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Ultrasonic cavitation near a tissue layer
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In this paper we examine the dynamics of an initially stable bubble due to ultrasonic
forcing by an acoustic wave. A tissue layer is modelled as a density interface acted
upon by surface tension to mimic membrane effects. The effect of a rigid backing
to the thin tissue layer is investigated. We are interested in ultrasound contrast agent
type bubbles which have immediate biomedical applications such as the delivery of
drugs and the instigation of sonoporation. We use the axisymmetric boundary integral
technique detailed in Curtiss et al. (J. Comput. Phys., 2013, submitted) to model
the interaction between a single bubble and the tissue layer. We have identified a
new peeling mechanism whereby the re-expansion of a toroidal bubble can peel away
tissue from a rigid backing. We explore the problem over a large range of parameters
including tissue layer depth, interfacial tension and ultrasonic forcing.
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1. Introduction
Industrial and military uses for cavitation have now long been established. Recent

advances in medicine, however, have created new avenues for cavitation, thus
motivating the current research. The phenomenon, originally occurring as an unwanted
side effect, is now being developed as an effective, targetable mechanism for damaging
organic structures. It is particularly prevalent in various types of laser surgery. These
include techniques such as laser angioplasty, myocardial laser revascularization, laser
thrombolysis and intraocular photodisruption (Brujan et al. 2001a). Figure 1 shows an
experimental example of the type of damage which may be inflicted upon a cornea
during intraocular photodisruption. Here a bubble has been created using a focused
laser beam parallel to a cornea specimen at a standoff distance of 0.45. The result
of the subsequent collapse of this cavity is very apparent, with a puncture clearly
visible in the centre of the affected region almost certainly created by the high-speed
jet that would have threaded the bubble. A large region of surface tissue has also
been scrapped away during the bubble motions. The mechanisms for this are as yet
unknown, with the high shear stresses caused by the high-speed flow between the
bubble and substrate thought to be a contributing factor (Vogel et al. 1990; Brujan
et al. 2001a). In this paper we demonstrate that the re-expansion of the bubble toroid
plays a significant role, and may indeed be the primary mechanism for such surface
scouring.
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FIGURE 1. Cavitation damage to a cornea specimen. The white scale bar represents a
distance of 100 µm, whilst the laser generated bubble was formed at a standoff distance
of 0.45 maximum bubble radii (Vogel et al. 1990).

Aside from laser-generated high-pressure bubbles, sonically driven cavitation is also
prevalent in modern medical procedures. One such procedure is shockwave lithotripsy,
where a semi-ellipsoidal structure is placed adjacent to a patient, focusing shockwaves
generated at the external focus to the focus located inside the body. Removal of kidney
and bladder stones via this procedure benefits from the collapse phenomena, with the
focusing of the shockwave creating tiny cavities close to the surface of the target
object. The side effects of this technique, potentially magnified by unwanted cavitation,
can be problematic and can include major vein thrombosis and gastrointestinal injuries
such as colon perforation (Skolarikos, Alivizatos & Rosette 2006).

Other medical techniques have been developed using both low- and high-frequency
ultrasound to acoustically activate cavitation during diagnostic procedures. The use of
ultrasound contrast agents (UCAs) to improve the echogenicity of biological fluids is
one such technique. These are encapsulated micrometre-scale gas bubbles with thin
shells, which can be easily administered to a patient through injection or ingestion.
Examples of such products include protein shelled encapsulated air UCAs such as
Albunex, and modern soft lipid-shelled perfluorocarbon-encapsulated UCAs such as
SonoVue (Marmottant et al. 2005; Cosgrove 2006). The acoustic signature produced
by the compressible UCAs is significantly higher than that of the near-incompressible
tissues, and provides great improvement in visualization, particularly in detecting focal
liver lesions (Church 1995; Blomley et al. 2001; Cosgrove 2006).

At higher ultrasound amplitudes, UCAs will break down in the acoustic field. This
structural failure allows for their potential use as locally targetable drug delivery
vesicles (Seemann et al. 2002; Rapoport et al. 2003; Cosgrove 2006). Of particular
note is the manner in which breakdown occurs, and the damage it can cause to
surrounding tissue. An example of the damaging effect caused by such operations can
be seen in figure 2, showing samples of mouse abdominal muscle after ultrasound
exposure, using a 2.5 MHz transducer at an amplitude of 2.6 MPa with and without
the contrast agent Optison. Petechial haemorrhages are visible in abundance as dots
and streaks in the agent-treated sample, yet there are few, if any, in the untreated case
(Miller & Quddus 2000).

This seemingly unwanted side affect has recently been pioneered as a local delivery
method for large molecules. In particular, it can be used to deliver DNA, and hence
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FIGURE 2. (Colour online) Abdominal mouse muscle and fat after ultrasound exposure using
a 2.5 MHz transducer at an amplitude of 2.6 MPa. The contrast agent Optison was used in the
specimen displayed in the lower image. Abundant petechial haemorrhages are visible in the
lower sample as dots and streaks. The scale bar represents 1 mm (Miller & Quddus 2000).

is being actively researched as a non-viral method for gene transfection (Miller,
Bao & Thrall 1997; Blomley et al. 2001; Miller, Pislaru & Greenleaf 2002). This
process, termed sonoporation, involves the local induction of cavitation dynamics using
ultrasound to permeate cell membranes, thereby allowing DNA introduced into the
extracellular environment to enter the target cells (Miller et al. 1997). The potential
benefits of sonoporation over existing transfection techniques are considerable. Viral
encapsulation delivery systems suffer from possible toxicological and mutagenic side
effects, whilst other encapsulation techniques such as lipid coating, are not locally
focusable Miller et al. (2002). Locally targeted non-encapsulation methods also exist,
although these have difficulties with implementation. Electroporation for example
requires electrodes to be inserted into the target area to induce cell membrane
separation, and the direct injection of DNA into cells is naturally restricted to external
applications. Transfection through sonoporation in contrast is easily administered
externally, and is readily locally focused. Excessive cavitation caused during the
application can however cause significant damage and cell death (Koike et al. 2005),
with the generation of sonopores with size on the order of the magnitude of a cell
(Prentice et al. 2005). To minimize the amount of cell death, and to determine the
mechanisms from which it arises, the fluid dynamics of both the intracellular and
extracellular environments need to be examined. Similarly to help maximize the viable

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.341


248 G. A. Curtiss, D. M. Leppinen, Q. X. Wang and J. R. Blake

poration of cell membranes, the dynamics associated with the collapse of the UCAs is
of critical importance.

