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Numerical simulations of the flow developing on the surface of a rotating disk
are presented based on the linearized incompressible Navier–Stokes equations. The
boundary-layer flow is perturbed by an impulsive disturbance within a linear global
framework, and the effect of downstream turbulence is modelled by a damping region
further downstream. In addition to the outward-travelling modes, inward-travelling
disturbances excited at the radial end of the simulated linear region, rend, by the
modelled turbulence are included within the simulations, potentially allowing absolute
instability to develop. During early times the flow shows traditional convective
behaviour, with the total energy slowly decaying in time. However, after the
disturbances have reached rend, the energy evolution reaches a turning point and, if
the location of rend is at a Reynolds number larger than approximately R= 594 (radius
non-dimensionalized by

√
ν/Ω∗, where ν is the kinematic viscosity and Ω∗ is the

rotation rate of the disk), there will be global temporal growth. The global frequency
and mode shape are clearly imposed by the conditions at rend. Our results suggest
that the linearized Ginzburg–Landau model by Healey (J. Fluid Mech., vol. 663,
2010, pp. 148–159) captures the (linear) physics of the developing rotating-disk flow,
showing that there is linear global instability provided the Reynolds number of rend
is sufficiently larger than the critical Reynolds number for the onset of absolute
instability.

Key words: absolute/convective instability, boundary layer stability, rotating flows

1. Introduction
One of the few relatively simple exact similarity solutions of the nonlinear

Navier–Stokes equations can be formulated for the flow developing on a rotating
infinite disk; due to the disk’s rotation, the flow experiences an outward radial force
which accelerates the flow outwards and in turn draws in fluid towards the surface.
The corresponding laminar velocity profiles arising over such a rotating disk are shown
in figure 1 and constitute the solution of the cylindrical Navier–Stokes equations first
formulated by von Kármán (1921). This three-dimensional boundary layer, also
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FIGURE 1. (Colour online) The laminar velocity profiles of the similarity solution for the
flow over a rotating disk. Here, U is the radial velocity component, V is the azimuthal
velocity component and the vertical greyscale lines indicate the amplitude of the wall-
normal velocity component W (white denotes zero velocity). The cylindrical coordinates
are given by r, θ and z, and the rotation rate is defined by Ω . A part of the spectral-
element mesh used is also illustrated, for which more details are given later.

referred to as the von Kármán flow, serves as a model for other three-dimensional
boundary layers due to its simplicity, as shown, for example, by Gregory, Stuart
& Walker (1955). This rotating-disk boundary layer belongs to a family of rotating
flows called, here and elsewhere, the BEK boundary layers, where BEK stands
for Bödewadt, Ekman and von Kármán. Bödewadt (1940) studied the flow over an
infinite stationary plane, where fluid rotated with a uniform angular velocity to an
infinite distance above the plane; Ekman (1905) studied the influence of the Earth’s
rotation on ocean currents, which can be reformulated into a study of the flow over
a rotating disk when the fluid at infinity rotates with almost the same rotation rate
as the disk itself, and, as already mentioned, von Kármán (1921) studied the flow
over a rotating disk when the fluid at infinity approaches a non-rotating condition.
These BEK boundary layers for infinite-radius disks all have an exact solution of the
Navier–Stokes equations for the mean flow.

For the rotating-disk (von Kármán) flow extensive theoretical investigations,
e.g. Malik (1986), Lingwood (1995a), Pier (2003), and experimental studies, e.g.
Wilkinson & Malik (1985), Lingwood (1996), Othman & Corke (2006), Siddiqui
et al. (2013), Imayama, Alfredsson & Lingwood (2014a), have focused on various
aspects of the instability characteristics and laminar–turbulent transition. There have
also been several investigations of the turbulent rotating-disk flow, e.g. Littell & Eaton
(1994), Imayama, Lingwood & Alfredsson (2014b). In the present work, however, we
will restrict investigations to the purely linear regime in order to focus on the global-
stability characteristics of a rotating disk in a domain that is not infinite, in the present
case delimited by a front mimicking the appearance of turbulence further downstream.

Lingwood (1995a) performed a linear stability analysis of the laminar locally
homogeneous base flow and found in her spatio-temporal analysis that there is a
linear absolute instability with a critical Reynolds number (Rc) of 507 (first given
as 510 and then corrected in Lingwood (1997)). The Reynolds number for the
rotating-disk flow is here defined as

R= r∗
√
Ω∗

ν
= r, (1.1)

where ∗ refers to a dimensional quantity, r∗ is the radial position on the disk and√
ν/Ω∗ is the length scale used, where ν is the (dimensional) kinematic viscosity
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of the fluid and Ω∗ is the angular velocity of the disk. The theoretical Rc found
by Lingwood (1995a) for the onset of the absolute instability agrees well with the
experimentally observed location for the onset of nonlinearity, R=502–514 (Lingwood
1996) and R = 510–520 (Imayama, Alfredsson & Lingwood 2013), which indicates
that the absolute instability is indeed relevant to the transition process. This is
particularly interesting since the rotating-disk flow was the first boundary layer found
that exhibited absolutely unstable behaviour, as opposed to, say, flat-plate boundary
layers, which are convectively unstable. In 2003, a direct numerical simulation (DNS)
of the linearized Navier–Stokes equations was reported (Davies & Carpenter 2003),
computing both the local and global flow behaviour. The local behaviour exactly
corresponded to that of Lingwood (1995a), showing an absolute instability above a
critical Reynolds number of Rc = 507. However, the global behaviour was found to
give no evidence of the local absolute instability giving rise to an unstable global
oscillator. It was thus suggested that the rotating-disk boundary layer did not produce
a linear amplified global mode in the same manner as described by Huerre &
Monkewitz (1990). The results of Davies & Carpenter (2003) led to further work to
determine whether their finding of global stability was a consequence of the linear
approximation, and also to determine whether a disk’s finite radius plays a significant
role, e.g. Pier (2003), Othman & Corke (2006), Davies, Thomas & Carpenter (2007),
Healey (2010), Imayama et al. (2013), Pier (2013). Moreover, Thomas & Davies
(2010, 2013) continued to investigate the rotating-disk boundary layer via DNS by
looking at the effects of either suction and injection or, in the latter case, an axial
magnetic field.

