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This paper evaluates vulnerable American put options under jump–diffusion assumptions
on the underlying asset and the assets of the counterparty. Sudden shocks on the asset
prices are described as a compound Poisson process. Analytical pricing formulae of vul-
nerable European put options and vulnerable twice-exercisable European put options are
derived. Employing the two-point Geske and Johnson method, we derive an approxi-
mate analytical pricing formula of vulnerable American put options under jump–diffusions.
Numerical simulations are performed for investigating the impacts of jumps and default
risk on option prices.
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1. INTRODUCTION

Over-the-counter markets have grown rapidly in recent years. Default risk in over-the-
counter transactions has attracted special attentions since the global financial crisis in 2007,
as evidenced by the collapse of Lehman Brothers. This paper focuses on the valuation of
vulnerable American put options, which are a major type of financial derivatives traded in
the over-the-counter markets.
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As shown by Merton [19], it is difficult to price American put options analytically
because American-style options can be exercised at any time before maturity with a positive
probability. To price finite-lived American-style options, a variety of numerical methods have
been developed. However, numerical methods are too time-consuming and lack of intuitive
meaning which an explicit formula could provide. Geske and Johnson [8] argue that arbitrary
accuracy can be achieved by considering put options that can only be exercised at a few
discrete dates. Employing the three-point Richardson extrapolation method, they derive
an approximate analytical formula of an American put. Bunch and Johnson [2] modify the
Geske–Johnson formula and provide a two-point Richardson method for valuing American
puts analytically. The Geske–Johnson technique is also expanded to stochastic interest rate
economy for American option pricing (Ho, Stapleton, and Subrahmanyam [9]; Chung [4]).
All these studies acquiesce in the case of exchange-listed option markets, where counterparty
risk is not factored.

The option exposed to credit risk, termed as a ‘vulnerable option’, is first considered by
Johnson and Stulz [12]. They assume that the option is the sole liability of the counterparty.
Default happens if the value of the option is greater than the assets of the counterparty.
Since their pioneer work, there has been a series of literature on vulnerable option pricing.
Klein [13] allows the option writer to have other equally ranking liabilities besides the option
itself. The correlation between the underlying asset and the assets of the counterparty is
also considered. Taking stochastic interest rate into consideration, Klein and Inglis [14]
employ partial differential equation approaches to derive a closed-form pricing formula of
a vulnerable option. Klein and Inglis [15] incorporate the potential liability of the written
option into the default barrier. Hui, Lo, and Lee [10] price vulnerable options with a dynamic
default barrier. Hung and Liu [11] price vulnerable options under both deterministic and
stochastic interest rates in an incomplete market. Tian et al. [21] obtain a closed-from pricing
formula of vulnerable European options when the dynamics of asset prices follow jump–
diffusion processes. Recently, several papers investigate vulnerable options under stochastic
volatility models (see, e.g., Yang et al. [23]; Lee, Yang, and Kim [17]; Wang [22]). Extending
the previous works on vulnerable European options to American type, Chang and Hung [3]
provide analytical formulae of vulnerable American call and put options based on the two-
point Geske and Johnson method. Klein and Yang [16] further investigate the properties of
vulnerable American options.

In the studies of vulnerable American options mentioned above, the underlying asset
and the assets of the counterparty are assumed to follow geometric Brownian motions.
As pointed out in Merton [20], continuous assumptions on the dynamics of assets ignore
sudden shocks to asset returns due to the arrival of important information. Financial crisis
and significant business always result in sudden changes in firm values, which cannot be
captured by continuous sample paths. Many empirical findings also show that jump is
identifiable in stock data (Eraker [6]). Compared with the existing literature, this paper has
two main contributions. First, we incorporate jumps into both the underlying asset and the
assets of the counterparty. Discontinuous changes in the dynamics of the assets are described
by compound Poisson processes. Besides retaining the advantages of the frameworks of Klein
[13] and Chang and Hung [3], the proposed model can capture rare shocks and explain how
jumps on the underlying asset and the assets of the counterparty impact option prices,
respectively. Second, we extend two-point Geske–Johnson methods to the jump case, and
then provide an approximate analytical pricing formula of vulnerable American put options.
In addition, analytical pricing formulae of vulnerable European puts and vulnerable twice-
exercisable European puts are also derived.

The remainder of the paper is structured as follows. In Section 2, a jump–diffusion
model is proposed for the valuation of vulnerable American put options. In Section 3, we
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derive an approximate analytical formula of vulnerable American put options. Numerical
simulations are presented in Section 4. The concluding remarks are given in Section 5.

2. THE MODEL

In this section, we describe the framework for valuing vulnerable American put options. The
dynamics of the underlying asset and the assets of the counterparty are modeled directly
under the risk-neutral measure Q. We assume that the default-free term structure is flat
with an instantaneous riskless rate r and that the dynamics of the underlying asset S is
governed by a jump–diffusion process under Q,

dSt

St−
= (r − kSλS)dt + σSdW

(1)
t + (eZ

(1)
t− − 1)dN

(1)
t , (2.1)

where σS is the volatility of the underlying asset and W
(1)
t is a standard Brownian motion

on a complete probability space (Ω,F , Q). Sudden changes in the underlying asset prices
are captured by a compound Poisson process with intensity λS . In addition, if one shock
happens at time t, the jump amplitude is controlled by Z

(1)
t . For any time t �= s, we assume

that Z
(1)
t and Z

(1)
s are independently and identically distributed. Specially, as in Merton

[20], the size of a jump is assumed to be drawn from a lognormal distribution, and in this
situation, Z

(1)
t is normally distributed with mean μ1 and standard deviation σ1 > 0. In

this case, the mean percentage jump of the price kS is equal to eμ1+
1
2 σ2

1 − 1. Moreover,
the situation where the underlying asset price evolves continuously is modeled by setting
λS = 0.

