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General equations for conservative yet dissipative (entropy producing) extended
magnetohydrodynamics are derived from two-fluid theory. Keeping all terms generates
unusual cross-effects, such as thermophoresis and a current viscosity that mixes with
the usual velocity viscosity. While the Poisson bracket of the ideal version of this
model has already been discovered, we determine its metriplectic counterpart that
describes the dissipation. This is done using a new and general thermodynamic
point of view to derive dissipative brackets, a means of derivation that is natural
for understanding and creating dissipative dynamics without appealing to underlying
kinetic theory orderings. Finally, the formalism is used to study dissipation in the
Lagrangian variable picture where, in the context of extended magnetohydrodynamics,
non-local dissipative brackets naturally emerge.
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1. Introduction
1.1. Background

It is well known that the Hamiltonian dynamics of discrete and continuum systems
may be written in terms of Poisson brackets (Landau & Lifshitz 1960; Morrison
1998a) with Hamiltonians. Such systems describe the evolution of a point in
a phase space that may be finite-dimensional, the case for discrete systems, or
infinite-dimensional, the case for continuum systems. The Poisson bracket [ f , g] is
a bilinear operation on the set of smooth phase space functions f , g or functionals
(0-forms) that maps phase space to the real numbers. This set includes all the
physical observables of interest. The Poisson bracket is also skew–symmetric, is a
derivation and satisfies the Jacobi identity; it generates the dynamics for any phase
space function according to

df
dt
= [ f ,H], (1.1)

where the Hamiltonian H, which is usually the energy, plays a special role. In
the canonical case the Poisson bracket is non-degenerate and the Jacobi identity is
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equivalent to the associated symplectic 2-form being closed, while in the noncanonical
case degeneracy gives rise to Casimir invariants, particular functionals having
vanishing Poisson brackets with all functionals, i.e. Casimirs C satisfy [ f , C] = 0 ∀f .
The rich geometry of a phase space with a defined Poisson bracket, which includes
symplectic and Poisson geometries, is intellectually very interesting and allows for
better insight. Moreover, it is of practical value for understanding spectra, perturbation
theory and the construction of numerical algorithms (see, e.g. Salmon (1983),
Hagstrom & Morrison (2011), Morrison & Vanneste (2016) and Kraus et al. (2017)).

Less known is the fact that dissipative dynamics can also emerge from brackets
(Kaufman & Morrison 1982; Grmela 1984; Kaufman 1984; Morrison 1984a,b, 1986)
and the entropy S rather than the Hamiltonian H may serve as the generating function.
(See Grmela & Öttinger (1997a,b), Edwards (1998), Morrison (1998b), Kimura &
Morrison (2014), Gay-Balmaz & Yoshimura (2017a,b), Eldred & Gay-Balmaz (2018)
and Materassi & Morrison (2018) for a selection of more recent theoretical work,
and e.g. Kraus & Hirvijoki (2017), Morrison (2017) and Bressan et al. (2018) for
recent numerical algorithms based on bracket dissipative structure.) Given that physical
models generally contain both Hamiltonian and dissipative parts, we would like to use
both kinds of brackets to get the complete dynamics. To this end we introduce a free
energy F =H− T S , where T is a Lagrange multiplier, interpreted as a generalized
temperature (which is a uniform constant, in opposition to the physical temperature
of the system T). This generalization is natural both because the free energy has a
physical interpretation and because the entropy is a Casimir invariant of the Poisson
bracket. The dynamics then becomes for any functional f of the system,

df
dt
= [[ f ,F ]], (1.2)

where [[ f , g]] is an inclusive bracket, defined as the difference between a Poisson
bracket, denoted { f , g}, and a dissipative bracket, denoted ( f , g). Since the energy is
preserved and the entropy increases with time, F is a thermodynamic potential. Then,
an equilibrium is given by δF = 0, where δ means the functional variation, which will
be formally defined later.

An interesting property can already be proven. Upon denoting by σ the entropy
density, assuming that this variable appears in the Hamiltonian only through an
internal energy density uVol, and making use of the usual thermodynamic definition
of the local temperature, T = ∂uVol/∂σ , we find the variation of F induced by a
perturbation of the entropy δσ gives δF/δσ = T − T . Therefore, at equilibrium, the
temperature is uniform and equals the Lagrange multiplier T , which validates our
interpretation of this constant.

To be compatible with thermodynamics, there are requirements. The second
law of thermodynamics is assured if the dissipative bracket has a non-negative
symmetrical bilinear form (we assume T to be non-negative, which is consistent
with its equilibrium interpretation). Then, it almost defines a metric. The first law
requires the conservation of the Hamiltonian, i.e. (H,F)= 0. A stronger assumption
is to require the degeneracy, i.e. (H, f ) = 0 for any functional f . The situation is
then symmetrical with the fact that S is a Casimir of the Poisson bracket. If such
an assumption is fulfilled, the dissipative bracket is called metriplectic and the
metriplectic dynamics of any functional f is given by

df
dt
= [[ f ,F ]] = { f ,H} + T ( f , S). (1.3)
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Metriplectic framework and dissipative extended MHD 3

The two principles of thermodynamics are then fulfilled by construction

dH
dt
= {H,H} + T (H, S)= 0; (1.4)

dS
dt
= {S,H} + T (S, S)= T (S, S)> 0. (1.5)

The formalism above with the properties of symmetry and degeneracy first appeared
in Morrison (1984a,b), with the terminology metriplectic introduced in Morrison
(1986). Several examples were given in these early works. Later it was called generic
in Grmela & Öttinger (1997a).

For a given physical system, it remains to determine the brackets. For fluid-like
theories, the Poisson brackets naturally come from canonical brackets in terms
of Lagrangian position and momentum variables, which can then be transformed
into the usual Eulerian variables (see e.g. Morrison (1998a)). Poisson brackets
for many models of plasma physics exist in the literature, including those for
magnetohydrodynamics (Morrison & Greene 1980; Morrison 2009), relativistic
magnetohydrodynamics D’Avignon, Morrison & Pegoraro (2015) and extended
magnetohydrodynamics (D’Avignon, Morrison & Lingam 2016). They are also
known in other fields of physics, e.g. in geophysical fluids (Bannon 2003) and
elasticity (Edwards & Beris 1991). Fewer metriplectic brackets are known; however,
they have been discovered for fluids with viscosity and thermal diffusion (Morrison
1984a), elasticity (Edwards & Beris 1991) and magnetohydrodynamics (Materassi
& Tassi 2012). A comprehensive Lagrangian-based approach, as opposed to our
bracket approach, is given for n-fluid models with chemical reactions and general
multicomponent fluids with irreversible processes in Eldred & Gay-Balmaz (2018,
2020).

1.2. Extended magnetohydrodynamics: model
In this paper, we will mostly focus on extended magnetohydrodynamics. Extended
magnetohydrodynamics may be derived from two-fluid theory, where ions and
electrons are treated as distinct fluids. From this model, it is possible to get new
equations in the usual variables, the centre-of-mass velocity v and the electrical
current j (Lüst 1959; Kampen & Felderhof 1967) (see also Lingam, Miloshevich &
Morrison (2016), Keramidas Charidakos et al. (2014)). To simplify the equations,
two assumptions are made: quasineutrality, viz. that the densities of electrons
and ions are assumed equal, and that the ratio of the masses of electrons and
ions, µ = me/mi, is small so that one can expand in powers of µ. With these
assumptions, one gets a generalized equation of motion for the velocity and a
generalized Ohm’s law. The model restricted to zeroth order in µ is called Hall
magnetohydrodynamics, while retaining first-order terms produces what has been
called extended magnetohydrodynamics (XMHD).

The equations of XMHD are expressed in terms of the variables (ρ, σ , σe, v, j,E,B),
which are respectively the mass density, the total entropy density, the electron
entropy density, the centre-of-mass velocity, the electrical current and the electric and
magnetic fields. If our plasma is confined in a domain Ω , the three Eulerian scalars
are functions from Ω × R −→ R, while the four vector fields are functions from
Ω × R −→ TΩ , where TΩ stands for the tangent bundle of the manifold Ω (here
taken to be simple, e.g. a three torus). For simplicity, we define χ = mi/e, with e
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being the charge of both electrons and ions, and choose units such that µ0= ε0= c=1.
The three scalar fields satisfy the conservation laws,

∂tρ +∇ · (ρv)= 0, ∂tσ +∇ · (σv)= 0, ∂tσe +∇ · (σeve)= 0, (1.6)

where at order one in µ, the electron velocity ve = v − (1− µ)χ j/ρ. The centre-of-
mass velocity satisfies the momentum conservation law,

dv

dt
= ∂tv + v · ∇v =−

1
ρ
∇P+

j
ρ
×B−µχ 2 j

ρ
· ∇

(
j
ρ

)
, (1.7)

where the use of d/dt for the advective derivative should be clear from context, while
its counterpart is the generalized Ohm’s law,

E+ v×B = χ
j
ρ
×B−

χ

ρ
∇Pe

+µ
χ 2

ρ

[
∂j
∂t
+∇ · (v⊗ j+ j⊗ v)

]
−µχ 3 j

ρ
· ∇

(
j
ρ

)
. (1.8)

Finally, the electromagnetic variables are linked by the pre-Maxwell equations,

∂tB+∇×E= 0, ∇×B= j, ∇ ·B= 0. (1.9)

To close the system, one must specify the internal energies per unit mass for both
ions, ui(ρi, σi), and electrons, ue(ρe, σe), where ρi≈ (1−µ)ρ, ρe≈µρ and σi= σ − σe.
Then, the pressures are determined by

Pi = ρ
2
i
∂ui

∂ρi
, Pe = ρ

2
e
∂ue

∂ρe
, and P= Pi + Pe. (1.10)

One can also simplify the XMHD equations by eliminating the variables j and E,
which is indeed useful since Ohm’s law and Ampere’s equation are not evolution
equations but constraint equations. Then, the phase space should be a submanifold
of the (ρ, σ , σe, v, j, E, B) vector space. Thus, we are able to reduce these variables
to get an easier phase space. To this end, it is useful to define a new variable, B∗,
that we will refer to here as the drifted magnetic field,

B∗ :=B+µχ 2
∇×

(
j
ρ

)
=B+µχ 2

∇×

(
1
ρ
∇×B

)
. (1.11)

This variable first appeared in Lingam, Morrison & Tassi (2015b). Physically, this drift
comes from the difference of inertia between ions and electrons. While the velocity
represents mostly the movement of ions, the frozen-in property of the magnetic field
(Alfven 1950) (also see e.g. Kampen & Felderhof (1967)) is related to the dynamics
of electrons. This creates a drift between the velocity and the magnetic flux, which is
taken into account in this drifted magnetic field.