For fixed rotation rate, the linear radial variation in Reynolds number leads to
spatial inhomogeneity, which (by analogy with, say, the Blasius boundary layer) is
often called the non-parallel effect despite the similarity solution for the rotating-disk
flow being physically parallel. Considering the previously described linear global
stability, Davies et al. (2007) showed that this stability might occur due to ‘detuning’
arising from the radial variation of the temporal absolute frequency. Thus, Davies
et al. (2007) argued that the non-parallel effects might stabilize the flow, allowing it to
remain globally stable (within a linear framework). However, in effectively creating
an infinite-radius domain, Davies & Carpenter (2003) neglected inward-travelling
disturbances from the outer radial boundary (see their page 299), disturbances that
are fundamental to the absolute instability mechanism (Lingwood 1995a). Healey
(2010) used the linearized Ginzburg–Landau model to reproduce the convective
behaviour, i.e. linear global stability, in an infinite domain similar to Davies &
Carpenter’s (2003) findings. Then, he also modelled the behaviour in a finite domain,
in which the disturbances propagate first through the absolutely unstable region as in
the unbounded case but, on reaching the downstream boundary, an unstable global
mode is excited (shown in his figure 2c). From his findings, Healey (2010) argued
that linear global instability can be created by local absolute instability at the edge of
the disk provided the absolutely unstable region is sufficiently large prior to the edge.

Healey (2010) also investigated the effect of nonlinearity using a simple model and
found a (supercritical) nonlinear front appearing at the onset of absolute instability
when the disk edge was far from the front itself. He also found that when the disk
edge approaches Rc the onset of absolute instability moves radially outwards, i.e. the
proximity of the edge stabilizes the flow. Experiments by Imayama et al. (2013),
however, showed no obvious variation in the transition Reynolds number due to the
proximity of the edge of the disk, although Pier (2013) found in his experiments
that the edge of the disk acted as a strong source of fluctuations and suggested that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.2


Global linear instability of the rotating-disk flow 615

the nonlinear results of Healey (2010) and Imayama et al. (2013) could align if a
downstream boundary condition could be modelled such that it acted as a source of
random noise.

Earlier work by Pier (Pier & Huerre 2001; Pier 2003, 2007) has extensively
discussed the nonlinear-stability behaviour of the flow over a rotating disk and routes
to turbulence. These latter studies (the latest undertaken within a context where the
rotating-disk flow was thought to be linearly globally stable) predict a (sub-critical)
nonlinear so-called ‘elephant’ global mode characterized by a stationary front located
at Rc, which saturates and is itself absolutely unstable to secondary instabilities, as
has more recently been found in the DNS by Viaud, Serre & Chomaz (2011) in an
open rotating cavity.

In the current study, the linear DNS results presented by Davies & Carpenter (2003)
are reproduced using a different numerical method and extended to longer integration
times. Of particular interest is the behaviour of the flow in a non-infinite domain,
e.g. in the case when downstream turbulence needs to be considered. In contrast to
Davies & Carpenter (2003), we do not neglect inward-travelling disturbances from
the outer boundary, or in our case from the downstream turbulence, which allows us
to study the upstream effect of the outer nonlinear region of the flow on the linear
global-instability properties of the rotating-disk system; our work can therefore be
compared with the work presented by Healey (2010).

This paper is organized as follows. In § 2 the set-up of the simulations used
within this study is described in terms of the mesh, boundary conditions and initial
disturbance. Results are presented in § 3 from various simulations, and a discussion
of these results is also included. To close, § 4 provides a summary and conclusions.

2. Method
Our simulations are performed with the massively parallel code Nek5000 (Fischer,

Lottes & Kerkemeier 2012). The code Nek5000 solves the incompressible Navier–
Stokes equations via a Legendre polynomial-based spectral-element method (SEM).
The SEM was introduced by Patera (1984) and combines the geometrical flexibility
of finite-element methods with the accuracy of spectral methods. The orthogonal
basis of Legendre polynomials up to degree N is used within each element, where
N = 7 in our study to optimize both resolution and computation time. The solution
to the Navier–Stokes equations is then approximated as an expansion of Lagrange
interpolants. The pressure is expanded in polynomials of order N, as in the standard
PN–PN method (Maday & Patera 1989). Between the various elements, C0 continuity
is maintained, meaning that the values correspond at the element borders whereas the
derivatives may be discontinuous. However, the difference in the derivatives decreases
spectrally fast. The temporal discretization scheme BDF/EXT of second order is used
(Ho 1989), based on operator splitting, where the nonlinear convective terms are
treated explicitly via a projection scheme, and the viscous and divergence operators
are treated implicitly (Deville, Fischer & Mund 2002).

The code Nek5000 is optimized for MPI-based (message passing interface) usage
on supercomputers (Tufo & Fischer 2001), and all linear simulations in the present
work were performed on 528 cores; the nonlinear simulation was performed on 2112
cores.