The organic environments with which these cavities interact cannot, in general,
be viewed simply as rigid boundaries. Aside from the complex topology of the
surroundings, the elasticity of the cell membranes and the fluid which they enclose
must be taken into consideration. This is evident from recent experiments with initially
flat elastic surfaces. These have shown that the elastic modulus of the substrate and the
standoff distance of the interacting bubble have drastic effects on the bubble dynamics,
both with regards to the translation of the bubble and the jet direction (Brujan et al.
2001a,b). Indeed in some cases horizontal bubble splitting is observed, resulting in
very slender high-speed jets forming in opposing directions. This potentially has a
significant impact on membrane permeation, and explains the significant maximum
bubble radius to jet width ratio of 60:1 observed in the experiment shown in figure 1.

Recent numerical investigations using the boundary integral method by Klaseboer &
Khoo (2004a,b) accounting for these interfacial properties have shown qualitative
agreement with such experiments. In their simulations, it was assumed that the
jump in tangential velocities across the fluid–fluid interface was sufficiently small
to be neglected from the dynamic boundary conditions, with marginal discrepancies
observed in their test cases. The procedure employed depended upon a geometrical
argument valid for a single bubble in an infinite fluid, utilizing the trivial density
ratio of 1. This allowed for the interfacial potential in the cavitated fluid to be found
independently of the normal velocity of the two-fluid interface, by equating various
aspects of the coefficient matrices. Elastic effects were also investigated by means of
a modification to the pressure in the fluid not containing the cavitation, and hence
a modification to the dynamic condition on the liquid–liquid boundary (Klaseboer
& Khoo 2004b). This showed marked differences to the case where no elasticity
is present, allowing for the aforementioned bubble splitting to be observed. Further
investigations using this implementation have researched acoustically driven bubble
behaviour at subatmospheric pressure amplitudes near an interface given realistic
biological parameters, demonstrating some of the shapes the bubbles may attain during
pre-toroidal motions (Fong et al. 2006). As in the experiments near-elastic interfaces,
these simulations have shown bubble motion and jet direction to both be affected by
the properties of the material. Prior to the research contained herein, however, toroidal
effects have not been investigated in this context.

Coupled boundary-integral/finite-element numerical implementations have recently
been developed to account for elastic boundaries near bubbles. Miao & Gracewski
(2008) used this to simulate linearly elastic axisymmetric interactions, both of a bubble
near an infinite elastic surface and a bubble confined in an elastic tube. The results
for the infinite plate were in agreement with the experiments of Brujan et al. (2001a),
and the tube encapsulated simulations have shown the generation of ellipsoidal bubbles
and consequent perpendicular pinching behaviour. The limitation of the axisymmetric
geometry however did not permit off-centre interactions, as the development of jets
towards the tube walls was impossible. Three-dimensional interactions with a toroidal
bubble and an elastic plate have also been simulated by Klaseboer et al. (2005) in
the context of an underwater explosion, using a boundary integral/vortex ring method
for the fluid dynamics coupled with a finite-element model for the plate. This was
successful in capturing the plastic deformations to a steel plate caused by the dynamics
associated with a collapsing explosion bubble.

This paper examines the non-spherical behaviour of ultrasound activated
microbubbles, directly relevant to the new biomedical procedure sonoporation. The
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FIGURE 3. The axisymmetric geometry used to model the interaction of a bubble with a
density interface near a solid boundary.

influence of a tension laden membrane boundary is investigated using practical
density ratios, showing significant deviations in bubble shape from the spherical mode.
Moreover, the influence of a solid backing to a cell layer is investigated, and has
demonstrated new phenomena. These include the peeling of the cell layer by the
re-expanding toroidal bubble when the cell layer depth is sufficiently less than the
maximum bubble radius, as well as the injection behaviour generated by smaller
bubbles under high driving frequencies near thicker layers. It is clearly demonstrated
that the jet may cause significant damage to the cell layer, implying that the targeting
of cells for transfection using ultrasound activated contrast agents should include the
expected non-spherical behaviour after jet impact has occurred.

2. Mathematical model
In this paper we are interested in the dynamics of bubbles near a tissue layer due to

ultrasonic forcing. Thus, we have to slightly modify the mathematical model presented
in Curtiss et al. (2013) which considered the dynamics of bubbles with a constant
pressure in the far field. Briefly, the problem we are considering is sketched in figure 3
with a layer of fluid of density ρ1 underlying a layer of fluid of density ρ2 with
ρ2 6 ρ1. We assume axisymmetric cylindrical coordinates (r, z) as indicated. Initially
the density interface is flat and is located at z= 0. In the rigid backing simulations we
place a solid boundary at z= H so that fluid 2 is of finite depth. Alternatively, we can
choose to put a solid boundary at z = −H so that fluid 1 is of finite depth. In either
case we will only consider situations where there is one bubble which is located in the
fluid of infinite depth. The formulation below is for the case when fluid 2 is of finite
depth.
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As in Curtiss et al. (2013) we assume that in each layer the fluid is inviscid,
incompressible and irrotational. Thus, the velocity field in each fluid layer can be
written as the gradient of a potential with

ui =∇φi (2.1)

for i= 1, 2 where

∇ ·ui =∇2φi = 0 (2.2)

and

∇ × ui = 0. (2.3)

We consider the case of a single bubble located in the lower layer. The bubble
is initially spherical and its centroid is a distance zc below the density interface.
For the micrometre-sized bubbles which are of interest for biomedical applications
gravitational effects can be ignored. Thus in each fluid layer we can write Bernoulli’s
equation to give

∂φi

∂t
+ |ui|2

2
+ p

ρi
= p∞
ρi

(2.4)

where t is time, p is pressure and p∞ is the far-field pressure. The acoustic wave is
modelled through a time-dependent pressure term from the far field with

p∞(z, t)= p̄∞ + p̃∞ sin(kz− ωt) (2.5)

where p̄∞ is the background pressure at infinity, p̃∞ is the amplitude of the acoustic
forcing, and k = 2πfc−1 and ω = 2πf are the wavenumber and radial frequency given
the speed of sound of the liquid c and the frequency of the wave f .

We note here that a travelling pressure wave will cause fluid motion in the z
direction. The behaviour of any cavitation bubbles will also be affected by their
location with respect to the pressure peaks and troughs. In this work however the
magnitude of this motion is assumed to be negligible in comparison to the motion
induced by the expanding cavity. Hence, in all cases here, a standing wave is used
as opposed to a travelling wave. Whilst this is certainly expected to be valid near
a rigid boundary due to wave reflection, it is not necessarily realistic in free field
environments. It makes little difference however as the typical wavelength is at least
an order of magnitude greater than the length scale on which the bubbles oscillate.
For example, a wave with frequency 0.2 MHz and peak pressure 1.4 MPa will have a
wavelength of approximately 7000 µm in water, and will cause a spherical cavitation
bubble initially at equilibrium with a radius of 2.5 µm to grow to approximately
75 µm. In addition, the focus of this work is on the inertial effects of the cavitation
bubbles, which in the situations envisaged here will most likely dominate. More
violent shockwave interactions are beyond the scope of this work, although various
methods have been developed to incorporate them into boundary integral simulations
(Calvisi, Iloreta & Szeri 2008).

