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The nonlinear stability of an inertialess two-layer surfactant-laden Couette flow is
considered. The two fluids are immiscible and have different thicknesses, viscosities
and densities. One of the fluids is contaminated with a soluble surfactant whose
concentration may be above the critical micelle concentration, in which case micelles
are formed in the bulk of the fluid. A surfactant kinetic model is adopted that includes
the adsorption and desorption of molecules to and from the interface, and the formation
and breakup of micelles in the bulk. The lubrication approximation is applied and a
strongly nonlinear system of equations is derived for the evolution of the interface and
surfactant concentration at the interface, as well as the vertically averaged monomer
and micelle concentrations in the bulk (as a result of fast vertical diffusion). The
primary aim of this study is to determine the influence of surfactant solubility on the
nonlinear dynamics. The nonlinear lubrication model is solved numerically in periodic
domains and saturated travelling waves are obtained at large times. It is found that a
sufficiently soluble surfactant can either destabilise or stabilise the interface depending
on certain fluid properties. The stability behaviour of the system depends crucially on the
values of the fluid viscosity ratio m and thickness ratio n in reference to the boundary
m = n2. If the surfactant exists at large concentrations that exceed the critical micelle
concentration, then long waves are stable at large times, unless density stratification effects
overcome the stabilising influence of micelles. Travelling wave bifurcation branches
are also calculated and the impact of various parameters (such as the domain length
or fluid thickness ratio) on the wave shapes, amplitudes and speeds is examined. The
mechanism responsible for interfacial (in)stability is explained in terms of the phase
difference between the interface deformation and concentration waves, which is shifted
according to the sign of the crucial factor (m − n2) and the strength of the surfactant
solubility.

Key words: channel flow, thin films

1. Introduction

Surfactants are surface active agents that are known to affect the surface tension of fluids
(Chang & Franses 1995). Experimental measurements of equilibrium surface tension

† Email address for correspondence: anna.kalogirou@nottingham.ac.uk
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900 A7-2 A. Kalogirou and M. G. Blyth

have demonstrated that the surface tension is reduced in response to the concentration of
surfactant in the bulk of the fluid (Song et al. 2006). The surface tension behaviour is also
affected by the process of micellisation, which takes place when the bulk concentration
of monomers reaches a critical value; this value is defined as the critical micelle
concentration (CMC) and also signifies the stage where the surface tension is decoupled
from further variations in surfactant concentration and attains a uniform value. The
equilibrium and dynamic surface tension behaviour of surfactants is important in a range
of processes and applications, as it can influence foam fabrication and stability (Petkova,
Tcholakova & Denkov 2012), affect wettability in coatings (Weinstein & Ruschak 2004)
(e.g. in photographic applications Maisch et al. 2019) and control film deformation
(Afsar-Siddiqui, Luckham & Matar 2003). The latter property of surfactants is also
significant in multilayer flows, where surfactants can be used to manipulate deformations
at fluid–fluid interfaces – this is possible due to the dynamic variation of surface tension
and resulting Marangoni forces (e.g. Pozrikidis 2004). The effect of surfactants on
linear and nonlinear stability of multilayer flow has been investigated extensively, both
theoretically and numerically; a summary of the most prominent studies, in the context of
surfactant-free or surfactant-laden flows, is given next.

In the absence of surfactant, Yih (1967) considered a shear flow of two immiscible
viscous fluids in a channel and investigated the stability properties of the system when
the interface is subject to large-wavelength perturbations. He found that instability is
manifested as long as the fluid viscosities are different and the Reynolds number is
non-zero (assuming the fluids have equal densities). Hooper (1985) studied a semi-infinite
shear flow and reported that Yih’s long-wave instability emerges only when the thin
fluid is the more viscous. This result was confirmed by Renardy (1985) who solved the
Orr–Sommerfeld equations for arbitrary wavelengths. In the case of a two-layer flow
in an inclined channel, a linear stability analysis was performed by Tilley, Davis &
Bankoff (1994a) for perturbations of either large or arbitrary wavelength. The authors
also examined the competition between the different mechanisms (e.g. due to density or
viscosity stratification) for interfacial instability that arise in such flows.

In all the aforementioned linear stability studies, the interface was devoid of surfactant.
The influence of insoluble surfactants on the stability properties of a two-layer shear
flow was investigated by Frenkel & Halpern (2002), Halpern & Frenkel (2003) and
Blyth & Pozrikidis (2004). It was found that the presence of surfactants gives rise to
destabilising Marangoni stresses and induces interfacial instability even under conditions
supporting a stable clean interface, namely when the fluids’ viscosities are equal or
when inertial effects are negligible. The combined effects of gravity and Marangoni
forces on flow stability were examined in Frenkel, Halpern & Schweiger (2019a,b). More
recently, a number of studies considered the surfactant to be soluble in one or both
fluids and analysed the impact of surfactant solubility on the linear stability of two-layer
channel flows. Picardo, Radhakrishna & Pushpavanam (2016) investigated the effect of
Marangoni forces on the stability and also studied the effect of inertia on the solutal
Marangoni instability. Their analysis was, however, based on the simplifying assumption
of instantaneous adsorption/desorption of surfactant from one phase to the other and
neglected the interfacial transport of surfactant. The dynamic transport of surfactant at
the interface due to adsorption was included in the work of Kalogirou & Blyth (2019),
who formulated a model that takes into account the possibility of surfactant concentrations
exceeding the CMC. The authors analysed the linear stability properties of the model both
numerically for disturbances of arbitrary wavelength and analytically using long-wave
approximations, for a range of fluid properties.
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Nonlinear dynamics of two-layer surfactant-laden shear flows 900 A7-3

The identified linear instabilities were followed into the nonlinear regime in several
studies. A nonlinear evolution equation describing the propagation of long finite-amplitude
waves at the interface between two viscous fluids (free from surfactants) was obtained and
solved numerically by Ooms, Segal & Cheung (1985). Hooper & Grimshaw (1985) and
Renardy (1989) both derived a Kuramoto–Sivashinsky equation for the weakly nonlinear
evolution of the interface, and found steady state and travelling wave solutions. Tilley,
Davis & Bankoff (1994b) investigated the nonlinear stability of a two-layer flow in an
inclined channel and derived a strongly nonlinear equation for the evolution of long waves
at the interface; their evolution equation reduces to a Kuramoto–Sivashinsky-type equation
in the weakly nonlinear limit. When insoluble surfactants are added at the interface, a
similar long-wave analysis was followed by Blyth & Pozrikidis (2004) and a set of two
partial differential equations were obtained, coupling the evolution of the interface and its
local surfactant concentration. That work was later extended by Frenkel & Halpern (2017)
to include the effect of density stratification in the system and to examine the interacting
effects of gravity and Marangoni forces. Furthermore, the impact of insoluble surfactant on
the stability of an interface between a thin film and a much thicker fluid has been analysed
in the studies of Bassom, Blyth & Papageorgiou (2010), Kalogirou, Papageorgiou &
Smyrlis (2012), Kalogirou & Papageorgiou (2016) and Kalogirou (2018) through analysis
and numerical computations of a system of evolution equations that includes a non-local
contribution from the thicker fluid.

In this work, we consider a two-layer surfactant-laden flow in a channel, subject to
background shear due to the motion of the upper channel wall (Couette flow) as well as
solutal Marangoni effects. The surfactant exists in three phases: as interfacial monomers,
monomers in the bulk of one of the fluids and spherical micellar aggregates (if the bulk
concentration exceeds the CMC). Both fluids are considered to be Newtonian, thereby
ignoring the possibility of the surfactant mass in the bulk growing well beyond the CMC,
or equivalently, not allowing the micelle concentration to become very large. When this
happens, the spherical micelles transition to cylindrical ‘wormlike’ micelles that behave
like polymers and start affecting the rheology of the fluid (Berret 2006); such cases are
not considered in this study. A complete mathematical model is presented describing the
dynamics of the flow and the transport of surfactant at the interface and in the bulk fluid
(for both monomers and micelles). We perform a lubrication analysis that reduces the
system to a simplified set of equations for the evolution of long waves at the interface
and the variations of the respective surfactant concentrations. The effects of inertia
are negligible in the leading-order dynamics and therefore the final evolution equations
correspond to an inertialess flow. The obtained long-wave model is strongly nonlinear and
reduces to that of Tilley et al. (1994b) for zero Re when surfactant is absent, or to the
model derived in Blyth & Pozrikidis (2004), Frenkel & Halpern (2017) if the surfactant
is considered to be insoluble. We carry out time-dependent numerical simulations of the
reduced model for several cases motivated from predictions of the linear stability analysis
of Kalogirou & Blyth (2019). We also analyse the effect of surfactant solubility and
other parameters on the interfacial travelling waves. Finally, the mechanism for interfacial
instability is explained based on the phase shift between interfacial deformation and
concentration (Wei 2005).

The paper is organised as follows. Section 2 presents the mathematical formulation
of the problem considered in this study. The governing equations and boundary
conditions are first given (§ 2.1) and the asymptotic model is then derived based on the
lubrication approximation (§ 2.2). In § 3 the numerical methods and results are presented,
including linear growth rates (§ 3.2), nonlinear travelling wave solutions obtained from
time-dependent simulations of the model for a range of parameter sets (§ 3.3) and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.480


900 A7-4 A. Kalogirou and M. G. Blyth

ρ1, μ1

g

U

ρ2, μ2

x

y = d

y = 0

y

FIGURE 1. Sketch of the problem statement, including the coordinate system, geometrical
specifications of the channel and physical properties of the fluids. The size of the surfactant
molecules shown in the lower fluid is not to scale.

travelling wave branches constructed directly using continuation techniques (§ 3.4).
A brief explanation of the (in)stability mechanism is given in § 4. The main conclusions
are discussed in § 5.