2.1. Governing equations
One nonlinear simulation was run to verify the behaviour of our radial outer
boundary condition for the linear simulations, a so-called ‘sponge region’. The
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full Navier–Stokes equations were then solved within the Nek5000 code,

∂Ux

∂t
+Ux · ∇Ux =−∇p+ 1

R
∇2Ux + f x. (2.1)

The nonlinear terms can be turned off so that the code is run in only a linear fashion.
This is the approach taken for our linear simulations presented here. The flow then
consists of a base flow and a perturbation on top of this flow. The von Kármán
similarity solutions were used as base-flow components (U = (U,V,W)). The Navier–
Stokes perturbation equations, which Nek5000 was used to solve, are

∂ux

∂t
+Ux · ∇ux + ux · ∇Ux =−∇p+ 1

R
∇2ux + f x (2.2)

together with the continuity equation

∇ · ux = 0, (2.3)

where ux = (ux, uy,w) are the perturbation velocities in Cartesian coordinates, p is the
pressure and f x is a forcing term used in connection with the initial disturbance and
sponge regions used together with the radial boundary conditions. The von Kármán
base flow is translated to Cartesian coordinates (U→ Ux) before entering Nek5000,
and when the simulations are finished, the perturbation velocities are translated to
cylindrical coordinates for further analysis (ux→ u).

For the case of the rotating-disk flow, the non-dimensionalizing perturbation velocity,
pressure and time scales are r∗Ω∗, ρr∗2Ω∗2 and L∗/(Ω∗r∗) respectively. Here, ρ is the
dimensional density. The time scale within Nek5000 is then such that t corresponds
to the number of radians through which the disk has rotated. Here, T = t/(2π) is also
used as the number of full rotations of the disk.

2.2. Mesh
The spectral-element mesh used for the current simulations is schematically illustrated
in figure 1. Even though the simulations are defined on a segment of an annulus, the
solver itself is based on Cartesian coordinates. The angle of the domain is 2π/68,
where 68 is chosen as this is the azimuthal wavenumber at the onset of local absolute
instability. More details on the spectral mesh can be found in tables 1 and 2 for the
linear and nonlinear simulations respectively. In particular, in the radial direction the
physical domain extends from a position rs = 400 to rd, which is the outer radial
boundary of the domain and depends on the simulation. The ratio r1θ/1r of an
element is 0.85 for the spectral mesh of the linear simulations at the inner part and
increases outwards with the maximum ratio for a simulation presented in this paper of
1.77 (rd=830). In the wall-normal, or z, direction the elements are stretched according
to

zn =
n∑

i=1

1zsi−1, (2.4)

where s is the stretching factor, zn is the coordinate at position n above the wall
and z1 =1z is the height of the spectral element closest to the wall. For our linear
simulations 1z = 0.2 with 20 elements taken to a height of z = 20.5 with s = 1.15.
Table 3 gives further details for the various linear simulations made, including the
number of elements used in the radial direction (Nr) together with the total number of
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r= [400 rd] Nr = [71 109] 1r= 4
θ = [0 2π/68] Nθ = 11 1θ = 2π/(68 ·Nθ )

z= [0 20.5] Nz = 20 1z= 0.2, s= 1.15

TABLE 1. Summary of the spectral-element mesh for the linear simulations in terms of
size of the domain [min max], number of spectral elements (Nr, Nθ and Nz in the r, θ and
z directions respectively) and resolution of the spectral elements in the radial, azimuthal
and wall-normal directions.

r= [400 rd = 780] Nr = 191 1r= 2
θ = [0 2π/68] Nθ = 31 1θ = 2π/(68 ·Nθ )

z= [0 49.3] Nz = 31 1z= 0.4, s= 1.08

TABLE 2. Summary of the spectral-element mesh for the nonlinear simulation, again in
terms of size of the domain [min max], number of spectral elements (Nr, Nθ and Nz in
the r, θ and z directions respectively) and resolution of the spectral elements in the radial,
azimuthal and wall-normal directions.

r01 r02 r03 r04 r05

rd 680 730 730 780 830
rend 556 605 605 655 705
rex 490 490 530 490 490
Nr 71 84 84 96 109

No. of spectral elements 15 620 18 480 18 480 21 120 23 980

TABLE 3. Summary of the parameters for the linear simulations. The radial outer boundary
of the domain is indicated by rd, inward of this there is a sponge stretching for 1r= 100
for all cases. From figure 5(b), the value of rend was estimated as the outer radial position
inward of which the impact of the annular-sponge boundary condition could be neglected,
i.e. approximately 1r= 125 less than rd. The location of the initial impulsive disturbance
is rex, and Nr is the number of elements in the r direction.

spectral elements for each simulation. The mesh structure and resolution were chosen
based on additional simulations assessing the adequacy of the resolution; for instance,
the stretching of the spectral elements was tested by comparing with simulations based
on constant aspect ratio elements. A higher number of elements was also used and
the results turned out to be unaffected. In the above described mesh, a high-order
polynomial mapping from square elements to curved ones was employed to match
the geometry.

The Legendre polynomials are calculated within each spectral element on Gauss–
Lobatto–Legendre (GLL) quadrature points to obtain spectral accuracy. The solution
is a sum of these polynomials, and using spectral interpolation this solution can be
obtained everywhere in space. There is an advantage in interpolating to an equidistant
mesh for post-processing. This approach was taken for the simulations presented in
this paper. The simulation fields were saved 320 times per rotation of the disk.

2.3. Boundary conditions
One of the major difficulties when simulating an open flow is to find boundary
conditions that preserve the physical flow characteristics within the domain of interest.
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The approach taken here is to have a sponge region just ahead of the outer radial
boundary that forces the flow back to the von Kármán similarity solutions and,
therefore, damps out all the flow perturbations. The use of a sponge in this way can
prevent reflections of downstream disturbances from the outflow boundary (Kloker &
Konzelmann 1993) and reduces the instantaneous influence the pressure can have in
an incompressible flow. In our simulations, the sponge function was adapted from
Chevalier et al. (2007) and was used as

f =−λ(r)u, (2.5)

designed to damp the perturbations to zero. The sponge function λ is described by

λ(r)= λmax

[
S
(

r− rstart

∆rise

)]
, (2.6)

where the maximum strength of the damping is λmax, the radial position where the
sponge region starts is rstart and ∆rise corresponds to the rise distance of the damping
function. This boundary condition has also been used for simulations of convective
stationary instabilities in the rotating-disk boundary layer. There, the adequacy of the
boundary condition was tested on a domain up to r = 500 where the physics was
verified by both experiments and theory; see Appelquist (2014). In figure 2, λ(r) is
shown and λmax is the maximum value of this curve. Moreover, the location of rstart,
rd and the span of ∆rise are included in this figure, where all values are taken from
the linear run r02 included in table 3. The value of rend will be defined later. The
smooth step function S, using x as the argument, is

S(x)=


0, x 6 0,
1/(1+ e1/(x−1)+1/x), 0< x< 1,
1, x > 1.