Ohm’s law and the pre-Maxwell equations then reduce to (D’Avignon et al. 2016)

∂tB∗ = ∇×
[
v×B∗ −

1
ρ
(∇×B)×B∗ +µ

χ

ρ
(∇×B)× (∇× v)

]
−
χ

ρ2
(∇Pe ×∇ρ). (1.12)
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1.3. Extended magnetohydrodynamics: geometry
After the reduction of removing E and j, the phase variables can be chosen to be
(ρ, σ , σe,m,B∗), where m= ρv is the momentum density and B∗ is constrained to be
a divergence-free vector field. However, the divergence-free constraint will be fulfilled
if it is initially true, because it turns out the dynamics will propagate it. Then, we
define the local phase space at a point x ∈Ω as

Φx =Rρ ×Rσ ×Rσe × (TxΩ)m × (TxΩ)B∗ (1.13)

and the global phase space Φ as the sections of the bundle

qx∈Ω Φx −→Ω. (1.14)

That is, a point of the global phase space gives an element of the local phase space
for each spatial position, which describes uniquely the state of our system. We then
define a functional as a map from Φ−→R (or R3 for vectors), a bracket as a bilinear
operator RΦ

×RΦ
−→RΦ (where RΦ denotes the map from Φ to R), that fulfils the

Leibniz rule, the variation of a functional f as δf :Φ ×Φ −→R given by

δf (ϕ, δϕ)= limε→0
f (ϕ + εδϕ)− f (ϕ)

ε
, (1.15)

which can be viewed as the directional derivative of f at ϕ in the direction δϕ, and the
functional derivative of f at a point δϕ ∈Φ, denoted δf /δϕ, as the functional, when
it exists, that satisfies,

δf (ϕ, δϕ)=
∫
Ω

δf
δϕ
δϕ, (1.16)

for any ϕ ∈Φ, where the volume element (e.g. d3x) will not be stated when there is
no likelihood of confusion. We consider a particular physical path in the phase space,
parametrized by the time R, and then functionals may be seen as functions of time.
Let us also notice that a function on a local phase space g :Φx −→R, where x ∈Ω ,
may be seen as a functional gx

: ϕ ∈Φ −→
∫
Ω

g(ϕ( y))δΩ(x− y)d3y, where δΩ is the
Dirac distribution on Ω (and assuming that we can define g over any local phase
space, which is natural in practice). Without changing notations we identify g with gx.

Finally, one must define the important functionals S and H. First, of course, we
have the total entropy,

S =
∫
Ω

σ . (1.17)

Second, the energy per unit volume contains the kinetic energy, the internal energy,
the magnetic energy and also the kinetic energy of the electrons (Kimura & Morrison
2014). We denote the global internal energy per unit mass u= (ρiui + ρeue)/ρ = (1−
µ)ui +µue. All together, this gives the total energy density,

ε=
1
2
ρ|v|2 + ρu+

1
2
|B|2 +

1
2
µ
χ 2

ρ
| j|2 =

|m|2

2ρ
+ ρu+

1
2

B ·B∗, (1.18)

where use has been made of (1.11) and in the last equality a total divergence has
been dropped. Thus this and other equalities involving integrands should be interpreted
modulo a surface term. Then, the Hamiltonian is

H=
∫
Ω

ε=

∫
Ω

(
|m|2

2ρ
+ ρu+

1
2

B ·B∗
)
. (1.19)
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For XMHD, the following Poisson bracket on e.g. functionals f , g, which was
first given in Abdelhamid, Kawazura & Yoshida (2015) based on the earlier work of
Kimura & Morrison (2014), Lingam et al. (2015b), together with the Hamiltonian of
(1.19) produces the equations of motion:

{ f , g} =
∫
Ω

d3y
[
ρ

δf
δm( y)

· ∇

(
δg
δρ( y)

)
− ρ

δg
δm( y)

· ∇

(
δf

δρ( y)

)
+ σ

δf
δm( y)

· ∇

(
δg

δσ ( y)

)
− σ

δg
δm( y)

· ∇

(
δf

δσ ( y)

)
+m ·

(
δf

δm( y)
· ∇

(
δg

δm( y)

))
−m ·

(
δg

δm( y)
· ∇

(
δf

δm( y)

))
+B∗ ·

(
δf

δm( y)
· ∇

(
δg

δB∗( y)

))
−B∗ ·

(
δg

δm( y)
· ∇

(
δf

δB∗( y)

))
−

δf
δm( y)

·

(
B∗ · ∇

(
δg

δB∗( y)

))
+

δg
δm( y)

·

(
B∗ · ∇

(
δf

δB∗( y)

))
−

cχ
ρ

(
(1+µ)B∗ −µχ∇×

(
m
ρ

))
×

(
∇×

(
δf

δB∗( y)

))
×

(
∇×

(
δg

δB∗( y)

))]
. (1.20)

This bracket is clearly skew–symmetric in f , g and it was shown by direct calculation
in Abdelhamid et al. (2015) to satisfy the Jacobi identity. A much simplified proof
of the Jacobi identity along with some remarkable connections to other models was
obtained in Lingam, Morrison & Miloshevich (2015a) and the bracket of (1.20) was
derived from a Lagrangian variable action functional in D’Avignon et al. (2016).

Lastly, we note that strong boundary conditions are assumed such that all needed
integrations by parts produce no boundary terms. In this paper, we will not consider
any boundary effect on the brackets.

1.4. Development – overview
Given the model and Hamiltonian structure of §§ 1.2 and 1.3, respectively, it remains
to discuss dissipation, the main content of our paper. The dynamical variables, the
phase space, will remain the same, but the evolution equations will obtain new
dissipative terms generated by a metriplectic bracket. A general form with several
dissipative effects will be obtained by what amounts to a purely thermodynamic
means. We emphasize that our approach differs from the very large plasma literature
that yields fluid transport properties by appealing to particular kinetic theory orderings,
e.g. the classic reference of Braginskii (1965) (see also Kulsrud (1983)) and many
subsequent highly detailed works.

In § 2 we start again from two-fluid theory, with general forms of thermal and
viscous dissipative terms, to obtain dissipative XMHD. We will also consider cross-
terms and look at their effect. For example, our model will include thermophoresis,
and we will also discover a new current viscosity. This new viscosity will allow new
cross-effects between the velocity and magnetic field evolutions that may be of higher
derivative orders while remaining linear.

In § 3 we will examine the dissipative brackets from a purely thermodynamic point
of view, and find from this new perspective the brackets of hydrodynamics. Next we
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will introduce another set of variables that appears more natural for constructing the
metriplectic bracket and then present a systematic way to derive general dissipative
brackets for fluid-like systems.

In § 4 we will determine the complete brackets of dissipative XMHD. Keeping all
cross-effects, the dissipative bracket is given by (4.23) with the various phenomenolo-
gical coefficients including cross-effects described there.

In § 5, we discuss the Lagrangian variable picture of this model. While the
Hamiltonian dynamics is well known in terms of these variables, dissipation is
usually considered only in the Eulerian picture. Consequently, we complete the
picture by examining general forms of dissipation in the Lagrangian variable picture,
and describe the transformation to the Eulerian picture as an example of metriplectic
reduction.

Finally, in § 6 we conclude this work.

2. From two-fluid theory to dissipative extended magnetohydrodynamics
2.1. Two-fluid theory

In the two-fluid model, one considers the ions and the electrons as two distinct fluids
with two velocity fields, vi and ve, two mass densities, ρi and ρe, and two pressures,
Pi and Pe. In addition one has the individual mass conservation laws,

∂tρi +∇ · (ρivi)= 0 and ∂tρe +∇ · (ρeve)= 0. (2.1)

The quasineutrality assumption states, to first order in µ,

ρi ≈ (1−µ)ρ and ρe ≈µρ, (2.2)

where ρ = ρi + ρe. The fluid equations for these variables are then coupled via the
pre-Maxwell equations.

Conductivity arises from collisions between electrons and ions, and these are
modelled by an exchange term in the momentum equation proportional to the relative
velocity (see e.g. Kampen & Felderhof (1967)). This term will express the resistivity
of Ohm’s law, with the bonus of a physical interpretation at this level. Plus, we know
that in the one-fluid theory, Ohm’s law has a tensorial phenomenological constant,
as may occur for Fourier’s law of heat conduction. From a thermodynamic point of
view there could also be cross-terms between heat and electrical conduction (de Groot
& Mazur 1984); consequently, for generality, we will add such cross-terms in our
two-fluid theory. To conserve the total momentum these appear with opposite signs.

A decision about temperature needs to be made. Although in many plasmas the
electrons and ions have not relaxed, we will assume a common temperature. This is
done for simplicity in this paper, mostly to not further complicate the presentation.
This assumption allows us to drop the σe variable, as will be discussed later, but
generalizing the bracket by dropping this hypothesis is possible.

We assume that both fluids have their individual viscosities, which together
will generate a one-fluid viscosity. This assumption naturally produces additional
viscosities: a current viscosity and cross-effect viscosities, which do not appear
to have been heretofore explored. Physically, all viscosities can be traced back to
collisions between particles of the fluids. We are also able to add cross-viscosity at
the outset between the fluids, but this only alters the phenomenological coefficients
that appear in our final theory. The terms we obtain can be interpreted as arising
from collisions between ions and electrons of a higher order than the usual exchange
terms.
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8 B. Coquinot and P. J. Morrison

Given the above assumptions, the two-fluid equations (cf. e.g. Kulsrud (1983))
become

ρi (∂tvi + vi · ∇vi) = −∇Pi + χ
−1ρi (E+ vi ×B)−

ρ2

χ 2
ηjj(vi − ve)

−
ρ

χ
ηjT∇T +∇ · [Λii∇vi +Λie∇ve] (2.3)

and

ρe (∂tve + ve · ∇ve) = −∇Pe − χ
−1ρi (E+ ve ×B)+

ρ2

χ 2
ηjj(vi − ve)

+
ρ

χ
ηjT∇T +∇ · [Λei∇vi +Λee∇ve] , (2.4)

where we have introduced six phenomenological coefficients. Two conductivities,
electrical with ηjj and thermic with ηjT , and four viscosity coefficients, for ions
Λii, electrons Λee, and cross-effects Λie and Λie, where the latter are symmetric
because of the Onsager relations. The conductivities are in general 2-tensors, i.e.
matrices on TxΩ at each point x ∈ Ω , whereas the viscosities are 4-tensors, i.e.
matrices on the vector space of matrices on TxΩ . Thus, e.g. the bth-component
of the term ∇ · [Λii∇vi]) in Cartesian tensor notation, where repeated indices are
summed, is ∂a[(Λii)abcd∂c(vi)d], with a, b, c, d ∈ {1, 2, 3}. Other tensor expressions
here and henceforth should be interpreted similarly. We choose some constants with
these coefficients, which change nothing since one may define the phenomenological
coefficients another way, but will simplify the calculations.