2. Mathematical formulation

We consider the evolution of the two-fluid system in a channel of uniform height d,
as shown in figure 1. The flow in each fluid region will be denoted using subscripts
1 and 2 for the bottom and top fluids, respectively. The two fluids are immiscible and
incompressible and have in general different viscosities μ1, μ2 and densities ρ1, ρ2. The
system is subject to the action of gravity g and the shearing motion of the upper channel
wall with speed U. We define a two-dimensional Cartesian coordinate system (x, y), with
horizontal coordinate x , vertical coordinate y and time t. The bottom fluid then extends
from y = 0 up to the interface at y = h(x, t), while the top fluid occupies the region
h(x, t) ≤ y ≤ d. We also define the two-dimensional gradient by ∇ = (∂x , ∂y) and in each
fluid layer i = 1, 2 we introduce the pressure pi(x, y, t) and velocity field ui(x, y, t), with
horizontal velocity ui(x, y, t) and vertical velocity vi(x, y, t). The bottom fluid is laden
with surfactant that can also get adsorbed at the interface and can potentially reach high
concentrations exceeding the critical micelle concentration, in which case micelles are
formed in the bulk. The interfacial, bulk and micellar species admit concentrations Γ (x, t),
C(x, y, t) and M(x, y, t), and diffusivities Ds, Db and Dm, respectively. The interfacial
surfactant concentration Γ alters the surface tension γ according to the Langmuir equation
of state (Chang & Franses 1995). Each micelle is assumed to comprise N monomers; the
exchange between monomers and micelles during the micellisation process is described by
the flux Jm = kbCN − kmM, with micelle formation and breakup rates km, kb, respectively.
Finally, the sorption kinetics describing the exchange of surfactant molecules between
the bulk and the interface are realised through the flux Jb = kaC(1 − Γ/Γ∞) − kdΓ ,
with adsorption/desorption kinetic rates ka, kd. Here, Γ∞ denotes the maximum packing
concentration at the interface, which when reached, leads to suspension of the adsorption
process.

The system outlined above can be described mathematically by writing appropriate
equations for the conservation of mass and momentum, as well as advection–diffusion
equations for each surfactant species (Kalogirou & Blyth 2019). The problem is written
in non-dimensional form by rescaling lengths using the channel height d, velocities
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Nonlinear dynamics of two-layer surfactant-laden shear flows 900 A7-5

Parameter (units) Symbol Values References

Fluid viscosity (N s m−2) μ1,2 1–3 × 10−3 SH
Fluid density (kg m−3) ρ1,2 850–1200 SH, BA
Wall speed (m s−1) U 0.05–5 BA, PK
Channel height (m) d 10−6–10−2 —
Interfacial tension (N m−1) γ0 0.035–0.072 SH
Gravity (m s−2) g 9.81 —
Ideal gas constant (N m K−1 mol−1) R 8.314 SO, MO
Absolute temperature (K) T 298.15 SO, MO
Packing concentration (mol m−2) Γ∞ 1–10 × 10−6 SO, SH, CL, CF, PH
Critical micelle concentration (mol m−3) Ccmc 10−2–100 SO, MO, CL
Surface diffusion (m2 s−1) Ds 10−10–10−8 SH, MO, PK
Bulk diffusion (m2 s−1) Db 10−9–10−7 MO
Micelle diffusion (m2 s−1) Dm 10−9–10−7 MO
Desorption rate (s−1) kd 10−2–102 SH
Sorption rate ratio (m) ka/kd 10−9–101 CF
Micelle formation rate (s−1) km 10–75 MO, DA
Micelle size N 5–100 ED, MA, DA

TABLE 1. Typical values of the physical parameters describing the geometrical specifications,
properties of the fluids and the surfactants. Key to references: SH, Shen et al. (2002); BA,
Barthelet, Charru & Fabre (1995); PK, Pereira & Kalliadasis (2008); SO, Song et al. (2006);
MO, Morgan et al. (2012); CL, Chen & Lee (2000); CF, Chang & Franses (1995); PH, Phan,
Nguyen & Evans (2005); DA, Danov et al. (1996); ED, Edmonstone, Craster & Matar (2006);
MA, Mavromoustaki, Matar & Craster (2012a).

using the speed of the upper wall U, pressures using μ1U/d, time using d/U, surface
tension using the clean reference value γ0, interfacial surfactant concentration using the
maximum packing concentration Γ∞, bulk monomer concentration using the critical
micelle concentration CCMC = (km/Nkb)

1/(N−1) (Breward & Howell 2004) and micelle
concentration using CCMC/N. The total mass of surfactant is rescaled by LΓ∞, where L is
the length of an (arbitrary) horizontal domain. Typical values of all the physical parameters
are provided in table 1. The pertinent non-dimensional parameters are defined in table 2,
together with some typical values based on the physical parameters in table 1.

2.1. Governing equations
The dynamics within the two fluid layers i = 1, 2 is governed by the non-dimensional
equations

∇ · ui = 0, (2.1a)

Re (uit + ui · ∇ui) = − 1
ri

∇pi + mi

ri
∇2ui − Bo

Ca
ŷ, (2.1b)

Ct + u1 · ∇C = 1
Peb

∇2C − Jm, (2.1c)

Mt + u1 · ∇M = 1
Pem

∇2M + Jm, (2.1d)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.480


900 A7-6 A. Kalogirou and M. G. Blyth

Parameter Definition Description Value range

m μ2/μ1 Viscosity ratio 0.3–3
r ρ2/ρ1 Density ratio 0.7–1.4
Re ρ1Ud/μ1 Reynolds number 10−2–105

Ca μ1U/γ0 Capillary number 10−3–10−1

Bo d2ρ1g/γ0 Bond number 10−7–101

Ma RT Γ∞/μ1U Marangoni number 10−1–102

Pes Ud/Ds Surface Péclet number 101–108

Peb Ud/Db Bulk Péclet number 100–107

Pem Ud/Dm Micelle Péclet number 100–107

Bi dkd/U Biot number 10−9–101

Kb kaCCMC/kdΓ∞ Surfactant solubility parameter 10−6–107

βb Γ∞/dCCMC Surfactant parameter 10−4–103

Km dkm/U Micelle formation rate 10−6–101

TABLE 2. Definition of non-dimensional parameters and range of values they take based on the
typical physical parameters in table 1.

with the following boundary conditions at the channel walls:

u1 = (0, 0), ŷ · ∇C = 0, ŷ · ∇M = 0 at y = 0 and u2 = (1, 0) at y = 1.

(2.2a)

Here, ŷ = (0, 1) and (r1, r2) = (1, r), (m1, m2) = (1, m). At the interface, the fluid
velocities have to be equal, i.e.

u1 = u2 at y = h(x, t), (2.2b)

and the flux of surfactant is given by

n · ∇C = PebβbJb and n · ∇M = 0 at y = h(x, t), (2.2c)

where the unit normal is defined by n = (hx ,−1)/
√

1 + h2
x . The evolution of the interface

and the interfacial surfactant concentration are described by the following equations
(Bassom et al. 2010; Kalogirou 2018)

ht +
(∫ h(x,t)

0
u1 dy

)
x

= 0, (2.3)

1√
1 + h2

x

[(√
1 + h2

x Γ

)
t

+
(√

1 + h2
x uIΓ

)
x

− 1
Pes

(
Γx√

1 + h2
x

)
x

]
− Jb = 0, (2.4)

where uI = u1(x, y = h(x, t), t). The non-dimensional fluxes Jb and Jm that appear in
(2.1c), (2.1d), (2.2c), (2.4) are defined by (see also Edmonstone et al. 2006; Craster, Matar
& Papageorgiou 2009; Kalogirou & Blyth 2019)

Jb = Bi
(
KbC(1 − Γ ) − Γ

)
and Jm = Km

(
CN − M

)
, (2.5a,b)

where the first equation describes the flux of monomers to/from the interface from/to the
neighbouring bulk fluid due to adsorption/desorption, and the second equation describes
the creation of micelles from N monomers.
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Nonlinear dynamics of two-layer surfactant-laden shear flows 900 A7-7

The remaining interfacial conditions associated with the problem are the dimensionless
tangential and normal stress jumps satisfied at the interface y = h(x, t), given by

[
4mihx uix + mi(h2

x − 1)(uiy + vix)
]1

2 = − γx

Ca

√
1 + h2

x , (2.6a)

[−pi
(
1 + h2

x

)+ 2mi
(
h2

x uix + viy − hx(uiy + vix)
)]1

2 = γ

Ca
hxx√

1 + h2
x

. (2.6b)

As the system evolves dynamically it induces a non-uniform distribution of surfactant
at the interface, which in turn leads to varying interfacial tension and the generation of
surface tension gradients at the interface (see, for instance, the right-hand side term in the
tangential stress balance (2.6a)). The dependence of the surface tension on the interfacial
surfactant concentration is given by the equation (Chang & Franses 1995)

γ = 1 + βs ln (1 − Γ ) , with βs = MaCa = RT Γ∞
γ0

. (2.7)

Parameter βs is the surfactant elasticity parameter that depends on the ideal gas constant
R and the absolute temperature T .

The problem stated in this subsection is subject to two constraints: the first one is that
the overall flow rate through the channel,

Q =
∫ h

0
u1 dy +

∫ 1

h
u2 dy, (2.8)

is chosen such that there is a zero pressure drop over a specified domain of length L. The
second constraint is that of the conservation of total mass of surfactant, given by

M = 1
L

∫ L

0

∫ h

0

1
βb

(C + M) dy dx + 1
L

∫ L

0
Γ dx . (2.9)

We note that taking the x-derivative of both sides in (2.8), yields that Qx = 0 (in view of
the velocity continuity conditions (2.2b)) which implies that the flow rate can be in general
a function of time, i.e. Q = Q(t).

2.2. Lubrication approximation
The interest of this study is to follow the spatio-temporal evolution of a given perturbation
at the interface, and in particular to explore the effects of surfactants on the emerging
nonlinear developments on the interface. In what follows we assume that the wavelength
of the disturbance is much larger than the channel height, which suggests a rescaling of
the horizontal coordinate and the introduction of a slow time scale as follows:

x = χ

ε
, t = τ

ε
, with ε � 1. (2.10)

The above change of variables is appropriate since lengths have been scaled earlier with
the channel height d, which is assumed to be much smaller than the typical wavelength λ;
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900 A7-8 A. Kalogirou and M. G. Blyth

parameter ε can hence be defined as the height-to-length ratio ε = d/λ� 1. The flow
velocities and pressures in each fluid i = 1, 2 are expanded in the following manner

ui = ūi + ũi, vi = εṽi, pi = p̄i + ε−1p̃i, (2.11a–c)

where overbars denote the basic flow – this is assumed to be purely shear driven by the
motion of the upper wall and is given by

ū1( y) = sy, ū2( y) = s
m

( y − 1) + 1, (2.12a)

p̄1( y) = p0 − Bo
Ca

( y − h0), p̄2( y) = p0 − rBo
Ca

( y − h0), (2.12b)

with

s = m
1 + h0(m − 1)

, (2.12c)

the shear rate, and p0 the constant pressure at the undisturbed interface y = h0. The scaling
for the vertical velocities in (2.11) is such that to provide balance in the continuity equation,
while the scaling for the pressure perturbations is necessary to retain capillary-pressure
contributions at leading order. Assuming that the Reynolds number Re is at most of
O(ε) then any inertial effects are negligible in the leading-order perturbation system.
The derivation presented in this section follows closely that of Tilley et al. (1994b) for
a two-layer channel flow devoid of surfactant, and those of Blyth & Pozrikidis (2004) and
Frenkel & Halpern (2017) for a channel flow with insoluble surfactant at the interface.

