
Ω

ut(τ)φ + ∇u(τ)∇φ =
∫

Γ1

ζ(τ)φ (2.7)
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for all φ ∈ X and almost all τ ∈ [0, T ]. Then

u ∈ C([0, T ];H1
Γ0

(Ω)) (2.8)

and the energy identity

1
2‖∇u‖2

2|ts +
∫ t

s

‖ut‖2
2 =

∫ t

s

∫
Γ1

ζut (2.9)

holds for 0 � s � t � T .

Lemma 2.2 is an extension of [25, theorems 3.1 and 3.2], which cannot be directly
applied to (2.4). Nevertheless, the technique of [25] continues to work in the present
situation. Since the proof of this result is rather technical, we give it in Appendix A.

Proof of theorem 1.5. We apply the Faedo–Galerkin procedure. Let (wk)k be a
sequence of linearly independent vectors in X whose finite linear combinations are
dense in X. By (eventually) using the Grahm–Schmidt orthogonalization process,
we can take (wk)k to be orthonormal in L2(Ω). Since X is dense in H1

Γ0
(Ω) (see,

for example, [27, Appendix A]), there are u0k =
∑k

j=1 yj
0kwj , k ∈ N, for some real

numbers yj
0k, j = 1, . . . , k, k ∈ N, such that

u0k → u0 in H1
Γ0

(Ω). (2.10)

For any fixed k ∈ N, we look for approximate solutions of (1.17), that is, for solutions
uk(t) =

∑k
j=1 yj

k(t)wj , of the finite-dimensional problem

(uk
t , wj) + (∇uk,∇wj) +

∫
Γ1

|uk
t |m−2uk

t wj =
∫

Γ1

gwj , j = 1, . . . , k,

uk(0) = u0k.

⎫⎪⎬
⎪⎭ (2.11)

In order to recognize that (2.11) has a local solution, we set

y0k = (y1
0k, . . . , yk

0k)T,

yk = (y1
k, . . . , yk

k)T,

Ak = ((∇wi,∇wj))i,j=1,...,k,

Bk(x) = (w1(x), . . . , wk(x))T,

Gk(y) = y +
∫

Γ1

|Bk(x) · y|m−2Bk(x) · yBk(x) dx, y ∈ R
k,

and

Hk(t) =
∫

Γ1

g(t, x)Bk(x) dx. (2.12)

Problem (2.11) can be rewritten in the vectorial form

Gk(y′
k(t)) + Akyk(t) = Hk(t),

yk(0) = y0k.

}
(2.13)
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Since wj ∈ Lm(Γ1) for j = 1, . . . , k, we have |Bk| ∈ Lm(Γ1) and Gk ∈ C(Rk).
Moreover, Gk = ∇Gk, where

Gk(y) = 1
2 |y|2 +

1
m

∫
Γ1

|Bk(x) · y|m dx.

The first addendum in the previous formula is strictly convex, while the second one
is convex since

1
m

∫
Γ1

|Bk(x) · [αy1 + (1 − αy2)]|m dx

=
1
m

∫
Γ1

|αBk(x) · y1 + (1 − α)Bk(x) · y2]|m dx

� 1
m

∫
Γ1

α|Bk(x) · y1|m + (1 − α)|Bk(x) · y2|m dx

for any α ∈ (0, 1), where the convexity of the function |y|m was used. Then Gk is
strictly convex in R

k. Moreover, for any y �= 0,

lim
λ→+∞

Gk(λy)
λ

= ∞.

Then, using [22, theorems 2.5 and 2.6], we recognize that Gk is an homeomorphism
from R

k onto itself, with inverse G−1
k . Then (2.13) can be written in the form

y′
k(t) = G−1

k (Hk(t) − Akyk(t)),
yk(0) = y0k.

}
(2.14)

Now we note that, since Gk(y)y � |y|2 for all y ∈ R
k, by the Schwartz inequality,

it follows that |y| � |Gk(y)|. Then |G−1
k (y)| � |y| for all y ∈ R

k, so that

|G−1
k (Hk(t) − Akyk)| � |Hk(t)| + ‖Ak‖|yk|. (2.15)

Since |Bk| ∈ Lm(Γ1) and g ∈ Lm′
((0, T )×Γ1), it follows that Hk ∈ L1(0, T ). We can

then apply Carathéodory’s theorem (see [5, theorem 1.1]) to conclude that (2.14),
and then (2.13) and (2.11), have a local solution on (0, tk) for some tk > 0.

Multiplying (2.11) by (yj
k)′ and summing for j = 1, . . . , k, we obtain the energy

identity (here and in the sequel, explicit dependence on t will be omitted, when
clear)

d
dt

( 1
2‖∇uk‖2

2) + ‖uk
t ‖2

2 + ‖uk
t ‖m

m,Γ1
=

∫
Γ1

guk
t . (2.16)

Integrating over (0, t), 0 < t < tk, and using Young’s inequality, we obtain

1
2‖∇uk‖2

2 +
∫ t

0
(‖uk

t ‖2
2 + ‖uk

t ‖m
m,Γ1

)

� 1
2‖∇u0k‖2

2 +
1
m′ ‖g‖m′

Lm′ ((0,T )×Γ1)
+

1
m

∫ t

0
‖uk

t ‖m
m,Γ1

.

Then, using (2.10), there exists

K1 = K1(‖∇u0‖2, ‖g‖Lm′ ((0,T )×Γ1), m) > 0
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such that
‖∇uk‖L∞(0,tk;L2(Ω)) � K1,

‖uk
t ‖L2((0,tk)×Ω) � K1,

‖uk
t ‖Lm((0,tk)×Γ1) � K1,

‖|uk
t |m−2uk

t ‖Lm′ ((0,tk)×Γ1) � K1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.17)

for k ∈ N. By (2.10), (2.17) and Hölder’s inequality in time, it follows that

‖uk‖2
2 � ‖u0k‖2 +

∫ t

0
‖uk

t ‖2 � ‖u0k‖2 + T 1/2
(∫ tk

0
‖uk

t ‖2
2

)1/2

� K2 (2.18)

for some
K2 = K1(‖u0‖H1

Γ0
(Ω), ‖g‖Lm′ ((0,T )×Γ1), T, m) > 0.

Since (wk)k is orthonormal in L2(Ω), we have |yk(t)| = ‖uk(t)‖2, so (2.18) yields
that |yk(t)| � K

1/2
2 . Then, by (2.15),

|G−1
k (Hk(t) − Akyk)| � |Hk(t)| + ‖Ak‖K

1/2
2 ∈ L1(0, T ).

We can then apply [5, theorem 1.3] to conclude that tk = T for k = 1, . . . , n. Next,
by (2.17) and (2.18), it follows (see [20,21]) that, up to a subsequence,

uk → u weakly∗ in L∞(0, T ; H1
Γ0

(Ω)),

uk
t → ut weakly in L2((0, T ) × Ω),

uk
t → ψ weakly in Lm((0, T ) × Γ1),

|uk
t |m−2uk

t → χ weakly in Lm′
((0, T ) × Γ1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.19)

A consequence of the convergence (2.19) is that uk → u weakly in H1(0, T ; L2(Ω))
and then, up to a subsequence, uk → u strongly in C([0, T ];L2(Ω)), so that
u(0) = u0. It follows in a standard way (see, for example, [27, p. 272]) that ψ
is the distribution time derivative of u on (0, T ) × ∂Ω, i.e. ψ = ut.