For generality we allow the phenomenological coefficients to be arbitrary: they may
be general tensors that depend on the phase space variables and position.

Lastly, thermodynamics gives two equations, the thermodynamic identities,

Tdsi = dui −
Pi

ρ2
i

dρi and Tdse = due −
Pe

ρ2
e

dρe, (2.5)

where si and se are the specific entropies of ions and electrons, while ui and ue are
the specific internal energies of ions and electrons. Later, we will prefer to use the
densities, which are related to the specific entropies and internal energies according
to σα = ραsα and uα,Vol = ραuα for α ∈ {i, e}.

2.2. Toward one-fluid theory
Next we define the centre-of-mass velocity v, the electrical current j and the total
pressure P by

v = (ρivi + ρeve)/ρ = vi +
µ

1+µ
(ve − vi), j= ρi(vi − ve)/χ, P= Pi + Pe. (2.6)

We may also write,

vi ≈ v +µχ j/ρ and ve ≈ v − χ j/ρ. (2.7)

Given the above change of variables and the quasineutrality assumption, equations
(2.1) imply the one-fluid mass conservation law,

∂tρ +∇ · (ρv)= 0. (2.8)
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The one-fluid velocity equation and Ohm’s law follow from the sum and difference
of (2.3) and (2.4). The more difficult part of this computation is to manage the
nonlinear terms. However, these terms are purely dynamical and not dissipative, and
they have already been derived. For the detailed computation of these nonlinear terms,
see Lüst (1959) and D’Avignon et al. (2016). Summing (2.3) and (2.4) gives

ρ

[
∂tv + v · ∇v +µχ 2 j

ρ
· ∇

(
j
ρ

)]
= j×B−∇P

+∇ ·

[
Λvv∇v +Λvj∇

(
j
ρ

)]
, (2.9)

where
Λvv =Λii +Λie +Λei +Λee (2.10)

and
Λvj =−χ(Λie +Λee)+µχ(Λii +Λei). (2.11)

We can also define the viscosity 2-tensor

Πv =Λvv∇v +Λvj∇

(
j
ρ

)
. (2.12)

The independent combination µ(1 − µ)χ/ρ× (2.3)−(1 − µ)χ/ρ× (2.4) gives the
following:

µ
χ 2

ρ

[
∂j
∂t
+∇ · (v⊗ j+ j⊗ v)− χ j · ∇

(
j
ρ

)]
+ ηjj j+ ηjT∇T

=E+
(

v − χ
j
ρ

)
×B+

χ

ρ
∇ (Pe −µP)+

1
ρ
∇ ·

[
Λjv∇v +Λjj∇

(
j
ρ

)]
, (2.13)

where
Λjv =−χ(Λei +Λee)+µχ(Λii +Λie) (2.14)

and
Λjj = χ

2Λee −µχ
2(Λii −Λie −Λei). (2.15)

To maintain a consistent ordering we let Pe−µP→Pe by absorbing the order µ part
into a redefinition of Pe. We can also define another viscosity 2-tensor,

Πj =Λjv∇v +Λjj∇

(
j
ρ

)
. (2.16)

Given the above, from conservation of energy, one can get the new equation for
entropy. The global entropy is defined by σ =σi+σe just as the global internal energy
density is defined as uVol=ui,Vol+ue,Vol. This equation is a natural generalization of the
entropy evolution for magnetic field-free flow (de Groot & Mazur 1984). Because the
derivation follows directly from the thermodynamic identity and the above equations,
we exclude the details of the calculation, which yields the following:

∂σ

∂t
+ v · ∇σ +∇ · JT =

1
T
∇T · JT +

1
T

j · Jj +
1
T
∇v:Πv +

1
T
∇

(
j
ρ

)
:Πj, (2.17)
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10 B. Coquinot and P. J. Morrison

where we have defined the heat flux JT = ηTj j+ ηTT∇T that drives the entropy. Here,
we have added the two mirror coefficients of conductivity. The first is the usual
heat conductivity ηTT . This coefficient is usually defined with a factor T , which here
for simplicity and symmetry is absorbed in the definition of the phenomenological
coefficient. Indeed, it will appear that the natural variable is ∇(1/T) and not ∇T;
we then add T to the phenomenological coefficients to compensate. The second
coefficient is the cross-effect conductivity ηTj, which is expected to be symmetric
with ηjT because of the Onsager relations.

Next, we specify the pressure and temperature. Just as before, we suppose there is
a known total internal energy density uVol(ρ, σ ), whence the temperature T and total
pressure P are given by

T =
∂uVol

∂σ
and P=

1
ρ2

∂uVol

∂ρ
. (2.18)

It remains to specify the electron pressure Pe that appears in the Ohm’s law of
(2.13). In a more general study we might keep the electron entropy σe and define it
as in Kimura & Morrison (2014). In a non-dissipative study, this is not a problem
since the entropies are conserved. But now they evolve and it is tricky to find out
which kind of dissipation varies with each entropy, since some forms of dissipation
are exchange terms, i.e. they exchange entropy. Indeed, the thermodynamic study
has four variables that evolve with time: the two internal energies and the two
entropies, which are linked by two thermodynamic identities. The usual study takes
advantages of the conservation of energy to close the system. But here we still lack
an energy equation. To compensate, we have chosen a common local equilibrium
temperature. This is a strong hypothesis since plasmas are often not thermalized
in this way. In reality, electrons would equilibrate at one rate and ions at another,
with both eventually equilibrating to a common temperature. Collisional processes
could be added to account for this, but if the temperatures are initially close to
each other our choice should be a good approximation. Moreover, as noted above,
this paper is already technical, and the techniques developed do point to the way to
more complete models. Under this assumption, we suppose a known expression for
the electron Helmholtz free energy density fe := ue,Vol − Tσe, which is a function of
(ρe, T), and this is determined for all time by our set of equations. We then can
define

Pe =
1
ρ2

e

∂fe

∂ρe
. (2.19)

If we no longer assume the local temperature equilibrium, the problem becomes harder.
The global thermodynamic identity uses two temperatures, so the entropy evolution is
more complex. We save this study for future work.

2.3. Reduced equations and discussion
As before, we eliminate j and E and write the equations in terms of (ρ, σ , m, B∗),
four evolution equations and four phenomenological equations.

The first evolution equation is mass conservation,

∂tρ +∇ ·m= 0; (2.20)

the second is momentum conservation,

∂tm+∇ · (m⊗ v)=−∇P−µρ
χ 2

2
∇

(
| j|2

ρ2

)
+ j×B∗ +∇ ·Πv; (2.21)
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the third is the magnetic field evolution equation,

∂tB∗ = ∇×
[
v×B∗ −

χ

ρ
(∇×B)×B∗ +µ

χ

ρ
(∇×B)× (∇× v)

− Jj +
1
ρ
∇ ·Πj

]
−
χ

ρ2
(∇Pe ×∇ρ) ; (2.22)

and the forth is the entropy equation,

∂tσ +∇ · (σv) = ∇ · JT +
1
T
∇T · JT +

1
T

j · Jj

+
1
T
∇v :Πv +

1
T
∇

(
j
ρ

)
:Πj. (2.23)

On the other hand, the first two phenomenological equations determine the
viscosities,

Πv =Λvv∇v +Λvj∇

(
j
ρ

)
and Πj =Λjv∇v +Λjj∇

(
j
ρ

)
; (2.24)

and the second two the conduction,

Jj = ηjj j+ ηjT∇T and JT = ηTj j+ ηTT∇T. (2.25)

Let us discuss the several dissipative effects. Some of them are usual: the tensor
Λvv is the usual viscosity that gives viscous dissipation of the velocity if this velocity
has spatial variation; the matrix ηjj is the usual electrical resistivity that gives the
usual Ohm’s law; and the coefficient TηTT is the usual heat conductivity that gives the
usual Fourier law. The other coefficients are less usual. The cross-terms ηjT and ηTj
are thermo-electric coefficients, which arise from different responses of the different
particles to the gradient of the temperature. In this context, this phenomenon is called
thermophoresis. More precisely, ηjT gives the Soret effect, while ηTj gives the Dufour
effect.

The current viscosity Λjj is predominately determined by the electron viscosity. This
seems natural in the context of XMHD since the electrons do have inertia. Also,
one might think there could be contributions of higher order in the exchange terms,
emerging from electron–ion collisions.

According to two-fluid theory, if the electrons have viscosity, then the coefficient Λjj
will not vanish. However, in magnetofluid models this effect is neglected and does not
appear to have been studied. One can understand this by roughly estimating the order
of magnitude of a viscosity coefficient. Dimensionally one has [Λ] = M · L−1 T−1.
Choosing parameters as the mass density nmα, where α ∈ {e, i}, one can estimate,
with particle number density n, the average velocity vα (or equivalently the thermal
energy T), and the Debye length λ2

D= (T/4πne2), which is clearly the smallest length
possible here although any length will do, we obtain

|Λαα| ∼mαnvαλD ∼ n
√

TmαλD. (2.26)

Since n and T are the same for both electrons and ions, one can estimate

|Λee|

|Λii|
∼

√
me

mi
=
√
µ. (2.27)
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12 B. Coquinot and P. J. Morrison

Physically, the idea is that because electrons are much lighter, there are more electron–
electron than ion–ion collisions, mostly because they are quicker, yet these collisions
contribute less to the change of momentum.

Alternatively, one can arrive at this result from the work of Braginskii (1965). Using
Braginskii’s coefficients η0e and η0i as estimates for the order of magnitude of Λee

and Λii, and assuming equal temperatures Te = Ti, one has |Λee|/|Λii| ∼ τe/τi, with
τα being the collision time for α ∈ {e, i}; because τα ∝

√
mα one reaches the same

conclusion.
Finally, in order of magnitude, one has |Λvv| ∼ |Λii| ∼ 1 and |Λjj| ∼ |Λee| ∼

√
µ.

Numerically, this is small, yet terms of this order are retained in the XMHD
framework. This may explain why there appears to be no literature on this effect,
even though our estimates suggest retaining this term as a higher-order correction
of the usual formulas. We caution that our estimates are approximate and various
temperature differences for ions and electrons may also change this result. So, keeping
in mind that this effect is small, we will keep it in our equations for the purposes
of generality and symmetry. Getting general brackets is easier this way, since one is
reminded of this symmetry, which also appears naturally in the brackets.