Now we consider counterparty risk with the structural approach as in Klein [13]. A
credit loss occurs if the market value of the assets of the counterparty, VT , is less than some
amount D∗. This default barrier is not set to the value of the option but corresponds to the
amount of claims D outstanding at exercise time T . Once default happens at exercise time
T , the notional claim on the option will be recovered at a ratio of (1−α)VT

D . Here α represents
the deadweight costs due to the bankruptcy or reorganization, and the notional claim is the
option value without default. In a nutshell, the outstanding claims are exogenous and all of
the claims are equally ranking. Taking jump risk into consideration, we also assume that V
is driven by the following jump–diffusion process:

dVt

Vt−
= (r − kV λV )dt + σV dW

(2)
t + (eZ

(2)
t− − 1)dN

(2)
t , (2.2)

where σV is the volatility of the assets of the counterparty and W
(2)
t is a standard Brownian

motion on (Ω,F , Q). Similarly, jumps are modeled by the last term with dN
(2)
t , which is

a Poisson process with intensity λV . If the jump occurs at time t, the jump amplitude is
controlled by Z

(2)
t . We assume that for t �= s, Z

(2)
t and Z

(2)
s are independent and normally

distributed with mean μ2 and standard deviation σ2 > 0. Given the jump arrival, the mean
percentage jump is kV = E[eZ

(2)
t ] − 1 = eμ2+

1
2 σ2

2 − 1.
To describe the correlation between the assets of the counterparty and the underlying

asset, W
(1)
t and W

(2)
t have a correlation coefficient ρ as in Klein [13]. For the discontinuous

part, we assume that rare shocks on the underlying asset and the assets of the counterparty
are not relevant to each other. Hence (W (1)

t ,W
(2)
t ), Z

(1)
t , N

(1)
t , Z

(2)
t and N

(2)
t are mutually

independent.
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Figure 1. Method comparison.

At any instant, American put options might be exercised, which is the difficulty in deriv-
ing an explicit formula. Many numerical methods have been developed, however, they are
time-consuming and lack of intuition which the comparative statics of an explicit expression
can provide. Geske and Johnson [8] adopt a three-point Richardson extrapolation method
to price American put options and get an analytical form.

Figure 1 summarizes the techniques adopted in the literature. Brennan and Schwartz
[1] develop numerical solutions for the value of an American put option. Being exercisable
at any time before maturity, an American option is just equivalent to an infinite sequence
of compound European options. Compound options (options on options) are first formu-
lated by Geske [7]. Then an analytical formula for American puts is given in Geske and
Johnson [8]. Bunch and Johnson [2] propose a two-point Richardson method, which is more
numerically accurate than Geske and Johnson [8]. Chang and Hung [3] adopt the method
in Bunch and Johnson [2] (i.e., two-point Geske and Johnson method) to price vulnera-
ble American options. This paper adopts two-point Geske and Johnson methods to price
vulnerable American put options under jump–diffusions. Specifically, the value of a vulnera-
ble American put can be approximated by a vulnerable European put, P (T,K, S0, V0) with
time to maturity T , initial price S0, strike price K and the initial price of the counterparty’s
assets V0, and a vulnerable twice-exercisable European put option, P ∗ (default may occur
at half maturity T

2 and maturity T ). Suggested by Bunch and Johnson [2], the value of a
vulnerable American put at time zero, denoted by V AP , is expressed as,

V AP = P ∗ + (P ∗ − P (T,K, S0, V0)). (2.3)

In the coming section, we derive the closed-form solutions for P (T,K, S0, V0) and P ∗ in the
proposed framework, and hence obtain the expression of V AP in (2.3).

3. VALUATION OF VULNERABLE AMERICAN PUT OPTIONS

The topic of this section is to give the approximate explicit pricing formula of vulnerable
American put options under jump–diffusions. As in Merton [20], we assume that Z

(i)
t , i = 1, 2

are normally distributed with mean μi, i = 1, 2 and standard deviation σi > 0, i = 1, 2. In
contrast to non-vulnerable options, the expected payoff of a vulnerable American put option
is comprised of two parts. If there is no default, it is the payoff on an American put.
Otherwise, only a proportion of the payoff on the American put can be recovered where the
proportion depends on the assets and the liabilities of the counterparty. According to (2.3),
we show the pricing formulae of twice-exercisable vulnerable European put options, and then
give the explicit formula for vulnerable American put options. As shown in Tian et al. [21],
the explicit pricing formula of P (T,K, S0, V0) is represented as [We denote the cumulative
distribution function of k-dimensional normal distribution as Nk(ξ1, ξ2, . . . , ξk,Υ), where

https://doi.org/10.1017/S0269964816000486 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000486


PRICING VULNERABLE AMERICAN PUT OPTIONS UNDER JUMP–DIFFUSION 125

ξ1, ξ2,. . . , ξk are normally distributed random variables, and Υ is the correlation coefficient
matrix.],

∞∑
n1=0

∞∑
n2=0

(λST )n1

n1!
(λV T )n2

n2!
e−λST−λV T

(
Ke−rT N2(−b1(n1, T ), b2(n2, T ),−ρ̄(n1, n2, T ))

− S0e
−kSλST+n1μ1+

1
2 n1σ2

1N2(−a1(n1, T ), a2(n2, T ),−ρ̄(n1, n2, T ))

+
1 − α

D
KV0e

−kV λV T+n2μ2+
1
2 n2σ2

2N2(−d1(n1, T ), d2(n2, T ), ρ̄(n1, n2, T ))