Next, multiplying (2.11) by φ ∈ C∞
c (0, T ), integrating on (0, T ), passing to the

limit as k → ∞ (using (2.19)) and finally using the density of the finite linear
combinations of (wk)k in X, we obtain∫ T

0

[
(ut, w)φ + (∇u, ∇w)φ +

∫
Γ1

χwφ −
∫

Γ1

gwφ

]
= 0 (2.20)

for all w ∈ X, φ ∈ C∞
c (0, T ), and then

(ut, w) + (∇u, ∇w) +
∫

Γ1

χw =
∫

Γ1

gw

almost everywhere in (0, T ). Then, to prove that u is a weak solution of (1.17), we
have only to show that

χ = |ut|m−2ut a.e. on (0, T ) × Γ1. (2.21)
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By lemma 2.2, we obtain (1.18) and the energy identity (2.9), with ζ = g − χ,
which, for s = 0 and t = T , reads as

1
2‖∇u‖2

2|T0 +
∫ T

0
‖ut‖2

2 +
∫ T

0

∫
Γ1

χut =
∫ T

0

∫
Γ1

gut. (2.22)

The classical monotonicity method (see [20, 21]) then allows us to prove (2.21),
together with the uniqueness of the solution. We briefly outline here the proof of
these facts, for the reader’s convenience. Integrating (2.16) over (0, T ), extracting a
subsequence such that ∇uk(T ) → ∇u(T ) weakly in L2(Ω), passing to the limit as
k → ∞ and using (2.19) and the weakly lower semi-continuity of norms in Hilbert
spaces, we get

1
2‖∇u(T )‖2

2 +
∫ T

0
‖ut‖2

2 + lim
k

∫ T

0
‖uk

t ‖m
m,Γ1

� 1
2‖∇u0‖2

2 +
∫ T

0

∫
Γ1

gut. (2.23)

By combining (2.22) with (2.23), we have

lim
k

∫ T

0
‖uk

t ‖m
m,Γ1

�
∫ T

0

∫
Γ1

χut.

The last formula, together with system (2.19) and the monotonicity of the map
y → |y|m−2y, gives

0 � lim
k

∫ T

0

∫
Γ1

(|uk
t |m−2uk

t − |φ|m−2φ)(uk
t − φ) �

∫ T

0

∫
Γ1

(χ − |φ|m−2φ)(ut − φ)

for all φ ∈ Lm((0, T ) × Γ1). Setting φ = ut − λφ1, λ > 0, letting λ → 0+ and
dividing by λ, we get∫ T

0

∫
Γ1

(χ − |ut|m−2ut)φ1 � 0 for all φ1 ∈ Lm((0, T ) × Γ1),

and then (2.21) follows. The uniqueness of the solutions follows by applying equa-
tion (2.9) to the difference w = ũ − û of any two solutions (which solves (2.4)
with ζ = −|ũt|m−2ũt + |ût|m−2ût and w(0) = 0) and using the monotonicity of
|y|m−2y.

3. Proof of main results

In this section we prove theorems 1.1–1.3. We first give the precise definition of a
weak solution of (1.2).

Definition 3.1. A weak solution of (1.2) is a function u such that (a)–(d) of defi-
nition 2.1 hold, with (2.2) replaced by∫

Ω

ut(t)φ + ∇u(t)∇φ +
∫

Γ1

|ut(t)|m−2ut(t)φ =
∫

Γ1

|u(t)|p−2u(t)φ. (3.1)

To prove theorem 1.1, we use the following compactness result. The proof can be
found in [27].
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Lemma 3.2. Let m > 1 and 1 < p0 < r. Set

ZT := {u ∈ L∞(0, T ; H1
Γ0

(Ω)) : ut ∈ Lm((0, T ) × Γ1)}

endowed with the natural norm

‖u‖2
ZT

= ‖u‖2
L∞(0,T ;H1

Γ0
(Ω)) + ‖ut‖2

Lm((0,T )×Γ1).

Then the operator ZT → C([0, T ];Lp0(Γ1)) is compact.

We can now give the following proof.

Proof of theorem 1.1. We set, for any T > 0, the Banach space

YT = {u ∈ C([0, T ];H1
Γ0

(Ω)), ut ∈ Lm((0, T ) × Γ1)},

endowed with the norm ‖u‖YT
= ‖u‖ZT

, and the closed convex set

XT = XT (u0) = {u ∈ YT : u(0) = u0}.

Take u ∈ XT . Assumption (1.5) yields that (p − 1)m′ < r and then, since Γ1 is
bounded, using Hölder’s inequality, we have |u|p−2u ∈ Lm′

((0, T ) × Γ1). Then, by
theorem 1.5, there is a unique solution v of the problem

vt − ∆v = 0 in (0, T ) × Ω,

v = 0 on [0, T ) × Γ0,

∂v

∂ν
= −|vt|m−2vt + |u|p−2u on [0, T ) × Γ1,

v(0, x) = u0(x) in Ω.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2)

We denote by v = Φ(u) the solution v of (3.2) that corresponds to u, so that
Φ : XT → XT by (1.18) and (1.19). We apply Schauder’s fixed-point theorem
(see [6, corollary 3.6.2]) to Φ : BR → BR, where BR = {u ∈ XT : ‖u‖YT

� R},
provided that R is suitably large and T is suitably small. Note that BR is closed
and convex, and it is non-empty for R � R0 := ‖u0‖H1

Γ0
(Ω).

Step 1. We show that Φ maps BR into itself for R sufficiently large and T small
enough. Let u ∈ BR. Writing the energy identity (1.20) for v, with g = |u|p−2u and
s = 0 and using Hölder’s inequality, we obtain, for 0 � t � T ,

1
2‖∇v(t)‖2

2 +
∫ t

0
‖vt‖2

2 +
∫ t

0
‖vt‖m

m,Γ1

� 1
2‖∇u0‖2

2 +
∫ T

0

∫
Γ1

|u|p−1|vt|

� 1
2‖∇u0‖2

2 +
∫ T

0

(∫
Γ1

|u|(p−1)m′
)1/m′

‖vt‖m,Γ1 . (3.3)

Since (p − 1)m′ < r by (1.5), applying Hölder’s inequality in the space variable
again, and then the trace-Sobolev embedding and Hölder’s inequality in the time
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variable, we obtain, for 0 � t � T (here and in the rest of the proof ki will denote
positive constants depending only on p, m, Γ1 and Ω),

1
2‖∇v(t)‖2

2 +
∫ t

0
‖vt‖2

2 +
∫ t

0
‖vt‖m

m,Γ1

� 1
2‖∇u0‖2

2 + k1

∫ T

0
‖u‖p−1

r,Γ1
‖vt‖m,Γ1

� 1
2‖∇u0‖2

2 + k2R
p−1T 1/m′‖vt‖Lm((0,T )×Γ1). (3.4)

Writing (3.4) with t = T , disregarding the first and the second addendum in the
left-hand side and using Young’s inequality, we get

‖vt‖m
Lm((0,T )×Γ1) � 1

2‖∇u0‖2
2 + k2R

p−1T 1/m′‖vt‖Lm((0,T )×Γ1)

� 1
2‖∇u0‖2

2 +
1
m

‖vt‖m
Lm((0,T )×Γ1) + k3TR(p−1)m′

.

Using the inequality

(A + B)τ � max{1, 2τ−1}(Aτ + Bτ ) for A, B � 0, τ > 0, (3.5)

we have
‖vt‖Lm((0,T )×Γ1) � k4(R

2/(m−1)
0 + R(p−1)/(m−1)T 1/m). (3.6)

Using (3.6) in (3.4) we obtain, for 0 � t � T ,

1
2‖∇v(t)‖2

2 +
∫ t

0
‖vt‖2

2 � 1
2R2

0 + k5R
p−1T 1/m′

(R2/(m−1)
0 + R(p−1)/(m−1)T 1/m)

(3.7)

and then, for t = T ,

‖vt‖2
L2((0,T )×Ω) � 1

2R2
0 + k5R

p−1T 1/m′
(R2/(m−1)

0 + R(p−1)/(m−1)T 1/m).
(3.8)

Using (3.5) with τ = 2 and Hölder’s inequality in time, we have

‖v(t)‖2
2 �

(
‖u0‖2 +

∫ t

0
‖vt‖2

)2

� 2‖u0‖2
2 + 2T‖vt‖2

L2((0,T )×Ω)