Our analysis now follows directly from Curtiss et al. (2013) except that we note
that the p∞ term in our Bernoulli equations is given by (2.5). We proceed by non-
dimensionalizing our equations as detailed in table 1: we use the density of the lower
layer, ρ1, for density; the difference in the far-field pressure and the condensible
gas vapour pressure, 1p = p̄∞ − pv, for pressure; the maximum radius a bubble
would reach in an infinite fluid of density ρ1, Rmax for length; Rmax(ρ1/1p)1/2 for
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(r̄, θ, z̄)=(
r

Rmax
, θ,

z

Rmax

) The non-dimensional cylindrical coordinate system.

1p = p̄∞ − pv The dimensional pressure difference between the far-field and
bubble vapour pressures.

t̄ = t

Rmax

√
1p

ρ1
The non-dimensional time scale.

h= |z̄c(t̄ = 0)| = |zc|
Rmax

The dimensionless standoff distance h, corresponding to the
ratio of the absolute value of the initial vertical bubble
centroid z̄c to Rmax .

φ̄i = φiRmax

√
ρ1

1p
The non-dimensional potential in layer i.

ρ = ρ2

ρ1
The ratio of liquid densities.

ε = p0

1p
The non-dimensional strength parameter.

ε̃ = p̃∞
1p

The non-dimensional amplitude of the acoustic forcing.

δ = ρ1gRmax

1p
The buoyancy parameter.

σ̄b = σb

Rmax1p
The surface tension along a bubble surface.

σ̄I = σI

Rmax1p
The surface tension along the density interface.

TABLE 1. Dimensional and non-dimensional parameters and variables. The
non-dimensional parameters are indicated by an overbar when ambiguity arises.

time; (1p/ρ1)
1/2/Rmax for potential; Rmax1p for surface tension. The length scale Rmax

is the maximum radius a bubble initially in equilibrium would attain in an infinite
ambient subject to the imposed acoustic wave. An important parameter in bubble
dynamics is the standoff distance, h, which is the dimensionless ratio of the initial
vertical displacement of a bubble centroid zc from a boundary to Rmax defined as
h= |zc|/Rmax . Using these scales the dimensionless evolution equation for φ1 along the
surface of the bubble in fluid 1 is given by

Dφ1

Dt
= |u1|2

2
+ 1− ε

(
V

V0

)γ
+ σb∇ ·nb + ε̃ sin(kz− ωt). (2.6)

Along the fluid–fluid interface we define

F = (φ1 + φ2)(1− ρ)+ (φ1 − φ2)(1+ ρ) (2.7)

where ρ = ρ2/ρ1. The evolution equation for F satisfies

DF

Dt
= (1− ρ)u1 ·u2 + 2σI∇ ·n. (2.8)

At time t = 0 we assume that both fluid layers are motionless and that the bubble in
layer 1 has an initial radius of R0 and that it is in equilibrium with a constant far-field
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pressure p̄∞. This requires that

ε = P0

1p
= 1+ 2σb

R01p
(2.9)

where P0 is the partial pressure of the incondensible gas within the bubble at time
t = 0.

3. Numerical implementation
Since we have potential flow in each fluid layer with ∇2φi = 0 for i = 1, 2 we

base our numerical approach on the boundary integral method by using Green’s
function as will be detailed below. This allows us to examine the full flow field in
our whole domain of interest by calculating the values of our potentials and their
normal derivatives along the various bubble surfaces and the fluid–fluid interface. This
reduces a fully three-dimensional problem to a two-dimensional problem. As noted in
figure 3 we assume that the flow is axisymmetric. Therefore, a further reduction in
complexity is gained, as the evaluation of the required Green’s functions is reduced to
the evaluation of complete elliptic integrals and the integration of the resultant kernels
along curves parameterized by one variable.

We discretize our system by placing a finite number of nodes on our bubble surfaces
and on the fluid–fluid interface with b representing a node on a bubble in fluid 1 and p
representing a node on the fluid–fluid interface. The bubble surface and the fluid–fluid
interface are then represented using quintic splines parameterized with respect to
arclength with points c and q representing the interpolated values between nodes. The
nodal points are advected according to

db
dt
= u1(b),

dp
dt
= (u1(p)+ u2(p))/2. (3.1)

When combined, equations (2.6)–(3.1) model the time evolution of our flow once we
have determined our velocities u1 and u2. As detailed in Curtiss et al. (2013) these
velocities are determined using the boundary integral method.

In particular in fluid 1 we have ∇2φ1 = 0 in domain D1 with boundary δD1. Thus

c(x0)φ1(x0)=
∫
∂D1

(
G(x0, x)

∂φ1(x)
∂n

− φ1(x)
∂G(x0, x)

∂n

)
dS (3.2)

where G(x0, x) is the free-space Green’s function 1/|x − x0| and ∂G(x0, x)/∂n is the
normal derivative of the Green’s function with respect to the outward normal of the
fluid domain. All surfaces are smooth due to the spline interpolation, and as such all
of the collocation coefficients are given as

c(x0 ∈ D1\∂D1)= 4π, (3.3)
c(x0 ∈ ∂D1)= 2π. (3.4)

Note that ∂D1 includes the surfaces of the bubble in layer 1 and the fluid–fluid
interface.

In the case where fluid 2 is of infinite depth (i.e. no solid boundary) the integral
equation for φ2 is identical to (3.2) with the subscript 1 everywhere replaced with a 2.
When the solid boundary is present in fluid 2 we must modify our Green’s function
approach by defining an image point system with

G2(x0, x)= G(x0, x)+ Gim(x0, x) (3.5)
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where

Gim(x0, x)= 1
|x0 − (2Hez − x)| (3.6)

and ez is the unit vector in the z direction of our cylindrical coordinate system. Thus,
in fluid 2 we write

c(x0)φ2(x0)=
∫
∂D2

(
G2(x0, x)

∂φ2(x)
∂n

− φ2(x)
∂G2(x0, x)

∂n

)
dS. (3.7)

Observe that ∂G2/∂n = ∂φ2/∂n = 0 along the solid boundary at z = H. Hence, the
surface integral in (3.7) is only evaluated along the density interface.

The procedures for discretizing (3.2) and (3.7) are detailed in Curtiss et al. (2013).
For the case of a solid boundary in backing layer 2 and a pre-toroidal bubble in layer
1, the resultant equations are

Gbc −Gbq
ρ

1+ ρDGbq

Gpc Gim
pq

ρ − 1
ρ + 1

DGpq − 2πIpq − DGim
pq

1
1+ ρ

Gpc −2Gpq − Gim
pq DGpq + 2π

1− ρ
1+ ρ Ipq + DGim

pq

1
1+ ρ




∂φ1(b)

∂n1
∂φ2(p)

∂n1
φ1(p)+ φ2(p)



=


2πIbc + DGbc

−1
2+ 2ρ

DGbq Gbq

DGpc
−1

1+ ρDGpq − 1
2(1+ ρ)DGim

pq Gpq

DGpc 2π
1

1+ ρ Ipq + 1
2(1+ ρ)DGim

pq Gpq


φ1(b)
φ2(p)
F(p)

 . (3.8)

Here G refers to the discretized Green’s function, DG refers to the discretized normal
derivative of the Green’s function and the block matrix structure and the subscripts
indicate the bubble/bubble, bubble/interface and interface/interface contributions to the
boundary integrals.