(2.7)

For the linear simulations, the outflow sponge region starts at a distance 1r = 100
ahead of the end of the radial domain, giving rstart = rd − 100 for all simulations.
Also, ∆rise= 40 and λmax= 28. For the nonlinear simulation, the outflow sponge region
starts 1r = 80 ahead of the end of the radial domain giving rstart = 700 for this
simulation. Moreover, ∆rise= 40 and λmax= 10. A sponge was also used for the inflow
region where the function (2.6) was turned to damp in the opposite direction. Then,
rstart = 420, ∆rise = 10 was used in the negative r direction, and λmax = 0.8 for all
simulations. The reason for this inflow sponge is to damp low-amplitude upstream
propagating waves, which can possibly be reflected at the inner radial boundary.

For the outer radial boundary, two more boundary conditions were tested, both with
different effects on the flow field, and both were rejected in favour of the sponge
regions described above. In the first case, the base flow was kept as the von Kármán
similarity solution and a homogeneous outflow Neumann boundary condition was
included for the perturbations in the flow field. This had an unstable impact on the
flow field, giving the same qualitative results (without any advantages) as with our
chosen boundary condition. In the second case, an outer finite edge of the disk was
modelled, where the Dirichlet boundary condition imposed for the rotation of the disk
at z = 0 was for r > 630 changed to a symmetric boundary condition: ∂ux/∂z = 0,
∂uy/∂z = 0 and w = 0. This boundary condition was included for both the base
flow and the perturbations, modelling an infinitely thin disk. Nonlinear simulations
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FIGURE 2. The sponge forcing function λ(r) as given by (2.6). The sponge parameters
rstart and ∆rise are also included, along with rd, denoting the end of the domain, and rend,
denoting the position where the global mode crosses the local absolute unstable location;
see figure 5(b).

converged to a steady state since the base flow beyond the edge (r> 630) turned out
to be stable for this set-up. Intuitively, global stabilization might have been expected
in these circumstances, but later results show that any such intuitive views should not
be relied upon, in particular in the case of unavoidable modifications of the upstream
boundary condition and base flow.

There are two more boundaries to consider for the rotating-disk flow. For the top
boundary condition a combination of Dirichlet and stress-free conditions was used. In
the wall-parallel directions the von Kármán solution was used, whereas in the linear
case the perturbation velocities were set to zero (ux = 0 and uy = 0); the wall-normal
velocity was set to follow the stress-free Neumann boundary condition dw/dz = p
(linear) or dW/dz= p (nonlinear). A segmentation of the domain from the full rotating
disk to only 2π/68 radians, to decrease the overall size of the computations, was
made possible through cyclic boundary conditions in the azimuthal direction, which
are essentially periodic boundary conditions but involve an appropriate rotation of the
velocities across the boundary.

2.4. Initial conditions
The stability of the rotating-disk flow was studied in the current work by means of
an impulse response, i.e. by observing the evolution of the flow disturbances due to
an initial condition. This initial condition was applied, for numerical simplicity, as a
volume force active only during a very short initial time. The force was located at a
relatively small radial position close to the disk surface, and was fixed in the rotating
frame of the disk. In both the r and z directions the spatial shape was a Gaussian
function, and in the azimuthal direction a sinusoidal wavefunction was introduced. In
this way, the volume force resembles the action of an impulsive annular ‘roughness’
rotating with the disk (but only for a short period of time). Formally, the strength of
the forcing was defined as

η=Re[a(r) · b(z) · c(t) · d(θ, t)], (2.8)

where a, b and c are functions of either space (r, z) or time (t), and d is a function
of both θ and t (due to the simulations being conducted in the laboratory frame). The
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0 0.1 0.2 0.3 0.4 0.5 0.6
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0
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t f

z

FIGURE 3. (a) The time dependence of the forcing η, see (2.8), (2.11). (b) The
forcing-function amplitude for the peak of η acting on the laminar similarity profiles
U s = (U, V,W) according to (2.13). Key: fr −−; fθ —; fz − ·−.

separate terms are defined as

a(r)= e−λ(r−rex)
2eiα(r−rex), (2.9)

b(z)= e−µ(z−zex)
2
, (2.10)

c(t)= (1− e−σ t2)e−σ t2, (2.11)
d(θ, t)= ei[β(θ−Ωt)]. (2.12)

In (2.9)–(2.12), rex and zex = 0 set the excitation location of the disturbance in the
radial and wall-normal directions respectively, whereas λ = 0.5, µ = 25 and σ = 50
give the extent of the forcing in space (r and z directions) and time. The value of rex

is given in table 3. The wavenumbers in the radial and azimuthal directions are α =
0.213 and β = 68 respectively. The non-dimensional rotation rate of the disk is Ω =
1. Here, Ωt is the azimuthal movement of the forcing disturbance, which is needed
since the simulations are made in the laboratory frame while the forcing disturbance
is stationary with respect to the disk, which is described by (2.12). The radial growth
rate (αi) of the forcing was here taken to be zero.

The shape of the disturbance in time at a fixed position on the disk, i.e. in the
rotating reference frame, is seen in figure 3(a), where the peak is shown to be at
t = 0.12. The forcing is set to zero for t > 0.4 and η < 10−6. Figure 3(b) shows the
resulting forcing function f at this peak acting according to

f = η(Ud −U s), (2.13)

where Ud = (0, 1, 0) is the velocity of the disk and U s is the current simulation
velocity. In figure 3, U s is assumed to be the laminar profiles U s = (U, V,W).