� 2R2
0 + 2T‖vt‖2

L2((0,T )×Ω),

and consequently, using (3.8),

‖v(t)‖2
2 � (2 + T )R2

0 + 2k5R
p−1T 1+1/m′

(R2/(m−1)
0 + R(p−1)/(m−1)T 1/m). (3.9)

Combining (3.7) and (3.9), we have

‖v‖2
L∞(0,T ;H1

Γ0
(Ω))

� (3 + T )R2
0 + 2k5R

p−1T 1/m′
(1 + T )(R2/(m−1)

0 + R(p−1)/(m−1)T 1/m). (3.10)
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Thanks to (3.6) and (3.10), in order to prove that v ∈ BR, it is enough to show
that

k4(R
2/(m−1)
0 + R(p−1)/(m−1)T 1/m) � 1

2R (3.11)

and

(3 + T )R2
0 + 2k5R

p−1T 1/m′
(1 + T )(R2/(m−1)

0 + R(p−1)/(m−1)T 1/m) � 1
4R2. (3.12)

We first fix
R := max{1, 4k4R

2/(m−1)
0 , 6R0}, (3.13)

so that
k4R

2/(m−1)
0 � 1

4R and 3R2
0 � 1

8R2. (3.14)

We then take T � 1 small enough so that

k4R
(p−1)/(m−1)T 1/m � 1

2 ,

TR2
0 � 1

16 ,

4K5R
p−1T 1/m′

R
2/(m−1)
0 � 1

32 ,

4k5R
p−1T 1/m′

R(p−1)/(m−1)T 1/m � 1
32 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.15)

Solving (3.15) with respect to T and using equation (3.13), one immediately see
that T = T (R2

0, m, p, Ω, Γ1) is decreasing in R0. Moreover, since by (3.13) one has
R � 1, formulae (3.14) and (3.15) immediately yield (3.11) and (3.12), proving that
with such a choice of R and T one has v ∈ BR.

Step 2. We now prove that, with this choice of R and T , the map Φ is continuous
on BR and that Φ(BR) is relatively compact in YT . Let u, ū ∈ BR, and denote
v = Φ(u), v̄ = Φ(ū), w = v − v̄. Clearly, w is a solution of the problem

wt − ∆w = 0 in [0, T ) × Ω,

w = 0 on (0, T ) × Γ0,

∂w

∂ν
= −|vt|m−2vt + |v̄t|m−2v̄t

+ |u|p−2u − |ū|p−2ū on [0, T ) × Γ1,

w(0, x) = 0 in Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

Since vt, v̄t ∈ Lm((0, T )×Γ1), we also know that |vt|m−2vt and |v̄t|m−2v̄t belong to
Lm′

((0, T ) × Γ1). Moreover, by (1.5), the functions |u|p−2u and |ū|p−2ū belong to
Lm′

((0, T ) × Γ1). Then we can apply lemma 2.2, so that the energy identity (2.9)
becomes

1
2‖∇w‖2

2 +
∫ t

0
‖wt‖2

2 +
∫ t

0

∫
Γ1

[|vt|m−2vt − |v̄t|m−2v̄t]wt

=
∫ t

0

∫
Γ1

[|u|p−2u − |ū|p−2ū]wt (3.17)
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for 0 � t � T . Estimating from above the right-hand side and from below the third
term in the left-hand side of (3.17) exactly as in [27, starting from formula (72)
onward], we obtain the estimates

‖vt − v̄t‖2
L2((0,T )×Ω) � K‖u − ū‖L∞(0,T ;Lr0 (Γ1)), (3.18)

‖∇v − ∇v̄‖2
L∞(0,T ;L2(Ω)) � K‖u − ū‖L∞(0,T ;Lr0 (Γ1)) (3.19)

and

‖vt − v̄t‖m
Lm((0,T )×Γ1) � K‖u − ū‖L∞(0,T ;Lr0 (Γ1)), (3.20)

when m � 2, while

‖|vt|m−2vt − |v̄t|m−2v̄t‖m′

Lm′ ((0,T )×Γ1)
� K‖u − ū‖L∞(0,T ;Lr0 (Γ1)), (3.21)

when 1 < m < 2, where K = K(p, m, Γ1, Ω, T, R) > 0. From v(0) = v̄(0) = u0, we
get that, for 0 � t � T ,

‖v(t) − v̄(t)‖2 �
∫ T

0
‖vt − v̄t‖2 � T 1/2‖vt − v̄t‖L2((0,T )×Ω).

Hence, by (3.18), we get

‖v(t) − v̄(t)‖2
L∞(0,T ;L2(Ω)) � KT‖u − ū‖L∞(0,T ;Lr0 (Γ1)). (3.22)

Estimates (3.18)–(3.22) show that Φ is continuous on BR. To prove that Φ(BR) is
relatively compact in YT , let (uk)k be a sequence in BR. By lemma 3.2, the sequence
uk is relatively compact and then, up to a subsequence, it is a Cauchy sequence, in
C([0, T ];Lr0(Γ1)). Hence, applying (3.18)–(3.20) and (3.22) with u = ui, ū = uj ,
i, j ∈ N, it follows that, when m � 2, vk = Φ(uk) is a Cauchy sequence in YT .

When 1 < m < 2, by (3.21), |vk
t |m−2vk

t is a Cauchy sequence in the space
Lm′

((0, T ) × Γ1). Then, by [4, théorème IV.9], there is χ0 ∈ Lm′
((0, T ) × Γ1) such

that (up to a subsequence) |vk
t |m−1 � χ0 on (0, T )×Γ1 and vk

t is a.e. convergent in
(0, T )×Γ1. Then, by the Lebesgue dominated convergence theorem, vk

t is convergent
in Lm((0, T ) × Γ1). Then, using (3.18), (3.19) and (3.22), vk is also a Cauchy
sequence in YT when 1 < m < 2. Since YT is complete, this concludes the proof.

Now we can give the following proof.

Proof of Theorem 1.2. Since

T = T (‖u0‖2
H1

Γ0
(Ω), m, p, Ω, Γ1)

is decreasing in the first variable, we can apply the standard continuation procedure
of ordinary differential equations (see also [23]) to conclude that either the solution
u is global or there is Tmax < ∞ such that

lim
t→T −

max

‖u(t)‖2
H1

Γ0
(Ω) = ∞. (3.23)

We prove that (3.23) cannot happen.
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We note that u ∈ W 1,p(0, T ; Lp(Γ1)), since p � m. Moreover, the potential
operator u → ‖u‖p

p,Γ1
is Fréchet differentiable in Lp(Γ1). Then

d
dt

‖u(t)‖p
p,Γ1

= p

∫
Γ1

|u(t)|p−2u(t)ut(t), (3.24)

for almost all t ∈ (0, T ), and the energy identity (1.8) can be written in the equiv-
alent form

1
2‖∇u‖2

2 − 1
p
‖u‖p

p,Γ1
|ts +

∫ t

s

(‖ut‖2
2 + ‖ut‖m

m,Γ1
) = 0 (3.25)

for 0 � s � t < Tmax. We now introduce the auxiliary functional

H(t) = 1
2‖∇u‖2

2 +
1
p
‖u‖p

p,Γ1
. (3.26)

By (3.24) and (3.25),

H′(t) = −‖ut‖2
2 − ‖ut‖m

m,Γ1
+ 2

∫
Γ1

|u|p−2uut � −‖ut‖m
m,Γ1

+ 2
∫

Γ1

|u|p−2uut.

(3.27)
Repeating verbatim the arguments of [27, proof of theorem 2, eqn (88) onward], we
then prove the estimate

H′(t) � C(1 + H(t)) (3.28)

with a suitable C(m, p, Γ1) > 0. By Gronwall’s lemma, we have H ∈ L∞(0, Tmax).
Then, by (3.24),

‖u‖p,Γ1 , ‖∇u‖2 ∈ L∞(0, Tmax). (3.29)

Moreover, by (3.25) and (3.29),∫ t

0
‖ut‖2

2 � 1
2‖∇u0‖2

2 +
1
p
‖u‖p

p,Γ1
� 1

2‖∇u0‖2
2 +

1
p
‖u‖p

L∞(0,Tmax;Lp(Γ1))
,

so that

‖u‖2
2 � 2‖u0‖ + 2

∫ t

0
‖ut‖2

2 � 2‖u0‖2
2 + ‖∇u0‖2

2 +
2
p
‖u‖p

L∞(0,Tmax;Lp(Γ1))
, (3.30)

which, together with (3.29), contradicts (3.23), concluding the proof.