− 1 − α

D
S0V0e

rT−kSλST−kV λV T+n1μ1+n2μ2+
1
2 n1σ2

1+ 1
2 n2σ2

2+ρσSσV T

× N2(−c1(n1, T ), c2(n2, T ), ρ̄(n1, n2, T ))
)
, (3.1)

where the parameters are represented as follows:

a1(n1, t) =
ln S0

K + (r + 1
2σ2

S − kSλS)t + n1μ1 + n1σ
2
1√

σ2
St + n1σ2

1

,

a2(n2, t) =
ln V0

D∗ + (r − 1
2σ2

V − kV λV )t + n2μ2 + ρσSσV t√
σ2

V T + n2σ2
2

,

b1(n1, t) =
ln S0

K + (r − 1
2σ2

S − kSλS)t + n1μ1√
σ2

St + n1σ2
1

,

b2(n2, t) =
ln V0

D∗ + (r − 1
2σ2

V − kV λV )t + n2μ2√
σ2

V t + n2σ2
2

,

c1(n1, t) =
ln S0

K + (r + 1
2σ2

S − kSλS)t + n1μ1 + n1σ
2
1 + ρσSσV t√

σ2
St + n1σ2

1

,

c2(n2, t) = − ln V0
D∗ + (r + 1

2σ2
V − kV λV )t + n2μ2 + n2σ

2
2 + ρσSσV t√

σ2
V t + n2σ2

2

,

d1(n1, t) =
ln S0

K + (r − 1
2σ2

S − kSλS)t + n1μ1 + ρσSσV t√
σ2

St + n1σ2
1

,

d2(n2, t) = − ln V0
D∗ + (r + 1

2σ2
V − kV λV )t + n2μ2 + n2σ

2
2√

σ2
V t + n2σ2

2

,

ρ̄(n1, n2, t) =
σSσV t√

σ2
St + n1σ2

1

√
σ2

V t + n2σ2
2

ρ. (3.2)

Based on Cox and Ross [5], an American put can be priced as the discounted expected
value of all future cash flows. In the two-point Geske and Johnson framework, the American
put can be exercised at half maturity T

2 and maturity T . At T
2 , the put will be exercised

when the payoff at half maturity exceeds the value of the option if not exercised. The
critical stock price exercisable at T

2 is determined by the free boundary condition which the
American put satisfies,

P

(
T

2
,K, ST/2, VT/2

)
≥ max(K − ST/2, 0). (3.3)
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For vulnerable American put options, if default does not occur at half maturity, the critical
stock price S∗

T/2 is some stock price S which satisfies

K − S = P

(
T

2
,K, S, V0e

rT
2

)
.

Here we approximately use V0e
rT
2 instead of VT/2 to obtain a constant stock price S∗

T/2,
which helps us obtain an explicit formula of vulnerable two-exercisable put options. The-
oretically, we should use VT/2 instead of V0e

rT
2 in the above equation. However, VT/2 is

unknown at initial time and the critical price S∗
T/2 is pre-determined at that time. From

the viewpoint of the risk-neutral measure, we select V0e
rT
2 as the approximate value. The

value of a vulnerable twice-exercisable put option denoted by P ∗ can be represented as
follows:

P ∗ = E

[
e−rT/2(K − ST/2)1(ST/2 ≤ S∗

T/2, VT/2 ≥ D∗)
]

+ E

[
e−rT/2(K − ST/2)

(1 − α)VT/2

D
1(ST/2 ≤ K,VT/2 < D∗)

]
+ E

[
e−rT (K − ST )1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT ≥ D∗)
]

+ E

[
e−rT (K − ST )

(1 − α)VT

D
1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT < D∗)
]
.

In what follows, we divide P ∗ into two parts and show the analytical forms, respectively.
The add of the first two terms of P ∗, denoted by P1(S∗

T/2), can be seemed as the value of
a vulnerable European put option with maturity T/2 and strike price S∗

T/2 without default
and K when default occurs. Furthermore, the method used in Tian et al. [21] implies the
explicit formula of P1(S∗

T/2) as follows:

P1(S∗
T/2) =

∞∑
n1=0

∞∑
n2=0

(λST/2)n1

n1!
(λV T/2)n2

n2!
e−λST/2−λV T/2

×
(

Ke−rT/2N2

(
−b∗1

(
n1,

T

2

)
, b2

(
n2,

T

2

)
,−ρ̄

(
n1, n2,

T

2

))

− S0e
−kSλST/2+n1μ1+

1
2 n1σ2

1N2

(
−a∗

1

(
n1,

T

2

)
, a2

(
n2,

T

2

)
,−ρ̄

(
n1, n2,

T

2

))

+
1 − α

D
KV0e

−kV λV T/2+n2μ2+
1
2 n2σ2

2

× N2

(
−d1

(
n1,

T

2

)
, d2

(
n2,

T

2

)
, ρ̄

(
n1, n2,

T

2

))

− 1 − α

D
S0V0e

rT/2−kSλST/2−kV λV T/2+n1μ1+n2μ2+
1
2 n1σ2

1+ 1
2 n2σ2

2+ρσSσV T/2

× N2

(
−c1

(
n1,

T

2

)
, c2

(
n2,

T

2

)
, ρ̄

(
n1, n2,

T

2

)))
, (3.4)
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where

a∗
1

(
n1,

T

2

)
=

ln S0
S∗

T/2
+ (r + 1

2σ2
S − kSλS)T/2 + n1μ1 + n1σ

2
1√

σ2
ST/2 + n1σ2

1

,

b∗1

(
n1,

T

2

)
=

ln S0
S∗

T/2
+ (r − 1

2σ2
S − kSλS)T/2 + n1μ1√

σ2
ST/2 + n1σ2

1

, (3.5)

and other parameters are listed in (3.2).
Next we will derive the explicit expression for the last two terms of P ∗, which is denoted

by P2(S∗
T/2),

P2(S∗
T/2) = E

[
e−rT (K − ST )1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT ≥ D∗)
]

+ E

[
e−rT (K − ST )

(1 − α)VT

D
1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT < D∗)
]
.