At each time step we can determine our nodal velocities by inverting (3.8) for
the case of a solid backing plate (or the corresponding system given by Curtiss
et al. (2013) for the case of no solid backing). Matrix inversion is done directly
and without preconditioning. The relatively small number of nodes (at most 400 in
these simulations) makes this viable. We can then integrate (2.6), (2.8) and (3.1) to
update our nodal positions and potentials with respect to time. In practice fourth-order
Runge–Kutta time stepping is used when the bubble dynamics are evolving rapidly.
During relatively slow phases of the bubble dynamics second-order Runge–Kutta time
stepping or even explicit Euler time stepping is used. The time step dt is adaptable,
and is taken as a constant 1φ divided by the absolute maximum potential change
on any bubble surface, or the absolute maximum change in the quantity F on the
two-fluid interface. It should be noted that the incorporation of a vortex ring in the
solid backing case to model toroidal bubbles follows directly from the procedure
detailed by Curtiss et al. (2013) which is not repeated here.

Initial conditions
In this paper we consider the ultrasonic forcing of UCA bubbles. Dimensionally, we
assume that our bubble is initially of radius R0 = 2.5 µm and that it is in equilibrium
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FIGURE 4. The effect of increasing the membrane tension through two non-dimensional
orders of magnitude. The collapse phase for h = 0.7 is shown in each image at various
different times: σ1 = 0.01; σ1 = 0.1; σ1 = 1.

with the mean background pressure p̄. We then use the Rayleigh–Plesset equation
(equation (3.16) in Curtiss et al. (2013)) to determine the maximum radius that our
bubble would obtain in an infinite fluid subject to the pressure forcing given by (2.5).
This procedure gives us the value of Rmax which is used in our non-dimensionalization.
The values of surface tension along the bubble and the fluid–fluid interface are chosen
to be typical of the biomedical applications of interest with the value of the density
ratio ρ close to unity.

4. Membrane effects
We begin by investigating the effect of a membrane separating two types of tissue

in the absence of a rigid backing plate. In this study various non-dimensional tension
parameters are investigated, as the membrane tension present in biological structures
may vary greatly.

To begin with consideration is given to the case ρ = 1. The effect of varying
surface tension along the membrane through two orders of magnitude is investigated,
with the standoff distance taken at the submaximum radius distance h = 0.7. The
oscillatory far-field pressure term is given as p̃∞ = 1 MPa with the driving frequency
given as 0.2 MHz. This provides a maximum bubble radius of approximately 60 µm,
with a collapse time of approximately 6 µs. Figure 4 shows the collapse from
maximum volume with the non-dimensional interfacial tension varying through two
orders of magnitude, σI ∈ {0.01, 0.1, 1}. These values correspond dimensionally to
tensions of 6σI N m−1. In the first case, the behaviour remains predominantly spherical
throughout the collapse, implying this tension value promotes very little deviation from
the tension-free case. For σI = 0.1 one sees non-spherical perturbations in the late
collapse stage, resulting in an inverted mushroom-shaped bubble. Further increasing
the tension to σI = 1 leads to the earlier onset of this disturbance, with mushroom
shaping beginning shortly after maximum volume. The effect on the membrane is also
clearly visible. The initial collapse of the bubble in collaboration with the membrane
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FIGURE 5. The Effect of standoff distance on membrane effects with a 2.5 µm bubble, driven
by a standing acoustic wave with maximum amplitude 1 MPa and frequency 0.2 MHz, with
the membrane tension of σI = 1: (a) h= 0.5, (b) h= 1; (c) h= 1.5.

tension drags the centre of the membrane downward, ending roughly 0.2 maximum
bubble radii away from its rest position.

We now investigate the effect of standoff distance on this membrane behaviour,
fixing the tension as σI = 1. This is shown in figure 5 for the standoff distances
h ∈ {0.5, 1, 1.5}. At the greatest of these, h = 1.5, the membrane effect is heavily
diminished. The bubble remains almost spherical throughout, developing only slight
perturbations toward the end of the collapse. The membrane itself returns to a near-flat
position at the end of the oscillation. Such behaviour is very different from what we
observed when varying the density ratio in Leppinen et al. (2011), where for all of
the values of ρ tested at this standoff distance distinctive jetting was seen to occur.
Decreasing the standoff distance by half a maximum bubble radius to h = 1, induces
more significant perturbations. During the collapse phase there is some flattening of
the near side of the cavity, which results in the development of a mushroom-shaped
bubble. Late in the collapse a further indentation forms on the nearer side of the
bubble to the interface. The interface is more heavily perturbed, with a downward
hump formed through the rebound from the earlier peak deformation. At the close
standoff distance h = 0.5 very significant differences become apparent. The bubble
expansion is retarded by the membrane, resulting in a flatter surface hump. Upon
collapse, the interface remains close to the bubble. The two surfaces are however
separated by a thin layer of fluid, and in this potential model do not come into
contact. The bubble forms a horizontal indentation near to the interface, resulting in
the severe shape perturbation at a large volume. The proximity of the rebounding
interface forces the top of the bubble into a concave shape. A second indentation
forms in a more horizontal direction and grows vertically along the edge of the bubble.
This is unlike any of the behaviour yet seen in this work. It is however reminiscent
of the experimental results in Brujan et al. (2001a,b) of laser bubble behaviour near
an elastic boundary, and in qualitative agreement with the numerical and experimental
result of Turangan et al. (2006), using high-pressure spark-generated bubbles near a
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FIGURE 6. Experimental behaviour near a thin elastic membrane submerged in water with
a tension of 43.6 N m−1, for standoff distances h = 0.55 (a) and h = 0.7 (b) taken from
Turangan et al. (2006). The bubbles are formed through spark discharge, with a maximum
radius Rmax ≈ 3.3 mm.
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FIGURE 7. Bubble and surface shapes associated with acoustic driving with a frequency
of 0.2 MHz, and a peak pressure of p̃∞ = 1.4 MPa, with unit non-dimensional membrane
tension: (a) ρ = 0.6; (b) ρ = 0.8; (c) ρ = 1.2; (d) ρ = 1.4.

thin elastic membrane with a tension of 43.6 N m−1. Some examples from the latter
are shown in figure 6, for bubbles initiated at standoff distances of h = 0.55 and
h= 0.7.