2.5. Simulations
One nonlinear simulation was conducted with rex = 490 to allow comparison in
particular with the linear run r02. The various linear runs are described in table 3.
The two main variables that vary between runs are the outflow position, rd, and the
location of the initial impulsive disturbance of the flow, rex, although more simulations
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were conducted to check the mesh structure, mesh resolution and boundary conditions,
and one simulation in the rotating reference frame (rather than the laboratory frame)
was run for verification. Data are only shown up to the point where the sponge region
starts, rd − 100 in the linear simulations and r= 700 in the nonlinear simulation.

3. Results and discussion
The root mean square (r.m.s.) of the total azimuthal velocity at a specific radial

position is here defined as

Vrms(r; z)= 1
r

[
1

2π

∫ 2π

0
(V(r; z)− V(r; z))2dθ

]1/2

, (3.1)

where V now denotes the total azimuthal velocity rather than the laminar velocity and
the bar denotes the mean value. The kinetic energy of the fluctuations at a specific
radial position is here defined as

E(r)=
∫ 2π

0

∫ Z

0

1
2

[(u
r

)2 +
(v

r

)2 +
(w

r

)2
]

dzdθ, (3.2)

where u, v and w represent the velocity perturbations obtained from the DNS and Z is
the total height of the domain. The velocities are thus normalized by the local radius
before further calculation. The reason for this normalization is to calculate a measure
that is comparable with local theory where there is no underlying linear radial increase
as for the global case. Figure 4(a) shows log Vrms(r; z= 1.3) for all radial positions
as a function of time for the nonlinear simulation. In this space–time diagram, it is
possible to see the introduction of the disturbance at rex = 490. The time is indicated
as the number of complete disk rotations, where data up to T = 2.5 are included.
Initially, the disturbance amplitude is growing in time as it is convected away from
the excitation source. The flow becomes turbulent at large r before T = 1. At this
time, the behaviour in the simulation starts to change, and at approximately T = 1.5 is
is clear that contours that were previously indicating convectively unstable behaviour,
i.e. leaning to the right, have turned through the vertical to lean slightly to the left,
showing growth in time at fixed position similar to a locally absolutely unstable
behaviour. Figure 4(b) shows log E(r)/2 for all radial positions as a function of time
for the linear simulation r02 (see table 3). It is again possible to see the introduction
of the disturbance at rex = 490. The figure can be compared with the global linear
simulations presented by Davies & Carpenter (2003), which show only data up to
T=1.6 (e.g. see their figure 17). Interestingly, around T=1.6 in figure 4, it is possible
to see the same change in the disturbance behaviour as in the nonlinear simulation,
that is a change from a convectively to a locally absolutely unstable behaviour.
Davies & Carpenter (2003) also mentioned such temporal growth but connected it
to ‘unwanted feedback’ from the outer radial edge of their computational domain. In
their local (parallel) simulations, the absolute instability was shown immediately after
the impulse response with both its upstream and downstream modes. Here, in our
global simulations, the linear globally unstable behaviour seems to require a triggering
of the upstream mode from a more unstable downstream region before the global
mode grows, possibly due to a frequency selection mechanism. As shown in figure 4,
the quantitatively similar behaviour of the nonlinear and linear simulations indicates
that the sponge region models the influence of upstream turbulence on the flow field
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FIGURE 4. (a) Space–time diagram of log Vrms(r; z= 1.3) from the nonlinear simulation.
(b) Space–time diagram of log E(r)/2 from simulation r02. (c) Time derivative of
ln E(r)/2; (d[ln E(r)]/dt)/2, from the same simulation, where the black line shows the
zero contour. The dashed black line indicates rend = 605.

effectively. This can be understood by comparing the mechanisms of the turbulent
region with the sponge region; a turbulent region, viewed from the perspective of a
linear disturbance, has a damping effect (as, for example, used in an eddy-viscosity
approach) on larger scales. In the linear framework, this corresponds to an extraction
of energy, which is precisely the effect of the sponge region, albeit achieved by
a volume force. Having shown the correspondence in behaviour between an outer
region of turbulence and a sponge, the focus will now turn to the linear simulations
in order to compare various simulations and investigate the linear regime further.

Figure 4(c) shows the growth rate in time of disturbances in (b), (d[ln E(r)]/dt)/2,
with the black line showing the zero contour growth rate. At small times, it is
possible to see the short-time response of the simulation to the initial impulse. At
approximately T = 1.6 the zero contour line clearly changes direction from going in
the positive r direction with time to the negative r direction, indicating a change from
convectively to absolutely unstable behaviour. Eventually, as the absolute instability
contaminates the whole domain, there is a positive temporal growth rate throughout.
Figure 4(c) thus shows the development in time of an unstable linear global mode with
a single complex global frequency ω, which can be compared with Healey’s (2010)
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FIGURE 5. Growth rate in time (a), (d[ln E(r)]/dt)/2, and in space (b), (d[ln E(r)]/dr)/2,
for all runs given in table 3. The data for (a) are taken at r= 530 and are shown together
with an arrow indicating the anticipated behaviour for rend = ∞. The data for (b) for
cases r01–r05 are taken at the final time of each simulation, and local theory data (−αi)
for the absolute instability pinch points for β = 68 are also included (black line, ++)
together with data from the spatial modes contributing to the pinch points at rend for each
simulation (grey lines, −−). (c) The time to the turn-around (Tt) at rend as a function of
the distance to rend from rex, with a linear fit to the points (black line, −−).

figure 2(c) and which would be expected eventually to be limited by nonlinearity, if
nonlinearity were included in the simulation.