(3.6)

Itô formula implies the following equations:

ln ST/2 = lnS0 +
(

r − 1
2
σ2

S − kSλS

)
T/2 + σSW

(1)
T/2 +

N
(1)
T/2∑

k=1

Z
(1)

τ
(1)
k

,

ln VT/2 = lnV0 +
(

r − 1
2
σ2

V − kV λV

)
T/2 + σV W

(2)
T/2 +

N
(2)
T/2∑

k=1

Z
(2)

τ
(2)
k

,

ln ST = lnS0 +
(

r − 1
2
σ2

S − kSλS

)
T + σSW

(1)
T +

N
(1)
T∑

k=1

Z
(1)

τ
(1)
k

,

ln VT = lnV0 +
(

r − 1
2
σ2

V − kV λV

)
T + σV W

(2)
T +

N
(2)
T∑

k=1

Z
(2)

τ
(2)
k

, (3.7)

where τ
(i)
k , i = 1, 2 denote the k-th jump time of N

(i)
t , i = 1, 2, respectively. Then, con-

ditional on G(m1,m2,n1,n2)
T := {N (1)

T/2 = m1, N
(2)
T/2 = m2, N

(1)
T = n1, N

(2)
T = n2}, it is clear

that (
ln

ST/2

S0
, ln

VT/2

V0
, ln

ST

S0
, ln

VT

V0

)

are normally distributed random variables in R4.
For further calculation, define

ln ST/2,m1 := lnS0 +
(

r − 1
2
σ2

S − kSλS

)
T/2 + σSW

(1)
T/2 +

m1∑
k=1

ξ
(1)
k , (3.8)

ln VT/2,m2 := lnV0 +
(

r − 1
2
σ2

V − kV λV

)
T/2 + σV W

(2)
T/2 +

m2∑
k=1

ξ
(2)
k , (3.9)
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ln ST,n1 := lnS0 +
(

r − 1
2
σ2

S − kSλS

)
T + σSW

(1)
T +

n1∑
k=1

ξ
(1)
k , (3.10)

ln VT,n2 := lnV0 +
(

r − 1
2
σ2

V − kV λV

)
T + σV W

(2)
T +

n2∑
k=1

ξ
(2)
k , (3.11)

where ξ
(i)
k , i = 1, 2 are independent normally distributed with mean μi, i = 1, 2 and stan-

dard deviation σi > 0, i = 1, 2. In fact, these notations represent the stock prices condi-
tional on the numbers of Poisson jumps. Noting that the whole probability space Ω =⋃∞

m1=0

⋃∞
m2=0

⋃∞
n1=m1

⋃∞
n2=m2

G(m1,m2,n1,n2)
T and G(k1,k2,k3,k4)

T

⋂G(j1,j2,j3,j4)
T = ∅ for any

k1 �= j1, k2 �= j2, k3 �= j3 or k4 �= j4, we can rewrite P2(S∗
T/2) as follows:

P2(S∗
T/2) = E

[
e−rT (K − ST )1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT ≥ D∗)
]

+ E

[
e−rT (K − ST )

(1 − α)VT

D
1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT < D∗)
]

= E

[
E

[
e−rT (K − ST )1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT ≥ D∗)

+ e−rT (K − ST )
(1 − α)VT

D
1(ST/2 > S∗

T/2, VT/2 ≥ D∗, ST ≤ K,VT < D∗)
∣∣∣

× N
(1)
T/2, N

(2)
T/2, N

(1)
T , N

(2)
T

]]

=
∞∑

m1=0

∞∑
m2=0

∞∑
n1=m1

∞∑
n2=m2

Q(N (1)
T/2 = m1, N

(2)
T/2 = m2, N

(1)
T = n1, N

(2)
T = n2)

× Pm1,m2,n1,n2 , (3.12)

where

Pm1,m2,n1,n2

= e−rT

{
E

[
(K − ST,n1)1(ST/2,m1 > S∗

T/2, VT/2,m2 ≥ D∗, ST,n1 ≤ K,VT,n2 ≥ D∗)
]

+ E

[
(K − ST,n1)

(1 − α)VT,n2

D

× 1(ST/2,m1 > S∗
T/2, VT/2,m2 ≥ D∗, ST,n1 ≤ K,VT,n2 < D∗)

]}
. (3.13)

Since N (1) and N (2) are independent and their increments are also independent, one gets
that

Q(N (1)
T/2 = m1, N

(2)
T/2 = m2, N

(1)
T = n1, N

(2)
T = n2)

= Q(N (1)
T/2 = m1, N

(2)
T/2 = m2, N

(1)
T − N

(1)
T/2 = n1 − m1, N

(2)
T − N

(2)
T/2 = n2 − m2)
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= Q(N (1)
T/2 = n0, N

(1)
T − N

(1)
T/2 = n1 − m1)Q(N (2)

T/2 = m2, N
(2)
T − N

(2)
T/2 = n2 − m2)

= Q(N (1)
T/2 = n0)Q(N (1)

T − N
(1)
T/2 = n1 − m1)Q(N (2)

T/2 = m2)Q(N (2)
T − N

(2)
T/2 = n2 − m2)

=
(λST/2)m1

m1!
e−λST/2 (λST/2)n1−m1

(n1 − m1)!
e−λST/2 (λV T/2)m2

m2!

× e−λV T/2 (λV T/2)n2−m2

(n2 − m2)!
e−λV T/2

=
(λST/2)n1

m1!(n1 − m1)!
(λV T/2)n2

m2!(n2 − m2)!
e−λST−λV T . (3.14)

Next we will show the explicit formula of Pm1,m2,n1,n2 so that we can get the explicit
expression of P2(S∗

T/2) and P ∗. To this end, we divide Pm1,m2,n1,n2 into four parts as follows:

Pm1,m2,n1,n2 = e−rT [A1 + A2 + A3 + A4], (3.15)

where A1, A2, A3 and A4 are given by

A1 = KE

[
1(ST/2,m1 > S∗

T/2, VT/2,m2 ≥ D∗, ST,n1 ≤ K,VT,n2 ≥ D∗)
]
, (3.16)

A2 = −E

[
ST,n11(ST/2,m1 > S∗

T/2, VT/2,m2 ≥ D∗, ST,n1 ≤ K,VT,n2 ≥ D∗)
]
, (3.17)

A3 = KE

[ (1 − α)VT,n2

D
1(ST/2,m1 > S∗

T/2, VT/2,m2 ≥ D∗, ST,n1 ≤ K,VT,n2 < D∗)
]
,

(3.18)

A4 = −E

[
ST,n1

(1 − α)VT,n2

D
1(ST/2,m1 > S∗

T/2, VT/2,m2 ≥ D∗, ST,n1 ≤ K,VT,n2 < D∗)
]
.