With regard to the cross-effects, the Onsager relations and the constraint of entropy
growth ensure |Λie|∼ |Λie|6

√
|Λii||Λee|. For usual cross-effects, one may believe that

these coefficients also are of order
√
µ. Since these cross-effects can be interesting

terms and also exhibit symmetries, we will keep them too. These cross-effects may be
interesting since they provide a new way to mix the velocity field and the magnetic
field, are of higher derivative order and are linear. Then, close to equilibrium and
for fast variations, while other mixing terms may disappear, these cross-effect may
offer new kinds of mixing. An easy and naive example will be provided in the next
subsection.

2.4. An example of the viscous cross-effects
In this subsection, we will give a brief illustration of the effect of the viscous cross-
terms by showing how they can provide an avenue for transferring mechanical energy
into electromagnetic energy. The model is drastically simplified, and intended to be
educational for gaining insight into the meaning of these new terms.

To this end we assume, Ω =R+y ×R2, with translational symmetry along the z-axis,
i.e. we work with a two-dimensional fluid. All phenomenological tensors are assumed
to be constant scalars and the internal energy is chosen so that ρ remains constant
and uniform, just like T . At y = 0 we assume there is a wall that oscillates in the
x-direction with velocity u= u0eiνt, with u0 being the amplitude, assumed small, and
ν is the frequency, assumed large. We work with the viscous boundary limit, close
enough to the wall and with u0 small enough to neglect all nonlinear terms. We will
not exhibit the huge constraints of such hypotheses. At the beginning of this thought
experiment, there is no magnetic field, and there are no outside sources, so that the
electromagnetic energy is initially zero. We ask the question, upon forcing the fluid
with such a sinusoidal mechanical input: what will happen?

For a classical fluid, like a plasma without the viscous cross-term, the magnetic
field equation states dB∗/dt = 0. Thus, the electromagnetic energy remains zero and
the problem is purely mechanical. If one defines the scalar vorticity as ω= ẑ · ∇× v,
then the equation of motion becomes ρ∂tω=Λvv1ω. The mechanical sinusoidal input
will then give rise to a sinusoidal output ω=ω0eky+iνt, where the wavenumber k will
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respect the dispersion relation

k=−(1± i)δ−1, where δ =

√
2Λvv

ρν
. (2.28)

The quantity δ is the boundary layer thickness and ω0 ∼ u0/δ. Physically, the
sinusoidal input will create oscillations in the fluid along the same direction, and
this oscillation will propagate in the y-direction with an exponential decrease into the
boundary layer.

Now, if we add the other viscous terms, which are linear, the situation changes. The
linear terms are now,

∂tω=
Λvv

ρ
1ω−

Λvj

ρ
∆2B, (2.29)

∂tB∗ = ηjj1B+
Λjv

ρ
1ω−

Λjj

ρ
∆2B, (2.30)

where the components of B∗ and B are along the symmetry direction. Then, the
sinusoidal input appears in the magnetic field equation thanks to the Λjv term. The
solutions will then become

ω=ω0eky+iνt and B= B0eky+iνt, (2.31)

and the wavenumber k is now given by the dispersion relation(
Λvv

ρ
k2
− iν

)(
ηjjk2
−
Λjj

ρ
k4
− iν

(
1−µ

χ 2

ρ
k2

))
+
ΛvjΛjv

ρ2
k6
= 0. (2.32)

Thus, one can link ω0 and B0, while ω0 ∼ |k|u0.
Evidently, the system of equations obtained could be studied more deeply, the above

is sufficient for our purpose: how should one understand this thought experiment? The
wall moves sinusoidally and the viscous boundary layer limit means the wall will
drive the fluid with it. Then, these oscillations propagate in the y-direction, so the wall
moves a column of fluid. And it does so with some effectiveness, parametrized by the
viscous coefficient. But which fluid is drifted? The ions or the electrons? In fact, both,
but not with the same effectiveness, i.e. not with the same force. Thus, electrons and
ions oscillate, but not at the same amplitude, thereby creating a current. If one looks
at the scene from the ions’ point of view, one would see electrons oscillating. Indeed,
this interface effect is creating an alternating electric current from a mechanical input.
Thus, we have a sort of wall-driven dynamo effect.

3. Thermodynamic theory of dissipative brackets
3.1. From non-equilibrium thermodynamics to dissipative brackets

While thermodynamics historically deals with equilibrium states, non-equilibrium
thermodynamics is concerned with systems close to thermal equilibrium and
implements irreversible processes (de Groot & Mazur 1984; Gay-Balmaz & Yoshimura
2017a,b). In developing such a theory, the first step is to write a thermodynamic
identity

dσ =
∑
α

Xαdζα, (3.1)
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14 B. Coquinot and P. J. Morrison

where, as before, σ is the entropy density and the ζα are densities associated with
conserved extensive properties, with Xα

= ∂σ/∂ζα. The ζα will eventually be used to
define a convenient set of dynamical variables. (See § 3.2.) One then has conservation
equations for all the densities,

∂tζα +∇ · Jα = 0, (3.2)

where Jα is an unknown flux associated with ζα. Given the above, the evolution of
the entropy is determined by the equation of motion

∂tσ +∇ · JT =
∑
α

Jα · ∇Xα
; JT =

∑
α

XαJα, (3.3)

and ∇Xα is called the affinity associated with the density and flux labelled by α.
It remains to determine the fluxes Jα. Close to equilibrium, one typically assumes

linear response

Jα =
∑
β

Lαβ∇Xβ, (3.4)

for any α. Up to this point, L could be any tensor. But of course, physics constrains
its form. Because of Onsager’s relations, L should be symmetric. Plus, the growth
of entropy is assured if and only if L has non-negative eigenvalues. We make an
important connection by associating the dynamics generated with a bracket with the
tensor L. That is, we first prove a formal equivalence between the classical out-of-
equilibrium thermodynamics and a subclass of metriplectic dynamical systems. Thus,
we show that the pseudometric nature of the dissipative bracket, usually an ad hoc
hypothesis, is the exact transcription of the well-known second law of thermodynamics
and Onsager’s relations through this equivalence.

It is then natural to define the phase space, a vector space of functions on Ω ,
that has the basis {ζα, ∀α}, in which the entropy is geometrically constructed; thus,
the form of (3.1) would be maintained for another choice of basis besides {ζα, ∀α}
provided it defines a suitable set of thermodynamic variables (Callen 1960). Then, one
can decompose the phase space into a part defined by the kernel of L and a subspace
where L defines a metric.

To see how L is related to a bracket on the phase space, let us rewrite the evolution
equations, at a space point x and time t, as follows:

∂tζα(x, t) = −∇ · Jα(x, t)=−∇ ·
[

Lαβ(x, t)∇
(
∂σ

∂ζβ

)
(x, t)

]
= −

∫
Ω

d3y δΩ(x− y)∇ ·
[

Lαβ( y, t)∇
(
∂σ

∂ζβ

)
( y, t)

]
=

∫
Ω

d3y
[
∇ (δΩ(x− y)) Lαβ( y, t)∇

(
∂σ

∂ζβ

)
( y, t)

]
=

∫
Ω

d3y
[
∇

(
δζα(x, t)
δζγ ( y, t)

)
Lγβ( y, t)∇

(
δS(t)
δζβ( y, t)

)]
, (3.5)

where we have used repeated index notation for summation over β and γ and
δΩ(x − y) is the Dirac delta function. Proceeding from (3.5) one easily recognizes
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a bracket, because the {ζα, ∀α} constitutes a basis of the phase space. To make this
clearer, we write the entropy evolution equation as follows:

∂tσ(x, t) = −∇ · JT(x, t)+ Jα · ∇
(
∂σ

∂ζα

)
(x, t)

= −∇ ·

[
∂σ

∂ζα
(x, t)Lαβ(x, t)∇

(
∂σ

∂ζβ

)
(x, t)

]
+∇

(
∂σ

∂ζα

)
(x, t)Lαβ(x, t)∇

(
∂σ

∂ζβ

)
(x, t)

= −
∂σ

∂ζα
(x, t)∇ ·

[
Lαβ(x, t)∇

(
∂σ

∂ζβ

)
(x, t)

]
=

∫
Ω

d3y
[
∇

(
∂σ

∂ζα
( y, t)δΩ(x− y)

)
Lαβ( y, t)∇

(
∂σ

∂ζβ
( y, t)

)]
=

∫
Ω

d3y
[
∇

(
δσ (x, t)
δζα( y, t)

)
Lαβ( y, t)∇

(
δS(t)
δζβ( y, t)

)]
. (3.6)

Thus, the dynamics of out-of-equilibrium thermodynamics on the phase space can
be expressed with a symmetric bracket. Namely, for any two functionals f , g, we
define the bracket

( f , g) :=
1
T

∫
Ω

d3y∇
(

δf
δζα( y)

)
Lαβ∇

(
δg

δζβ( y)

)
. (3.7)

Here, the phenomenological tensor Lαβ is written with explicit subscripts α and β

denoting the processes, while other tensorial indices are suppressed. Let us remark
that it is independent of the basis {ζα, ∀α}. Indeed, the functional derivatives can be
seen as functional gradients, and both functional gradients are contracted thanks to
the pseudometric L. We then deal with purely geometrical objects. Similarly, if ζα is
an a-tensor and ζβ is an b-tensor, then Lαβ is an (a+ b+ 2)-tensor. Plus, notice that
thanks to the Onsager relations, the bracket is symmetric. Finally, one can write the
evolution of any functional f as

df
dt
= T ( f , S). (3.8)

Our construction above shows that the dissipative brackets are completely natural for
non-equilibrium thermodynamics, just as Poisson brackets are natural for Hamiltonian
dynamics. Above, we have explicitly derived a general dissipative bracket, apparently
for the first time, from basic thermodynamic first principles. This bracket is general
and covers existing fluid-like theories of non-equilibrium thermodynamics such as that
originally given by Morrison (1984b) and then others (Grmela & Öttinger 1997a;
Edwards 1998; Materassi & Tassi 2012).