For a closer look, and to compare the various linear runs in table 3, growth-rate
data in time and space at specific r and T are presented in figure 5(a,b). Figure 5(a)
shows the growth rate in time of the various runs at r = 530. All simulations ran
until T = 2.5 except for r04 and r05, which needed longer to reach an approximately
constant final value. The impulsive forcing for r03 is at r= 530, while for the other
cases it is at r = 490, leading to the different characteristics for r03 at small times
in figure 5(a). Between approximately T = 0.8 and 1.2 in figure 5(a), all cases are
shown to become convectively unstable rather than absolutely unstable (i.e. negative
temporal growth rate at fixed r). Each case has a growth-rate minimum in time at
different positions, and the final temporal growth rates increase with rd. Case r01 has
a final negative temporal growth rate and therefore exhibits global stability at large
times; all other cases have positive final temporal growth rate and therefore exhibit
global instability at large time. The value of rd where the final temporal growth rate
in time is zero, i.e. neutral, is estimated to be between r01 and r02/r03 at 719 for
our boundary conditions, which corresponds to an end of the linear domain, rend, of
approximately 594.
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Figure 5(b) shows (d[ln E(r)]/dr)/2 at the final time of each simulation. The
simulations r01–r03 show radial lines with growth rates that decrease with r through
most of the domain (the lines for r02 and r03 lie on top of each other). For r04
and r05, the radial growth-rate lines in figure 5(b) are slightly wavy, which we
associate with amplified numerical errors in these two simulations since the spatial
growth inside the domain reaches higher than the dynamic range of double-precision
numbers, i.e. 1016. Only the data from the maximum 16 orders are shown. This
puts a limit on the maximum Reynolds number that can be simulated in such a
linear set-up. Of course, in the presence of nonlinearity one expects saturation of the
amplitude. Figure 5(b) also contains data from a local theoretical stability analysis
similar to Lingwood (1997), showing values of −αi for local absolute instability for
given r and β = 68 as in the present set-up, and also spatial modes contributing to
the absolute instability at the end of the linear domain for each case. The modes
with the highest spatial growth rates at low radial positions have similar values to the
simulation data for each run. These modes have a negative group velocity and are the
upstream modes (inward-travelling) in contrast to the lower growth-rate modes with
a positive group velocity (i.e. the downstream or outward-travelling modes). In each
case (r01–r05) the downturn in radial growth rate at high r in figure 5(b) corresponds
to the damping effect of the annular-sponge region.

The minima in the temporal growth rates at r= 530 (figure 5a) occur later in time
when the distance between rex and rd increases. However, we have an annular-sponge
region inbound of the domain boundary rd, and are interested in finding relationships
within the numerical domain not containing a sponge or its upstream damping effect.
The estimated end of our ‘undisturbed’ numerical domain, rend, is thus taken in each
case as the position where the local theoretical absolute growth rate in r meets the
simulation data, i.e. intersections of the simulation curves with the local theory line
(black, ++) in figure 5(b), hypothesizing that any perturbation of the flow caused
by the end of the numerical domain would obtain its properties from this location.
The spatial growth rates of the upstream (inward-travelling) modes contributing to the
absolute instabilities at these positions (grey, −−) are shown to match the simulations
well. The values of rend from the intersections are given in table 3, and the estimated
value for rend to be neutrally growing in time, i.e. ωi = 0, is 594.

Relating the time at the turn-around at rend (Tt) in each case, e.g. approximately
1.6 for r02 in figure 4(c), to the distance between rend and rex in each case gives a
linear relation, as depicted in figure 5(c). For r03, the disturbance is placed closer
to rend than for r02 (although rd is the same for the two cases), and the turn-around
appears at earlier Tt, as expected. The slope of this line gives the velocity at which
the convective disturbances propagate outwards, inducing an absolutely unstable mode
at the end.

On extrapolating the results of figure 5(c) to an infinite domain, i.e. rend − rex→
∞, the turn-around would not occur (in finite time) and purely convective behaviour
would be seen, as indicated by the arrow in figure 5(a). This infinite-domain solution
is effectively the result obtained by Davies & Carpenter (2003) as they finished their
simulations before the absolutely unstable mode at the end could propagate inwards.

Figure 6(a) visualizes the last instantaneous field of the azimuthal perturbation
velocity (log|v|) from r02 at a height of z= 1.3 (at this height the largest perturbation
velocities are found, see the eigenfunctions in figure 8), and shows the different
orders of magnitude of the velocity within the domain of interest (r = 420–630,
not including the sponges), ranging from |v| = 10−12 to 104 (two orders larger than
figure 4(b) since here the perturbation velocity is not divided by r), which includes
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FIGURE 6. (a) Contours of log|v| at z= 1.3 from run r02. The domain shown (without
the sponge regions) is from r= 420 to 630, and is repeated three times in the azimuthal
direction. (b) The wave angle ε for each simulation at which the disturbances seen
in (a) propagate. (c) The value of αr derived from ε. In both (b) and (c) solid lines
correspond to DNS data and the dashed lines indicate the theoretical end modes given
in figure 5(b) closest to the simulation data.

the whole range of double-precision values possible. Figure 6(a) shows three full
wavelengths in the azimuthal direction, i.e. 3 · 2π/68. Moreover, figure 6(b) shows for
each simulation case the angle ε at which the disturbances propagate, and (c) shows
the values of αr derived from these wave angles since

ε= tan−1

(
β

r
1
αr

)
= 1r

r1θ
. (3.3)

The latter definition of ε was used to calculate the angle from the simulations, using
a smoothing running mean taken over 1r= 21, thus showing data only up to rd− 110
for each simulation. Moreover, data 16 orders smaller than the values at rd− 100 were
removed from runs r04 and r05 when calculating the angle due to the double-precision
limit. The dashed lines in both figure 6(b) and (c) correspond to the spatial modes
from local theory closest to the simulation data in figure 5(b), which were determined
by the pinching absolute instabilities at rend. There is a slight discrepancy between
the simulation data and the theoretical mode; however, this was expected since the
simulation and end-determined-theory curves in figure 5(b) do not agree perfectly. For
simulation r05, the low-r data deviate more significantly from the theoretical results.
This is again associated with the double-precision limitations on the simulations.