We can now turn to the proof of Theorem 1.3. We first give an alternative and
more explicit characterization of the set W given in (1.13) and of the number d
defined in (1.12). Since σ(Γ0) > 0, as recalled, Poincaré’s inequality holds (see [28])
and we can take ‖∇u‖2 as an equivalent norm in H1

Γ0
(Ω). Then, using the trace-

Sobolev theorem, since p < r,

B∞ := sup
u∈H1

Γ0
(Ω),u �≡0

‖u‖p,Γ1

‖∇u‖2
< ∞. (3.31)

We set

λ∞ = B−p/(p−2)
∞ and E∞ =

(
1
2

− 1
p

)
λ2

∞,
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and
W1 = {u0 ∈ H1

Γ0
(Ω) : ‖∇u0‖2 < λ∞, J(u0) < E∞}.

We can then give the following result.

Lemma 3.3. Suppose σ(Γ0) > 0 and let d be the number and W the set defined
in (1.12) and (1.13), respectively. Then E∞ = d and W = W1.

The proof of lemma 3.3 is a straightforward modification of that of [27, lemma 3].
It is given, for the reader’s convenience, in Appendix B.

Remark 3.4. The number d = E∞ above is equal (see [26]) to the Mountain-Pass
level associated to the elliptic problem

∆u = 0 in Ω,

u = 0 on Γ0,

∂u

∂ν
= |u|p−2u on Γ1,

that is, to the number (see, for example, [3])

inf
γ∈Λ

sup
t∈[0,1]

J(γ(t)),

where
Λ = {γ ∈ C([0, 1];H1

Γ0
(Ω)) : γ(0) = 0, J(γ(1)) < 0}.

Proof of theorem 1.3. By (3.25), the function t �→ J(u(t)) is decreasing. Then

J(u(t)) � J(u0) for t < Tmax. (3.32)

As in the proof of theorem 1.2, using theorem 1.1, it is enough to prove that (3.23)
leads to a contradiction.

By lemma 3.3, we have

‖∇u0‖2 < λ∞ and J(u0) < d = E∞. (3.33)

By (3.31),

J(u(t)) � 1
2‖∇u‖2

2 − 1
p
Bp

∞‖∇u‖p
2 := h(‖∇u‖2). (3.34)

Starting from (3.33) and (3.34) and repeating verbatim the arguments of [27, proof
of theorem 3, eqn (98) onward] (with E(t) = J(u(t))), we get

‖∇u(t)‖2 < λ∞ for all t ∈ [0, Tmax). (3.35)

Still using Poincaré’s inequality, this contradicts (3.23), concluding the proof.

Remark 3.5. To prove theorem 1.3, we used, in an essential way, the statement of
theorem 1.1, that is, local existence for solutions of (1.2). It is also possible to give
a more direct proof of theorem 1.3, without using this argument. This alternative
proof is simpler than the combination of the proofs of theorems 1.1 and 1.3, so
should be considered preferable from an ‘abstract’ point of view. We refer the
interested reader to the proof of theorem 4.10 in § 4, where, handling with more
general equations, we follow this different approach. We gave this proof for the sake
of brevity.
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4. More general equations

This section is devoted to giving the extension of our results to problem (1.1), where
Q and f satisfy some specific assumptions that generalize the specific behaviour of
|ut|m−2ut and |u|p−2u. As for the term Q, we suppose that there is a Θ > 0 such
that the following assumptions hold.

(Q1) Q is a Carathéodory real function defined on (0, Θ) × Γ1 × R such that
Q(t, x, 0) = 0 for almost all (t, x) ∈ (0, Θ)×Γ1, and there exists and exponent
m > 1 and positive constants c1, c2, c3 and c4, possibly dependent on Θ, such
that

c1|v|m−1 � |Q(t, x, v)| � c2|v|m−1 when |v| � 1

and

c3|v|m−1 � |Q(t, x, v)| � c4 when |v| � 1

for almost all (t, x) ∈ (0, Θ) × Γ1 and all v ∈ R.

(Q2) The function Q(t, x, ·) is increasing for almost all (t, x) ∈ (0, Θ) × Γ1.

In most (but not all) of our results, we also use a stronger version of (Q2), as
follows.

(Q3) There is c5 > 0 such that, when m � 2,

(Q(t, x, v) − Q(t, x, w))(v − w) � c5|v − w|m, (4.1)

while, when 1 < m < 2,

(Q(t, x, v) − Q(t, x, w))(v − w) � c5||v|m−2v − |w|m−2w|m′
(4.2)

for almost all (t, x) ∈ (0, Θ) × Γ1 and all v, w ∈ R.

Remark 4.1. Assumptions (Q1)–(Q3) are satisfied for all Θ > 0 by any Q = Q(v)
such that

Q ∈ W 1,1
loc (R), Q(0) = 0, lim inf

v→0

|Q(v)|
|v|m−1 > 0, (4.3)

lim sup
|v|→∞

|Q(v)|
|v|m−1 < ∞, lim inf

|v|→∞

|Q(v)|
|v|m−1 > 0 (4.4)

and

Q′(v) � q0|v|m−2 for almost all v ∈ R (4.5)

for some positive constant q0. This assertion can be easily checked using the ele-
mentary inequality

(|v1|�−2v1 − |v2|�−2v2)(v1 − v2) � const.|v1 − v2|� (4.6)
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for all � � 2, v1, v2 ∈ R, with � = m when m � 2 and with � = m′ when 1 < m < 2.
Of course, the damping model term |ut|m−2ut considered in previous sections satis-
fies (4.3)–(4.5). Two explicit non-power-like examples satisfying these requirements
are given by

Q0(v) =

{
|v|m−2v for |v| � 1,

|v|µ−2v for |v| � 1,
1 < µ < m, (4.7)

and by

Q1(v) = |v|µ−2v + |v|m−2v, 1 < µ < m. (4.8)

A time-dependent example satisfying (Q1)–(Q3) for all Θ > 0 is given by

Q2(t, v) = β(t)|v|m−2v, m > 1, β ∈ C([0,∞); R+). (4.9)

Remark 4.2. Let us note that (Q1), (Q2) yield that there are positive constants
c6 and c7 (possibly dependent on Θ) such that

|Q(t, x, v)| � c6(1 + |v|m−1) (4.10)

and

Q(t, x, v)v � c7|v|m (4.11)

for almost all (t, x) ∈ (0, Θ) × Γ1 and all v ∈ R.

Concerning the term f , for the time being, we assume only that f is a Carathéo-
dory real function defined on Γ1 × R. We shall give case by case the assumptions
we need.

4.1. Forced heat equation

Our first result generalizes theorem 1.5 of § 2 to the problem

ut − ∆u = 0 in (0, T ) × Ω,

u = 0 on [0, T ) × Γ0,

∂u

∂ν
= −Q(t, x, ut) + g(t, x) on [0, T ) × Γ1,

u(0, x) = u0(x) on Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.12)

where g is a given forcing term acting on Γ1 and T > 0 is fixed.

Theorem 4.3. Suppose that (Q1), (Q2) hold with Θ = T and that

g ∈ Lm′
((0, T ) × Γ1).