The leading-order continuity and momentum equations in each fluid are the lubrication
equations, given by

ũiχ + ṽiy = 0, (2.13a)

miũiyy − p̃iχ = 0, (2.13b)

p̃iy = 0, (2.13c)

and the leading-order tangential and normal stress balances at the interface y = h(χ, τ )

are

−ũ1y + mũ2y = M̃aΓχ

(1 − Γ )
, (2.14a)

−p̃1 + p̃2 = −(1 − r)
B̃o

C̃a
(h − h0) + γ

C̃a
hχχ , (2.14b)

where the following rescalings for the Bond, capillary and Marangoni numbers have
been introduced, Bo = ε2B̃o, Ca = ε3C̃a, Ma = ε−1M̃a, in order to retain gravity, surface
tension and Marangoni contributions in the leading-order dynamics (recall the surface
tension equation of state (2.7)). We note that the parameter scalings considered here are
different from those applied in Tilley et al. (1994b), where the capillary number scaling
Ca = ε2C̃a is applied, resulting in the surface tension and gravitational effects to appear
in the next order.
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Nonlinear dynamics of two-layer surfactant-laden shear flows 900 A7-9

From (2.13c) we have that the pressure perturbations p̃i are independent of y and hence
the momentum equations (2.13b) can be integrated in y twice to give

ũi(χ, y, τ ) = 1
2mi

y2 p̃iχ(χ, τ ) + y ai(χ, τ ) + bi(χ, τ ), i = 1, 2. (2.15)

The no-slip boundary conditions at the walls ũ1 = 0 at y = 0, ũ2 = 0 at y = 1 are used
to determine b1 and b2, in which case the leading-order perturbations for the horizontal
velocities become

ũ1 = 1
2

y2p̃1χ + ya1, (2.16a)

ũ2 = 1
2m

( y2 − 1)p̃2χ + ( y − 1)a2. (2.16b)

Similar expressions for the leading-order vertical velocity perturbations can be obtained by
the continuity equations (2.13a); integrating in y and using the no normal flow conditions
at the walls ṽ1 = 0 at y = 0, ṽ2 = 0 at y = 1 to determine the constants of integration,
gives

ṽ1 = −1
6

y3p̃1χχ − 1
2

y2a1χ , (2.17a)

ṽ2 = − 1
6m

( y3 − 3y + 2)p̃2χχ − 1
2
( y2 − 2y + 1)a2χ . (2.17b)

The leading-order normal stress balance (2.14b) can be used to write one of the pressure
perturbation variables in terms of the other, namely

p̃2 = p̃1 − f , where f = 1

C̃a

(
(1 − r)B̃o(h − h0) − γ hχχ

)
, (2.18)

and the shear stress condition (2.14a) can be used to eliminate a2 by writing

a2 = 1
m

(
a1 + hfχ + M̃aΓχ

(1 − Γ )

)
. (2.19)

What is left is to use the condition of continuity of velocities at the interface y = h,
which will provide two equations for the remaining unknowns a1 and p̃1x . Continuity of
horizontal velocities gives at leading order

ũ2 − ũ1 = s
m

(
1 + (m − 1)h

)− 1, at y = h, (2.20)

which can be re-written using (2.16), (2.18), (2.19) to give

a1 =
[

2
(
m − s

(
1 + (m − 1)h

))− p̃1χ (1 + (m − 1)h2) + fχ (h − 1)2 + 2(h − 1)M̃a
Γχ

(1 − Γ )

]

× [
2
(
1 + (m − 1)h

)]−1
. (2.21)

Finally, satisfying continuity of vertical velocities at the interface is equivalent to solving
the flow rate equation (2.8), which when using expansions (2.11) becomes

Q =
( s

2m

(
(m − 1)h2 + 2h − 1

)+ (1 − h)
)

+
∫ h

0
ũ1 dy +

∫ 1

h
ũ2 dy, (2.22)
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where the terms in the bracket come from integrating the basic flow. Equation (2.22) is
used to find the leading-order pressure p̃1χ by substituting (2.16) and eliminating p̃2χ , a2
and a1 via (2.18), (2.19) and (2.21), respectively; the final expression for p̃1χ is given by

p̃1χ = D−1

[
−6m

(
(m − 1)h2 − 2(m − 1)h − 1

)+ 6mh(h − 1)
M̃aΓχ

(1 − Γ )

−(h − 1)2 ((m − 1)h2 + 2(1 − 2m)h − 1
)

fχ − 12m
(
(m − 1)h + 1

)
Q

]
, (2.23a)

with

D = (m − 1)2h4 + 4(m − 1)h3 − 6(m − 1)h2 + 4(m − 1)h + 1. (2.23b)

Consistent with a previous remark, the flow rate Q = Q(t) is found by satisfying a
periodicity condition on the pressure (Ooms et al. 1985; Blyth & Pozrikidis 2004)

∫ L

0
p̃1χ dχ = p̃1(L, t) − p̃1(0, t) = 0, (2.24)

which fixes the pressure drop in the streamwise direction to be zero. Alternatively, a
prescribed volumetric flow rate Q could be considered instead (see Tilley et al. 1994b),
but in this case the pressure drop must be determined as part of the solution from (2.23).

Applying the long-wave transformations (2.10) in the bulk and micelle transport
equations (2.1c)–(2.1d) and boundary conditions (2.2a) and (2.2c), results in

Cτ + (ū1 + ũ1)Cχ + ṽ1Cy = 1

P̃eb

(
Cχχ + 1

ε2
Cyy

)
− J̃m, (2.25a)

Mτ + (ū1 + ũ1)Mχ + ṽ1My = 1

P̃em

(
Mχχ + 1

ε2
Myy

)
+ J̃m, (2.25b)

Cy = 0 and My = 0 at y = 0, (2.25c)

− 1
ε2

Cy + hχCχ = P̃ebβbJ̃b and − 1
ε2

My + hχMχ = 0 at y = h(χ, τ ), (2.25d)

with the scaled fluxes given by

J̃b = B̃i
(
KbC(1 − Γ ) − Γ

)
and J̃m = K̃m

(
CN − M

)
. (2.26a,b)

Here, some further parameter rescalings have been introduced by Bi = εB̃i, Km = εK̃m,
Peb = εP̃eb, Pem = εP̃em. At leading order in ε, system (2.25) is simplified to Cyy = 0,
Myy = 0, with Cy = 0, My = 0 at y = 0 and y = h, which gives that the solutions at
leading order are independent of the vertical coordinate y. The following expansions can
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therefore be introduced:

C(χ, y, τ ) = C0(χ, τ ) + ε2P̃ebC1(χ, y, τ ) + · · · , (2.27a)

M(χ, y, τ ) = M0(χ, τ ) + ε2P̃emM1(χ, y, τ ) + · · · . (2.27b)

We define the following notation for the average of a quantity F in the lower fluid,

[[F ]] = 1
h

∫ h

0
F(χ, y, τ ) dy, (2.28)

and note that the average of the perturbations C1 and M1 is taken to be zero (Jensen &
Grotberg 1993), i.e.

[[C1]] = 0, [[M1]] = 0. (2.29a,b)

Expansions (2.27) are equivalent to assuming a rapid vertical diffusion of surfactant in the
bulk (Jensen & Grotberg 1993; Craster et al. 2009). These are subsequently substituted
into system (2.25) and the resulting leading-order transport equations for the bulk and
micelle concentrations are integrated across the lower fluid; upon use of the leading-order
boundary conditions at the wall and interface to eliminate the perturbation variables C1,
M1, the final evolution equations emerge and are given by

C0τ + [[u1]]C0χ − (hC0χ)χ

hP̃eb

+ βbJ̃b0

h
+ J̃m0 = 0, (2.30a)

M0τ + [[u1]]M0χ − (hM0χ)χ

hP̃em

− J̃m0 = 0, (2.30b)

and

J̃b0 = B̃i
(
KbC0(1 − Γ ) − Γ

)
and J̃m0 = K̃m

(
CN

0 − M0
)
. (2.30c)

A similar equation to (2.30a) for the bulk concentration has been derived by Jensen &
Grotberg (1993) in the absence of micelles, but the horizontal velocity was approximated
by a leading-order solution of the momentum equations (also, their system was for one
fluid only). Furthermore, Mavromoustaki et al. (2012a) and Mavromoustaki, Matar &
Craster (2012b) derived the same equations in their studies of the dynamics of a climbing
surfactant-laden film. We note that the leading-order monomer and micelle concentrations
in the bulk are advected by the average of the horizontal velocity in the lower fluid, and
the vertical structure of the velocity field does not affect the bulk concentrations at leading
order. Consequently the above averaged equations cannot capture convective effects within
the bulk fluid.

The first-order bulk and micelle concentration distributions across the bulk fluid can be
determined by subtracting (2.30a), (2.30b) from the leading-order system obtained after
expansions (2.27) are substituted into (2.25) (Jensen & Grotberg 1993), and integrating in
y twice while using the boundary conditions in (2.25c) and (2.25d) at leading order. The
resulting first-order concentrations are

C1 =
(∫∫

u1(ŷ) dŷ dy − 1
2

y2[[u1]]
)

C0χ +
(

hχC0χ

P̃eb

− βbJ̃b0

)
y2

2h
+ dc, (2.31a)
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900 A7-12 A. Kalogirou and M. G. Blyth

M1 =
(∫∫

u1(ŷ) dŷ dy − 1
2

y2[[u1]]
)

M0χ + hχM0χ

P̃em

y2

2h
+ dm. (2.31b)

The constants of integration dc and dm can be calculated using the zero-average conditions
(2.29) for C1 and M1.

Finally, the leading-order kinematic equation (2.3) and leading-order transport equation
for interfacial surfactant (2.4) are given by

hτ +
(

1
2

sh2 + 1
2

a1h2 + 1
6

p̃1χh3

)
χ

= 0, (2.32)

and

Γτ +
(

u1

∣∣
y=hΓ

)
χ

− 1

P̃es

Γχχ − J̃b0 = 0, (2.33)

where the scaled Péclet number is introduced by Pes = εP̃es. These two equations together
with the two transport equations in (2.30) for the bulk and micelle concentrations form a
system of evolution equations that describe the leading-order dynamics of the problem
considered. This system needs to be solved to study the spatio-temporal evolution of the
fluid interface and the surfactant concentrations, making sure that the leading-order total
mass of surfactant

M0 = 1
L

∫ L

0

(
1
βb

(C0 + M0)h + Γ

)
dχ, (2.34)

remains constant. Once the leading-order system of (2.32), (2.33), (2.30) is solved and
solutions for h, Γ , C0, M0 are obtained, then fluid velocities ui, vi, i = 1, 2, can be found
from (2.16), (2.17) and the concentration perturbations C1, M1 can be calculated from
(2.31). In summary, the lubrication model presented in this section considers the following
parameter rescalings:

Bo = ε2B̃o, Ca = ε3C̃a, Ma = ε−1M̃a, Bi = εB̃i, Km = εK̃m,

Pes = εP̃es, Peb = εP̃eb, Pem = εP̃em. (2.35a–h)

Finally, we note that by reverting back to the original parameters and variables, we obtain
(2.32), (2.33), (2.30) with x , t instead of χ , τ and the parameters in (2.35) without the
tildes.