It is also important to investigate whether the membrane can affect the dynamics
associated with the variation of the density ratio. In particular, it is of significant
interest as to whether the direction of any bubble jetting induced by the density
variation will be affected. Figure 7 contains four simulations for the density ratios
ρ ∈ {0.6, 0.8, 1.2, 1.4}, with the fluid–fluid interface supporting unit non-dimensional
tension. For the subunity density ratios, one still observes the repulsive effect of the
density discontinuity. In each case a very broad downward jet forms, which results
in a non-axial impact. This is in stark contrast to the equal fluid case, where no jet
formation is seen at a comparable time. The interface itself rebounds heavily in both
cases, ending approximately 25 µm from the initial location. This is in good agreement
with the deflection observed for the unity density case.

The cases where ρ > 1 still show attraction toward the denser layer. The associated
bubble dynamics illustrate the formation of an indentation on the near side of the
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bubble, giving the cavity a distinctive mushroom shape. The presence of the density
jump then causes the larger far side of the bubble to collapse inwards as in the
close standoff simulations presented by Leppinen et al. (2011), which results in a
fatter region near the interface. This is the opposite of the behaviour observed for
ρ = 1 at this standoff distance. The interface behaves in a similar manner to the
previous simulations, with a significant rebound toward the bubble. This may itself
act as an accelerant to the subsequent jetting behaviour, which is still directed toward
the interface. This is clearly seen for the case ρ = 1.4, the density of cornea (Fong
et al. 2006). The force of the impacting liquid jet is also sufficient to deflect the
rebounded membrane, which will lead to further elastic wave propagation along the
interface. This is significant for cell permeation techniques, as it shows the rebound of
the membrane is not necessarily sufficient to reverse the jet direction, and may in fact
enhance the damaging mechanism further.

5. The influence of rigid backing
The interaction of a bubble with a density interface can be significantly altered by

the surrounding geometry. Here, we introduce a backing solid behind the second liquid
layer. One may envision this as a model for sonoporation near a cell layer attached
to a bone. Furthermore, this is indeed the situation in many in vitro experiments
where a solid plate is used to mount a specimen, as in the investigations of Prentice
et al. (2005) into UCA-assisted sonoporation, for example. In vivo there may be
microcavities present inside the cell layer, which will be activated by the pressure
fluctuation. However, these are assumed to be inconsequential in comparison with the
dynamics induced by the primary UCAs. This assumption is made, as the necessary
contaminant gas pockets are likely to be on the order of nanometres, whereas the
UCAs are on the order of micrometres and so will expand to a significantly larger
size.

5.1. Membrane peeling at submegahertz frequencies
A particularly interesting feature discovered in this research is the removal of the
‘tissue’, or ‘cell’, layer from the substrate through the toroidal action and re-expansion
of the cavitation bubble or UCA. This behaviour is referred to here as membrane
peeling.

To begin one examines the system governed by ρ = 1, under the influence of
an acoustic wave with a frequency of 0.2 MHz and a maximum amplitude of
p̃∞ = 1.4 MPa. The rigid boundary is located at a dimensional distance of H = 25 µm
from the two-fluid interface, roughly corresponding to a non-dimensional distance of
0.34 maximum bubble radii. The tension on the interfaces is of low order, and so it
will not significantly affect the simulation. The model therefore is very close to the
collapse of a bubble in an infinite fluid near to a rigid boundary, albeit in the presence
of a membrane with little tension. Figure 8 shows the associated bubble behaviour as
the standoff distance is varied through h ∈ {0.5, 0.75, 1, 1.25} during the later stages
of collapse, and the complete simulation of the case h = 0.75 is shown in figure 9
for clarity. For the larger standoff distance, one observes the formation and expansion
of the bubble toroid, resulting in the forward lobe. This is seen to close at the tip as
the bubble continues to evolve. At the closer standoff distances, the toroidal bubble
interacts with the wall, resulting in the forward lobes being forced outward radially.
Consequently, the bubble jet will not pinch off as rapidly as the bubble re-expands.
The fluid–fluid interface in these cases is initially compressed against the wall in the
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FIGURE 8. Toroidal bubble action near a cell layer of depth H = 25 µm and relative density
ρ = 1, due to a 2.5 µm microcavity excited by an acoustic wave with a frequency of 0.2 MHz
and a maximum amplitude of p̃∞ = 1.4 MPa: (a) t = 6.3002; (b) t = 6.5001; (c) t = 6.65;
(d) t = 6.8009; (e) t = 7.0006; (f ) t = 7.3012; (g) t = 7.4005; (h) t = 7.4301. Bubble
initiation is at h= 0.5 (solid), h= 0.75 (dashed), h= 1 (dot-dashed) and h= 1.25 (dotted).
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FIGURE 9. The lifetime of a bubble initiated at h≈ 50 µm to a cell layer of depth H = 25 µm
and relative density ρ = 1: (a) t = 1.0018; (b) t = 2.0184; (c) t = 3.0059; (d) t = 4.0071;
(e) t = 5.0215; (f ) t = 6.0007; (g) t = 7.0012; (h) t = 7.4005. The bubble is activated by an
ultrasound wave with a frequency of 0.2 MHz, and a maximum pressure of p̃∞ = 1.4 MPa.

region directly below the mouth of the liquid jet. The re-expansion of the forward
toroidal lobes then cuts underneath the interface, lifting the fluid in the second layer
away from the substrate. It is this interaction that one describes as membrane peeling.

This presents a significant new mechanism for tissue damage. Circumstantial
evidence may be visible in the cornea specimen micrograph in figure 1 created
by Vogel et al. (1990). Here a large area with a radius of approximately 100 µm
surrounding the jet impact location has been scraped away. Previous work has
postulated that this is due to the shear stress caused by the high fluid velocity beneath
the bubble. This membrane peeling may however provide an additional mechanism,
associated with the re-expansion of the toroidal bubble.

Varying the membrane tension may provide a better approximation to a biological
tissue. Importantly, it will show whether the bulk fluid motion is a result of the
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FIGURE 10. Shapes from the simulation of a bubble driven by an acoustic wave with
frequency 0.2 MHz and peak pressure p̃∞ = 1 MPa: (a) t = 2.5045 µs; (b) t = 5.0254 µs;
(c) t = 5.7002 µs; (d) t = 5.8002 µs; (e) t = 5.9 µs; (f ) t = 6.0001 µs; (g) t = 6.1004 µs;
(h) t = 6.2006 µs; (i) t = 6.2013 µs. The parameters of the flow field are H = 25 µm, ρ = 1
and h= 1≈ 60 µm. The membrane has zero interfacial tension, σI = 0.

inclusion of the rigid boundary, or the influence of the membrane. Figures 10
and 11 show simulations using a 0.2 MHz acoustic wave with maximum amplitude
p̃∞ = 1 MPa at a standoff distance of h = 1 ≈ 60 µm. The surface tension on the
bubble surfaces is σb = 0.00165 to model the effect of a UCA, and the membrane
tensions used are σI = 0, 1 respectively. The backing plate is again located at
H = 25 µm dimensionally. The shapes in the zero tension case naturally agrees with a
single layer of fluid with h≈ 1.35, as did the simulation shown in figure 9. The bubble
toroid forms as normal, with the advancing jet and lobe forcing the interface against
the backing plate. The inclusion of unit membrane tension significantly inhibits this
behaviour. The rebounded interface causes the near-boundary side of the interface to
flatten in comparison to the rounded shape observed in its absence. The bubble forms
a jet directed toward the interface, in contrast to the behaviour of a bubble near a
floating membrane with the same tension. As the toroid forms, the circular disturbance
is initially forced outwards. The jet forms a wide pit in the tissue layer, and the
advancing bubble then slides in along the sides of the pit.