Figure 7 gives theoretical local absolute instability results as a function of R
(or r). In (a) the neutral curve for the onset of local absolute instability is shown
for various β and in (b) ω corresponding to β = 68 is shown as solid lines. For
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β = 68, a pocket region with a positive growth rate, i.e. a pocket of local absolute
instability, is depicted in the range 507< R< 1580. The frequency (ωr) of the wave
shown in figure 6 was determined by adding numerical probes at radial positions
r = 465, 490, 508, 515, 540, 550 and 575 at a height of z = 1.3. Figure 7(b) shows
these data for all runs. These frequencies were calculated over t = 2π (i.e. T = 1).
However, to compare the global results with the local absolute instability theoretical
work first conducted by Lingwood (1995a), which was in the rotating frame, the
azimuthal wavenumber (β = 68) must be subtracted from our calculated frequencies
to shift from the stationary to the rotating frame. The resulting values of ωr (in
the rotating-disk frame) were approximately constant in r for each simulation, as
expected for a global mode, and were then summarized as an average value, in
figure 7(b). Moreover, the associated global temporal growth rates (ωi), evaluated
at the same radial positions, are also shown in figure 7(b) as an average value for
each case. For both cases, the error bar was within the marker size and is therefore
not shown. In figure 7(b), the values of ωr and ωi from each simulation are plotted
against the relevant value of rend, showing the correspondence with the theoretical
absolute instability values there. Healey’s (2010) linear finite-radius disk model
(complex Ginzburg–Landau equation) showed that if the edge position considered is
sufficiently greater than Rc = 507 there will be linear global instability. Furthermore,
the linear global instability has a global frequency and growth rate determined at
leading order by the local absolute instability at the edge of the disk. While the
details of the outer radial boundary conditions differ between our study (a sponge for
the outer 1r = 100 modelling turbulence) and Healey’s (2010) point-like boundary
condition, with vanishing fluctuations at the outer radius modelling a disk edge, our
results confirm that the presence of a limited linear region can lead to linear global
instability, with the global frequency and growth rate determined approximately by
the local absolute instability at rend. Healey (2010) noted that the choice of outer
boundary conditions only affects a correction term in his model, so we should not
expect this difference to affect the fundamental result.

Ideally, we would have more points on the curves in figure 7(b) to allow greater
comparison. However, increase of rd with our (linear) set-up has two limitations:
(i) the double-precision limit and (ii) wavenumbers that are multiples of β = 68
are unstable at high R (Lingwood 1995b) and would enter the flow field and grow.
For our larger numerical domains, r04 and r05, disturbances with β = 136 become
absolutely unstable (from local theory) at the outermost part of the domain; however,
this wavelength was not found in the simulations. This second point reminds us
that for a full disk, all integer azimuthal wavenumbers are possible and there will
therefore always be absolutely unstable modes at rend (provided rend > Rc), which
could result in linear global instability if the flow is sufficiently absolutely unstable at
rend. Without a limited linear region, however, i.e. with rend at infinity, the mechanism
for generating inward-travelling modes to interact with the outward-propagating modes
is removed and linear global stability results as for Davies & Carpenter (2003).

Looking at the vertical structure of the flow at the positions r= 555, 580 and 605
for r02, the eigenfunctions are extracted from the r.m.s. of each perturbation velocity
component,

urms(r; z)= 1
r

[
1

2π

∫ 2π

0
u(r; z)2dθ

]1/2

, vrms(r; z)= 1
r

[
1

2π

∫ 2π

0
v(r; z)2dθ

]1/2

and wrms(r; z)= 1
r

[
1

2π

∫ 2π

0
w(r; z)2dθ

]1/2

 . (3.4)
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FIGURE 7. (Colour online) (a) Neutral curve for the absolutely unstable region, where
β = 68 is indicated by a dashed line. (b) Variation of the local absolute frequency with
radius for β = 68 together with simulation data. The real temporal frequency ωr was
found by using numerical probes at various radial positions around the final time of the
simulations. The final growth rates of the global modes, ωi, were extracted at the same
radial positions as the asymptotic state shown in, e.g., figure 5(a). The two smaller panels
are magnifications of the relevant regions in (b).

These quantities are shown in figure 8 together with local theory data. The shapes
of the eigenfunctions from the simulations and local theory correspond well, e.g. the
heights of the maximum values for the three functions show good agreement. However,
both the urms and wrms profiles have slightly higher amplitude from the simulations
than from local theory, with the agreement being best at low r. It is possible that this
is an effect of the sponge, or a local versus global effect, i.e. the solutions from the
DNS (global) must be continuous in r while local theory results are discrete solutions
in r, which may allow larger changes between radial positions (e.g. see figure 8a).

The entirely linear framework here is somewhat artificial, but a possible contribution
from the linear behaviour to the (nonlinear) laminar–turbulent transition of the flow
was discussed in Lingwood (1996), believing that small disturbances entering the
boundary layer will (above Rc) be absolutely amplified. Since all real-world cases
of the rotating-disk flow where turbulence transition occurs have an end of the
linear region, such behaviour corresponds to the results seen in our simulations,
provided there is a large enough absolute instability region prior to the end, i.e. small
disturbances being linearly globally unstable due to the upstream effect of the
nonlinear regime. There are two experiments known to the authors that look at an
impulse response in the rotating-disk boundary layer: Lingwood (1996) and Othman
& Corke (2006). The behaviour observed by Lingwood (1996) corresponded to
absolutely unstable behaviour, whereas the behaviour observed by Othman & Corke
(2006) corresponded to convectively unstable behaviour. One of the main differences
between the two experiments is the edge position. Lingwood (1996) had an edge
Reynolds number greater than 752 and Othman & Corke (2006) had their edge at
R= 587. The results presented here could therefore explain the discrepancy between
the two experiments, suggesting that the edge Reynolds number in the experiments
by Othman & Corke (2006) was not sufficiently larger than Rc for the linear global
instability to dominate; we show here that there is a need for a nonlinear turbulent
region above approximately 594 for linear global instability. In the case of Lingwood
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FIGURE 8. Eigenfunctions as a function of wall-normal position evaluated from the r.m.s.
values in each direction, r, θ and z (a–c). In each figure, there are data from three
positions, r= 555, 580 and 605, shown from left to right. The simulation data are taken
from r02 and the theoretical data correspond to ω =−15.0+ i0.708, α = 0.135− i0.159,
α = 0.154 − i0.150, α = 0.190 − i0.133 and β = 68, from left to right. The profiles are
normalized by the maximum value of the azimuthal profile (v) for theory and simulations
separately.