The asymptotic model derived in this section based on the parameter scalings in
(2.35) should be appropriate for a range of physical situations and/or experiments.
A multi-layer system such as a water–oil system (with the aqueous phase being populated
with surfactants) will have the fluid characteristics (densities, viscosities, surface tension)
displayed in table 1 (Barthelet et al. 1995; Shen et al. 2002; Pereira & Kalliadasis 2008).
Different types of surfactants can be used, for example sodium dodecyl sulphate (SDS)
or isopropanol (Georgantaki, Vlachogiannis & Bontozoglou 2016). According to Chang
& Franses (1995), the maximum packing concentration Γ∞ does not vary significantly
among different types of surfactants, while the sorption kinetic ratio ka/kd (and thus
non-dimensional parameter Kb) can show large variations – for instance, a large value
of Kb signifies a surfactant that is physically more surface active.

Based on the physical properties given in table 1, the non-dimensional parameters take
values in the ranges shown in table 2. In an experimental set-up where a thin and long
channel is used (Barthelet et al. 1995), here assumed to have a height as small as 1 μm
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Nonlinear dynamics of two-layer surfactant-laden shear flows 900 A7-13

in order to capture the microfluidics regime, the Reynolds number is typically negligible
for small shear or flow rates. In such scenarios where a large length-to-height aspect ratio
is valid, the scalings adopted in (2.35) are applicable, i.e. the values of the Bond and
capillary numbers are typically minuscule, the Marangoni number can be relatively large,
and parameters Bi and Km are usually small. Owing to the small-scale diffusion rates,
the Péclet numbers are typically very large but there are some practical scenarios when
smaller Péclet values are relevant (e.g. for channel gap heights in the micrometre range).
Even though the model was derived based on the assumption of small Péclet numbers, in
the computations later the three Péclet numbers take moderate values that push the model
slightly beyond its formal range of validity, in order to get some physically relevant cases.
Finally, the effects of gravity can be ignored by selecting fluids of similar densities, i.e.
with a density ratio r ≈ 1.

3. Numerical simulations

3.1. Numerical methods
The four governing equations (2.32), (2.33), (2.30) are solved in a bounded interval x ∈
[−L, L] with periodic boundary conditions (in essence we take the length L = 2L). The
spatial derivatives are evaluated using fast Fourier transforms in Matlab (Trefethen 2000).
The system is written in the form U t + F (U) = 0, with vector U = (h, Γ, C0, M0) and
nonlinear operator F (U). The interval [−L, L] is partitioned into a uniform mesh with 2Nm
points, defined by xn = −L + nΔx with Δx = L/Nm and n = 0, 1, . . . , 2Nm − 1, and the
solution for U at each mesh point is approximated by a value Un . The time discretisation
scheme is based on the theta method, which uses a weighted average of the solution in the
nonlinear term F (U) and the system solved is given by

Un+1 − Un

dt
− F (θUn+1 + (1 − θ)Un) = 0, (3.1)

where 0 ≤ θ ≤ 1. Taking θ = 1 gives the implicit Euler method which is first-order
accurate in time, while for θ = 0 the scheme is explicit and requires much smaller time
steps compared to other values of θ . Here we will use the theta method with θ = 1/2,
which is unconditionally stable and is second-order accurate in time.

The nonlinear system is solved starting from initial conditions

h(x, 0) = h0 + ha cos
(

Kπx

L

)
, Γ (x, 0) = Γ̄ , C0(x, 0) = C̄, M0(x, 0) = M̄,

(3.2a–d)

where Γ̄ , C̄, M̄ denote the equilibrium surfactant concentrations; the initial conditions
(3.2) hence correspond to a perturbed interface (with perturbation of amplitude ha and
integer K waves in one period) with uniform surfactant concentrations. Typically the initial
concentration at the interface Γ̄ is prescribed and the equilibrium concentrations for the
monomers and micelles in the bulk, C̄ and M̄, are calculated by setting the fluxes in (2.5)
to zero, yielding

C̄ = Γ̄

Kb(1 − Γ̄ )
, M̄ = C̄N . (3.3a,b)

The overall surfactant mass in equilibrium can hence be calculated by

M0 = h0

βb

(
C̄ + M̄

)+ Γ̄ . (3.4)
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900 A7-14 A. Kalogirou and M. G. Blyth

We note that in what follows, whenever we refer to being below the CMC this means that
the selected values for C̄ + M̄ < 1, i.e. less than CMC in dimensional units.

3.2. Linear growth rates
To validate the numerical code we perform comparisons between growth rates found
using linear stability analysis and numerical computations. Introducing a normal-mode
perturbation to the steady state (h, Γ, C0, M0) = (h0, Γ̄ , C̄, M̄) of the form h = h0 +
δĥ exp(ikx + σ t), etc. for small perturbation amplitude δ � 1, leads to a linearised system
coming from (2.32), (2.33), (2.30). Here, σ is generally complex, k is real, and quantities
with hat decorations are the perturbation eigenfunctions. The resulting dispersion relation
is a fourth-order polynomial for σ which is solved to find four growth rates given by the
real part s = Re(σ ) (the polynomial in σ is of third order when the concentrations are
below the CMC and the micelle equation is ignored). Out of the four growth rates, two
are seen to pass through k = 0 and the other two (corresponding to the bulk and micelle
surfactant modes) are negative at k = 0. Typically one of the four modes is unstable, with
the instability manifesting itself for a range of wavenumbers 0 < k < kc, where kc is the
cut-off wavenumber. The growth rates obtained are found to be in excellent agreement
with the results of Kalogirou & Blyth (2019) who solved the Orr–Sommerfeld eigenvalue
problem for arbitrary wavelength perturbations; the good agreement is verified for all cases
shown in this study as long as k is not too large – this is expected since the model is derived
assuming that the channel length-to-height ratio is large, i.e. any interfacial waves will be
large-wavelength waves. The third mode (and fourth mode if the bulk concentration is
above the CMC) only agrees with the numerical solution of the full system (as explained
in Kalogirou & Blyth (2019) using the Chebyshev collocation method Orzag 1971) when
Peb, Pem are relatively small. Typical curves for the dominant growth rate are shown in
figure 2; panel (a) demonstrates three growth rates for decreasing values of surfactant
solubility Kb, where it is seen that a sufficient amount of solubility stabilises the system.
Panel (b) shows a case with increasing initial concentration Γ̄ (or equivalently increasing
the total available surfactant mass) and the system is seen to be stabilised when the bulk
concentration grows beyond the CMC (this can be calculated from (3.3) for the given
values of Γ̄ , Kb, N).

To enable comparison with the linear stability results, we solve the fully nonlinear
system using initial conditions (3.2) with perturbation amplitude ha � 1. At small times
and before the solution saturates to a nonlinear state (but after any initial transients), the
solution remains in the linear regime and is of the form h = h0 + ha exp(ikx + σ t), where
σ = σr + iσi is the complex growth rate and k is the wavenumber. Taking the logarithm
of the L2-norm gives log(‖h − h0‖2/ha) = σrt + C for some constant C. Therefore by
plotting this logarithmic expression we obtain a line of slope σr; this allows us to compare
the amplification rate σr with the prediction of the dispersion curve s found from linear
stability analysis.

We perform a number of comparisons between growth rates found from linear theory
and the corresponding growth rates obtained from nonlinear simulations as described
above. The (real) wavenumber k and integer frequency K are connected through the
relationship k = πK/L – this means that a perturbation of wavelength 2π/k on the real
line corresponds to a perturbation of wavelength 2L/K in the periodic domain. For a
given set of parameters, we either fix the domain half-length L and select a perturbation
frequency K such that k = πK/L < kc (the critical kc is found from the linear dispersion
curve), or we fix the frequency K and choose a domain length satisfying L > Lc = πK/kc.
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FIGURE 2. Dominant growth rate curves found from linear stability analysis of the lubrication
model for different values of (a) solubility parameter Kb, or (b) equilibrium interfacial
concentration Γ̄ . In (a) the parameter set h0 = 0.4, m = 0.5, Γ̄ = 0.5 is used, while (b) uses
the values h0 = 0.2, m = 0.5, Kb = 3. The rest of the parameters take the values Bo = 0, Ca =
0.001, Ma = 10, Bi = 0.1, βb = 1, Km = 0.1, N = 10, Pes = Peb = Pem = 10. The growth rates
in (a) correspond to bulk concentrations below the CMC and those in (b) to concentrations above
the CMC.

The growth rate predictions from linear stability theory and nonlinear computations in the
linear regime are found to have good agreement for all tested cases.

3.3. Nonlinear solutions
This section presents a range of results obtained from time-dependent calculations of
the governing system of (2.32), (2.33), (2.30), aiming to identify the effect of surfactant
solubility on the dynamics of the system. To determine the impact of solubility on the
solutions, we use the following norm as a measure of the interfacial wave amplitude,
defined by

‖h − h0‖2 = 1
2L

∫ L

−L
(h − h0)

2 dx, (3.5)

and computed using the trapezoidal quadrature rule. Mass conservation was verified in all
numerical computations, by calculating the total surfactant mass using (2.34) and ensuring
that it remains constant (to within a small absolute error typically of the order of 10−8). The
wave speed of interfacial travelling waves found as solutions can be obtained by writing
h(x, t) = h(z) with z = x − ct (similarly for the rest of the variables), and using (2.33) to
obtain the following formula:

c =
∫ L

−L

((
u1

∣∣
y=hΓ

)
zΓz − Jb0Γz

)
dz∫ L

−L Γ 2
z dz

. (3.6)

All the results presented in this section are obtained by considering a frame of reference
moving with the travelling wave.