The pressure and velocity fields associated with this injection into the tissue layer
can be seen in figure 12, with the frames taken at dimensional times 5.9 µs, 5.95 µs
and 6.0 µs. Owing to the frequency examined here, these occur roughly 1 µ s after
a complete acoustic cycle. The pressure applied by the sound wave is approximately
−0.95 MPa, approaching the second pressure minimum. The pressures observed near
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FIGURE 11. Shapes from the simulation of a bubble driven by an acoustic wave with
frequency 0.2 MHz and peak pressure p̃∞ = 1 MPa: (a) t = 2.5008 µs; (b) t = 5.0037 µs;
(c) t = 5.6023 µs; (d) t = 5.701 µs; (e) t = 5.8007 s; (f ) t = 5.9006 µs; (g) t = 5.9501 µs;
(h) t = 6.0004 µs; (i) t = 6.0507 µs. The parameters of the flow field are H = 25 µm,
ρ = 1, h= 1≈ 60 µm. The membrane has unit interfacial tension, σI = 1.

the impact zone however far outweigh this, being over 10 MPa just after toroidal
formation, although the pressure inside the second layer falls as the bubble re-expands.
Before the toroidal phase, the liquid in the cell layer is flowing toward the cavitated
layer to some extent, with a somewhat axial direction. After impact, this causes a point
of zero velocity to form on the axis below the jet, which rapidly translates toward the
wall. One then observes the translation of a stagnation point along the rigid boundary,
with fluid forced radially outward by the jet being deflected toward the cavitated layer
by the axially directed flow resultant of the bubble compression. The high pressure
region focused at the impact site also dissipates outwards as the bubble jet continues
to penetrate. These factors force the fluid near the forward bubble lobe to flow upward,
exacerbating the height of the jet pit wall.

As in the floating membrane cases, one seeks to assess the effect of varying the
density ratio. The following simulations were driven by a standing acoustic wave
with peak pressure p̃∞ = 1.4 MPa and a frequency of 0.2 MHz. The cell layer depth
is H = 25 µm, with the standoff distance fixed at h = 1, approximately 73 µm. The
dimensionless bubble surface tension and interfacial tension are σb = 0.01 and σI = 1,
respectively. The bubble surface tension acts to inhibit the leading edge of the toroid
from rejoining, allowing the simulation to proceed further and, hence, to increase the
calculated peeling effects. This is more representative of a UCA than the case with
zero surface tension. The extent of peeling for density ratios ρ ∈ {0.8, 0.9, 1.1, 1.2} is
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FIGURE 12. Pressure and velocity in the cell layer after bubble jet impact has occurred for
p̃∞ = 1 MPa, frequency = 0.2 MHz, H = 25 µm, ρ = 1 and h = 1 ≈ 60 µm. The membrane
has unit interfacial tension. Dimensional times are 5.9 µs (a), 5.95 µs (b) and 6.0 µs (c).

shown in figure 13 for the same time frame. In all cases the under cutting of the cell
layer is visible. The bubble shapes show some variation, although all form the same
general ‘C’ shaped structure in the r, z plane, with the density ratios furthest from
unity showing slightly more peeling. However, this does not appear significant, and so
we conclude that there is little variation in peeling for density ratios close to 1.

5.2. Backed behaviour at 1 MHz
In the previous examples, the submegahertz frequency allowed the cavity to expand
greatly, to a radius much larger than the typical dimensions of a cell. Indeed the
peeling observed in figure 13 was over a region with radius approximately 40 µm,
four times the size of a typical eukaryotic cell, and would have continued significantly
further as the bubble re-expanded. At megahertz frequencies, however, the bubble
expansion is restricted, and as such it is unclear whether the peeling behaviour is
still observed, given that surface tension in particular will have a more significant
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FIGURE 13. Comparison between bubble and interface shapes as ρ is varied near unity under
identical acoustic forcing, surface tension and standoff distances. The depth of the second
layer is dimensionally H = 25 µm.

effect. In addition, with this restricted maximum bubble radius, it is now reasonable to
investigate varying the depth of the cell layer, as the maximum radii is of the order of
the size of a eukaryotic cell.

We consider the case of a UCA bubble with R0 = 2.5 µm and dimensional surface
tension σb = 51 dyn cm−1 representative of a Sonovue UCA (Marmottant et al. 2005).
The bubble is driven by an ultrasonic wave with a frequency of 1 MHz and a peak
pressure 1 MPa. This results in a maximum bubble radius of Rmax = 13.18 µm. A
standoff distance of hdim = 9.881 µm is chosen, corresponding to the non-dimensional
standoff distance h = 0.75. As was seen previously, the density of the cell layer does
not have a significant effect on this phenomena, and as such the density ratio ρ = 1 is
taken. The membrane is loaded with a tension of 0.5 dyn cm−1.

The first simulation in this regime is shown in figures 14 and 15, illustrating the
pre- and post-toroidal phases of the collapse, respectively. The pressure fields in both
graphs do not include the pressure wave, and as such show the pressure exerted by
the collapsing bubble only. The first frame in the pre-toroidal figure is taken near
the maximum radius of the bubble, at the start of the first collapse. Interestingly a
stagnation point is clearly visible along the wall in the second fluid layer, as fluid is
still being forced outwards by the advancing bubble front, whilst the fluid in the far
field is being sucked back in toward the centre. Minimum pressures are around 1 MPa
so the total pressure will be near equilibrium about the bubble, and between the bubble
and the wall. As the collapse continues one observes the removal of the stagnation
point, as the bubble contracts sucking water inward. The inevitable high-pressure
region begins to form behind the bubble and will drive the subsequent jet toward the
cell layer. The interface itself remains similarly disturbed about the axis, whilst it has
recovered toward the initial position elsewhere. As jetting begins, the bubble is rapidly
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FIGURE 14. Speed and velocity (a,c) and pressure (b,d) fields during the pre-toroidal phase
for a UCA undergoing a forcing of p̃∞ = 1MPa at a frequency of 1 MHz, at an initial
standoff distance h= 0.75 and with a rigid wall located at H = 0.42: t = 0.6 (a); t = 0.76 (b);
t = 0.85 (c); t = 0.99 (d). The UCA has surface tension σb = 51 dyn cm−1, whilst the
membrane separating two equal density layers has tension σI = 0.5 dyn cm−1.

moving toward the wall, and as expected liquid is being forced into the jet at high
velocity. Jet tip speeds for this case were of the order of 10 non-dimensional units,
corresponding to ∼100 m s−1 and, thus, subsonic.