(3.19)

Then we can get the closed forms of A1, A2, A3 and A4, respectively. The explicit expressions
are shown in (A.1)–(A.4) and the detailed proofs are given in the Appendix. Combining with
(3.4), (3.12) and (3.15), we have obtained the explicit formula of vulnerable two-exercisable
put options. To sum up, we have got the value of vulnerable American put options shown
in (2.3),

VAP = 2P ∗ − P (T,K, S0, V0)

= 2P1(S∗
T/2) + 2P2(S∗

T/2) − P (T,K, S0, V0), (3.20)

where their respective explicit expressions are in (3.4), (3.12) and (3.1).
We can also employ the two-point Geske–Johnson method to price vulnerable American

call options. Denote C∗ as the price of a vulnerable twice-exercisable European call option
and C(T,K, S0, V0) as the price of a vulnerable European call with expiry date T . Similarly,
for vulnerable twice-exercisable European call options, the critical stock price S∗

T/2 is some

stock price S that satisfies S − K = C(T
2 ,K, S, V0e

rT
2 ). The value of a vulnerable European

call option is derived by Tian et al. [21]. The value of a vulnerable twice-exercisable call
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option C∗ is represented as

C∗ = E

[
e−rT/2(ST/2 − K)1(ST/2 ≥ S∗

T/2, VT/2 ≥ D∗)
]

+ E

[
e−rT/2(ST/2 − K)

(1 − α)VT/2

D
1(ST/2 ≥ K,VT/2 < D∗)

]
+ E

[
e−rT (ST − K)1(ST/2 < S∗

T/2, VT/2 ≥ D∗, ST ≥ K,VT ≥ D∗)
]

+ E

[
e−rT (ST − K)

(1 − α)VT

D
1(ST/2 < S∗

T/2, VT/2 ≥ D∗, ST ≥ K,VT < D∗)
]
.

Then the value of a vulnerable American call option at time zero, denoted by VAC, can be
expressed as

V AC = 2C∗ − C(T,K, S0, V0).

The calculation of VAC is similar to that of VAP, hence we choose not to show it here.

4. NUMERICAL ANALYSIS

In this section, numerical simulations are performed to illustrate the impact of the
parameters on a vulnerable American put option.

The effects of some basic variables on vulnerable option prices are illustrated in
Figures 2–5, including outstanding claims, jump intensity, mean jump size and standard
deviation of the jump size. Preference parameters listed in Table 1 represent a typical busi-
ness situation. In the base case, the vulnerable American put option is at the money, and
written by a highly leveraged firm. Time to maturity is assumed to be one year. The market
value of the option writer’s assets and the underlying asset are correlated with an instan-
taneous correlation coefficient ρ = 0.5. Shocks on stock prices happen once a year. In the
following tables and figures, we change one of the parameter values to investigate the impact
on the vulnerable option price with other variables adopted in Table 1.

Convergence analysis is reported in Table 2. We first test the convergence speed of
critical stock prices. The sum of the first 30 terms of the sequence is close enough to the

5 6 7 8 9 10
D , D*0

2

4

6

8

10

Option Price

Figure 2. Option price against default barrier. The solid and dot-dashed lines correspond
to the proposed model and the two-point Geske–Johnson model with jumps, respectively.
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Figure 3. Option price against jump intensities of the underlying asset and the assets of
the counterparty. The solid and the dashed lines correspond to λS and to λV , respectively.

–0.4 –0.2 0.0 0.2 0.4
µ

1

2

3

4

5

Option Price

Figure 4. Option price against mean jump size in the proposed model. The solid and
dashed lines correspond to μ1 and μ2, respectively.

true value. We take the sum of m1, m2 from 0 to 30 as the approximate critical stock price.
Turning to option prices, it is also accurate enough for the first 30 terms of the series. For
P1(S∗

T/2) and P (T,K, S0, V0), the sum of n1, n2 from 0 to 30 is taken. For P2, we take
the sum of m1, n1 − m1, m2, n2 − m2 from 0 to 30 in (3.20) in the following numerical
analysis. Besides, we compared our results with the prices calculated by least-square Monte
Carlo (LSMC) simulations in Longstaff and Schwartz [18]. Each vulnerable American option
price is the average of 20 LSMC simulation estimates. Each LSMC simulation is based on
20,000 (10,000 plus 10,000 antithetic) sample paths with 50 exercise points and 1,000 time
steps per year. The error in approximation is defined as the difference between a LSMC
price and our approximate analytical solution divided by the LSMC simulation price. The
mean and standard deviation of LSMC simulation prices are also reported in Table 2. The
values calculated by the derived pricing formula are a little lower than those calculated by
Longstaff and Schwartz [18].
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Figure 5. Option price against standard deviation of the jump size in the proposed model.
The solid and dashed lines correspond to σ1 and σ2, respectively.

Table 1. Parameter values in the base case.

Parameter Value Parameter Value

Volatility σS = 0.3 Volatility σV = 0.3
Initial price S0 = 10 Initial price V0 = 10
Mean jump size of S μ1 = 0 Mean jump size of V μ2 = 0
Annual jump intensity λS = 1 Annual jump intensity λV = 1
Standard deviation of the jump size σ1 = 0.1 Spot rate r = 0.02
Standard deviation of the jump size σ2 = 0.1 Correlation coefficient ρ = 0.5
Time to maturity T = 1.0 Strike price K = 10
Default barrier D∗ = 8 Outstanding claims D = 8
Deadweight cost associated with bankruptcy α = 0.5

Table 2. Convergence analysis.

m1, n1 − m1, Std. of Error in (%)
m2, n2 − m2 = 5 10 20 30 LSMC LSMC approximation