It should be noted that, once the interfacial height h(x, t) is determined, then the
leading-order flow perturbations throughout the channel follow from (2.16), (2.17), (2.18),
(2.23). Such expressions can be used to calculate the vorticity distribution in the channel
and also to construct streamlines. The streamlines are formulated by writing the fluid
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velocity in each fluid layer in terms of the streamfunction Ψi(x, y, t) such that ui − c =
Ψiy , vi = −Ψix , for i = 1, 2. Here, by subtracting the interfacial travelling wave speed c
from the horizontal velocity we consider a frame of reference in which the interface is
stationary and corresponds to a streamline. The streamfunction in the lower fluid is found
to be (the one in the upper layer is not given but it can be found in a similar way)

Ψ1(x, y, t) = 1
2

sy2 + 1
2

a1 y2 + 1
6

p̃1χ y3 − cy, (3.7)

with the constant of integration determined such that Ψ1 = 0 on the lower wall y = 0.
In what follows we fix the domain half-length to L = 28 and the perturbation frequency

to K = 1 (note that for this choice of domain length, only perturbations of this particular
frequency are unstable – larger domain lengths can support a spectrum of unstable
frequencies and more complex dynamics, as shown in a related study for insoluble
surfactant by Kalogirou & Papageorgiou 2016). Computations are performed with initial
perturbation amplitude equal to 20 % of the total undisturbed thickness of the lower fluid,
i.e. ha = h0/5, and the final time is taken to be large enough so that the solutions saturate to
a coherent structure (typically around t = 5000). Even though the asymptotic parameter ε

has been scaled out of the final lubrication model, the model is only valid if the scalings in
(2.35) are satisfied. Therefore the parameter ε is kept to a fixed value ε = 0.1 and the rest
of the parameters that scale with ε take the values Bo = 0, Ca = ε3 = 0.001, Ma = ε−1 =
10, Bi = ε = 0.1, Km = ε = 0.1, Pes = 100ε = 10, Peb = 100ε = 10, Pem = 100ε = 10.
Moreover, the undisturbed interfacial surfactant concentration is fixed to Γ̄ = 0.5 (unless
otherwise stated), the micelle size is taken to be N = 10 and the solubility parameter
is fixed to βb = 1. Based on the selected value of Γ̄ , the equilibrium concentrations C̄
and M̄ are calculated from (3.3). We note that the same saturated wave can be reached
with different initial distributions of the same total available surfactant mass (for example,
initially all the surfactant could be at the interface or in the bulk).

We focus the numerical investigation on four distinct cases: in the first two the
bulk concentrations are below the CMC and the parameter sets are chosen to support
(in)stability when the surfactant is insoluble – the strength of surfactant solubility is then
increased to determine its influence on the stability of the interface. In particular, the
fluid viscosity ratio m and thickness ratio n in the first (second) case satisfy the condition
m < n2 (m ≥ n2), for which the system with insoluble surfactant has been shown to be
unstable (stable) (Frenkel & Halpern 2002; Halpern & Frenkel 2003). The third case
considers the effect of total mass of surfactant on the stability, especially in cases where
bulk concentration is above the CMC and micelles are also formed. In all the above
cases, the fluid densities are taken to be equal (i.e. r = 1) in order to eliminate density
stratification effects and focus on the effect of surfactants and their solubility. A fourth
and final case considers a flow with surfactants at high concentrations above the CMC
that is susceptible to the Rayleigh–Taylor instability due to unstable density stratification
(for related studies on the influence of gravity in a two-layer channel flow with insoluble
surfactants we refer the reader to Frenkel & Halpern 2017; Kalogirou 2018). The aim is
to identify the dominant physical effect in a scenario where surfactants and gravity are
interacting.

3.3.1. Below the CMC for m < n2

We select a parameter set that leads to an unstable interface in the case when the
surfactant is mostly attracted to the interface (i.e. insoluble or nearly insoluble), and then
reduce the value of the solubility parameter Kb to identify its effect on the stability.
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The undisturbed interfacial height is at h0 = 0.4, the viscosity ratio is m = 0.5 and
the equilibrium concentration of interfacial surfactant is Γ̄ = 0.5. Here the chosen
parameters satisfy the condition m < n2 (where n is the fluids thickness ratio equal to
n = (1 − h0)/h0 = 1.5), and therefore the insoluble system is unstable (Frenkel & Halpern
2002). Further information about the stability of the system for the selected parametric set
can be gathered from the growth rate curves in figure 2(a) when looking at the specific
wavenumber k = π/28 = 0.1122 corresponding to a domain of (half) length L = 28
as considered here; in particular, it is anticipated that for sufficiently strong surfactant
solubility effects the interface will be stabilised.

The above predictions from linear stability analysis are followed into the nonlinear
regime through simulations of the present nonlinear lubrication model. An initial
disturbance of the form (3.2) is allowed to evolve in time and it eventually saturates to
a nonlinear travelling wave at large times (typically after about 3000 time units). Panel
(a) in figure 3 demonstrates the saturated interfacial wave for the case when the surfactant
is predominantly attracted to the interface (equivalently Kb 
 1). The thick black line
shows the location of the interface while the thin black lines within the two fluids are
the streamlines, plotted as the contour lines of the respective streamfunction calculated
from (3.7). The streamlines indicate the presence of an eddy in the lower fluid that is
centred around the point (x, y) = (−4.6, 0.364) and spans the whole domain – in fact,
a stagnation point exists directly below the interfacial wave trough and within the lower
fluid around (x, y) = (19.5, 0.315). At the initial stages of the evolution the streamlines
under the wave peak are seen to intersect the interface, but after some initial transient
(up to t ≈ 300) the eddy appears to take its final form (as seen in figure 3a) and the
streamlines immediately above the eddy are parallel with the interface. In the frame of
reference moving with the interfacial travelling wave, the interface and the fluid directly
below it are both moving from left to right, the eddy is rotating clockwise (evident by the
colour in figure 3a corresponding to the vertical velocity in the lower fluid v1) and the fluid
beneath the eddy is moving from right to left. We note that the existence of eddies under
a deforming interface has also been reported in related thin film flows (Blyth et al. 2018),
but those eddies were trapped inside the main part of solitary waves and appeared only
when the wave amplitude was sufficiently large. Here we find that the eddy gets longer for
waves of smaller saturated amplitude; in fact, for wave amplitudes smaller than 10−2 the
eddy gets elongated as time evolves, the enclosed streamlines eventually detach and the
eddy disappears (at sufficiently large times but before the wave reaches saturation).

When the surfactant is weakly soluble with Kb = 5 (figure 3b), the system is still
unstable but the saturated interfacial wave has a smaller amplitude and is seen to be
smoother compared to the insoluble case (panel a). The colour shown in panel (b)
demonstrates the bulk surfactant concentration C (calculated using the first two terms
in (2.27a)), which is seen to be uniform in the vertical and to attain its maximum
concentration ahead of the location where the lower fluid is the thickest. When the
surfactant solubility effects are sufficiently strong, i.e. for a small enough value of Kb = 2,
a complete stabilisation of the flow is observed characterised by uniform fluid thicknesses
and constant surfactant concentrations throughout the channel as shown in figure 3(c). The
observed stabilisation due to surfactant solubility is summarised in figure 4(a) where the
solution norms (3.5) are depicted for the three cases discussed above.

3.3.2. Below the CMC for m ≥ n2

Similarly to the previous case, we consider an undisturbed interfacial thickness h0 = 0.4
(n = 1.5) but this time the viscosity ratio is larger at m = 5, satisfying m ≥ n2. The system
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FIGURE 3. Interfacial deformation (thick black line) for three values of solubility parameter
(a) Kb 
 1, (b) Kb = 5, (c) Kb = 2, demonstrating stabilisation of the interface for sufficiently
strong surfactant solubility. The thin black lines shown within the fluids are the streamlines which
are equally spaced in Ψ1, Ψ2, and the colours in each figure correspond to the (a) vertical velocity
v1, or (b, c) bulk surfactant concentration C. The parameter values used are h0 = 0.4 (n = 1.5)
and m = 0.5, which satisfy the condition m < n2 according to which the system with insoluble
surfactant (panel a) is unstable. The rest of the parameters are the same as in figure 2(a) and
ε = 0.1. The time evolution of the interfacial wave and interfacial surfactant concentration can
be seen in supplementary movies 1–3 available at https://doi.org/10.1017/jfm.2020.480.

with insoluble surfactant is hence expected to be stable (Frenkel & Halpern 2002),
as confirmed by panel (a) of figure 5 where a flat interface is seen and the flow is
unidirectional (see also the corresponding solution norm in figure 4b which is seen to
tend to zero at large times). When the surfactant is sufficiently soluble the system can be
destabilised, as demonstrated by the saturated travelling wave in panel (b) of figure 5 which
is obtained for Kb = 2. Note that for the choice of parameters used here, the equilibrium
concentration of monomers in the bulk is C̄ = 0.5 which is way below the critical micelle
concentration (equal to 1 in dimensionless units). However, what seems to be particularly
interesting in the result of figure 5(b), is that a small concentration of micelles is developed
within the lower fluid. The micelle concentration (calculated using the first two terms
in (2.27b)) is illustrated with colour in panel (b); it can be observed that the micelles
are mainly formed under the wave crest whereas their concentration remains zero in the
rest of the domain. As the system develops dynamically, the nonlinear fluxes Jb and Jm

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.480
https://doi.org/10.1017/jfm.2020.480


Nonlinear dynamics of two-layer surfactant-laden shear flows 900 A7-19

0

0.01

0.02

||h
 –

 h
0||

0.03

0.04

0.05

0.06

0.01

0.02

0.03

0.04

0.05

0.06

1000 2000 3000 4000
t t

5000 0 1000 2000 3000 4000 5000

(b)(a)
Kb � 1
Kb = 5
Kb = 2

Kb � 1
Kb = 2

FIGURE 4. Norms of interfacial displacement for different values of solubility parameter Kb,
corresponding to the simulations presented in (a) figure 3, and (b) figure 5.
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FIGURE 5. Interfacial deformation (thick black line) for two values of solubility parameter
(a) Kb 
 1, (b) Kb = 2, demonstrating destabilisation of the interface for sufficiently strong
surfactant solubility. The thin black lines shown within the fluids are the streamlines which are
equally spaced in Ψ1, Ψ2, and the colours in each figure correspond to (a) the horizontal velocity
u1 − c, or (b) the micelle concentration M. The parameter values used are h0 = 0.4 (n = 1.5)
and m = 5, which satisfy the condition m ≥ n2 according to which the system with insoluble
surfactant (panel a) is stable. The rest of the parameters are the same as in figure 2(a) and
ε = 0.1. The time evolution of the interfacial wave and interfacial surfactant concentration can
be seen in supplementary movies 4 and 5.