At impact, a peak pressure of approximately 40 atmospheres is exerted in the near
vicinity. This acts to accelerate the fluid below the bubble away, and causes a distinct
deformation of the interface. The bubble then begins to expand, and a stagnation
point forms behind the bubble jet. The jet velocity itself is slowed to around 6
non-dimensional units at the fastest point. The high-pressure decreases and becomes
more focused at the axis near the wall, forcing fluid sideways. The forward lobe of the
toroidal bubble expands downward, until the wall prohibits any further advancement.
This acts to prohibit fluid escaping the base of the jet, which re-increases the pressure
at the jet tip to approximately 40 atmospheres. The bubble lobes are forced outward
along the wall, and begin to undercut the separated layer. As the process continues, the
membrane becomes entrained into the fluid pocket between the two bubble lobes. The
pressure drops near the wall as the jet base expands, and a region of higher pressure is
observed to form on the other side of the toroidal bubble in the cell layer. Hence, the
peeling motion is again observed in this parameter regime, albeit at a smaller length
scale than above.
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FIGURE 15. Speed and velocity (a,c) and pressure (b,d) fields during the post-toroidal phase
for a UCA undergoing a forcing of p̃∞ = 1MPa at a frequency of 1 MHz, at an initial standoff
distance h = 0.75 with a rigid wall located at H = 0.42: t = 1.1 (a); t = 1.13 (b); t = 1.16
(c); t = 1.20 (d). The UCA has surface tension σb = 51 dyn cm−1, whilst the membrane
separating two equal density layers has tension σI = 0.5 dyn cm−1.

Decreasing the layer depth creates some distinct differences in the peeling behaviour.
Figures 16 and 17 contain bubble shapes and pressure and velocity fields, respectively,
for the case H = 0.2, with time frames beginning just after jet impact and continuing
through the development of the forward bubble lobe. Impact occurs at a distance of
approximately 0.1 maximum bubble radii from the wall and at half the initial depth of
the second layer. Significantly high pressures are observed about the impact site, of the
order of 100 atmospheres, and well above the driving pressure p̃∞. Jet velocities are in
excess of 12 non-dimensional units about this region, and are rapidly slowed to below
6 by the near-stationary fluid in front of the jet. From the velocity directional arrows,
it can be seen that at this point the bubble is already expanding, with fluid being
forced outward along the lower layer, with the fluid in the primary layer being driven
around the toroid. A stagnation point has formed at approximately 1.2 maximum
bubble radii away from the initial level of the interface, although this appears to have
little effect on the quantity of liquid entering the bubble jet. As time advances 0.2
non-dimensional units, the pressure about the impact point lessens significantly toward
a maximum of 55 atmospheres at the end of the jet next to the rigid boundary. By this
time the interface has been forced flat against the wall over a radius of 0.1 maximum
bubble radii. The velocity of the jet has decreased somewhat, with the rest of the
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FIGURE 16. Bubble shapes during the toroidal phase of a UCA collapse near a backed liquid
layer: (a) t = 1.3801 µs; (b) t = 1.4 µs; (c) t = 1.4202 µs; (d) t = 1.4501 µs. The dimensional
simulation parameters are R0 = 2.5 µm, σb = 51 dyn cm−1, σI = 0.5 dyn cm−1, ρ = 1, p̃∞ =
1 MPa with the acoustic wave driven at a frequency of 1 MHz. The non-dimensional standoff
distance from the interface is h= 0.75, with the depth of the second layer H = 0.2.

field still exhibiting the same flow properties. Advancing time by a further 0.1 non-
dimensional units presents the beginning of the peeling motion. The advanced ring of
the toroidal bubble has been arrested by the presence of the wall and the outer ring jet
has begun to form, forcing fluid upward and toward the central jet. The pressure has
again dropped, with the maximum pressure occurring inside the fluid pocket generated
by the advancing bubble lobe and the wall. Maximum pressure is now approximately
40 atmospheres, still greatly in excess of the driving amplitude. A region of pressure
at ∼20 atmospheres has also formed directly below the secondary jet ring. At the end
of the simulation, the peeling effect can clearly be seen. The forward lobe has forced
the second layer to a near-vertical position as the bubble has further re-expanded.
The pressure now observed has massively increased toward 160 atmospheres on the
outside of the bubble in the lower layer, demonstrating that damage may continue to
be caused well after jet impact. The velocity field also illustrates the rolling motion of
the secondary ring jet about the toroid, with fluid moving upward toward the bubble
centre at a significant velocity. In addition, the stagnation point has also translated
downward to 1 bubble radii above the initial interface position, while the maximum jet
velocity has decreased to 6 non-dimensional units. It would be reasonable to assume
that significant damage would be caused to a tissue layer in this configuration through
inertia alone.

Increasing the cell layer depth generates drastically different behaviour. This is first
demonstrated in figures 18 and 19, containing the pre- and post-jet impact fluid motion
and pressure fields for H = 1.6Rmax . At maximum bubble radius the bubble and flow
field exhibit the usual characteristics. The shape is roughly spherical, with the near
pressure increasing in a uniform radial manner. Toward the wall fluid is naturally
advected away from the axis, although the fluid velocity is near zero. As the bubble
collapses, the classical higher pressure region above the bubble may be seen, with the
fluid moving slightly faster in this region. As the jet forms, one observes the liquid in
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FIGURE 17. Velocity and pressure fields for a bubble as characterized in figure 16, during
the toroidal phase with layer thickness H = 0.2Rmax : t = 1.04 (a); t = 1.06 (b); t = 1.08 (c);
t = 1.11 (d).

the primary layer being driven about the bubble and into the jet, with the formation
of a stagnation point above the bubble at approximately 2.25Rmax . By this point the
bubble centroid has migrated approximately 0.25Rmax toward the interface and the wall,
whilst the interface has returned toward being flat.