Consider now the role of entropy S . It plays a role counterpart to the role of the
Hamiltonian in analytical mechanics; however, of course here, it is not a conserved
quantity. On the contrary, the non-negativity of the pseudometric L ensures the
entropy growth, i.e. the second law of thermodynamics. We have seen in noncanonical
Hamiltonian mechanics that using σ as a variable was useful because its integral S ,
being a Casimir invariant, is conserved. Another variable that is very important,
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16 B. Coquinot and P. J. Morrison

but not often a basic dynamical variable, is ε, the energy density, since it appears
in the Hamiltonian that generates the dynamics. In thermodynamics, σ is no longer
a natural independent variable. But ε, since the energy is preserved, is a natural
variable for the thermodynamic identity and then for the basis. While σ now appears
through the entropy S that generates the dynamics. In brief, the roles of ε and
σ are interchanged. Thus, there are natural variables for the basis of the phase
space, but these are different in the Hamiltonian and thermodynamic points of view.
Nevertheless, one can change variables, thanks to the thermodynamic identity, and
obtain a bracket in any complete set of phase space variables.

Finally we ask: what about the first law of thermodynamics? Using ε as a basic
variable in the thermodynamic framework makes it clear. Indeed, since δH/δε is unity,
a uniform constant, and the other elements of the basis are independent of ε, one gets
for any functional f ,

( f ,H)= 0. (3.9)

This is not a coincidence, since by construction the non-equilibrium thermodynamics
conserves

∫
Ω
ζα for any α, and ε is chosen as one of the ζα values. Therefore,

by construction, our dissipative bracket has a strong formulation of the first law
of thermodynamics. Indeed it has all of the properties given in Morrison (1984a,b,
1986), i.e., bilinearity, symmetry and degeneracy. Coupling such a bracket with the
associated noncanonical Poisson bracket gives a metriplectic dynamical system.

3.2. Application to hydrodynamics
For hydrodynamics our formalism reduces to a single fluid, without the electromagnetic
effects, and the equations of this model are

dρ
dt
=−ρ∇ · v, (3.10)

ρ
dv

dt
=−∇P+∇ · (Λ∇v) , (3.11)

dσ
dt
=∇ ·

(
1
T
κ∇T

)
+

1
T2
∇T · κ∇T +

1
T
∇v :Λ∇v, (3.12)

where Λ is the viscosity, a 4-tensor, and κ the heat conductivity, in general a 2-tensor.
We now apply our new formulation to the fluid, whose variables are (ε, ρ, m).

Indeed, these variables are independent, they specify the state of the fluid, and they
are conserved densities; respectively, the total energy H, the global momentum P , and
the total mass M are constants of motion

H=
∫
Ω

ε, P =
∫
Ω

m, and M=
∫
Ω

ρ. (3.13)

Our construction guarantees that these quantities will remain constant. If u is the
specific internal energy, the local energy density is

ε=
|m|2

2ρ
+ ρu(ρ, s), (3.14)

where s is the specific entropy and σ = ρs. The thermodynamic identity reads du=
Tds+ Pdρ/ρ2, which upon changing variables gives

Tdσ = dε− v · dm− gdρ, (3.15)
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where g is a modified specific Gibbs free energy, namely g := u− Ts+ P/ρ − |v|2/2.
Its differential is then dg=−sdT + dP/ρ − v · dv, so that g(T, P, v) is an extensive
quantity with intensive arguments and, consequently, vanishes. Let us remark that
in this paper we do not consider chemical reactions or particle creation/annihilation
– for such cases this free energy would not vanish. Finally, the phase space for
thermodynamics is smaller than that for the Hamiltonian case because ρ does not
appear in the thermodynamic identity and may be ignored. The thermodynamic
variables then are (ε,m) and the thermodynamic identity is

Tdσ = dε− v · dm. (3.16)

From this thermodynamic identity, one can see that there will be two irreversible
responses, linked to ε and m, that could be expressed with the affinities ∇T and ∇v.
These dissipation processes are, respectively, the heat conduction and the viscosity. We
are set to proceed, but there are two complications. First, the natural affinity associated
with ε is ∇(1/T), but this choice implies some factors of T will appear. Second, the
natural affinity of m is −∇(v/T), but this may create cross-effects. Since we know
because of space-parity symmetry no such cross-effects exist between the affinities ∇T
and ∇v, we must destroy them using non-diagonal terms of the tensor L. This is a
strange constraint that is certainly linked with the choice of the basis.

To get the expression for L, one can look at the various fluxes and compare them
with the usual notations (de Groot & Mazur 1984). For m, the flux is the opposite of
the usual viscous tensor, viz.,

Πv = Lmm∇

( v

T

)
− Lmε∇

(
1
T

)
=Λ∇v, (3.17)

whence Lmm = TΛ and Lmε = TΛv. On the other hand, the energy flux is

Jε =−Lεm∇
( v

T

)
+ Lεε∇

(
1
T

)
= v ·Πv + κ∇T, (3.18)

whence Lεm = Tv ·Λ and Lεε = T2κ + v ·Λv. Thus, L is effectively symmetric and it
is easy to check that we have the correct heat flux,

JT =
1
T

Jε + v ·Πv =
1
T
κ∇T. (3.19)

Having proceeded in this systematic way, the bracket on any functionals f and g is
immediate

( f , g) =
1
T

∫
Ω

d3y
(
∇

(
δf

δε( y)

)
·

[(
T2κ + v ·Λv

)
∇

(
δg
δε( y)

)
+ Tv ·Λ∇

(
δg

δm( y)

)]
+∇

(
δf

δm( y)

)
:

[
TΛv⊗∇

(
δg
δε( y)

)
+ TΛ∇

(
δg

δm( y)

)])
. (3.20)

We know this bracket is a metriplectic bracket that preserves the desired quantity, it
is symmetric and it is positive.

What about the known dissipative bracket of hydrodynamics given by Morrison
(1984b)? To compare we transform back to the more usual fluid dynamical variables
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of fluid mechanics, (ε, m, ρ) −→ (σ , m, ρ). Via the chain rule, the functional
derivatives satisfy

δf
δε
−→

∂σ

∂ε

δf
δσ
=

1
T
δf
δσ

and
δf
δm
−→

δf
δm
+
∂σ

∂m
δf
δσ
=
δf
δm
−

v

T
δf
δσ
. (3.21)

Using

∇

(
δf
δm
−

v

T
δf
δσ

)
=∇

(
δf
δm

)
−

1
T
δf
δσ
∇v −∇

(
1
T
δf
δσ

)
⊗ v, (3.22)

it is seen that the last term compensates the cross-terms, simplifying the heat part of
the bracket, yielding,

( f , g)=
∫
Ω

d3y
T
T

[
T∇

(
1
T

δf
δσ ( y)

)
· κ∇

(
1
T

δg
δσ ( y)

)
+

(
∇

(
δf

δm( y)

)
−

1
T

δf
δσ ( y)

∇v

)
:Λ

(
∇

(
δg

δm( y)

)
−

1
T

δg
δσ ( y)

∇v

)]
, (3.23)

the bracket given by Morrison (1984b).
To summarize, in this section we have developed a systematic way to construct

dissipative brackets, and we showed that this method reproduces the known bracket
for hydrodynamics. In the next section we will use the method to derive a bracket for
XMHD. There we will change some notation, i.e. we write for the 2-tensor ηTT := κ/T
and the 4-tensor Λvv :=Λ.

4. Derivation of the brackets of dissipative extended magnetohydrodynamics
4.1. Thermodynamics

We now return to XMHD. Recall, for this theory the energy density ε is given by the
expression of (1.18) with B∗ given by (1.11). For dissipative XMHD, this quantity
needs to be incorporated into the theory via an appropriate choice of a magnetic
conserved quantity. Then, we can choose the associated magnetic variable and use
directly the general bracket theory derived in § 3.

Since ε now depends on the magnetic field, the thermodynamic identity will be
modified accordingly. First, note that the global momentum P =

∫
Ω

m is conserved,
consistent with the Galilean symmetry as realized by the noncanonical bracket
(Morrison 1982). Because of quasineutrality the local momentum m has no magnetic
(vector potential) piece (as explained in Keramidas Charidakos et al. (2014)), and so
remains equal to ρv. Consequently, P will not participate in the magnetic part of
the dissipation. One can check easily from the equations of dissipative XMHD of § 2
that the integrated drifted magnetic field

∫
Ω

B∗ is preserved. Thus, we will use the
coordinates (ε, ρ, m, B∗) and express the thermodynamic identity in terms of these
variables.

One may ask why
∫
Ω

B∗ should be conserved, which unlike other conserved
quantities does not come from deeper insight such as Galilean invariance. To explain
this, let us first digress for a moment and address why

∫
Ω

B is conserved for ordinary
magnetohydrodynamics, a fact pointed out as early as Morrison (1982) that did not
seem to be well known. To interpret this conservation law, consider the postulate of
conservation of the magnetic flux of any surface moving with the velocity field v.
First, remember that the magnetic field is a pseudovector (vector density), which is
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more naturally re-expressed as a 2-form. In local coordinates, this 2-form, denoted
B, can be written as Bab = εabcBc, where εabc is the Levi-Civita tensor. Thus, the
magnetic flux through a surface Σ with unit normal n is

∫
Σ

B · n=
∫
Σ

i∗B, where i∗
is the pull back of the inclusion Σ ⊂Ω that chooses the associated coordinate of the
2-form B. Given the assumption that the flux through a surface is preserved when
advected by v, not forgetting that the surface Σ moves following this vector field,
we get the equation

d
dt

∫
Σ

i∗B=
∫
Σ

i∗ (∂tB+ £vB)= 0, (4.1)

where £v is the Lie derivative generated by the vector field v. So, our postulate is
equivalent to the local Lie dragging equation

∂tB+ £vB= 0. (4.2)

Now, choose some fixed direction to evaluate the magnetic field, that is, a 1-form
θ . We can restrict ourselves to closed 1-forms, i.e. dθ = 0. Remembering that the
magnetic field being divergence free means dB = 0, and using the Cartan formula
and Stokes theorem, we have the identity∫

Ω

B∧ £vθ =

∫
Ω

B∧ divθ =
∫
Ω

d(B∧ ivθ)−
∫
Ω

(dB)∧ ivθ = 0, (4.3)

where iv is the interior product by v. The integral of the θ -component of the magnetic
field is

∫
Ω
θ(B)=

∫
Ω
B ∧ θ . One can interpret this as a global flux, the sum of the

fluxes through the local surfaces normal to θ . Using that the vector field v preserves
Ω , then that θ is fixed and satisfies (4.3), the evolution of this property is

d
dt

∫
Ω

θ(B) =
∫
Ω

(∂t(B∧ θ)+ £v(B∧ θ))

=

∫
Ω

(∂tB+ £vB)∧ θ = 0. (4.4)

Finally, saying that this is true for any θ is just saying that
∫
Ω

B is preserved, which
is exactly what we wanted. Note, here the vector field v could have been any vector
field, and need not be the physical velocity field, since we only used that it preserves
the domain Ω .