Then, given any initial datum u0 ∈ H1
Γ0

(Ω), there is a unique weak solution u
of (4.12) on (0, T )×Ω. Moreover, (1.18) and (1.19) hold, and u satisfies the energy
identity

1
2‖∇u‖2

2|ts +
∫ t

s

‖ut‖2
2 +

∫ t

s

∫
Γ1

Q(·, ·, ut)ut =
∫ t

s

∫
Γ1

gut (4.13)

for 0 � s � t � T .
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Remark 4.4. According to definition 2.1, a solution of (4.12) is a function

u ∈ L∞(0, T ; H1
Γ0

(Ω))

such that ut ∈ L2((0, T ) × Ω) ∩ Lm((0, T ) × Γ1), (2.2) is verified with |ut|m−2ut

replaced by Q(·, ·, ut) and u(0) = u0.

Sketch of the proof of theorem 4.3. Repeat the proof of theorem 1.5, using (4.10),
(4.11) and (Q2), starting from the problem

(uk
t , wj) + (∇uk,∇wj) +

∫
Γ1

Q(·, ·, uk
t )wj =

∫
Γ1

gwj , j = 1, . . . , k,

uk(0) = u0k,

⎫⎪⎬
⎪⎭ (4.14)

instead of from (2.11), and correspondingly redefining

Gk(y) = y +
∫

Γ1

Q(·, ·, Bk(x) · y)Bk(x) dx, y ∈ R
k, (4.15)

and

Gk(y) = 1
2 |y|2 +

∫
Γ1

Q̃(·, ·, Bk(x) · y) dx, (4.16)

where
Q̃(t, x, y) :=

∫ y

0
Q(t, x, s) ds, y ∈ R. (4.17)

4.2. Local existence

To generalize theorem 1.1, we assume that the following assumption holds.

(F1) f(x, 0) = 0 and there are exponents 1 < q < 2 � p and c8 > 0 such that, for
almost all x ∈ Γ1 and all u1, u2 ∈ R,

|f(x, u1) − f(x, u2)| � c8[|u1 − u2|(1 + |u1|p−2 + |u2|p−2) + |u1 − u2|q−1].

Assumption (F1) is clearly satisfied by

f0(x, u) = γ(x)|u|q−2u + δ(x)|u|p−2u, 1 < q < p, (4.18)

provided that γ, δ ∈ L∞(Γ1). This can be seen using the elementary inequality

||u1|p−2u1 − |u2|p−2u2| � const.|u1 − u2|(|u1|p−2 + |u2|p−2) (4.19)

for u1, u2 ∈ R, p � 2.
Moreover, (F1) is satisfied by any f = f(u), derivable for large |u|, such that

f ∈ C0,α(R), f(0) = 0, |f ′| = O(|up−2) as |u| → ∞, (4.20)

where 0 < α � 1, p � 2 and C0,α(R) denotes the space of α-Hölder continuous real
functions on R. An explicit non-algebraic example of such a function is given by

f1(u) =

{
|u|ν1−2u, |u| � 1,

|u|ν2−2u, |u| � 1,
ν1, ν2 > 1, (4.21)

with α = min{1, ν1, ν2} and p = max{2, ν1, ν2}.
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Remark 4.5. We remark that an immediate consequence of (F1) is that

|f(x, u)| � c9(1 + |u|p−1) (4.22)

for almost all x ∈ Γ1 and all u ∈ R, for some constant c9 > 0.

We can now state the following result.

Theorem 4.6. Suppose that (Q1), (Q3) and (F1) hold, together with (1.5) when
n � 3. Then, given any initial datum u0 ∈ H1

Γ0
(Ω), there is T > 0 and a weak

solution u of (1.1) on (0, T ) × Ω. Moreover, equations (1.18) and (1.19) hold,
together with the energy identity

1
2‖∇u‖2

2|ts +
∫ t

s

‖ut‖2
2 +

∫ t

s

∫
Γ1

Q(·, ·, ut)ut =
∫ t

s

∫
Γ1

f(·, u)ut (4.23)

for 0 � s � t � T . Moreover,

T = T (‖u0‖H1
Γ0

(Ω), m, p, Ω, Γ1, Θ, c7, c9)

is decreasing in the first variable and increasing in c7.

Sketch of the proof. We repeat the proof of theorem 1.1, where v = Φ(u) is now the
unique solution of

vt − ∆v = 0 in (0, T ) × Ω,

v = 0 on [0, T ) × Γ0,

∂v

∂ν
= −Q(t, x, vt) + f(x, u) on [0, T ) × Γ1,

v(0, x) = u0(x) in Ω

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.24)

given by theorem 4.3. We proceed exactly as in the proof of theorem 1.1, with the
estimate (3.3) in step 1 being replaced by

1
2‖∇v(t)‖2

2 +
∫ t

0
‖ut‖2

2 + c7

∫ t

0
‖vt‖m

m,Γ1

� 1
2‖∇u0‖2

2 + c9

∫ T

0

∫
Γ1

(1 + |u|p−1)|vt|

� 1
2‖∇u0‖2

2 + 2m′−1c9

∫ T

0

(∫
Γ1

1 + |u|(p−1)m′
)1/m′

‖vt‖m,Γ1 (4.25)

and the estimate (3.4) by

1
2‖∇v(t)‖2

2 +
∫ t

0
‖ut‖2

2 + c7

∫ t

0
‖vt‖m

m,Γ1

� 1
2‖∇u0‖2

2 + k1(1 + Rp−1)T 1/m′‖vt‖Lm((0,T )×Γ1), (4.26)

where
k1 = k1(p, m, Γ1, Ω, c5, c7, c9) > 0.
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Taking R � 1, we can estimate 1+Rp−1 � 2Rp−1 and then complete the first step as
in the proof of theorem 1.1, where now T = T (R2

0, m, p, Ω, Γ1, Θ, c7, c9) � Θ. In this
procedure, in particular, equation (3.6) is still obtained, where k4 also depends on
c5, c7 and c9. The form of (4.11) immediately yields that T can be taken increasing
in c7.

Repeating step 2, the energy identity (3.17) becomes

1
2‖∇w‖2

2 +
∫ t

0
‖ut‖2

2 +
∫ t

0

∫
Γ1

[Q(·, ·, vt) − Q(·, ·, v̄t)]wt =
∫ t

0

∫
Γ1

[f(·, u) − f(·, ū)]wt

for 0 � t � T . Estimating from above the right-hand side and from below the third
term in the left-hand side of the last formula, exactly as in [27, proof of theorem 6],
we get

‖vt − v̄t‖2
L2((0,T )×Ω) � K(‖u − ū‖L∞(0,T ;Lr0 (Γ1)) + ‖u − ū‖q−1

L∞(0,T ;Lr0 (Γ1))
)

‖∇v − ∇v̄‖2
L∞(0,T ;L2(Ω)) � K(‖u − ū‖L∞(0,T ;Lr0 (Γ1)) + ‖u − ū‖q−1

L∞(0,T ;Lr0 (Γ1))
)

and

‖vt − v̄t‖m
Lm((0,T )×Γ1) � K(‖u − ū‖L∞(0,T ;Lr0 (Γ1)) + ‖u − ū‖q−1

L∞(0,T ;Lr0 (Γ1))
)

when m � 2, while

‖|vt|m−2vt − |v̄t|m−2v̄t‖m′

Lm′ ((0,T )×Γ1)

� K(‖u − ū‖L∞(0,T ;Lr0 (Γ1)) + ‖u − ū‖q−1
L∞(0,T ;Lr0 (Γ1))

) (4.27)

when 1 < m < 2, where K = K(p, m, Γ1, Ω, T, R, c5, c7, c9) > 0. Starting from these
estimates, which generalize (3.18)–(3.21), the proof can be completed exactly as for
theorem 1.1.

4.3. Global existence for arbitrary initial data

Theorem 1.2 is generalized as follows.

Theorem 4.7. Suppose that (Q1) and (Q3) hold for all Θ > 0 and that f satis-
fies (F1). Furthermore, suppose that the following assumption holds.

(F2) There exist c10 > 0 and κ � 0 such that

F (x, u) � c10|u|p − κ

for almost all x ∈ Γ1 and all u ∈ R, where

F (x, u) =
∫ u

0
f(x, η) dη. (4.28)

Finally, suppose that
2 � p � m and p < r.