Critical price
S∗

T/2

Base 8.6193 8.6192 8.6192 8.6192

λS = 5 8.4956 8.3081 8.3077 8.3077
λV = 5 8.8544 8.7415 8.7414 8.7414

Option price Base 3.2822 3.2824 3.2824 3.2824 3.3257 0.043 1.30
λS = 5 3.4520 3.7364 3.7365 3.7365 3.8196 0.052 2.18
λV = 5 2.5405 2.7268 2.7269 2.7269 2.7783 0.048 1.85

Figure 2 presents the prices varying with outstanding claims and default barriers. Obvi-
ously, the price of two-point jump–diffusions should be constant since there is no default
risk in this model. In Figure 2, we assume that the counterparty cannot continue in oper-
ation if the assets at expiration date is less than the outstanding claims, that is, D = D∗.
When D = D∗ = 5, which is half of the assets of the counterparty, the difference between
the values of the two-point Geske–Johnson jump–diffusion model and the proposed model
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is 0.112. In this case, default seldom happens. Theoretically, when D → ∞, the prices con-
verge to zero. The counterparty shall encounter greater credit risk as the default threshold
turns higher.

Figure 3 shows the effect of jump intensities λS and λV . When λS increases from 0.5 to
5, the range of vulnerable option prices is (3.219, 3.736). In contrast, the vulnerable option
price decreases from 3.365 to 2.727 as λV increases from 0.5 to 5. A stronger jump intensity
of the underlying asset corresponds to a higher price while the price decreases with the jump
intensity of the assets of the counterparty. The difference between the prices with λS = 5
and λS = 0.5 is 0.517. By contrast, the price declines slightly fast (−0.538) as λV increases.
The jump intensity of the underlying asset has a positive impact on the expected payoff of
the option. The default probability, or discounted rate of the vulnerable option price, shall
be affected by the jump intensity of the assets of the counterparty.

Figure 4 plots option prices of the proposed model against mean jump sizes of St and
Vt. When the mean jump size of the underlying asset changes from −0.5 to 0.5, vulnerable
option prices perform a U-shaped curve. Different from other variables, monotonicity does
not exist. Option prices arrive at the minimum point when the mean jump size of the
underlying asset is −0.2. Jump risk enhances option values. Thus, the larger the absolute
value of μ1 is, the higher option prices become. By contrast, vulnerable option prices decrease
monotonically when the mean jump size of the assets of the counterparty changes from
−0.5 to 0.5. A positive jump size of the assets of the counterparty corresponds to a negative
compensation term. Therefore, option values decrease with the mean jump size of the assets
of the counterparty. Figure 5 shows option values against the standard deviation of the jump
sizes of St and Vt. When σ1 and σ2 change from 0.05 to 0.5, respectively, the ranges of option
values are (3.187, 5.424) and (3.406, 1.482).

5. CONCLUSION

We investigate the vulnerable American put option pricing where the dynamics is governed
by a jump–diffusion model. Compared with the existing models for vulnerable option pric-
ing, the main contribution is that we take jump risk into consideration. Shocks on both of
the underlying asset and the assets of the counterparty are modeled by compound Poisson
processes. Employing the two-point Geske–Johnson method, a vulnerable American put
is approximated by a series of vulnerable European puts and twice-exercisable vulnera-
ble European puts. Based on Bunch and Johnson [2], the approximate closed-form pricing
formula for vulnerable American puts is derived. We also present and discuss numerical
simulations of the pricing formula.

In the numerical illustrations, the proposed model is compared with the two-point
Geske–Johnson jump–diffusion model. We further examine the performance of the proposed
model under different parameters assumptions. We find that jump risk on the underlying
asset has a positive effect on the price, while the impact of shocks from the assets of the
counterparty on the price is negative.
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APPENDIX

Recall that (
ln

ST/2

S0
, ln

VT/2

V0
, ln

ST

S0
, ln

VT

V0

)

are normally distributed random variables in R4. Let (ξ1, ξ2, ξ3, ξ4) be standard normal random
variables in R4 with the same correlation matrix Ψ as(

ln
ST/2

S0
, ln

VT/2

V0
, ln

ST

S0
, ln

VT

V0

)
.
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In addition, the (i, j)-element ρij of the correlation matrix Ψ can be obtained from (3.8)–(3.11).
For example, the value of ρ12 is given by

ρ12 =
Cov

(
ln

ST/2
S0

, ln
VT/2
V0

)
√

Var
(
ln

ST/2
S0

)
Var

(
ln

VT/2
V0

)

=
ρσSσV T/2√

(σ2
ST/2 + m1σ2

1)(σ2
V T/2 + m2σ2

2)
.

Now we can rewrite (
ln

ST/2

S0
, ln

VT/2

V0
, ln

ST

S0
, ln

VT

V0

)

in (3.8)–(3.11) as follows:

ln
ST/2,m1

S0
=

(
r − 1

2
σ2

S − kSλS

)
T/2 + m1μ1 +

√
σ2

ST/2 + m1σ2
1ξ1,

ln
VT/2,m2

V0
=

(
r − 1

2
σ2

V − kV λV

)
T/2 + m2μ2 +

√
σ2

V T/2 + m2σ2
2ξ2,

ln
ST,n1

S0
=

(
r − 1

2
σ2

S − kSλS

)
T + n1μ1 +

√
σ2

ST + n1σ2
1ξ3,

ln
VT,n2

V0
=

(
r − 1

2
σ2

V − kV λV

)
T + n2μ2 +

√
σ2

V T + n2σ2
2ξ4.

To simplify the calculations, we use the following notations:

M1(m1) := E

[
ln

ST/2

S0

]
=

(
r − 1

2
σ2

S − kSλS

)
T/2 + m1μ1,

M2(m2) := E

[
ln

VT/2

V0

]
=

(
r − 1

2
σ2

V − kV λV

)
T/2 + m2μ2,

M3(n1) := E

[
ln

ST

S0

]
=

(
r − 1

2
σ2

S − kSλS

)
T + n1μ1,

M4(n2) := E

[
ln

VT

V0

]
=

(
r − 1

2
σ2

V − kV λV

)
T + n2μ2.