The most significant differences occur during the toroidal phase. Firstly, the
pressures around the jet impact site are significantly lower. This is due to the presence
of a much thinner jet, caused in part by the rapid migration of the over bubble
stagnation point to a position of 1, restricting fluid flow into the jet. The increased
depth also allows for the pressure to dissipate more before the wall. As this phase
continues, the advance of the forward lobe is not arrested by the rigid boundary, and
continues to drive the interface downwards as the bubble begins to collapse. The
stagnation point also disappears, allowing more liquid to flow through the toroid. The
advance of the bubble is slowed by the fluid flowing upward in the lower layer due
to the bubble volume compression, and which is itself deflected around the forward
bubble ring. The higher-pressure region about the impact site dissipates greatly, almost
to equilibrium with the surrounding pressures. As the simulation continues, one
observes the fluid in the lower layer flowing around the tip and back in toward
the axis, causing the bubble to pinch and the interface to create an overhang. At the
rear of the bubble a high-pressure ring forms, creating a secondary jetting motion
about a torus. Velocities about this jet are comparably high to the initial jet, being of
magnitude approximately 8. It is reasonable to expect that this ring jet will cause less
damage to the tissue layer than the first, as it is effectively from a smaller bubble. The
tissue layer itself has returned to its initial position over r > 0.6Rmax , a significantly
larger area than achieved in the closer collapses. This type of behaviour may be more
beneficial for drug injection, as less damage to the cell layer appears to have occurred.
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FIGURE 18. Pre-toroidal flow fields for an acoustically driven cavitation bubble with
identical parameters to figure 15, with a rigid wall located at H = 1.6Rmax from the initially
flat interface: t = 0.532 (a); t = 0.95 (b); t = 1.06 (c).

In addition, the forward bubble lobe may break off, with the interface potentially
reforming above it, literally injecting a section of the bubble into the tissue. This is
very different from the thin layer cases, where the section of bubble connecting the
two lobes remained reasonably broad.

Increasing the layer depth further to H = 2.0 maximum bubble radii produces
similar results. One may see this in figure 20 at non-dimensional times t = 1.178,
1.216 and 1.299. The first of these frames occurs after jet impact, with a developed
forward lobe. At this time fluid in the region of the interface is flowing nearly parallel
to it. The pressure spike formed by the jet impact has diminished somewhat, yet is
still clearly visible. The second frame is taken shortly before the over pressure reaches
its maximum. In contrast to the first frame, the fluid flow is now perpendicular to the
interface, and there is a substantial movement of liquid toward the top of the threading
jet. Fluid in the lower layer is still moving away from the bubble, indicating the
bubble is still expanding at this point.
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FIGURE 19. Post-impact flow fields for an acoustically driven cavitation bubble with
identical parameters to figure 15, with a rigid wall located at H = 1.6Rmax from the initially
flat interface: t = 1.14 (a); t = 1.21 (b); t = 1.29 (c); t = 1.33 (d).

The final frame is taken just after the overpressure has reached a maximum, and
as can be clearly seen by the velocity field the bubble is recollapsing. Fluid near
the interface is now flowing parallel to it in the direction of the bubble. A clearly
visible feature is the formation of a hollow hemispherical pressure cap above the jet
mouth, with a maximum pressure and velocity located at about r = 0.4. This will
result in a secondary bubble jet forming from the outer edge of the ring. The bubble
jet itself is still significantly faster than the fluid it is entering into, and a stagnation
point will have formed between the jet and the liquid being forced upward by the
decrease in bubble volume. This will inhibit the advancement of the forward bubble
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FIGURE 20. Toroidal behaviour of an acoustically driven bubble with identical parameters to
figure 15, with the depth of the second fluid layer H = 2.0 maximum bubble radii: t = 1.0 (a);
t = 1.17 (b); t = 1.21 (c); t = 1.29 (d).

lobe into the second fluid layer, which may be of significant benefit in drug-delivery
applications.

5.3. New experimental evidence of peeling
Recently, the peeling phenomena observed for very shallow layer depths has been
potentially been observed experimentally by Tomita et al. (2008). In these experiments,
a backed layer of oil-based ink with a near uniform depth of 3 µm was submerged in a
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FIGURE 21. Experimental evidence of peeling of an oily ink layer by cavitation bubble
interactions (Tomita et al. 2008).

water tank and insonated at 28 kHz. Photographic evidence showed that after treatment
in this way, the grouping of cavitation filaments produced sufficiently large bubble
clusters to remove the ink from the surface. The authors postulate this was due to both
jet impact and a shear flow of water against the solid nickel surface. A photograph
taken of the substrate and oil coating after the experiment is shown in figure 21.

The results presented here illustrate that a different physical mechanism may be
appropriate. As such more detailed experiments should be performed to help identify
the dominant phenomenon.

6. Summary
In this paper we have investigated various aspects of acoustically driven bubble

behaviour relevant to biomedical applications. Membrane interactions have clearly
demonstrated that bubble behaviour may not match that of simple rigid boundaries
or free surfaces. Moreover, they have shown bubble actions to be significantly non-
spherical, although jetting may not occur during the first few oscillations. More
significantly however is the effect of including a backing plate to the second layer,
a commonly used experimental method for examining bubble–cell interactions. This
has shown that the semi-infinite fluid interactions of the type discussed in Leppinen
et al. (2011) can be almost completely dominated by the interaction with the plate. By
coincidence this has also illustrated a new mechanism for tissue damage, the peeling
of the attached layer through the interaction with the re-expanding toroidal bubble. The
occurrence of this phenomena is truly significant, and although the resultant damage
has potentially been experimental realized, as for example the cornea specimen in
figure 1, it would be extremely difficult to identify the mechanism without this
numerical approach used in this paper. Previously, it was assumed that the removal
of tissue about the impact site was due to the high shear rates accompanying the
fluid jet Vogel et al. (1990). While this is no doubt important, the inertial interaction
of the expanding forward bubble lobes provides an additional destructive mechanism.
Moreover, this peeling provides an efficient method for removing unwanted material
layers by literally lifting it off an attached surface, such as removing cholesterol from
the aortic artery.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.341


Ultrasonic cavitation near a tissue layer 271

In terms of sonoporation and gene transfection, the investigation into the cell layer
depth and standoff distance of a UCA has given great insight into the significant
values of these parameters. In particular, the behaviour of a 2.5 µm UCA with similar
characteristics to Sonovue, driven by a high-amplitude acoustic wave with megahertz
frequency, has been investigated in detail. At shallow cell layer depths the peeling
mechanism is observed, and the jetting motion will lead to a sonopore on the length
scale of a cell. This of course will lead to the death of the target cell, although
adjacent cells may in fact be porated through the stresses placed on them by the lifting
mechanism. At cell layer depths greater than one maximum bubble radii, very different
behaviour is observed. The distance from the rigid boundary allows the frontal lobe
to elongate substantially, with the separating membrane being perturbed accordingly.
Moreover, this is followed by the secondary collapse, which may separate the frontal
lobe section away from the rear, physically injecting this section into the tissue layer.
Clearly such an action would be hugely beneficial in transfection, as the damaged
membrane appears to close up behind this potentially DNA enclosing segment. In
addition, with the destruction of the UCA shell in this manner, the gaseous contents
of the bubble are likely to dissolve into the surrounding fluid, and hence the bubble
itself would rapidly disappear. One may therefore anticipate very limited subsequent
collateral damage associated with the continued excitation of the UCA fragments,
which naturally will promote the survival of the transfected cell.
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