Then any solution given by theorem 4.6 can be extended to the whole of (0,∞)×Ω.
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Remark 4.8. It is worth noting that f0 defined in (4.18) satisfies (F1) and (F2),
provided that γ, δ ∈ L∞(Γ1) and infΓ1δ > 0. The same assumption are verified by
any f = f(u), derivable for large u, such that

f ∈ C0,α
loc (R), f(0) = 0, f ′(u) ∼ c̃|u|p−2 as |u| → ∞, (4.29)

with c̃ > 0, as, for example, the function f1 defined in (4.21).

Sketch of the proof of theorem 4.7. At first, we apply the standard continuation
procedure of ordinary differential equations to conclude that either the solution
u is global or there is Tmax < ∞ such that (3.23) holds. Let Tmax be the right
endpoint of the maximal interval of existence. Suppose, by contradiction, that

Tmax < ∞ and lim
t→T −

max

‖u(t)‖H1
Γ0

(Ω) < ∞.

Then there is a sequence Tn → T−
max with ‖u(Tn)‖H1

Γ0
(Ω) bounded. For all n ∈ N,

the time-translated damping term Q(t − Tn, ·, ·) satisfies (Q1) and (Q3), with c1,
c3 (and then c7) independent on n (it is enough to take ci = ci(Tmax)). Hence
theorem 4.6 can be applied to the Cauchy problem with initial time Tn, and the
length T ′

n of the maximal interval of existence [Tn, Tn + T ′
n) is independent on n.

This leads to a contradiction, since, in this way, we can continue the solution to the
right of Tmax.

To prove that (3.23) cannot occur, we generalize the arguments given in the proof
of theorem 1.2. The energy identity can now be written as

1
2‖∇u‖2

2 −
∫

Γ1

F (·, u)|ts +
∫ t

s

‖ut‖2
2 +

∫ t

s

∫
Γ1

Q(·, ·, ut)ut = 0 (4.30)

for 0 � s � t < Tmax. We now introduce the modified auxiliary functional

H(t) = 1
2‖∇u‖2

2 +
∫

Γ1

F (·, u) + κσ(Γ1). (4.31)

Clearly,

H′(t) = −‖ut‖2
2 −

∫
Γ1

Q(·, ·, ut)ut + 2
∫

Γ1

f(·, u)ut

� −
∫

Γ1

Q(·, ·, ut)ut + 2
∫

Γ1

f(·, u)ut.

Then, arguing as in the proof of [27, theorem 7], we prove that H ∈ L∞(0, Tmax).
The proof can be completed as for theorem 1.2.

4.4. Global existence in the potential well

It would be possible to generalize theorem 1.3 to problem (1.1) using theorem 4.6
together with a straightforward generalization of the arguments used in the proof
of theorem 1.3. This approach would have the disadvantage that the nonlinearities
f and Q have to verify assumptions (Q1), (Q3) and (F1) (together with assump-
tion (F3) given later). The proof of this fact is left to the interested reader, since
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we are giving in the sequel a more general result, using a more direct approach
inspired by [18] (see also remark 3.5).

In order to generalize the potential well arguments, we need Q to verify (Q1),
(Q2) and f to verify (4.22), together with the following assumption on its primitive
F (see (4.28)).

(F3) There exists c11 > 0 such that

F (x, u) � c11

p
|u|p

for almost all x ∈ Γ1 and all u ∈ R.

All examples of damping terms Q given in remark 4.1 clearly satisfy (Q1), (Q2)
for all Θ > 0. Moreover, a further example is given by any Q = Q(v) such that

Q ∈ C(R), Q(0) = 0, lim inf
v→0

|Q(v)|
|v|m−1 > 0, (4.32)

lim sup
|v|→∞

|Q(v)|
|v|m−1 < ∞, lim inf

|v|→∞

|Q(v)|
|v|m−1 > 0 (4.33)

and

Q is increasing. (4.34)

Examples of functions Q satisfying (4.32)–(4.34) but not (4.3)–(4.5) are given by

Q3(v) = |v + sin v|m−2(v + sin v), m > 1

and

Q4(v) =

⎧⎪⎨
⎪⎩

|v|µ−2v for |v| � 1,

sgn v for 1 � |v| � 1,

(|v| − 1)µ−2(|v| − 1) sgn v for |v| � 2,

1 < µ < m.

Examples of nonlinearities f satisfying (F3) and (4.22) are given by f0 defined
in (4.18), provided that γ, δ ∈ L∞(Γ1) and γ � 0 almost everywhere on Γ1. In par-
ticular, when γ = −1 and δ = 1, we can consider f2(u) = |u|p−2−|u|q−2u, 1 < q < p.
A further example is given by any f = f(u), f ∈ C(R), |f(u)| = O(|u|p−1) as
|u| → ∞ and f(u)u � const.|u|p for small u. In particular, f3(u) = sin(e|u|)|u|p−2u,
p � 2, satisfies (F3) and (4.22), but not (F1), as can be easily seen. Examples Q3,
Q4 and f3 motivate the different approaches we are using to handle with (1.1).

To extend theorem 1.3, we first need to suitably modify the definition of the
stable set W given in (1.13). We shall use the characterization of W given in § 3.
With this aim, we note that, by (3.31) and (F3), when σ(Γ0) > 0,

K∞ := sup
u∈H1

Γ0
(Ω),u �=0

∫
Γ1

F (·, u)

‖∇u‖p
2

� c11

p
Bp

∞. (4.35)

We set

λ∞ = (pK∞)−1/(p−2), E∞ =
(

1
2

− 1
p

)
λ2

∞
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if K1 > 0 and λ∞ = E∞ = +∞ if K1 � 0. We define

W = {u0 ∈ H1
Γ0

(Ω) : ‖∇u0‖2 < λ∞ and J(u0) < E∞}.

Remark 4.9. Clearly, when f(x, u) = |u|p−2u, the above definitions of λ∞, E∞ and
W are in agreement with those given in § 3. Moreover, when f(x, u) = σ̃(x)|u|p−2u,
σ̃ ∈ L∞(Γ1), σ̃ � 0, it can be shown as in [26] that E∞ is the Mountain-Pass level
associated to the elliptic problem

∆u = 0 in Ω,

u = 0 on Γ0,

∂u

∂ν
= σ̃|u|p−2u on Γ1.

This would not be true if we had kept the definition of E∞ given in § 3, which is
not optimal in this more general case. The last example is f ≡ 0, so that λ∞ =
E∞ = +∞ and W = H1

Γ0
(Ω), as expected, since, in this case, there are no source

terms in the equation.

We can now state the following result.

Theorem 4.10. Let (Q1) and (Q2) hold for any Θ > 0 and let (F3), (4.22) hold.
Suppose that m > 1,

2 � p < r and m >
r

r + 1 − p

and that σ(Γ0) > 0. Then, given any initial datum u0 ∈ W , there is a global weak
solution of (1.1) on (0,∞) × Ω. Moreover, u(t) ∈ W for all t � 0,

u ∈ C([0,∞); H1
Γ0

(Ω)), ut ∈ L2((0,∞) × Ω), ut ∈ Lm
loc([0,∞) × Γ1)

and the energy identity (4.23) holds. Finally, if c1 and c3 can be taken independent
on Θ, then ut ∈ Lm((0,∞) × Γ1), and if c2 and c4 can also be taken independent
on Θ, then Q(·, ·, ut) ∈ Lm′

((0,∞) × Γ1).

Remark 4.11. Of course, the constants ci, i = 1, . . . , 4, are independent on Θ
when Q is time independent. Concerning the only time-dependent example we
gave in this section, i.e. Q2 (see (4.9)), clearly c1 and c3 are independent on Θ
if and only if limt→∞ β(t) > 0, while c2 and c4 are independent on Θ if and only if
limt→∞ β(t) < ∞.