(see (2.5)) depart from the initial equilibrium state and a non-uniform distribution of
surfactant occurs due to interface deformation and the ensuing Marangoni flow. This leads
the saturated monomer concentration to reach a value of 0.9 in the vicinity of the peak
of the interfacial wave (not shown here) and the micelle concentration to reach a value
of approximately 0.27, and therefore the CMC is exceeded. In this scenario it is expected
that the nonlinear equation of state for the surface tension (2.7) becomes more important.
A similar result has been observed in Craster et al. (2009) in their study of the breakup of
surfactant-laden jet.

3.3.3. Above the CMC
Increasing the total available mass of surfactant increases the concentration in the bulk

until eventually the CMC is exceeded and micelles start to form. When this happens it
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FIGURE 6. Interfacial deformation (thick black line) for the system with (a, c) insoluble or
(b, d) soluble surfactant and for two different values of Γ̄ (Γ̄ = 0.5 in (a,b) and Γ̄ = 0.75 in
(c,d)). The thin black lines shown within the fluids are the streamlines which are equally spaced
in Ψ1, Ψ2, and the colours in each figure correspond to (a, c) the vertical velocity v1, or (b, d) the
micelle concentration M. The parameter values used are h0 = 0.2 and m = 0.5. The rest of the
parameters are the same as in figure 2(b) and ε = 0.1. The time evolution of the interfacial wave
and interfacial surfactant concentration for cases (c, d) can be seen in supplementary movies 6
and 7.

is expected that the flow will be stable due to the weakening of the Marangoni forces
which is a consequence of the micellisation (Kalogirou & Blyth 2019). This remark
is also corroborated by the growth rate curves in figure 2(b), when looking at the
wavenumber k = π/28 = 0.1122 which corresponds to L = 28. Figure 6 demonstrates
the results of numerical calculations with h0 = 0.2, m = 0.5 and two different values of
overall surfactant mass M0, corresponding to bulk concentrations below and above the
CMC. In particular, panels (a, b) in figure 6 consider an initial interfacial concentration
Γ̄ = 0.5, in which case the initial bulk and micelle concentrations are C̄ = 1/3, M̄ =
1/310 ≈ 1.7 × 10−5 (calculated from (3.3)) and the total surfactant mass is M0 = 0.5667
(calculated from (3.4)). Panels (c, d) use Γ̄ = 0.75, hence we have C̄ = 1, M̄ = 1 and a
total surfactant mass of M0 = 1.15.

For the chosen parametric set, the corresponding insoluble system is unstable
irrespective of the value of Γ̄ (since m < 16 = n2) and a solitary-type pulse is seen
to emerge at large times (panels a, c). An eddy is developed in the lower fluid which
is rotating clockwise similarly to the results reported above in § 3.3.1 (the colour in
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FIGURE 7. Norms of interfacial displacement for different values of solubility parameter Kb,
corresponding to the simulations presented in figure 6.

panels (a, c) denotes the vertical velocity in the fluid). When the surfactant is soluble
with Kb = 3, then the interface continues to be unstable if the surfactant concentration is
relatively low but the solitary pulse has a smaller amplitude, see panel (b) which employs
Γ̄ = 0.5. A small concentration of micelles is also created at the front edge of the eddy, as
shown by the colour in figure 6(b), similarly to the result in figure 5(b). On the other
hand, for higher bulk concentrations beyond the CMC the interface is stable and the
micelle concentration is uniform at M = 1, as illustrated in panel (d) for Γ̄ = 0.75. The
corresponding solution norms for the calculations discussed in this section can be found
in figure 7, confirming the reduction in the saturated wave amplitude due to surfactant
solubility effects for concentrations below the CMC (figure 7a), and the flow stabilisation
due to micellisation when the bulk concentration is above the CMC (figure 7b).

3.3.4. Unstably stratified system
In the previous section it was shown that once the surfactant concentration in the bulk

exceeds the CMC, then the flow is stable. This behaviour is anticipated for an inertialess
stably stratified flow with constant surface tension. The aim of this case study is to
examine the flow dynamics due to the interacting effects of gravity and surfactants at
high concentrations above the CMC. We therefore consider the flow analysed above in
§ 3.3.3, which has been found to be stable for equal-density fluids, and we introduce
an unstable density stratification by assuming a larger upper fluid density compared to
that of the lower fluid, so that the density ratio is larger than 1. In particular, we take
(1 − r)Bo = −20ε2 = −0.2 (cf. (2.35)) and keep the rest of the parameters the same as
in the calculation presented in figure 6(d) (note that the flow dynamics is affected by
the factor (1 − r)Bo through fx , see (2.18), but does not depend on the two components
(1 − r) and Bo individually). The value of the above density stratification term is chosen
such that gravity effects overcome the stabilising influence of micellisation and so that the
flow is unstable (in fact, the critical value below which the system is unstable is found to
be (1 − r)Bo = −0.15). We note that even though the flow in this case a susceptible to the
Rayleigh–Taylor instability, the interface saturates to a stable structure due to the presence
of shear (Babchin et al. 1983).
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FIGURE 8. Results for § 3.3.4 corresponding to concentrations above the CMC and unstable
density stratification, imposed by using (1 − r)Bo = −0.2 (the rest of the parameters are the
same as in figure 6d). (a) Interfacial deformation (thick black line), streamlines in the two fluids
(thin black lines), which are equally spaced in Ψ1, Ψ2, and micelle concentration (colour). The
two black dots denote stagnation points. (b) Norm of interfacial displacement (solid blue line)
and travelling wave speed (dotted red line). (c) Interfacial surfactant concentration (dashed blue
line), monomer concentration in the bulk (dotted blue line) and interface-to-bulk flux Jb0 (solid
red line, right-hand side y-axis).

The final saturated interfacial wave can be seen in figure 8(a), whereas the time
evolution of the solution norm and travelling wave speed c can be found in figure 8(b).
Even though the undisturbed thickness of the lower fluid occupies 1/5 of the channel height
(since h0 = 0.2), the shape of the interface develops into a solitary pulse that is seen to be
as tall as 2/3 of the channel. The streamlines reveal once more the presence of an eddy but
this time it is trapped in the main part of the solitary pulse. In fact, a second re-circulation
zone exists in the upper fluid, located at about the same height as the pulse and following
a clockwise rotation in the whole domain range (the flow in the frame of reference moving
with wave speed c is from left to right above the two re-circulation regions and from right
to left below them). This means that a substantial portion of the upper fluid is transported
along with the pulse. The existence of two stagnation points on the interface can be also
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seen at around x = 5 and x = 13 (depicted with black dot markers in figure 8a), indicating
locations where the direction of rotation changes.

A large concentration of micelles is formed under the pulse, illustrated with colour
in figure 8(a). The saturated concentration of monomers at the interface and in the
bulk, together with the corresponding interface-to-bulk flux Jb0 = Bi(KbC0(1 − Γ ) − Γ )

are illustrated in figure 8(c) with dashed, dotted and solid lines, respectively. The
concentrations are seen to be constant in approximately half of the domain but in the
vicinity of the pulse large variations are observed.

Finally, we note that the solitary wave devoid of surfactant (i.e. the solution obtained
from a numerical computation for the clean problem with constant surface tension)
exhibits a larger saturated amplitude, with a second eddy residing within the upper fluid
to the right of the pulse. The corresponding pulse with insoluble surfactant does not have
a fixed from but its shape changes periodically in time. These remarks suggest that the
presence of micelles have a stabilising influence on the flow, either through reducing the
pulse amplitude or regularising the time-periodicity observed in the insoluble surfactant
case.

3.4. Travelling waves
The results in § 3.3 provide evidence of the existence of saturated travelling waves as
solutions of the problem studied here. It is interesting to investigate these travelling wave
solutions in greater detail by examining the bifurcations from which they emerge and
their properties as various geometrical or physical parameters are varied (such as the
domain length or the fluid thicknesses). This can be achieved by using the continuation
and bifurcation software AUTO-07p (Doedel & Oldman 2009), which employs Newton’s
method and follows the solutions in parameter space.

Travelling wave solutions are sought directly by working in the travelling wave frame
z = x − ct, where c is the a priori unknown wave speed, in which case the system
of (2.32), (2.33), (2.30) is transformed into a boundary-value problem. The resulting
nonlinear system of ordinary differential equations (ODEs) is then solved using an initial
guess constructed from linear stability theory, in order to latch onto the bifurcation branch
that emanates from the neutral stability point where the linearised growth rate s = 0 – see
appendix A. for more details. Continuation is performed in terms of the travelling wave
speed c and one other parameter, here chosen to be either the (half) domain length L or
the lower fluid thickness h0, whereas the rest of the parameters are kept fixed. Figure 9
demonstrates the resulting interfacial waves for varying L (panel a) or varying h0 (panel
b) and for fixed Kb = 10 (the remaining parameters are the same as in figure 3). In the
former case, h0 = 0.4 is fixed and L increases from L = 28 (as used in the results of § 3.3)
up to L = 200. The interface deflection is shown in figure 9(a) in a scaled horizontal
domain [0, 1] for nine different values of L varying from L = 40 (curve with lowest
trough) to L = 200 (curve with thinnest pulse). The increase of the domain length causes
the crest of the wave to become thinner and slightly shorter, and makes the structure
more localised in the sense that it becomes flatter between the peaks. The variation of
the corresponding travelling wave speed against L is shown in figure 10(a) and is seen
increase monotonically as L becomes larger. In the second continuation case, the (half)
domain length is fixed to L = 28 and the lower fluid thickness decreases from h0 = 0.4
down to h0 = 0.05 – figure 9(b) illustrates a series of interfacial waves varying from
h0 = 0.38 (top curve) to h0 = 0.05 (bottom curve). The reduction in h0 leads to the
steepening of the interface around the wave crest and the flattening of the rest of the
interface – for sufficiently small values of h0, the wave is seen to become a solitary-type
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FIGURE 9. Interfacial profiles for (a) varying L and fixed h0 = 0.4, and (b) varying h0 and
fixed L = 28. The arrows show the direction of increasing L or decreasing h0 in each panel,
respectively. The depicted solutions are obtained for Kb = 10 and the rest of the parameters are
the same as in figure 3.
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FIGURE 10. Travelling wave speeds for (a) varying L and fixed h0 = 0.4, and (b) varying h0
and fixed L = 28. The depicted solutions are obtained for Kb = 10 and the rest of the parameters
are the same as in figure 3.

pulse followed by a small depression. The surfactant is found to accumulate in the vicinity
of the depression, both at the interface and in the bulk fluid (results not shown). Also, the
wave speed c diminishes to zero as h0 is decreased (figure 10b). We note that carrying
out time-dependent computations of the lubrication model for the cases with relatively
small h0 requires much larger final times and smaller resolutions until a saturated wave
is attained, which highlights one of the main advantages of the continuation method. The
existence of solitary waves at the interface between two viscous fluids in a channel has
been reported before by Power, Villegas & Carmona (1991) and Samanta (2013), and they
have been observed in Couette flow experiments by Gallagher, Leighton & McCready
(1996).