The flux conservation assumption is central for magnetohydrodynamics with the
velocity field being the Lie dragging field v, which is Alfven’s well-known frozen-in
property (e.g. Kampen & Felderhof (1967)). Nevertheless, this is no longer true for
XMHD, since neither B nor B∗ are advected by v. Yet, the conservation of

∫
Ω

B∗
can be seen by using modified velocity fields. Indeed, according to D’Avignon et al.
(2016) (and with their notation), the drifted magnetic field can be decomposed into
the following form:

B∗ =
β−B+ − β+B−
β− − β+

, (4.5)

where β± are scalar constants and B± are modified ‘magnetic fields’ that satisfy (4.2)
with modified velocities v±. Thus, the integrals of B± are preserved, and by linearity,
the integral

∫
Ω

B∗ is too.
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Given that we have settled on our magnetic conserved quantity, let us proceed with
obtaining the dissipative bracket. To this end we will need that the variation of B∗
can be expressed as

δB∗ = δB+µχ 2
∇×

(
1
ρ
∇× δB

)
−µχ 2

∇×

(
j
ρ2
δρ

)
. (4.6)

Remembering that variations will be integrated, we can directly write, using
integration by part, the following:

B · δB∗ = B · δB+µχ 2B · ∇×
(

1
ρ
∇× δB

)
−µχ 2B · ∇×

(
j
ρ2
δρ

)
= B∗ · δB−µχ 2

(
| j|
ρ

)2

δρ, (4.7)

where the second equality is modulo a total divergence, and similarly, since here
differentials and variations are the same,

d
(

B ·B∗

2

)
=B · dB∗ +µχ 2

(
| j|
ρ

)2

dρ. (4.8)

Using (4.8) and (1.18) we now can write the following thermodynamic identity:

Tdσ = dε− v · dm−B · dB∗ − g∗dρ, (4.9)

where g∗ := u − Ts + P/ρ − |v|2/2 + µχ 2 (| j|/ρ)2 is a modified specific Gibbs free
energy. Thus, its natural variables are g∗(T, P, v, j/ρ) or equivalently g∗(T, P, vi, ve).
An extensivity/intensity argument like that of § 3.2 shows again g∗ = 0. Thus, the
thermodynamic identity is given by

Tdσ = dε− v · dm−B · dB∗. (4.10)

Neglecting the factors of T discussed in § 3.2, which we will return to, we would
conclude that the response to m is ∇v, the gradient of the thermodynamic dual and,
similarly, the response to B∗ would be ∇B. One might think that this latter response
is a 2-tensor; actually, it is not because B, as noted above, is not a vector but a
pseudovector or more naturally a 2-form, with the constraint ∇ · B = 0. Then, it is
natural to think that this constraint will reduce the size of the response. Indeed, we
will see that the response will be ∇ × B= j, which is a 1-tensor, and a special case
of the global 2-tensor, if we re-write the phenomenological tensor.

There is yet another complication. From the thermodynamic identity (4.10), we
easily see that the response to ε will create heat conduction, that the response to B∗
will create electrical resistivity, and cross-terms can, of course, easily be added. Also
we see that the response to m will create velocity viscosity, but what about current
viscosity? In fact, in the energy expression there is a term with B, the magnetic
energy, and so conduction, and a term in j, the inertia of electrons, and so the
current viscosity. So, what happened? We reduced variables to eliminate j, thanks to
Ampere’s law. In this way we hid this effect. How should we manage this situation?
We will add a new affinity, one that will create this current viscosity. The original
energy had a term with | j|2/ρ, which would create an affinity ∇( j/ρ), which is
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exactly what appears in the equations. Thus, we are finally get to the following list
of affinities:

∇

(
δS
δε

)
; ∇

(
δS
δm

)
; ∇×

(
δS
δB∗

)
; ∇

(
1
ρ
∇×

(
δS
δB∗

))
. (4.11)

Now, let us return to the problem involving ∇T encountered in the hydrodynamic
case. Recall, the natural variables led to the bad effect of generating a cross-term with
∇T that must be compensated through cross-terms. But our new affinity is of second
order and so will create cross-terms of second order in T . To compensate for these
bad terms, we have to have a new affinity of second order in T . Upon examination
of these cross-terms, we see that the needed affinity will be

∇

(
1
ρ

B×∇
(
δS
δε

))
. (4.12)

One could consider a general second derivative of the temperature and modify the
phenomenological tensor as a consequence, but for simplicity we will directly use the
easiest affinity.

4.2. Determination of the phenomenological tensor
At this point, there are two paths to get the dissipative brackets of the theory. First,
in complete analogy with the hydrodynamic case studied in § 3, we can identify the
various coefficients of the phenomenological tensor from the known flux expressions
derived in § 2. Then, we have an expression for the dissipative brackets that can
easily be changed back to the usual set of variables. Alternatively, we can first
change variables of the affinity expressions and then identify the phenomenological
tensors through the known equations of the model. The advantage of this second
method is that in the dynamical variables, there are no tricky cross-effects due to
the gradient of temperature. For this reason we will follow the second method,
buttressed by our experience with the hydrodynamic example, and find it to be an
easier calculation. Both calculations lead to the same conclusion.

With the change of variables (ε, ρ, m, B∗) −→ (σ , ρ, m, B∗), the functional
derivatives of any functional f become

δf
δε
−→

1
T
δf
δσ
;

δf
δm
−→

δf
δm
−

v

T
δf
δσ
;

δf
δB∗
−→

δf
δB∗
−

B
T
δf
δσ
. (4.13)

The interesting affinities in terms of the new variables will change and, just like
for the hydrodynamic case, we develop them with the temperature away from the
derivatives. Developed in this way, we directly see the cross-effect that we want to
vanish.

Now we list the terms for any functional f . First, we have the ε and m responses,
which are the same as those for hydrodynamics,

∇

(
δf
δε

)
−→∇

(
1
T

δf
δσ ( y)

)
(4.14)

and

∇

(
δf
δm

)
−→∇

(
δf
δm

)
−

1
T
δf
δσ
∇v −∇

(
1
T
δf
δσ

)
⊗ v. (4.15)
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Similarly, the resistivity will arise from the magnetic response,

∇×

(
δf
δB∗

)
−→∇×

(
δf
δB∗

)
−

1
T
δf
δσ
∇×B−∇

(
1
T
δf
δσ

)
×B

=∇×

(
δf
δB∗

)
−

1
T
δf
δσ

j+B×∇
(

1
T
δf
δσ

)
. (4.16)

Using (4.16) for the new affinity, the current viscosity will change into

∇

(
1
ρ
∇×

(
δf
δB∗

))
−→∇

[
1
ρ
∇×

(
δf
δB∗

)
−

1
T
δf
δσ

j
ρ
+

1
ρ

B×∇
(

1
T
δf
δσ

)]
=∇

(
1
ρ
∇×

(
δf
δB∗

))
−

1
T
δf
δσ
∇

(
j
ρ

)
−∇

(
1
T
δf
δσ

)
⊗

j
ρ
+∇

(
1
ρ

B×∇
(

1
T
δf
δσ

))
. (4.17)

Lastly, the term with the second derivative of the temperature becomes

∇

(
1
ρ

B×∇
(
δf
δε

))
−→∇

(
1
ρ

B×∇
(

1
T
δf
δσ

))
. (4.18)

From our knowledge of the form of the brackets in the thermodynamic variables
and the determination of the affinities in the dynamical coordinates (σ , ρ, m, B∗),
we can re-write the general bracket. In particular, upon replacing the densities of the
general bracket of (3.7) by expressions (4.14)–(4.18) above, a bracket with many terms
is generated. For efficiency, we will directly develop the temperature terms from the
different affinities and add a T factor when it makes things easier. We denote by L̂ the
phenomenological tensor in these new coordinates, with indices denoting the processes
as explained in table 1 while, as before, we suppress tensorial indices that should be
clear from context. Thus, the bracket has the following form:

( f , g)=
∫
Ω

T
T

Rα( f ) L̂αβ Rβ(g), (4.19)

where α and β are summed over the process index set {T, v, B, j, T2} and the
responses Rα are explicitly given in table 1. These responses may be 1- or 2-tensors
and are contracted with the phenomenological tensors that are of appropriate rank;
e.g. if Rα is a a-tensor and Rβ is a b-tensor, then L̂αβ is a (a+ b)-tensor.

Now, it only remains to find the phenomenological coefficients. For this, we write
the various equations of XMHD and identify the terms. We remark that thanks to the
Onsager relations, the phenomenological tensor is symmetric and when we determine
a term we automatically know its dual term. We could use this to shorten calculations,
but for completeness we will write out all the terms and discover these symmetries.
Proceeding, we see the momentum equation gets the dissipative term

(m, S)T = ∇ ·
[

1
T

L̂vT∇T + L̂vv∇v + L̂vv j+ L̂vj∇

(
j
ρ

)
+ L̂vT2∇

(
1
ρT

B×∇T
) ]

= ∇ ·

[
Λvv∇v +Λvj∇

(
j
ρ

)]
. (4.20)
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Response to f Explicit formula Geometrical type Index for L̂

RT( f ) ∇

(
1
T
δf
δσ

)
1-tensor T

Rv( f ) ∇

(
δf
δm

)
−

1
T
δf
δσ
∇v 2-tensor v

RB( f ) ∇×

(
δf
δB∗

)
−

1
T
δf
δσ

j 1-tensor B

Rj( f ) ∇

[
1
ρ
∇×

(
δf
δB∗

)]
−

1
T
δf
δσ
∇

(
j
ρ

)
2-tensor j

RT2( f ) ∇

(
1
ρ

B×∇
(

1
T
δf
δσ

))
2-tensor T2

TABLE 1. The several kinds of thermodynamic responses, including their tensor
character, for dissipative extended magnetohydrodynamics.