Sketch of the proof of theorem 4.10. Let X and (wk)k and u0k be as in the proof
of theorem 1.5. We apply the Faedo–Galerkin procedure, so, with fixed k ∈ N, we
consider the problem

(uk
t , wj) + (∇uk,∇wj) +

∫
Γ1

Q(·, ·, uk
t )wj =

∫
Γ1

f(·, uk)wj ,

j = 1, . . . , k,

uk(0) = u0k.

⎫⎪⎪⎬
⎪⎪⎭ (4.36)
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To conclude that (4.36) has a local solution

uk(t) =
k∑

j=1

yj
k(t)wj

for some yk
j ∈ W 1,1(0, tk), j = 1, . . . , k, and tk > 0, we use the arguments of

theorem 1.5. In this process, equations (2.13), (2.14) and (2.15) are replaced by

Gk(y′
k(t)) + Akyk(t) = Fk(yk(t)),

yk(0) = y0k,

}
(4.37)

y′
k(t) = G−1

k (F(yk(t)) − Akyk(t)),
yk(0) = y0k

}
(4.38)

and
|G−1

k (Fk(yk) − Akyk)| � |Fk(yk)| + ‖Ak‖|yk|, (4.39)

respectively, where Gk is defined in (4.15) and

Fk(y) =
∫

Γ1

f(·, Bk(x) · y)Bk(x) dx, y ∈ R
k,

is continuous in R
k (use (4.22) and the fact that wj ∈ Lp(Γ1), j = 1, . . . , k).

The corresponding energy function and the energy identity associated to (4.36)
are

Ek(t) = 1
2‖∇uk(t)‖2

2 −
∫

Γ1

F (·, uk(t)) (4.40)

and

Ek(t) − Ek(s) = −
∫ t

s

‖uk
t ‖2

2 −
∫ t

s

∫
Γ1

Q(·, ·, uk
t )uk

t � 0, (4.41)

respectively, for 0 � s � t < tk. We note that, by integrating (4.22), we easily see
that

|F (x, u)| � c12(1 + |u|p) (4.42)

for almost all x ∈ Γ1, all u ∈ R and c12 = c12(p, c9) > 0.
Arguing exactly as in [27, proof of theorem 8], we then prove the following esti-

mates,
‖∇uk‖2 � C0,

‖uk
t ‖L2((0,tk)×Ω) � C0,

‖uk
t ‖Lm((0,tk)×Γ1) � C0,

‖Q(·, ·, uk
t )‖Lm′ ((0,tk)×Γ1) � C0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.43)

for some C0 = C0(u0, m, p, Γ1, c6(T ), c7(T ), c12) > 0 and for k � k̄, with k̄ suffi-
ciently large (here, c6 and c7 are the constant appearing in (4.10) and (4.11) for
Θ = T ).
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Starting from estimates (4.43), and using lemma 3.2 with p0 = p, a standard
argument yields that tk = T , k � k̄ and that, up to a subsequence,

uk → u weakly∗ in L∞(0, T ; H1
Γ0

(Ω)) and strongly in C([0, T ];Lp(Γ1)),

uk
t → ut weakly in L2((0, T ) × Ω) and in Lm((0, T ) × Γ1),

Q(·, ·, uk
t ) → χ weakly in Lm′

((0, T ) × Γ1).

Arguing as in the proof of theorem 1.5, we use lemma 2.2 to obtain the energy
identity (which is possible since (1.5) and (4.22) yield f(·, u) ∈ Lm′

((0, T ) × Γ1))
and (Q2) to prove that χ = Q(·, ·, ut). This yields the existence of a solution
on (0, T ) × Ω for all T > 0. Since the same argument can be applied for the
Cauchy problem with any initial time, the solution can be extended to the whole
of (0,∞) × Ω.

Finally, by the energy identity and (F3), we obtain, for all t > 0, that∫ t

0
‖ut‖2

2 +
∫ t

0

∫
Γ1

Q(·, ·, ut)ut � 1
2‖∇u0‖2

2 +
∫

Γ1

F (·, u) −
∫

Γ1

F (·, u0)

� 1
2‖∇u0‖2

2 −
∫

Γ1

F (·, u0) +
c11

p
‖u‖p

p,Γ1
,

and then, arguing as in the proof of theorem 1.3, we prove that ‖u‖p,Γ1 ∈ L∞(0,∞),
so that we have ut ∈ L2((0,∞)×Ω) and Q(·, ·, ut)ut ∈ L1((0,∞)×Γ1). When c1, c3
(and then c7) can be taken independent on Θ, we then have ut ∈ Lm((0,∞) × Γ1),
and if c2, c4 (and then c6) can also be taken independent on Θ, we also obtain that
Q(·, ·, ut) ∈ Lm′

((0,∞) × Γ1), completing the proof.
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Appendix A. Proof of lemma 2.2

Denote

H = L2(Ω), V = H1
Γ0

(Ω), W = Lm(Γ1), X = {u ∈ V : u|Γ1 ∈ W}.

Since V is dense in H, using [25, theorem 2.1] and (2.5), (2.6), we obtain that

u ∈ Cw([0, T ];V ). (A 1)

The key point is to show that (2.9) holds. With this aim and fixed 0 � s � t � T ,
we set θ0 to be the characteristic function of the interval [s, t]. For small δ > 0,
let θ(τ) = θδ(τ) be 1 for τ ∈ [s + δ, t − δ], zero for τ �∈ (s, t) and linear in the
intervals [s, s + δ] and [t − s, t]. Next let ηε be a standard mollifying sequence, that
is, η = ηε ∈ C∞(R), supp ηε ⊂ (−ε, ε),

∫ +∞
−∞ ηε = 1, ηε even and non-negative, and

ηε = ε−1η1(τ/ε). Let ∗ denote time convolution.

https://doi.org/10.1017/S0308210500003838 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003838


Global existence for the heat equation 203

We approximate u, extended as zero outside [0, T ], with v = η∗(θu) ∈ C∞
c (R; V ).

Then

0 =
∫ +∞

−∞

d
dt

‖∇v‖2
2 =

∫ +∞

−∞
(∇v,∇vt). (A 2)

Using standard convolution properties and the Leibnitz rule, we see that

vt = η ∗ (θ′u) + η ∗ (θut) in H,

so that η ∗ (θut) ∈ C∞
c (R; V ). Then, by (A 2),

0 =
∫ +∞

−∞
(η ∗ (θ∇u), η ∗ (θ′∇u)) +

∫ +∞

−∞
(η ∗ (θ∇u),∇(η ∗ (θut))). (A 3)

Using (2.6) we can take φ = η∗η∗(θut) in (2.7). Then, multiplying by θ, integrating
from −∞ to ∞ and using standard properties of convolution, we can evaluate the
second term in (A 3) in the following way:∫ +∞

−∞
(η∗(θ∇u),∇(η∗(θut))) =

∫ +∞

−∞

∫
Γ1

η∗(θζ)η∗(θut)−
∫ +∞

−∞
‖η∗(θut)‖2

2. (A 4)

Combining (A 3) and (A 4), and recalling that θ = θδ, we obtain the first approxi-
mate energy identity,

0 =
∫ +∞

−∞
(η ∗ (θδ∇u), η ∗ (θ′

δ∇u))

−
∫ +∞

−∞
‖η ∗ (θδut)‖2

2 +
∫ +∞

−∞

∫
Γ1

η ∗ (θδζ)η ∗ (θδut)

:= I1 + I2 + I3. (A 5)

Now we examine each term in (A 5) separately as δ → 0 and ε (i.e. η) is fixed. Since
θδ → θ0 a.e., we have

‖η ∗ (θδζ)‖m′,Γ1 � ‖ζ‖m′,Γ1 ,

‖η ∗ (θδut)‖m,Γ1 � ‖ut‖m,Γ1

and

‖η ∗ (θδut)‖2 � ‖ut‖2.