The effect of surfactant solubility on the interfacial travelling waves can be investigated
by performing continuation with respect to the solubility parameter Kb. This is achieved
by considering the solutions obtained for L = 28, h0 = 0.4, Kb = 10 and decreasing Kb,
which is found to reduce the wave amplitude until approximately Kc

b = 2.62 that signifies
a bifurcation point; below this value the system is stabilised and the interface is flat.
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FIGURE 11. (a) Interfacial profiles and (b) surfactant concentrations at the interface obtained
for L = 200, h0 = 0.4, Kb = 10, while the rest of the parameters remain the same as in figure 3.
Solid lines demonstrate solutions of the full system with soluble surfactant and dotted lines are
used for solutions of the corresponding insoluble system.

This is in line with the results presented in figures 3 and 4(a). We end this section with a
comparison between the solution obtained at L = 200, h0 = 0.4, Kb = 10 (cf. figure 9a)
and the corresponding solution found using the insoluble system, which is depicted in
figure 11. The interface deformation (figure 11a) and interfacial surfactant concentration
(figure 11b) are shown with solid and dotted lines for the soluble and insoluble cases,
respectively. As already demonstrated by previous results in this work, the strengthening
of surfactant solubility diminishes the wave amplitude but also leads to the wave becoming
less localised. Moreover, the distribution of surfactant concentration at the interface is
seen to be reduced in amplitude and confined in a smaller region in the soluble case –
this is expected due to the desorption kinetics towards the bulk fluid. The behaviour of
the surfactant concentration which shows significant variation throughout the channel in
contrast to the localised interfacial structure has been observed before by Thompson &
Blyth (2016) in their study of three-layer free-surface flows.

4. (In)stability mechanisms

The primary aim of this section is to investigate the physical reasons that cause the
system to become unstable for specific fluid properties and explain the effect of surfactant
solubility on the stability. In particular, we aim to understand why the factor (m − n2)

is important and what makes the problem to change its stability behaviour when this
boundary is crossed in parameter space. A creeping two-layer flow in a channel devoid
of surfactant is known to be stable when the density is uniform (Yih 1967), but when a
dilute concentration of surfactant is added, then the insoluble limit is appropriate and it
has been found that the interface is unstable if m < n2, and stable otherwise (Frenkel &
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Halpern 2002; Halpern & Frenkel 2003; Wei 2005). The impact of surfactant solubility on
these stability properties will be examined here.

The (in)stability mechanisms will be investigated by obtaining the linear equations of
motion, which is achieved by writing h(x, t) = h0 + δĥ(x, t), Γ (x, t) = Γ̄ + δΓ̂ (x, t),
etc. for δ � 1, and keeping only linear terms in the lubrication model. The following
linear equation for the interfacial deformation is hence obtained from (2.32)

ĥt + α1ĥx − β1ĥxx + γ1ĥxxxx + δ1Γ̂xx = 0, (4.1)

where the coefficients α1, β1, γ1, δ1 are functions of n, m, r and other non-dimensional
parameters and are given in appendix B. The full linearised system is also provided in
the same appendix. Coefficient β1 depends on the factor (1 − r) and hence represents the
influence of density stratification (it can become negative in cases of unstable density
stratification); term γ1 corresponds to surface tension effects and specifically depends
on the undisturbed value γ̄ = 1 + βs ln(1 − Γ̄ ); coefficient δ1 introduces the effect of
Marangoni forces into the dynamics and is proportional to the crucial factor (m − n2).
Clearly the sign of (m − n2) in the coefficient of the Γxx term affects the way Marangoni
forces are acting on the interface (Wei 2005).

Having obtained (4.1), we can perform an analysis similar to that for energy budgets
(Picardo et al. 2016) by multiplying the equation with ĥ and integrating over one spatial
period. The ‘energy’ equation reads

d
dt

∫ L

−L

1
2

ĥ2 dx = −β1

∫ L

−L
ĥ2

x dx − γ1

∫ L

−L
ĥ2

xx dx + δ1

∫ L

−L
ĥx Γ̂x dx, (4.2)

where the left-hand side term represents the rate of change of the interfacial disturbance.
In a stably stratified system, the first two terms on the right-hand side are negative and
hence always stabilising due to the action of gravity or surface tension, respectively. The
third integral on the right-hand side is found to be negative in numerical computations of
the system with insoluble surfactant, hence it has a destabilising influence when δ1 < 0
that is when m < n2, otherwise the systems is stable; this is in line with the known result
from the literature on the stability of two-layer channel flow with insoluble surfactants
(Frenkel & Halpern 2002; Halpern & Frenkel 2003).

Next, we write the eigenfunctions ĥ, Γ̂ in a normal-mode form ĥ(x, t) =
h̃ exp(ikx + σ t) + c.c., Γ̂ (x, t) = Γ̃ exp(ikx + σ t) + c.c., where c.c. denotes the complex
conjugate. The amplitude of the interface disturbance is normalised by setting h̃ = 1
and the concentration disturbance amplitude is written as Γ̃ = Geiφ , where φ is the
phase difference between the interface deformation and concentration waves, and G > 0.
Applying these normal modes, we obtain from (4.1) on taking the real part,

Re(σ ) = −β1k2 − γ1k4 + δ1k2G cos φ. (4.3)

Assuming that the system is stably stratified in which case the first term on the right-hand
side is negative, then the condition for instability, given by Re(σ ) > 0, can be satisfied
only when the term δ1 cos φ is positive. If m < n2 in which case δ1 < 0, then instability is
possible when cos φ < 0 or φ in the range (π/2, 3π/2). On the other hand, for m ≥ n2 or
equivalently δ1 > 0, instability is only possible when cos φ > 0 or φ ∈ (−π/2,π/2).

Figure 12 demonstrates the normalised perturbation eigenfunctions corresponding to
the dominant mode for the interface deformation ĥ (red lines with circles) and interfacial
surfactant concentration Γ̂ (black lines). The concentration wave forms are presented
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FIGURE 12. Wave forms of the normalised eigenfunctions for the interface deformation (red)
and interfacial surfactant concentration (black). The results are rescaled in the domain x ∈
[−π, π] for easier realisation of the phases. The three black curves in each panel correspond to
different values of solubility parameter Kb as quoted in the legend. The left panel uses the same
parameter values as figure 3 satisfying m < n2, while the right panel corresponds to figure 5 with
m ≥ n2.

separately for m < n2 (a) and m ≥ n2 (b) and in each case they are shown for three
different values of the solubility parameter Kb – in fact, the parameter sets used in the
two panels correspond to the cases presented earlier in figures 3 and 5, respectively.
It can be seen that for m < n2, the phase difference between ĥ and Γ̂ in the case of
insoluble surfactant (Kb 
 1, solid line) is bigger than π/2, confirming that the system is
unstable according to the discussion in the previous paragraph. When surfactant solubility
is imposed (equivalently, as Kb is reduced), the concentration wave shifts to the left and
eventually the phase becomes equal to π/2 for small enough Kb (dash-dot line). This
behaviour leads to stability as already expected from the results of § 3.3.1. When m ≥ n2,
the phase corresponding to the insoluble system is approximately π (solid line), hence the
system is stable as this is greater than π/2 and cos φ < 0. Solubility effects lead to the
shifting of the concentration wave to a phase that is smaller than π/2 (see dashed and
dash-dot lines) and hence to stability.

Once the phase difference between the interface deformation and concentration is
known, then the physical mechanism leading to instability is connected with the action of
Marangoni forces at the interface. This has been discussed extensively in related literature
for insoluble surfactant, see the studies by Frenkel & Halpern (2002), Blyth & Pozrikidis
(2004) and Wei (2005). In short, local accumulation of surfactant establishes surface
tension gradients that, by virtue of the phase difference, tend to drive fluid toward the
troughs and peaks of the interfacial deformation wave, forcing it to grow in amplitude.

5. Conclusions

The nonlinear stability of long waves at the interface between two viscous fluids
in a channel has been investigated numerically, in the case when one of the fluids is
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contaminated with a surfactant. In particular, the effect of surfactant solubility on the
interfacial stability has been assessed, including cases where the surfactant concentration
exceeds the critical micelle concentration. In such situations, micelles are formed in the
bulk fluid and this affects the dynamical behaviour of the surface tension that varies in
response to the local interfacial concentration. A complete set of governing equations for
the hydrodynamics and surfactant transport has been presented and then reduced using
lubrication theory. The simplified set of equations and boundary conditions has been
solved to derive a strongly nonlinear system of evolution equations; this system comprises
four partial differential equations describing the motion of the interface, the variation
of interfacial concentration of surfactant, and the corresponding leading-order bulk and
micelle concentrations. The two evolution equations for the surfactant concentrations
in the bulk fluid (for monomers and micelles) have been obtained by assuming rapid
vertical diffusion and by averaging the flow velocities across the fluid. The derived
long-wave model is valid for inertialess flows but includes other pertinent physical
effects such as density and viscosity stratification, shear, and surfactant kinetics due to
adsorption/desorption or micelle formation/breakup.

When a two-layer, stably stratified shear flow in a straight channel is devoid of surfactant,
instability can only arise when inertia is present (Yih 1967), but the addition of insoluble
surfactant at the interface can introduce unstable modes even in the inertialess case
(Halpern & Frenkel 2003; Blyth & Pozrikidis 2004) if certain fluid properties are satisfied
(namely if the fluid viscosity ratio m and thickness ratio n satisfy the condition m < n2).
When the surfactant is soluble as in the problem studied here, the onset of instability has
been previously investigated in Kalogirou & Blyth (2019) for arbitrary wavenumbers by
linearising the full system of governing equations and applying normal-mode analysis.
A similar linear stability analysis of the long-wave model has been performed in this work
and the obtained growth rates have been found to coincide with the results of Kalogirou &
Blyth (2019) for sufficiently small wavenumbers.