Thus, we identify the non-vanishing phenomenological coefficients L̂vv = Λvv and
L̂vj =Λvj. Next, for the magnetic field, we get

(B∗, S)T = −∇×
[

1
T

L̂BT∇T + L̂Bv∇v + L̂BB j+ L̂Bj∇

(
j
ρ

)
+ L̂BT2∇

(
1
ρT

B×∇T
) ]

+∇×

(
1
ρ
∇ ·

[
1
T

L̂jT∇T + L̂jv∇v + L̂jB j+ L̂jj∇

(
j
ρ

)
+ L̂jT2∇

(
1
ρT

B×∇T
) ])

= ∇×

[
−
(
ηjj j+ ηjT∇T

)
+

1
ρ
∇ ·

(
Λjv∇v +Λjj∇

(
j
ρ

))]
. (4.21)

Thus, the only non-vanishing coefficients are L̂BT = TηjT , L̂BB = ηjj, L̂jv = Λjv, and
L̂jj =Λjj. Finally, using the previous results, the entropy equation yields

(σ , S)T = ∇
[

1
T2

L̂TT∇T +
1
T

L̂Tv∇v +
1
T

L̂TB j+
1
T

L̂Tj∇

(
j
ρ

)
+

1
T

L̂TT2∇

(
1
ρT

B×∇T
) ]

+
1

T2
∇T ·

[
1
T

L̂TT∇T + L̂Tv∇v + L̂TB j+ L̂Tj∇

(
j
ρ

)
+ L̂TT2∇

(
1
ρT

B×∇T
) ]

+
1
T
∇v :Πv +

1
T
∇

(
j
ρ

)
:Πv +

1
T

j · Jj
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+
1
T
∇ ·

(
B
ρ
×∇ ·

[
1
T

L̂T2T∇T + L̂T2v∇v + L̂T2B j+ L̂T2j∇

(
j
ρ

)
+ L̂T2T2∇

(
1
ρT

B×∇T
) ])

= ∇ ·
(
ηTj j+ ηTT∇T

)
+

1
T
∇T ·

(
ηTj j+ ηTT∇T

)
+

1
T

j · Jj

+
1
T
∇v :Πv +

1
T
∇

(
j
ρ

)
:Πj. (4.22)

Then, the non-vanishing coefficients are L̂TT =T2ηTT and LTB=TηTj. Observe from the
above that indeed the Onsager relations hold.

From the tensor L̂, one could change coordinates back and obtain the tensor L.
This is an easy computation, but not of our interest here. Similarly, one could have
computed the tensor L before changing coordinates to get the tensor L̂.

4.3. Metriplectic framework
We are now able to write the dissipative part of the metriplectic bracket for XMHD.
From our calculations, we have found the following bracket for any functionals f
and g:

( f , g) =
∫
Ω

d3y
T
T

[
∇

(
1
T

δf
δσ ( y)

)
·

{
T2ηTT∇

(
1
T

δg
δσ ( y)

)
+TηTj

(
∇×

(
δg

δB∗( y)

)
−

1
T

δg
δσ ( y)

j
)}

+

(
∇×

(
δf

δB∗( y)

)
−

1
T

δf
δσ ( y)

j
)
·

{
TηjT∇

(
1
T

δg
δσ ( y)

)
+ ηjj

(
∇×

(
δg

δB∗( y)

)
−

1
T

δg
δσ ( y)

j
)}

+

(
∇

(
δf

δm( y)

)
−

1
T

δf
δσ ( y)

∇v

)
:

{
Λvv

(
∇

(
δg

δm( y)

)
−

1
T

δg
δσ ( y)

∇v

)
+Λvj

(
∇

(
1
ρ
∇×

δg
δB∗( y)

)
−

1
T

δg
δσ ( y)

∇

(
j
ρ

))}
+

(
∇

(
1
ρ
∇×

δf
δB∗( y)

)
−

1
T

δf
δσ ( y)

∇

(
j
ρ

))
:

{
Λjv

(
∇

(
δg

δm( y)

)
−

1
T

δg
δσ ( y)

∇v

)
+Λjj

(
∇

(
1
ρ
∇×

δg
δB∗( y)

)
−

1
T

δg
δσ ( y)

∇

(
j
ρ

))}]
. (4.23)

When this bracket of (4.23) is subtracted from the Poisson bracket of (1.20) one
obtains the complete metriplectic geometrical formulation of dissipative XMHD.

In closing this section let us discuss the forms of the several dissipative tensors.
Throughout this work, we have made no hypotheses on the forms of the various
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tensors nor on their dependencies on any variables or on phenomenological
coefficients. Our only requirement was that there be no cross-effects between
different tensor types of responses, a property that comes from space-parity symmetry
(de Groot & Mazur 1984). Yet, physical symmetries will impose other constraints
(de Groot & Mazur 1984; Landau & Lifshitz 1960). Time-reversal symmetry will give
the Onsager relations that we have already evoked but not used. Moreover, Galilean
symmetry will constrain the form and dependency of the tensors. Only the magnetic
field can provide directional dependence in the tensors. Anisotropy in Hamiltonian
magnetofluids can be introduced by adding a |B| dependence to the internal energy u
(Morrison 1982; Kimura & Morrison 2014). Pairing this with anisotropic dissipation
would be an interesting avenue to explore in the future. Without anisotropy, the
2-tensors would reduce to scalars while the 4-tensors would decompose into a
symmetrization operator, an antisymmetrization operator and a trace operator.

Another constraint is the non-negativity, which ensures the second law of thermo-
dynamics. If we decompose the various tensors into several scalars, the non-negativity
constraint leads to non-negative scalars for direct effects (as distinct from cross-effects)
and bounds on the norm of the cross-effect scalars by the geometric means of the two
direct-effect scalars of the same kind.

We have seen that the construction of the brackets does not require physical
symmetries, which provides interesting insight; viz., the bracket formalism is more
general than the physics at hand. Symmetries only restrict the form of the bracket;
there is still freedom to select any dependence of the scalars on the phase space and
anisotropy due to magnetic directional dependence.

5. Dissipation in the Lagrangian picture – an example of metriplectic reduction
5.1. Lagrangian picture

So far, the formalisms of this paper, both Hamiltonian and dissipative, have been in
terms of the Eulerian (spatial) picture of fluid mechanics. Thus, a natural question to
ask is what would our results look like in the Lagrangian picture, where one tracks
fluid elements. For the Hamiltonian part, the relationship between the Eulerian and
Lagrangian pictures is well understood for neutral fluid mechanics (see e.g. Morrison
(1998a) for review), magnetohydrodynamics (Morrison 2009) and XMHD (Keramidas
Charidakos et al. 2014). In the Lagrangian picture one has a canonical Poisson bracket,
as expected for a particle-like theory, that reduces to a noncanonical Poisson bracket
like the one of (1.20) in the Eulerian picture. However, the form of dissipation in
the Lagrangian picture that reduces to the dissipative bracket is not evident. Indeed,
the lion’s share of out-of-equilibrium thermodynamics is studied within the Eulerian
picture.

Let us briefly recall the Lagrangian picture. In this picture one follows a continuum
of particles, labelled by a and then obtains a flow ϕ(a, t) that gives the position
of the particle, a fluid element, labelled by a ∈ Ω at time t ∈ R. The configuration
space is then the space of the diffeomorphisms of the space Ω . Its cotangent space
then defines the momentum π and the cotangent bundle will be the phase space. In
the Hamiltonian setting of the Lagrangian picture, one attaches attributes to a fluid
element (see e.g. Morrison (2009)), viz. mass density ρ0(a), entropy density σ0(a),
and for magnetohydrodynamics, the magnetic field B0(a). Then, from ρ0 and σ0 we
may infer a temperature T0(a). Using the Lagrange to Euler map, the flow is used
to obtain the Eulerian velocity field v and the attributes are transformed into their
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well-known Eulerian counterparts that satisfy the usual equations for the ideal fluid
and/or magnetohydrodynamics.

When dissipation is included, we no longer expect attributes to remain independent
of time. For example, the initial entropy σ0(a, t) obtains time dependence, which is
consistent with the Eulerian version of this quantity no longer being conserved in the
Eulerian picture. Our goal is to find the Lagrangian equations that determine this time
dependence, consistence with our Eulerian metriplectic dynamics.

For XMHD the situation is more complicated. Given that our derivation of § 2
starts from two-fluid theory, we expect there to be two displacement variables. While
ϕ(a, t) will give a centre-of-mass displacement, just as for magnetohydrodynamics, we
now have ϕd(a, t) that will evaluate the difference of positions between of ions and
electrons of a same label. More precisely, we define ϕd as the additional advection
of the magnetic field, which will become clearer when we look at the equations of
motion. Conjugate to ϕd, we have a momentum variable πd(a, t).

The Lagrange to Euler map will be given by the following expressions:

ρ(x, t)=
∫
Ω

d3a ρ0(a)δΩ
(
x− ϕ(a, t)

)
, (5.1)

σ(x, t)=
∫
Ω

d3a σ0(a, t)δΩ
(
x− ϕ(a, t)

)
, (5.2)

m(x, t)=
∫
Ω

d3a π(a, t)δΩ
(
x− ϕ(a, t)

)
, (5.3)

where recall δΩ is the Dirac distribution. Observe, contrary to the usual reduction
expressions (e.g. Morrison 1998a, 2009), here the attribute σ0 has explicit time
dependence, but since we are not allowing particle production this is not the case
for ρ0. The magnetic field is trickier, but if the displacement variation ϕd is well
defined, the magnetic field is advected as a 2-form by ϕ + ϕd (D’Avignon et al.
2016), and we have

B(x, t)=
∫
Ω

d3a (dϕ + dϕd)B0(a, t) δΩ
(
x− ϕ(a, t)− ϕd(a, t)

)
, (5.4)

and again observe B0 has explicit time dependence.
From the form of the Lagrange to Euler map above, we see that given the set of

variables (ϕ, ϕd, π, πd) and known attributes (ρ0, σ0, B0), the Eulerian variables are
uniquely determined. However, because of relabelling symmetry and the split between
orbit behaviour and attribute dynamics, the inverse is not true; i.e. given the Eulerian
variables, the Lagrangian (ϕ, ϕd, π, πd) and attributes (ρ0, σ0, B0) are not uniquely
determined. Consequently, like the usual case for Hamiltonian reduction, the Lagrange
to Euler map is a reduction. Our goal is to find expressions in the Lagrangian picture
that reduce to the known Eulerian equations of the metriplectic dynamical systems
that we have described in this paper. This is an example of metriplectic reduction, an
idea that was introduced in Materassi & Morrison (2018).