Using (2.3), (2.6) and Lebesgue’s dominated converge theorem together with the
last estimates, we have

I2 →
∫ +∞

−∞
‖η ∗ (θ0ut)‖2

2 (A 6)

and

I3 →
∫ +∞

−∞

∫
Γ1

η ∗ (θ0ζ)η ∗ (θ0ut). (A 7)
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Next we decompose the term I1 as

I1 =
∫ +∞

−∞
(η ∗ (θ0∇u), η ∗ (θ′

δ∇u)) +
∫ +∞

−∞
(η ∗ [(θδ − θ0)∇u], η ∗ (θ′

δ∇u)) (A 8)

:= I4 + I5.

Since θδ → θ0 in L1(R), by (2.5), we have that η ∗ [(θδ − θ0)∇u] → 0 strongly in
L∞(0, T ; H). Moreover, by (2.5),

‖η ∗ (θ′
δ∇u)‖L1(0,T ;H) � ‖θ′

δ‖L1(R)‖η‖L∞(R)‖∇u‖L∞(0,T ;H)

� 2‖η‖L∞(R)‖∇u‖L∞(0,T ;H),

so that
I5 → 0 as δ → 0. (A 9)

Next we note that, by the properties of convolution and the specific form of θδ,

I4 =
∫ +∞

−∞
θ′

δ(η ∗ η ∗ (θ0∇u),∇u)

=
1
δ

∫ s+δ

s

(η ∗ η ∗ (θ0∇u),∇u) − 1
δ

∫ t

t−δ

(η ∗ η ∗ (θ0∇u),∇u).

By (A 1), the function (η ∗ η ∗ (θ0∇u),∇u) is continuous, so

I4 → (η ∗ η ∗ (θ0∇u)(s),∇u(s)) − (η ∗ η ∗ (θ0∇u)(t),∇u(t)) (A 10)

as δ → 0.
Combining the convergences (A 7)–(A 10), recalling that η = ηε and letting

ρε = ηε ∗ ηε, we obtain the second approximate energy identity

(ρε ∗ (θ0∇u),∇u) =
∫ +∞

−∞

∫
Γ1

ηε ∗ (θ0ζ)ηε ∗ (θ0ut) −
∫ +∞

−∞
‖ηε ∗ (θ0ut)‖2

2. (A 11)

Now we consider the convergence of the two sides of (A 11) as ε → 0. By standard
arguments, using (2.6), ρε ∗ (θ0ut) → θ0ut strongly in Lm((0, T ) × Γ1) and in
L2((0, T ) × Ω), so that, using (2.3), the right-hand side of (A 11) tends to∫ +∞

−∞

∫
Γ1

θ2
0ζut −

∫ +∞

−∞
‖θ0ut‖2

2 =
∫ t

s

∫
Γ1

ζut −
∫ +∞

−∞
‖ut‖2

2.

For the left-hand side of (A 11), we note that supp ρε ⊂ (−2ε, 2ε), 0 � ρε = O(ε−1)
and ∫ +∞

0
ρε =

∫ 0

−∞
ρε = 1

2

∫ +∞

−∞
ρε = 1

2 .

Therefore, for sufficiently small ε,

(ρε ∗ (θ0∇u)(t),∇u(t)) − 1
2‖∇u(t)‖2

2 =
∫ +∞

0
ρε(τ)(∇u(t − τ) − ∇u(t),∇u(t)) dτ.
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Since, by (A 1), τ �→ (∇u(t− τ)−∇u(t),∇u(t)) is continuous and is zero for τ = 0,
we conclude that, as ε → 0,

(ρε ∗ (θ0∇u)(t),∇u(t)) → 1
2‖∇u(t)‖2

2.

The same result, of course, continues to hold when t is replaced by s. Then we can
pass to the limit in (A 11) and conclude the proof of (2.9).

To show that (2.8) holds, we note that, by (2.9), it follows that t �→ ‖∇u(t)‖2
2 is

continuous. Then, by (2.5) and (2.6), t �→ ‖u(t)‖2
V is also continuous. Now fix t in

[0, T ] and let tk → t. Using (A 1), we have

‖u(tk) − u(t)‖2
V = ‖u(tk)‖2

V + ‖u(t)‖2
V − 2〈u(tk), u(t)〉V → 0

as k → ∞, concluding the proof.

Appendix B. Proof of lemma 3.3

An easy calculation shows that, for any u ∈ H1
Γ0

(Ω) such that u|Γ1 �≡ 0, we have

sup
λ>0

J(λu) = J(λ(u)u) =
(

1
2

− 1
p

)(
‖∇u‖2

‖u‖p,Γ1

)2p/(p−2)

,

where

λ(u) =
‖∇u‖2/(p−2)

2

‖u‖p/(p−2)
p,Γ1

.

Then, by (3.31), it is easy to see that

d =
(

1
2

− 1
p

)
B−2p/(p−2)

∞ ,

so that d = E∞.
To show that W = W1, we first prove that W ⊂ W1. Let u0 ∈ W . Hence

K(u0) � 0, and so ‖u0‖p
p,Γ1

� ‖∇u0‖2
2 by (1.10). Moreover, J(u0) < d = E∞. Then

E∞ >

(
1
2

− 1
p

)
‖∇u0‖2

2.

Now, if ‖∇u0‖2 � λ∞, it follows that

E∞ >

(
1
2

− 1
p

)
λ2

∞ = E∞,

a contradiction. In conclusion, W ⊂ W1.
To prove that W1 ⊂ W , let u0 ∈ W1 and suppose, by contradiction, that

K(u0) < 0. Then, using (3.31),

‖∇u0‖2
2 < ‖u0‖p

p,Γ1
� Bp

∞‖∇u0‖p
2,

and hence ‖∇u0‖2 > B
−p/(p−2)
∞ = λ∞, a contradiction.
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Appendix C. A physical model

This section is devoted to giving a physical model for problem (1.1). Let Ω represent
a solid body placed in a fluid denoted by Ωc. We suppose that a classical heat
diffusion process occurs inside Ω, so if u = u(t, x) represents the temperature at
point x and time t, the process can be modelled by the classical heat equation

utt − ρ∆u = 0 in (0, T ) × Ω, (C 1)

where the thermal conductivity ρ > 0 is taken to be 1 for simplicity. The surround-
ing fluid is supposed to be a perfect conductor of heat, so the temperature in Ωc is
spatially homogeneous and can be described by a number v = v(t) for any t � 0.
In particular, there is no diffusion in the fluid. Such an assumption is realistic if
the fluid is well stirred. Moreover, we suppose that a reaction process occurs in the
fluid such that the quantity of heat produced by the reaction is proportional to a
superlinear power of the temperature, i.e. to vp−1 with p > 2. Let j = j(t, x) be the
heat flux from Ω to Ωc. Then the rate of change of the temperature v′(t) is given
by

v′(t) = |v|p−2(t)v(t) +
∫

∂Ω

j(t, x) dS. (C 2)

On the other hand, the heat flux j(t, x) is given by the classical conductivity rule
by

j(t, x) = −∂u

∂ν
, (C 3)

since ρ = 1. Finally, the thermal contact of the fluid at ∂Ω yields the continuity
condition

u(t, x) = v(t), x ∈ ∂Ω, t � 0. (C 4)

Combining (C 1)–(C 4), we obtain (1.1) with Γ0 = ∅, f = |u|p−2u and Q = ut. Now,
since it is well known that solutions of this problem with sufficiently large initial
datum blow-up in finite time, it is reasonable to try to introduce some control on
the combustion process in order to slow down the reaction. This can be done by
refrigerating the fluid Ωc. If the refrigerating system is controlled in such a way that
the heat absorbed from the fluid is proportional to a power of the rate of change
of the temperature, as |v′(t)|m−2v′(t), then the balance equation (C 2) has to be
modified to

v′(t) = |v|p−2(t)v(t) − |v′(t)|m−2v′(t) +
∫

∂Ω

j(t, x) dS. (C 5)

Combining (C 1), (C 3), (C 4) and (C 5), we obtain (1.1) with Γ0 = ∅, f = |u|p−2u
and Q = ut + |ut|m−2ut. These nonlinear terms are included in the theory devel-
oped in § 4. In particular, theorem 1.2 shows that this type of refrigeration avoids
explosions.
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