The established instabilities have been followed into the nonlinear regime and the
dynamical behaviour of the system has been explored by undertaking a range of numerical
computations for different values of the fluid viscosity ratio m, the thickness ratio n and the
surfactant solubility parameter Kb. The numerical results have demonstrated the existence
of saturated travelling waves as solutions and the focus of the numerical investigation
has been placed on identifying the effect of surfactant solubility on such travelling wave
solutions. For m < n2, it has been found that as the surfactant solubility effects are
enhanced, the saturated interfacial waves attain smaller amplitudes; when the surfactant is
sufficiently soluble, the interface returns to the flat undisturbed state at large times. The
opposite phenomenon has been observed for m ≥ n2, in which case a sufficient amount
of surfactant solubility can destabilise the interface (which remains flat if the surfactant is
nearly insoluble) and give rise to coherent wave structures. In cases where the surfactant in
the bulk reaches an average concentration that is beyond the CMC, the inertialess flow has
been found to be stable. Finally, such stable surfactant-laden flows have been investigated
under the effect of density stratification. Adverse density stratification can destabilise the
flow if the density ratio exceeds a critical value in which case a large-amplitude saturated
pulse of a solitary wave type has been seen to emerge at the interface; however, the
micelles that are formed still have a stabilising influence in the sense of reducing the pulse
amplitude compared to that obtained in the clean case.

Travelling wave solutions have been also constructed directly by solving a
boundary-value problem that included the unknown wave speed c. The method of
continuation has been used to track how the interfacial waves and their speed change as
the (half) domain length L or undisturbed lower fluid thickness h0 vary. The results have
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indicated that both the increase of the domain half-length L or the decrease of the thickness
h0 lead to a more localised structure. In fact, the interface becomes a solitary pulse when h0
is sufficiently small. The strengthening of surfactant solubility (equivalently the reduction
of the value of parameter Kb) has the opposite effect, i.e. it makes the wave less localised,
and also causes the wave amplitude to shrink. The distribution of surfactant at the interface
is also reduced in amplitude when the surfactant is soluble, and it demonstrates a smaller
variation along the domain.

The mechanism responsible for interfacial (in)stability has been explained in terms of
the phase difference between the perturbation eigenfunctions for the interface deformation
ĥ and interfacial surfactant concentration Γ̂ (for the dominant mode). This has been
achieved by writing a linearised interfacial evolution equation and obtaining the growth
rate – this growth rate, and consequently the stability of the interface, has been found
to be crucially dependent on the factor (m − n2), as already realised in related studies
for insoluble surfactant (Frenkel & Halpern 2002; Halpern & Frenkel 2003; Blyth &
Pozrikidis 2004; Wei 2005). It has been demonstrated that the effect of surfactant
solubility is to modify the phase difference φ between the interface deformation and
concentration waves. For m < n2, the phase changes from a value φ > π/2 found for
insoluble surfactant to φ = π/2 when the solubility is strong enough, which stabilises the
flow. On the other hand, for m ≥ n2, a sufficient amount of solubility is able to shift the
phase difference to a value φ < π/2 and make the flow unstable. The stability behaviour
of the system based on the above remarks is in line with the nonlinear numerical solutions
presented in this work, as well as results from linear stability analysis (Kalogirou & Blyth
2019).

The formulation of the model presented in this work includes interfacial elasticity
(or equivalently surface tension gradients due to variation of surfactant concentration)
and neglects the effects of interfacial viscosity or rheology. Surfactant absorbed at
fluid–fluid interfaces might potentially also give rise to shear and dilatational surface
viscosities (Langevin 2014). Typical systems like the one considered in this study have
been investigated experimentally using the soluble surfactant SDS (Georgantaki et al.
2016); this type of surfactant has been analysed in a number of studies in the literature
(Gupta & Wasan 1974; Shen et al. 2002; Zell et al. 2014) that reported SDS measurements
(both above and below CMC) demonstrating a surface viscosity that is immeasurably
small. Nevertheless, interfacial viscosity may play an important role in many practical
scenarios using different surfactants (see, for example, the study by Ponce-Torres et al.
(2017) on the break-up of surfactant-laden droplets). The predominant influence of surface
viscosity is to weaken Marangoni forces, and hence to ameliorate Marangoni-driven
instability, and as such it would be an interesting effect to include in a future extension
to the present work.

This study represents the first attempt to investigate the nonlinear dynamics of interfaces
in inertialess multi-layer flows with surfactant above the CMC. Extending the current work
and the long-wave model to include inertia can provide a useful framework for examining
the competition between the interacting effects of micellisation and inertia. Finally, the
range of validity of the lubrication model can be estimated by direct comparisons with
direct numerical simulations of the full system of governing equations. Both of these open
questions are subjects of ongoing investigations.
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Appendix A. Implementation in AUTO-07p

The system of (2.32), (2.33), (2.30) is rescaled in the domain [0, 1] by introducing a
scaled variable X = z/(2L) and written as a system of ODEs of the form

U̇ = 2LA(U), (A 1)

where the dot denotes differentiation with respect to X,

U = (U1, U2, U3, U4, U5, U6, U7, U8, U9, U10) = (h, hz, hzz, hzzz, Γ, Γz, C0, C0z, M0, M0z)
(A 2)

is the vector of unknowns and the right-hand side vector is defined by

A(U) = (U2, U3, U4, Fh(U), U6, FΓ (U), U8, FC(U), U10, FM(U)) . (A 3)

The functions Fh(U), FΓ (U), FC(U), FM(U) are found by re-arranging the respective
equations from (2.32), (2.33), (2.30) in terms of hzzzz, Γzz, C0zz, M0zz.

The boundary-value problem is completed by introducing appropriate boundary and
integral conditions. In particular, six periodic boundary conditions are imposed for
variables h, hz, hzz, Γ , C0, M0 through

Ui(0) = Ui(1), i = 1, 2, 3, 5, 7, 9. (A 4)

Note that periodicity conditions on hzzz, Γz, C0z, M0z are not imposed; in fact, (2.32) written
in a steady travelling wave frame, can be integrated once in z making such condition on
hzzz unnecessary. The corresponding conditions on Γz, C0z, M0z are also redundant in view
of integral constraints (iv) and (v) below. In addition to the boundary conditions (A 4), five
integral conditions are imposed as follows:

(i) A phase condition that prevents the continuation algorithm from detecting
translationally invariant solutions, given in the form

∫ 1
0 U1U′

1 dX = 0, where the
prime denotes the derivative along the solution curve in parameter space.

(ii) The volume of the fluid is conserved, i.e. the integral of h = U1 is constant, given
by
∫ 1

0 U1 dX = h0.
(iii) The total mass of surfactant is conserved, namely

∫ 1
0

(
1
βb

(U7 + U9)U1 + U5
)
dX =

M0, where M0 is the initial mass calculated from (3.4).
(iv) The integral of Jb0 is zero,

∫ 1
0 Jb0(U5, U7) dX = 0. This condition is obtained by

integrating equation (2.33) (written in a travelling wave frame of reference) and
assuming that periodicity on U6 = Γz is satisfied – it is therefore equivalent to
including such a periodicity condition in (A 4), which is currently omitted.

(v) The integral of hJm0 is zero, i.e.
∫ 1

0 U1Jm0(U7, U9) dX = 0. This condition is obtained
by combining (2.30) and (2.32) and integrating the result. As with the previous
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integral condition, this constraint is associated with the requirement of periodicity
for U8 = C0z, U10 = M0z.

Therefore we have a system of size NDIM = 10 solved with NBC = 6 boundary conditions
and NINT = 5 integral conditions. The number of free parameters in the continuation is
determined by the relation NCONT = NBC + NINT − NDIM + 1 = 2, so there are two free
parameters in this case. We perform continuation in terms of the travelling wave speed c
and one other geometrical or physical parameter, such as the (half) domain length L or the
lower fluid thickness h0, while the rest of the parameters are kept fixed.

Finally, the initial conditions are at a bifurcation point where Re(σ ) = 0. We find the
critical wavenumber for instability kc and set L = π/kc, while the wave speed c is set to
c = −Im(σ )/kc. The initial condition for h is then taken to be a perturbation of the steady
state of the form h(X, 0) = h0 + δ cos(2πX), with small-amplitude coefficient δ = 0.001,
while the initial conditions for the remaining parameters Γ , C0, M0 are such that to satisfy
the linear system of governing equations.

Appendix B. Linearised lubrication model

Small perturbations are introduced to the steady state by h(x, t) = h0 + δĥ(x, t),
Γ (x, t) = Γ̄ + δΓ̂ (x, t), etc, with δ � 1, and only linear terms are kept in the lubrication
model (given below in the case of C < CCMC), resulting in

ĥt + α1ĥx − β1ĥxx + γ1ĥxxxx + δ1Γ̂xx = 0, (B 1a)

Γ̂t + α2ĥx + β2ĥxx − γ2ĥxxxx − δ2Γ̂xx + ε2Γ̂x − Ĵb0 = 0, (B 1b)

Ĉ0t + α3Ĉ0x − β3Ĉ0xx + γ3Ĵb0 = 0. (B 1c)

The coefficients that appear in the linearised system of (B 1) are given by

α1 = m
(
n4 + (2m + 2)n3 + (4m + 2)n2 + 4mn + m2

)
(n + m)�

, (B 2a)

α2 = mΨ (n + 1)2Γ̄

(n + m)�
, α3 = m

2(n + m)
, (B 2b)

β1 = (1 − r)Bo(n + m)n3

3Ca(n + 1)3�
, β2 = (1 − r)Bo(m − n2)n2Γ̄

2Ca(n + 1)2�
, β3 = 1

Peb
, (B 2c)

γ1 = γ̄ (n + m)n3

3Ca(n + 1)3�
, γ2 = γ̄ (m − n2)n2Γ̄

2Ca(n + 1)2�
, γ3 = βb(n + 1), (B 2d)

δ1 = Ma(m − n2)n2

2(1 − Γ̄ )(n + 1)2�
, (B 2e)

δ2 = n5 + (4m + 1)n4 + 10mn3 + 10mn2 + m(m + 4)n + m2

(n + 1)Pes�
+ n(n3 + m)MaΓ̄

(n + 1)(1 − Γ̄ )�
,

(B 2f )
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ε2 = m
(n + m)

, (B 2g)

where

� = n4 + 4mn3 + 6mn2 + 4mn + m2, (B 3a)

Ψ = n3 + 3n2 + 3mn + m, (B 3b)

γ̄ = 1 + βs ln(1 − Γ̄ ), (B 3c)

and
Ĵb0 = Bi

(
Kb(1 − Γ̄ )Ĉ0 − (1 + KbC̄)Γ̂

)
= Δ3Ĉ0 − E3Γ̂ . (B 3d)

Note that the above coefficients in (B 2) are always positive except from β1, β2, γ2, δ1
which could also be negative (or even zero). This can happen if the system is unstably
stratified, in which case the term (1 − r) becomes negative, or due to a change in the sign
of factor (m − n2) that depends on the fluid viscosity and thickness ratio.
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