Moreover, recall the notations b1(n1, t) and b2(n2, t) in (3.2) and b∗1(n1, t) in (3.5),

b1(n1, t) =
ln S0

K + (r − 1
2σ2

S − kSλS)t + n1μ1√
σ2

St + n1σ2
1

,

b∗1(n1, t) =
ln S0

S∗
T/2

+ (r − 1
2σ2

S − kSλS)t + n1μ1√
σ2

St + n1σ2
1

,

b2(n2, t) =
ln V0

D∗ + (r − 1
2σ2

V − kV λV )t + n2μ2√
σ2

V t + n2σ2
2

.
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Based on the above notations, we can derive A1 as follows:

A1 = KE [1(ST/2,m1
> S∗

T/2, VT/2,m2
≥ D∗, ST,n1 ≤ K, VT,n2 ≥ D∗)]

= KE

[
1

(
ln

ST/2,m1

S0
> ln

S∗
T/2

S0
, ln

VT/2,m2

V0
> ln

D∗

V0
, ln

ST,n1

S0
≤ ln

K

S0
, ln

VT,n2

V0
≥ ln

D∗

V0

)]

= KE

[
1

(
ln

ST/2,m1
S0

− M1(m1)√
σ2

ST/2 + m1σ2
1

> −b∗1
(

m1,
T

2

)
,
ln

VT/2,m2
V0

− M2(m2)√
σ2

V T/2 + m2σ2
2

> −b2

(
m2,

T

2

)
,

× ln
ST,n1

S0
− M3(n1)√

σ2
ST + n1σ2

1

≤ −b1(n1, T ),
ln

VT,n2
V0

− M4(n2)√
σ2

V T + n2σ2
2

≥ −b2(n2, T )

)]

= KE

[
1

(
−ξ1 ≤ b∗1

(
m1,

T

2

)
,−ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ),−ξ4 ≤ b2(n2, T )

)]

= KN4

(
b∗1
(

m1,
T

2

)
, b2

(
m2,

T

2

)
,−b1(n1, T ), b2(n2, T ), Ψ1

)
, (A.1)

where Ψ1 is the correlation matrix of (−ξ1,−ξ2, ξ3,−ξ4) under Q.
To derive A2, we define a new probability measure Q2 as follows:

dQ2

dQ

∣∣∣FT

= e
√

σ2
ST+n1σ2

1ξ3− 1
2 (σ2

ST+n1σ2
1).

Then, we have that under Q2, (ξ1 − ρ13

√
σ2

ST + n1σ2
1 , ξ2 − ρ23

√
σ2

ST + n1σ2
1 , ξ3 −

√
σ2

ST + n1σ2
1 ,

ξ4 − ρ34

√
σ2

ST + n1σ2
1) are standard normal random variables in R4 with the correlation matrix

Ψ. Therefore, the closed form for A2 is derived similarly,

A2 = −E [ST,n11(ST/2,m1
> S∗

T/2, VT/2,m2
≥ D∗, ST,n1 ≤ K, VT,n2 ≥ D∗)]

= −E

[
ST,n11

(
−ξ1 ≤ b∗1

(
m1,

T

2

)
,−ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ),−ξ4 ≤ b2(n2, T )

)]

= −S0eM3(n1)+
1
2 (σ2

ST+n1σ2
1)

E

[
e
√

σ2
ST+n1σ2

1ξ3− 1
2 (σ2

ST+n1σ2
1)

× 1

(
−ξ1 ≤ b∗1

(
m1,

T

2

)
,−ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ),−ξ4 ≤ b2(n2, T )

)]

= −S0eM3(n1)+
1
2 (σ2

ST+n1σ2
1)

× E
Q2

[
1

(
−ξ1 ≤ b∗1

(
m1,

T

2

)
,−ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ),−ξ4 ≤ b2(n2, T )

)]

= −S0eM3(n1)+
1
2 (σ2

ST+n1σ2
1)

E
Q2

[
1

(
− ξ1 + ρ13

√
σ2

ST + n1σ2
1 ≤ b∗1

(
m1,

T

2

)

+ ρ13

√
σ2

ST + n1σ2
1 ,−ξ2 + ρ23

√
σ2

ST + n1σ2
1 ≤ b2

(
m2,

T

2

)
+ ρ23

√
σ2

ST + n1σ2
1 ,

ξ3 −
√

σ2
ST + n1σ2

1 ≤ −b1(n1, T ) −
√

σ2
ST + n1σ2

1 ,

− ξ4 + ρ34

√
σ2

ST + n1σ2
1 ≤ b2(n2, T ) + ρ34

√
σ2

ST + n1σ2
1

)]
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= −S0eM3(n1)+
1
2 (σ2

ST+n1σ2
1)N4

(
b∗1
(

m1,
T

2

)
+ ρ13

√
σ2

ST + n1σ2
1 , b2

(
m2,

T

2

)

+ ρ23

√
σ2

ST + n1σ2
1 ,−b1(n1, T ) −

√
σ2

ST + n1σ2
1 , b2(n2, T ) + ρ34

√
σ2

ST + n1σ2
1 , Ψ1

)
,

(A.2)

where Ψ1 is the correlation matrix of (−ξ1,−ξ2, ξ3,−ξ4) under Q2 (Q). Analogously, we can obtain
the explicit expression for A3 by defining another probability measure Q3 below:

dQ3

dQ

∣∣∣FT

= e
√

σ2
V T+n2σ2

2ξ4− 1
2 (σ2

V T+n2σ2
2).