Here we will choose a particular section that accomplishes metriplectic reduction,
even though it is implicit and has a degree of arbitrariness. In particular, as mentioned
above, we will choose a most natural one, where the dissipation changes the attributes,
the fluid element labelled properties, and not the dynamical displacements. For
example, irreversible processes will make σ0 depend on time and increase without
altering the form of advection.
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5.2. Relations for change of variables
In order to find our brackets in the Lagrangian picture, we must use the functional
chain rule. This is done by comparing Lagrangian and Eulerian variations. However,
unlike the usual case of Hamiltonian reduction we include attribute variation. As for
Hamiltonian reduction, we have the measure d3a in the Lagrangian picture and d3x in
the Eulerian picture. These two volume forms differ by a factor of the determinant of
the flow ϕ. Generalizing the method of D’Avignon et al. (2016), a direct calculation
now gives links between functional derivatives of a functional f of Eulerian variables
and its counterpart f̂ of Lagrangian variables,

δf̂
δπ
(a, t)=

δf
δm
(ϕ(a, t), t), (5.5)

δf̂
δσ0

(a, t)=
δf
δσ
(ϕ(a, t), t), (5.6)

δf̂
δB0

(a, t)= (dϕ + dϕd)
T δf
δB
((ϕ + ϕd)(a, t), t), (5.7)

where AT is the transposed operator of A. For XMHD, we need the functional
derivative with respect to B∗ and not B. A change of variable gives

δf
δB
−→

δf
δB∗
+µχ 2

∇×

(
1
ρ
∇×

δf
δB∗

)
. (5.8)

Using the fact that µ is of order one, we can invert this relation as a perturbative
development in µ. Finally, at order one, we get

δf
δB∗

(ϕ(a, t)+ ϕd(a, t), t) ≈ (dϕ + dϕd)
−1,T δf̂

δB0
(a, t)

−µχ 2
∇×

(
1
ρ
∇× (dϕ + dϕd)

−1,T δf̂
δB0

(a, t)

)
, (5.9)

where the gradients are with respect to x= ϕ(a, t).
To be able to perform the change of variables in the Eulerian bracket, we have to

express some variables in terms of Lagrangian ones. One can see that T will become
T0 and v will become π/ρ0. The Eulerian gradient will transform to the Lagrangian
gradient by ∇x f (ϕ(a))= (dϕ)−1∇a f̂ (a). Finally, the electric current will become

j((ϕ + ϕd)(a, t), t) = ∇x ×B((ϕ + ϕd)(a, t), t)
= (dϕ + dϕd)

−1
∇a × (dϕ + dϕd)(B0(a, t)). (5.10)

From these relations, we have all that is needed to unreduce, i.e. express the brackets
in terms of the Lagrangian variables.

Upon effecting this procedure, the Hamiltonian part becomes the canonical bracket,

{ f , g} =
∫
Ω

d3a
(
δf
δϕ
·
δg
δπ
−
δg
δϕ
·
δf
δπ
+
δf
δϕd
·
δg
δπd
−
δg
δϕd
·
δf
δπd

)
. (5.11)

This result is not surprising given the development of D’Avignon et al. (2016),
where the Eulerian bracket is derived from this canonical bracket for extended
magnetohydrodynamics. Let us now turn to the dissipative part, which we will first
work out explicitly for hydrodynamics.
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5.3. Lagrangian dissipation for hydrodynamics
To make things simple, in this subsection we will first deal with hydrodynamics, i.e.
we only consider the usual viscosity and heat conductivity, dropping the magnetic
part, which is tedious and presents a subtlety that we will address later. Lagrangian
metriplectic dynamics was previously explored in Materassi (2015); however, our
study here adds the tools needed to address the magnetic part. For hydrodynamics,
the change of variables is direct and gives

( f , g) =
∫
Ω

d3a
T0

T

[
∇

(
1
T0

δf
δσ0(a)

)
· T2

0 ηT0T0∇

(
1
T0

δg
δσ0(a)

)
+

(
∇

(
δf

δπ(a)

)
−

1
T0

δf
δσ0(a)

∇

(
π

ρ0

))
:Λππ

(
∇

(
δg

δπ(a)

)
−

1
T0

δg
δσ0(a)

∇

(
π

ρ0

)) ]
, (5.12)

where we have supressed the explicit time dependence of π and σ0. Here ηT0T0 =

1/|dϕ−1
|(dϕ−1)TκTTdϕ−1 and Λππ = 1/|dϕ−1

|(dϕ−1)TΛvv dϕ−1, with |dϕ| the deter-
minant of the endomorphism dϕ at each point. To be clear, the multiplication here
is composition, and for the 4-tensor Λ, the contraction is with the first index of
each pair, the one linked with the gradient. Hence, these tensors change as 2-form
densities under the mapping ϕ.

Observe, the form of (5.12) is the same as that for the Eulerian picture, so that the
equations will remain the same. Yet, the phenomenological tensors change. They will
depend on time and reflect the variation of the physical proximity of labels at nearby
points. Let us highlight that even with constant scalar phenomenological tensors in the
Eulerian picture (a common assumption), in the Lagrangian picture they will become
general time-dependent tensors, unless the displacement ϕ only generates orthogonal
transformations, which is coherent physically. Here again, one can see the strength of
considering geometrical tools like tensors rather that assuming a particular form like
a scalar, which does not exploit the full geometrical structure.

Adding the purely magnetic terms, as opposed to cross-terms, is also straightforward
for magnetohydrodynamics, with or without the Hall term, and for the full XMHD
models. Yet, the expressions are complicated, consequently, we will not write them
here. However, the cross-terms, magnetic with non-magnetic, bring new ideas that will
be explored in § 5.4.

5.4. Non-locality in the Lagrangian picture
Consider now the magnetic cross-effects. While the other variables change with ϕ
or ϕ + ϕd directly, allowing an easy change of variables, the cross-effect between a
magnetic variable and a non-magnetic variable change into one of the responses (cf.,
table 1) with ϕ while the response changes with ϕ + ϕd. Because there is a product
between them, changing variables brings complications. Indeed, we will see that this
complication breaks locality in the Lagrangian picture. But first, let us take a look at
our general bracket once more.

Recall, for a general non-equilibrium system we saw in § 3 that we have a
dissipative bracket of (3.7). This bracket can be rewritten as follows:

( f , g)=
1
T

∫
Ω

d3x
∫
Ω

d3y
δf

δζα(x)
Lαβ(x, y)

δg
δζβ( y)

, (5.13)
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where Lαβ(x, y) :=∇x∇y
(
LαβδΩ(x− y)

)
. Note, L could also depend explicitly on space

and on any variable of the phase space but, to be concise, we do not exhibit these
dependencies. A generalization of the bracket could then be to allow L to be a general
tensor of distributions. So, why do we have such a special form? First, having only
gradient factors ∇x∇y in this distribution is roughly the linear response assumption
of out-of-equilibrium thermodynamics. Second, assuming that we have such a Dirac
distribution means that the interactions between the variations of f and g exist only at
the same point. Saying it another way, the value ( f , g)(x) depends only on the values
of f and g in an arbitrarily small neighbourhood of x. This assumption amounts to
the assumption of the locality of the interactions.

The complication with cross-terms between magnetic and non-magnetic terms in
XMHD arises because different factors in a term do not transform with the same
displacement. One is transformed by ϕ+ϕd while the other is transformed by ϕ. Then,
what change of variables do we do? Actually, both. The idea is to express the bracket
in its more general form, with two integrals, and to change both variables with their
associated displacements. For simplicity, we will only show how this works for the
thermoelectric effect, which has the following bracket cross-term:

( f , g)T :=
∫
Ω

d3y
T
T
∇

(
1
T

δf
δσ ( y)

)
· TηTj

(
∇×

(
δg

δB∗( y)

)
−

1
T

δg
δσ ( y)

j
)
. (5.14)

The other terms can be treated similarly.
With the two integrals and a change of the left coordinate using ϕ and the right

coordinate using ϕ+ϕd, the bracket becomes the following in the Lagrangian picture:

( f , g)T =
∫
Ω

d3a
∫
Ω

d3b
T0(a)T0(b)

T
∇a

(
1

T0(a)
δf

δσ0(a)

)
· ηT0 j0[

∇b ×

(
(dϕ + dϕd)

−1,T δf
δB0

(b)

−µχ 2
∇b ×

(
1
ρ
(dϕ + dϕd)

−1
∇b × (dϕ + dϕd)

−1,T δf
δB0

(b)
))

−
1

T0(b)
δg

δσ0(b)
∇b × (dϕ + dϕd)(B0(b))

]
, (5.15)

where
ηT0 j0 = (dϕ

−1)TκTjd(ϕ + ϕd)
−1 δΩ(ϕ(a)− (ϕ + ϕd)(b))
|dϕ−1||d(ϕ + dϕd)−1|

. (5.16)

The important point to realize here is that if ϕd does vanish, then the bracket
reduces to a bracket of the same form as that for hydrodynamics. But if ϕd does not
vanish, then the locality assumption breaks. How should this be interpreted? Well,
ϕd is roughly the inertia of the electrons. Thus, this non-locality is saying that ions
and electrons located at the same space point will interact (locality in the Eulerian
picture) but that these two kinds of particles do not come from the same label, for
they do not have the same dynamics (non-locality in the Lagrangian picture). Thus,
for magnetohydrodynamics and even Hall magnetohydrodynamics, where electron
inertia is neglected, locality is saved in the Lagrangian picture; in the equations, ϕd is
identically zero. On the other hand, in XMHD, locality is broken in the Lagrangian
picture.
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It is interesting to see how a more general bracket, which might have appeared
useless, appears naturally in a physical system. Studying more precisely the
consequences of such a non-locality would be a useful avenue for future work.
This study also sheds light on the physical consequences of electron inertia.

6. Conclusion
In this paper, we have derived a conservative yet dissipative form of XMHD

from two-fluid theory. We have seen that natural dissipation and cross-effects appear,
including a new current viscosity. We have seen that this current viscosity is small,
explaining why it is mostly neglected. Yet, we have explained it physically and
described consequences of its associated cross-effects.

We have also constructed a general metriplectic framework for any fluid-like
non-equilibrium thermodynamic system and presented a systematic way to derive
the dissipative brackets. The main new idea was to use conserved thermodynamic
variables, which are natural in this context but differ from the usual Hamiltonian
variables, which explains why they are not usually used. As an example, we
re-discovered and generalized the hydrodynamic bracket of Morrison (1984b) using
this new framework.

With the hydrodynamic experience, we derived for the first time the metriplectic
bracket for full dissipative XMHD. We also explained the geometric generality of our
result, freeing us from any dependence on the phase space variables or the direction
of the magnetic field, thereby obtaining more general equations than typically used
for this model.

Finally, we used these geometrical tools to study this model in the Lagrangian
picture. In this picture, we still have a natural bracket, but two generalizations appear
naturally. First, the geometry of the phenomenological tensor becomes general and
time dependent. This allows for the description when scalar phenomenological tensors
are no longer a good approximation. Second, the locality assumption can break, and
then we must consider a more general form of dissipative bracket. This occurs for
XMHD, because the ions and electrons have separate dynamics.
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