(1996), with the larger edge Reynolds number, the presence of linear global instability
could then have allowed (via a supercritical mechanism) a direct route to a nonlinear
global mode irrespective of the background noise level. In the case of Othman
& Corke (2006), the route to nonlinearity would have required sufficient levels of
disturbance to create (via a sub-critical mechanism) a nonlinear global instability at Rc,
as described by Pier (2003); however, this could not be fully verified by Othman &
Corke’s (2006) results for large-amplitude impulse disturbance. These interpretations,
however, need to be viewed with caution as real disk flows always excite stationary
vortices triggered by roughness elements, which complicate the situation.

4. Summary and conclusions
In this paper, the linear-stability properties of the laminar flow over a rotating disk

(von Kármán flow) are studied numerically. Starting with the results by Lingwood
(1995a), who found a local absolute instability above a critical Reynolds number
Rc = 507, it has been conjectured to what extent non-local effects, and in particular
also the size of the disk, might influence the results. Using linear direct numerical
simulations, Davies & Carpenter (2003) have already studied this particular flow.
However, here this previous work has been extended to longer integration times with
the specific aim of studying the long-time evolution and to examine the upstream
effects of a non-infinite disk using the modelled influence of a downstream turbulent
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region. Our results correspond well with Healey’s (2010) results using the linearized
Ginzburg–Landau equation. However, there is a difference in the sense that his model
links the edge of the disk to the generation of the inward-travelling modes and a linear
global instability, while we show inward-travelling modes generated by a modelled
turbulence outer ring, creating a linear global instability. Without the presence of
the damping region in our simulations, these inward-travelling modes would not be
excited. Moreover, it is shown that the global-mode frequencies and temporal growth
rates appear to be linked to the local absolute instability frequencies and temporal
growth rates at the end of the linear domain rend. When the end is close to Rc= 507,
e.g. our run r01, the flow is shown to be globally stable, remaining convective
in behaviour. When the end is positioned farther out, e.g. our runs r02–r05, the
flow is shown to become (linearly) globally unstable. Neutral temporal growth would
correspond to rend=594. Extrapolation to the case of an infinite linear domain leads to
linear global stability, despite the presence of local absolute instability, because of the
lack of perturbation of the flow in the outer region, which is consistent with Davies
& Carpenter (2003), where an infinite domain is inadvertently created by stopping
the simulations early to prevent unwanted inward propagation of disturbances.

Our results thus show that there needs to be a large enough pocket region of
absolute instability prior to rend for the global flow to be linearly unstable in agreement
with Healey (2010). Interestingly, the results presented here and the results presented
by Healey (2010) seem to be largely independent of the details of the outer boundary
conditions as long as this boundary is sufficiently far from Rc. Similar feedback from
an outer radial edge in a numerical domain has been found for swirling jets (Healey
2008). From our work the effect of a physically finite radial edge is, however, still
unclear, at least in the case that there is no extended turbulent region upstream of
the disk edge. The flow beyond the edge can be either stable or unstable, inducing
different effects on the upstream flow. When it comes to the current simulations,
there are, however, limitations to our linearized simulation set-up applied to this flow
configuration associated with the high spatial growth rates, which prohibit longer
simulations and those with larger rd. Nevertheless, our simulations now confirm that
the rotating-disk boundary layer can produce a linear amplified global mode. It would
be interesting to investigate whether the rotating cavity simulated by Viaud, Serre &
Chomaz (2008), for example, can be shown to become globally linearly unstable by
moving the edge radially outwards, allowing the disturbances to grow, saturate and
produce turbulence prior to the end of their domain.

We also used a linear-stability code to find the theoretical modes corresponding
to the local absolute instability at the end of the linear domain. Comparison of the
results from simulations with this theoretical mode shows good agreement, with some
differences that might be products of the global versus local approaches. It should be
noted that the simulated modes are entirely chosen by the flow.

Since the work of Davies & Carpenter (2003), the rotating-disk boundary layer
has been considered to be linearly globally stable, which is true for an infinite disk
but, as indicated by Healey (2010) and shown herein, not for a disk of limited
linear extent, e.g. where there is downstream turbulence (and the disk is sufficiently
large), and therefore not necessarily for experiments where turbulence is always
present for large disks. Since the theoretical research by Mack (1985) there should
be no surprise in finding an upstream mode in the rotating-disk boundary layer. The
recognition that linear global instability can exist for the rotating-disk flow means
that now, alongside the (sub-critical) nonlinear global instability for sufficiently large
background disturbances (see, e.g., Pier 2003), there is a mechanism leading directly
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to (supercritical) nonlinear global instability regardless of the background disturbance
levels. The full implications of our linear results for the nonlinear regime and finally
for experiments are, however, still unclear.

It is important to recognize that with the exception of validating our outer radial
boundary condition, the current study is deliberately restricted to linear simulations to
address open questions about the linear global stability, or otherwise, of the rotating-
disk flow, and further nonlinear DNS investigations are left for future publication.
These will allow comparison with physical experiments, addressing nonlinear effects
as well as the transition to turbulence.
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