Therefore, it holds that

A3 = KE

[
(1 − α)VT,n2

D
1(ST/2,m1

> S∗
T/2, VT/2,m2

≥ D∗, ST,n1 ≤ K, VT,n2 < D∗)
]

=
(1 − α)K

D
E

[
VT,n21

(
− ξ1 ≤ b∗1

(
m1,

T

2

)
,−ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ),

× ξ4 ≤ −b2(n2, T )

)]

=
(1 − α)KV0

D
eM4(n2)+

1
2 (σ2

V T+n2σ2
2)

E
Q2

[
1

(
− ξ1 + ρ14

√
σ2

V T + n2σ2
2 ≤ b∗1

(
m1,

T

2

)

+ ρ14

√
σ2

V T + n2σ2
2 ,−ξ2 + ρ24

√
σ2

V T + n2σ2
2 ≤ b2

(
m2,

T

2

)
+ ρ24

√
σ2

V T + n2σ2
2 ,

ξ3 − ρ34

√
σ2

V T + n2σ2
2 ≤ −b1(n1, T ) − ρ34

√
σ2

V T + n2σ2
2 ,

ξ4 −
√

σ2
V T + n2σ2

2 ≤ b2(n2, T ) −
√

σ2
V T + n2σ2

2

)]

=
(1 − α)KV0

D
eM4(n2)+

1
2 (σ2

V T+n2σ2
2)N4

(
b∗1
(

m1,
T

2

)
+ ρ14

√
σ2

V T + n2σ2
2 , b2

(
m2,

T

2

)

+ ρ24

√
σ2

V T + n2σ2
2 ,−b1(n1, T ) − ρ34

√
σ2

V T + n2σ2
2 , b2(n2, T ) +

√
σ2

V T + n2σ2
2 , Ψ3

)
,

(A.3)

where we have used the fact that (ξ1 − ρ14

√
σ2

V T + n2σ2
2 , ξ2 − ρ24

√
σ2

V T + n2σ2
2 , ξ3 −

ρ34

√
σ2

V T + n2σ2
2 , ξ4 −

√
σ2

V T + n2σ2
2) are standard normal random variables in R4 with the cor-

relation matrix Ψ under Q3. In addition, Ψ3 is the correlation matrix of (−ξ1,−ξ2, ξ3, ξ4) under
Q3 (Q).

In the following, we focus on the derivation of the term A4. Similarly, we can work under a
new probability measure Q4 defined below:

dQ4

dQ

∣∣∣
FT

= e
√

σ2
S

T+n1σ2
1ξ3+

√
σ2

V
T+n2σ2

2ξ4− 1
2 (σ2

ST+n1σ2
1)− 1

2 (σ2
V T+n2σ2

2)−ρ34
√

(σ2
S

T+n1σ2
1)(σ2

V
T+n2σ2

2).
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Based on the definition of Q4, we have that under Q4, (ξ̄1, ξ̄2, ξ̄3, ξ̄4) are standard normal
random variables in R4 with the correlation matrix Ψ, where

ξ̄1 := ξ1 − ρ13

√
σ2

ST + n1σ2
1 − ρ14

√
σ2

V T + n2σ2
2 ,

ξ̄2 := ξ2 − ρ23

√
σ2

ST + n1σ2
1 − ρ24

√
σ2

V T + n2σ2
2 ,

ξ̄3 := ξ3 −
√

σ2
ST + n1σ2

1 − ρ34

√
σ2

V T + n2σ2
2 ,

ξ̄4 := ξ4 − ρ34

√
σ2

ST + n1σ2
1 −

√
σ2

V T + n2σ2
2 .

To simplify the derivation of A4, we introduce the following notations:

e∗(m1, n1, n2, t) = b∗1(m1, t) + ρ13

√
σ2

ST + n1σ2
1 + ρ14

√
σ2

V T + n2σ2
2 ,

e(n1, n2, t) = b1(n1, t) −
√

σ2
ST + n1σ2

1 − ρ34

√
σ2

V T + n2σ2
2 ,

f(m2, n1, n2, t) = b2(m2, t) + ρ23

√
σ2

ST + n1σ2
1 + ρ24

√
σ2

V T + n2σ2
2 ,

g(n1, n2, t) = b2(n2, t) − ρ34

√
σ2

ST + n1σ2
1 −

√
σ2

V T + n2σ2
2 .

Similar to A3, one gets that

A4 = −E

[
ST,n1

(1 − α)VT,n2

D
1
(
ST/2,m1

> S∗
T/2, VT/2,m2

≥ D∗, ST,n1 ≤ K, VT,n2 < D∗)]

= − (1 − α)

D
E

[
ST,n1VT,n21

(
−ξ1 ≤ b∗1

(
m1,

T

2

)
,

− ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ), ξ4 ≤ −b2(n2, T )

)]

= − (1 − α)

D
eM3(n1)+M4(n2)+

1
2 (σ2

ST+n1σ2
1)+ 1

2 (σ2
V T+n2σ2

2)+ρ34
√

(σ2
ST+n1σ2

1)(σ2
V T+n2σ2

2)

× E
Q4

[
1

(
−ξ1 ≤ b∗1

(
m1,

T

2

)
,−ξ2 ≤ b2

(
m2,

T

2

)
, ξ3 ≤ −b1(n1, T ), ξ4 ≤ −b2(n2, T )

)]

= − (1 − α)

D
eM3(n1)+M4(n2)+

1
2 (σ2

ST+n1σ2
1)+ 1

2 (σ2
V T+n2σ2

2)+ρ34
√

(σ2
ST+n1σ2

1)(σ2
V T+n2σ2

2)

× E
Q4

[
1

(
−ξ̄1 ≤ e∗

(
m1, n1, n2,

T

2

)
,

− ξ̄2 ≤ f

(
m2, n1, n2,

T

2

)
, ξ̄3 ≤ −e(n1, n2, T ), ξ̄4 ≤ −g(n1, n2, T )

)]

= − (1 − α)

D
S0V0eM3(n1)+M4(n2)+

1
2 (σ2

ST+n1σ2
1)+ 1

2 (σ2
V T+n2σ2

2)+ρ34
√

(σ2
ST+n1σ2

1)(σ2
V T+n2σ2

2)

× N4

(
e∗
(

m1, n1, n2,
T

2

)
, f

(
m2, n1, n2,

T

2

)
,−e(n1, n2, T ),−g(n1, n2, T ), Ψ3

)
, (A.4)

where Ψ3 is the correlation matrix of (−ξ1,−ξ2, ξ3, ξ4) under Q4 (Q).
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